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Abstract

P systems are parallel Molecular Computing models based on processing mul-
tisets of objects in cell-like membrane structures. Various variants were already
shown to be computationally universal, equal in power to Turing machines. In this
paper one proposes a class of P systems whose membranes are the main active
components, in the sense that they directly mediate the evolution and the commu-
nication of objects. Moreover, the membranes can multiply themselves by division.
We prove that this variant is not only computationally universal, but also able to
solve NP complete problems in polynomial (actually, linear) time. We exemplify
this assertion with the well-known SAT problem.

1 Introduction: The Basic Variants of P Systems

The P systems are a class of distributed parallel computing devices of a biochemical type,
introduced in [5], which can be seen as a general computing architecture where various
types of objects can be processed by various operations.

Very shortly, in the basic model one considers a membrane structure consisting of
several cell-like membranes which are hierarchically embedded in a main membrane, called
the skin membrane. The membranes delimit regions, where we place objects.

The objects evolve according to given ewvolution rules, which are associated with the
regions. A rule is applied to objects in the region with which it is associated and can
modify the objects, send them outside the current membrane or to an inner membrane,
and can also dissolve the membrane. When such an action takes place, all the objects
of the dissolved membrane remain free in the membrane placed immediately outside, but
the evolution rules of the dissolved membrane are removed. The skin membrane is never
dissolved. Note that the membranes are both separators and channels of communication,
but they are passive participants to the process, the whole functioning of the system is
governed by the evolution rules.

*Research supported by “Research for Future” Program no. JSPS-RFTF 96100101, from the Japan
Society for the Promotion of Science.



The application of evolution rules is done in a maximally parallel manner: at each
step, all objects which can evolve should evolve.

Starting from an initial configuration and using the evolution rules, we get a com-
putation. A computation is considered completed when it halts, no further rule can be
applied to the objects present in the last configuration. There are two possible ways of
assigning a result to a computation: by considering the multiplicity of objects present
in a designated membrane in a halting configuration, or by concatenating the symbols
which leave the system, in the order they are sent out of the skin membrane (if several
symbols are expelled at the same time, then any ordering of them is accepted). Thus, in
the first case we compute vectors of natural numbers, while in the second case we generate
a language.

Many variants are considered in [2], [5], [6], [8], [9], [10], [11], [12]. In all of these
variants the number of membranes can only decrease during a computation, by dissolving
membranes as a result of applying evolution rules to the objects present in the system.

A natural possibility is to let the number of membranes also to increase during a com-
putation, for instance, by division, as it is well-known in biology. Actually, the membranes
from biochemistry are not at all passive, like those in the models briefly described above.
For example, the passing of a chemical compound through a membrane is often done by a
direct interaction with the membrane itself (with the so-called protein channels or protein
gates present in the membrane); during this interaction, the chemical compound which
passes through membrane can be modified, while the membrane itself can in this way be
modified (at least locally).

We will here make use of these observations and we will consider P systems where the
central role in the computation is played by the membranes: evolution rules are associ-
ated both with objects and membranes, while the communication through membranes is
performed with the direct participation of the membranes; moreover, the membranes can
not only be dissolved, but they also can multiply by division. An elementary membrane
can be divided by means of an interaction with an object from that membrane. Each
membrane is supposed to have an “electrical polarization” (we will say charge), one of
the three possible: positive, negative, or neutral. If in a membrane we have two immedi-
ately lower membranes of opposite polarizations, one positive and one negative, then that
membrane can also divide in such a way that the two membranes of opposite charge are
separated; all membranes of neutral charge and all objects are duplicated and a copy of
each of them is introduced in each of the two new membranes. The skin is never divided.

In this way, the number of membranes can grow, even exponentially. As expected, by
making use of this increased parallelism we can compute faster. We prove that this is the
case, indeed: the SAT (satisfiability of propositional formulas in the conjunctive normal
form) problem, one of the basic NP complete problems, can be solved in this framework
in linear time (the time units are steps of a computation in a P system as sketched above,
where we perform in parallel, in all membranes of the system, applications of evolution
rules or division of membranes). Moreover, the model is shown to be computationally
universal: any recursively enumerable set of (vectors of ) natural numbers can be generated
by our systems.

These two features — the computational universality and the possibility of solving
NP complete problems in linear time — looks very promising for considering P systems



with active membranes as a computing model. However, it is still prematurely to say
whether or not such a model can be implemented, in biochemical media or in electronic
media. Anyway, we advocate that together with DNA Computing (see details in [7]),
Computing with Membranes is an appealling area of Natural Computing which deserves
further investigations.

2 P Systems with Active Membranes

We directly define the variant of P systems we introduce in this paper; we start by fixing
a few notions and notations.

A membrane structure is represented by a Venn diagram and is identified by a string of
correctly matching parentheses, with a unique external pair of parentheses; this external
pair of parentheses corresponds to the external membrane, called the skin. A membrane
without any other membrane inside is said to be elementary. For instance, the structure
in Figure 1 contains 8 membranes; membranes 3, 5, 6, and 8 are elementary. The string
of parentheses identifying this structure is

o= [1[2[5 ]5[6 ]6]2[3 ]3[4[7[8 ]8]7]4]1'

All membranes are labeled; here we have used the numbers from 1 to 8. (We sometimes
say that the number of membranes is the degree of the membrane structure, while the
height of the tree associated in the usual way with the structure is its depth. In the
example above we have a membrane structure of degree 8 and of depth 4.)

S —
"

Figure 1. A membrane structure and its associated tree.

In what follows, the membranes can be marked with 4+ or —, and this is interpreted
as an “electrical charge”, or with 0, and this means “neutral charge”. We will write
L1 ]? in the three cases, respectively.

The membranes delimit regions, precisely identified by the membranes (the region of a
membrane is delimited by the membrane and all membranes placed immediately inside it,
if any such a membrane exists). In these regions we place objects, which are represented
by symbols of an alphabet. Several copies of the same object can be present in a region,
so we work with multisets of objects. A multiset over an alphabet V' is represented by a

string over V: the number of occurrences of a symbol a € V in a string z € V* (V* is



the set of all strings over V; the empty string is denoted by A) is denoted by |z|, and it
represents the multiplicity of the object a in the multiset represented by z.
Let us now pass to defining our systems.

A P system with active membranes is a construct
0= (V,T,H, p,wy,...,Wn, R),
where:
(i) m > 1;

)
(ii) V is an alphabet (the total alphabet of the system);
(iii) T C V (the terminal alphabet);
(iv) H is a finite set of labels for membranes;
)

(v) w is a membrane structure, consisting of m membranes, labeled (not necessarily in
a one-to-one manner) with elements of H; all membranes in p are supposed to be
neutral;

(vi) wy,...,w,, are strings over V', describing the multisets of objects placed in the m
regions of u;

(vii) R is a finite set of developmental rules, of the following forms:

(a) [,a = 0]},
forhe Hae{+,—,0},ac Vv e V*
(object evolution rules, associated with membranes and depending on the label
and the charge of the membrane, but not directly implying the membranes,
in the sense that the membranes are neither taking part to the application of
these rules nor are they modified by them);

(b) al, I3 = [,0]3"
for h € Hyag,a0 € {+,—,0},a,b €V
(communication rules; an object is introduced in the membrane, maybe modi-
fied during this process; also the polarization of the membrane can be modified,
but not its label);

(C) [ha ]c}:I — [h ]c;zb,
for h € Hyay,a5 € {+,—,0},a,b €V
(communication rules; an object is sent out of the membrane, maybe modified
during this process; also the polarization of the membrane can be modified,
but not its label);

(d) [ha ]y =0,
forhe Hae{+,—,0},a,beV
(dissolving rules; in reaction with an object, a membrane can be dissolved,
while the object specified in the rule can be modified);



(©) [ya 5 = (b1 ],e ],
for h € H,aq,a0,a3 € {+,—,0},a,b,c €V
(division rules for elementary membranes; in reaction with an object, the mem-
brane is divided into two membranes with the same label, maybe of different
polarizations; the object specified in the rule is replaced in the two new mem-
branes by possibly new objects);

(f) [ho[h1 Zi T [hk ]Z; [hk+1 ]Cf:;ﬂ T [hn an]zg
« azo 7] g
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for k¥ > 1,n > kh; € H0 < i < n, and ap,...,as € {+,—,0} with
{a1, a2} = {+, —}; if this membrane with the label hy contains other mem-
branes than those with the labels hq, ..., h, specified above, then they should
have neutral charge in order to may apply this rule

(division of non-elementary membranes; this is possible only if a membrane
contains two immediately lower membranes of opposite polarization, + and —;
the membranes of opposite polarizations are separated in the two new mem-
branes, but their polarization can change; always, all membranes of opposite
polarizations are separated by applying this rule).

Note that in all rules of types (a) — (e) only one object is specified (that is, the objects
do not directly interact) and that, with the exception of rules of type (a), always single
objects are transformed into single objects (the two objects produced by a division rule
of type (e) are placed in two different regions).

These rules are applied according to the following principles:

1. All the rules are applied in parallel: in a step, the rules of type (a) are applied to
all objects to which they can be applied, all other rules are applied to all mem-
branes to which they can be applied; an object can be used by only one rule,
non-deterministically choosen (there is no priority relation among rules), but any
object which can evolve by a rule of any form, should evolve.

2. If a membrane is dissolved, then all the objects in its region are left free in the
region immediately above it. Because all rules are associated with membranes, the
rules of a dissolved membrane are no longer available at the next steps. The skin
membrane is never dissolved.

3. All objects and membranes not specified in a rule and which do not evolve are
passed unchanged to the next step. For instance, if a membrane with the label A
is divided by a rule of type (e) which involves an object a, then all other objects
in membrane h which do not evolve are introduced in each of the two resulting
membranes h. Similarly, when dividing a membrane h by means of a rule of type
(f), the neutral membranes are reproduced in each of the two new membranes with
the label h, unchanged if no rule is applied to them (in particular, the contents of
these neutral membranes is reproduced unchanged in these copies, providing that
no rule is applied to their objects).

4. If at the same time a membrane h is divided by a rule of type (e) and there are
objects in this membrane which evolve by means of rules of type (a), then in the



new copies of the membrane we introduce the result of the evolution; that is, we
may suppose that first the evolution rules of type (a) are used, changing the objects,
and then the division is produced, so that in the two new membranes with label
h we introduce copies of the changed objects. Of course, this process takes only
one step. The same assertions apply to the division by means of a rule of type (f):
always we assume that the rules are applied “from bottom-up”, in one step, but
first the rules of the innermost region and then level by level until the region of the
skin membrane.

5. The rules associated with a membrane h are used for all copies of this membrane,
irrespective whether or not the membrane is an initial one or it is obtained by
division. At one step, a membrane h can be the subject of only one rule of types

(b) = (£).

6. The skin membrane can never divide. As any other membrane, the skin membrane
can be “electrically charged”.

The membrane structure of the system at a given time, together with all multisets of
objects asociated with the regions of this membrane structure is the configuration of the
system at that time. The (m + 1)-tuple (p, w,...,wy,) is the initial configuration. We
can pass from a configuration to another one by using the rules from R according to the
principles given above. We say that we have a (direct) transition among configurations.
We do not define formally a transition. In the next section we will consider in detail an
example which can enlighten the idea; also the proof of the computational universality
theorem from Section 4 will offer a series of explanations.

A sequence of transitions which starts from the initial configuration is called a com-
putation with respect to II. A computation is complete if it cannot be continued: there is
no rule which can be applied to objects and membranes in the last configuration.

Note that during a computation the number of membranes (hence the degree of the
system) can increase and decrease but the labels of these membranes are always among
the labels of membranes present in the initial configuration (by division we only produce
membranes with the same label as the label of the divided membrane).

During a computation, objects can leave the skin membrane (by means of rules of type
(c)). The terminal symbols which leave the skin membrane are collected in the order of
their expelling from the system, so a string is associated to a complete computation; when
several terminal symbols leave the system at the same time, then any ordering of them is
accepted (thus, with a complete computation we possibly associate a set of strings, due
to this “local commutativity” of symbols which are observed outside the system at the
same time). In this way, a language is associated with II, denoted by L(II), consisting of
all strings which are associated with all complete computations in II.

Two facts are worth emphasizing: (1) the symbols not in 7' which leave the skin
membrane as well as all symbols from 7" which remain in the system at the end of a
halting computation are not considered in the generated strings; (2) if a computation
goes for ever, then it provides no output, it does not contribute to the language L(II).



3 Solving SAT in Linear Time

In order to prove the usefulness of using active membranes (in particular, membrane
division) and in order to illuminate the informal definition of a transition in a P system
as given above, we will consider an example which is also very significant by itself: solving
the SAT problem by a P system with active membranes.

The SAT (satisfiability of propositional formulas in the conjunctive normal form) is
probably the most known NP complete problem. It asks whether or not for a given
formula in the conjunctive normal form there is a truth-assignment of the variables for
which the formula assumes the value true. A formula as above is of the form

’}/:Cl/\CQ/\.../\Cm,
where each C;,1 < i < n, is a clause of the form of a disjunction
Ci=vy1 Vi V...Vy,,

with each y; being either a propositional variable, x,, or its negation, ~ z,. (Thus, we
use the variables z1, x5, ... and the three connectives V, A, ~: or, and, negation.)
For example, let us consider the propositional formula

ﬁ = (xl \/372) A\ (N l‘l\/ ~ xz)

(it is also used in [4], where a linear time DNA Computing solution to SAT is proposed).
We have two variables, x1, 2, and two clauses. It is easy to see that it is satisfiable: any
of the following truth-assignments makes the formula true

(x1 = true, zo = false), (x1 = false, xs = true).
We now pass to one of the main results of this paper:

Theorem 3.1 The SAT problem can be solved by a P system with active membranes in
a time which is linear in the number of variables and the number of clauses.

Proof. Let us consider a propositional formula
’}/:Cl/\CQ/\.../\Cm,

with
Cz' =UYi1 V...V Yipi»
for some m > 1,p; > 1, and y; ; € {zg,~z |1 <k <n},foreach 1 <i<m,1<j<p,.
We construct the P system

= (VvT; H’l'L’wO’w]-’ s ;’wm;merl;R)



with the components

V =Aai,t;, fi | 1 <i<n}
U{e|0<i<2n+m—1}
u {t},

T = {1},

H=1{01,...,m+1},

M= [m+1[m[m_1"'[1[0 ]g]g]?n_J?n]?n_,_p

Wo = CoA1A3 . . . A,

w; = A, foralli=1,2,... m+1,

while the set R contains the following rules:

1.

[o¢i = Cipa]y, forall0 <i<2n+m—2and a € {+,—,0}

(we count to 2n + m — 1, which is the time needed for producing all 2" truth-
assignments for the n variables, as well as 2" membrane sub-structures which will
examine the truth value of formula 7 for each of these truth-assignments; this count-
ing is done in the central membrane, irrespective which is its polarity);

[paily = [otili [, fily, foralll1 <i<m

(in membrane 0, when it is “electrically neutral”, we non-deterministically choose
one variable z; and both values true and false are associated with it, in the form of
objects t;, f;, which are separated in two membranes with the label 0 which differ
only by these objects t;, f; and by their charge);

. [002n+m_1]g — t

(after 2n + m — 1 steps, each copy of membrane 0 is dissolved and their contents is
released in the upper membranes, those labeled with 1);

[jti]g — t;, if x; appears in clause Cj, 1 < ¢ <n,1 < j <m, and
[].fi]? — fi, if ~ x; appears in clause Cj, 1 <i<n,1<j<m

(a membrane with label j, 1 < j < m, is dissolved if and only if clause C; is
satisfied by the current truth-assignment; if this is the case, then the truth values
associated with the variables are released in the upper membrane, that associated
with the next clause, C; 1, otherwise these truth values remain blocked in membrane
j and never used at the next steps by the membranes placed above; note that, as
we will see immediately, after 2n +m — 1 steps we have 2" membrane sub-structures

of the form [ [~ ...[, ](1) . .]g%l]?n working in parallel in the skin membrane);

0

+
m+1 t

t] — [m+1 ]m+1

[m—i—l



(together with the truth-assignments, we also have the object ¢, which can be
passed from a level to the upper one only by dissolving membranes; this object
reaches the skin membrane if only if all membranes in a sub-structure of the form
[ R ](1]"'12%1121 are dissolved, which means that the associated truth-
assignment has satisfied all the clauses, that is, the formula is satisfiable; therefore,
t leaves the system if and only if the formula is satisfiable; when this rule is applied,
the skin membrane gets a “positive charge”, so the rule can be applied only once);

6. [i+1[i ]j[Z ]Z._]?Jr1 — [i—l-l[i ]? ;l[iﬂ[i ]?];1, forall 0 <i<m — 2, and

— 0

[m[m—l ]:rrz—l[m—l ]m—l]m 0 ]0 N ]0

m[m—l ]m—l m[m[m—l ]m—l m

adl

(division rules for membranes labeled with 0,1,...,m; the opposite polarization
introduced when dividing a membrane 0 is propagated from lower levels to upper
levels of the membrane structure and the membranes are continuously divided until
dividing also membrane m — which will get neutral charge).

,From the previous explanations one can easily see that

L(I) = { {t}, if formula ~ is satisfiable,
10, otherwise.

Therefore, we get the answer to the question whether or not v is satisfiable by examining
the emptiness of the language L(II) (by checking whether or not any object leaves the
system II during the computation). This is achieved in 2n + 2m + 1 steps: in 2n+m — 1
steps we create the 2" membrane sub-structures of the form [ [, ...[; 19.. .]?n_l]?n
(as well as the 2" different truth-assignments), then we dissolve all membranes 0 (one
further step) and we check the satisfiability of each clause for each truth-assignment, in
parallel in the 2" sub-structures (this takes further m steps); one more step is necessary
in order to send out of the system one copy of the object ¢, if any copy of ¢ has reached
the skin membrane. If no copy of ¢ leaves the system at this step, then the formula is not

satisfiable. O

Note that we have used rules of all types (a) — (f), excepting the type (b), and that also
in the case of rules of type (a) we have object-to-object rules (and not object-to-multiset).

We illustrate the previous construction and the work of the system II obtaineed in
this way for the propositional formula 5 = (z; V 23) A (~ 1V ~ x3), mentioned before
the theorem.

Thus, n = 2, m = 2. The initial configuration of the system is

[sal1[oCoa1a2]g]}]5]5-

The computation proceeds as follows (we specify the current configuration at each step):
0107070
Step O: [3[2[1[000@1@2]0]1]2]3;

Step 1: [3[2[1[001tla2];[Oclflaﬂ(;] ?]g]g



(in parallel, the rule [,co — cl]g and the division rule [Oal]g — [tile Lo fi]; were
used; membrane 1 must immediately divide, because of the two copies of membrane

0 with opposite polarizations);

Step 2: [3[2[1[062t1az]g] f[l[oc2fla2]g] 1_](2)]2

(the counter ¢; is replaced with ¢; and membrane 1 is divided; because the two
membranes with label 0 are not of neutral polarity, no new truth value is intro-
duced at this step; at the next step, membrane 2 must divide);

Step 3: [3[2[1[003t1t2];[003t1f2](;] [1]]2[2[1[063f1t2];[063f1f2](;] [1]]2]2

(simultaneously, the counter ¢, is replaced by c3, each membrane 0 is divided again,
producing membranes of opposite polarity, and membrane 2 is also divided, because
of the existence of the two membranes 1 with opposite polarity; the generation of
the truth-assignments is completed, but we still have to divide membranes, because
of the existence of membranes of opposite polarity);

Step 4: [3[2[1[004t1t2]g]Ir[1[oc4t1f2]g];13[2[1[004f1t2]g]Ir[1[oc4f1f2]g];]g]g

(we divide the two membranes 1, in parallel, and we increase the counter; no other
rule can be applied);

Step 5: [3[2[1[005t1t2]g][1)]g[z[l[gc5t1f2]81212[2[1[065f1t2] g]g]g[2[1[005f1f2]g](1)]g]g

(we increase again the counter and we divide the two membranes 2).

The membrane structure (and the contents of membranes with label 0) is represented
in Figure 2. One sees that for each truth-assignment we have a sub-structure of the

form [,[,[, |,];],- All membranes have neutral polarity.
3
2 N\
1
0
csfifz

/2 2 2
1 1 1
0 0 0
cslita cstifo cs fito

Figure 2. The membrane structure in the example, after Step 5.

Step 6: [5[,[ttata] 501y tt1 ol )5 L[ tfital o Loyt fo 5]
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(the counter has reached its maximal value; it can be transformed in ¢ while dis-
solving all membranes 0);

Step 7: [ ttta) St fol St frta] S, Lt 1 £o) O100S

(clause 1 is satisfied by the first three truth-assignments; the corresponding mem-
branes with label 1 are dissolved; the last truth-assignment does not satisfy the first
clause, its associated membrane 1 remains unchanged and the truth values in it will
be of no use from now on);

Step 8: [,[,ttita] tts fot frtal, [ tf1f2)1]0)5

(clause 2 is satisfied by the second and the third truth-assignments, so the cor-
responding membranes 2 are dissolved; two copies of ¢ are left free in the skin
membrane, corresponding to the two truth-assignments which satisfy the formula);

Step 9: One of the two copies of ¢ will be sent out of the system, so we know that the
formula was satisfied. This is the last step of the computation, because no further
rule can be applied (the skin membrane is now “positively charged”, so the second
copy of ¢ cannot leave it).

4 The Computational Universality

We now investigate the computability power of P systems with active membranes.

Let us denote by LPA the family of languages L(II), generated by P systems with
active membranes as (informally) defined in Section 2.

Because we work here with multisets of symbols, the “main information” contained
by the strings in a language L(II) is given by the Parikh vectors associated with these
strings, not by the ordering of symbols in the strings.

For a string w € V*, for V. = {ay,...,a,}, we define the Parikh vector of w (with
respect to V', the ordering of elements from V' being relevant) by

Uy (w) = ([w]ay, - -, [w]a,)-

The definition is extended in the usual way to languages, ¥y (L) = {¥y(w) |w € L}, L C
V.

For a family F'L of languages (over a given alphabet V') we denote by PsF L the family
of Parikh images of languages in F'L.

By PsRE we denote the family of recursively enumerable sets of vectors of natural
numbers; this is equal to the family of Parikh sets of recursively enumerable languages.
(For elements of formal language theory we refer to [13].)

In the proof of the main theorem below we will use the notion of a matrix grammar.

A matriz grammar with appearance checkingis a construct G = (N, T, S, M, F), where
N, T are disjoint alphabets, S € N, M is a finite set of sequences of the form (A; — 1,
ooy Ay = ), n > 1, of context-free rules over N UT (with A; € N,z; € (NUT)* in
all cases), and F is a set of occurrences of rules in M (we say that N is the nonterminal

11



alphabet, T is the terminal alphabet, S is the axiom, while the elements of M are called
matrices).

For w,z € (NUT)* we write w = z if there is a matrix (4; — =1, ..., A, = z,) in
M and the strings w; € (NUT)*, 1 <i <n+ 1, such that w = wy, 2 = w41, and, for all
1 < i < n, either w; = wiA;w!, w;y; = wiz;w!, for some w}, w! € (N UT)*, or w; = w;y1,
A; does not appear in w;, and the rule A; — z; appears in F. (The rules of a matrix are
applied in order, possibly skipping the rules in F' if they cannot be applied; we say that
these rules are applied in the appearance checking mode.) If F = (), then the grammar is
said to be without appearance checking (and F' is no longer mentioned).

We denote by =* the reflexive and transitive closure of the relation =—>. The lan-
guage generated by G is defined by L(G) = {w € T* | S =>* w}. The family of languages
of this form is denoted by M AT,.. When we use only grammars without appearance
checking, then the obtained family is denoted by M AT

It is known that M AT C MAT,. = RE and that each one-letter language in the
family M AT is regular, [3]. Further details about matrix grammars can be found in [1]
and in [13].

A matrix grammar G = (N, T, S, M, F) is said to be in the binary normal form if
N = Ny UN,U{S, #}, with these three sets mutually disjoint, and the matrices in M are
of one of the following forms:

1 S%XA),WIthXENl,AEN%

2. (X =Y, A—u2x),with XY € Nj,A€ Nyyz € (N, UT)*,

3

-
-
(X S Y,A— #), with X,V € Ny, A€ Ny,
- (

4. (X > N A — ), with X € Ni, A€ Ny, and z € T*.

Moreover, there is only one matrix of type 1 and F' consists exactly of all rules A — #
appearing in matrices of type 3; # is a trap-symbol, once introduced, it is never removed.
A matrix of type 4 is used only once, at the last step of a derivation.

According to Lemma 1.3.7 in [1], for each matrix grammar there is an equivalent
matrix grammar in the binary normal form.

Theorem 4.1 (Computational Universality) PsRE = PsLPA.

Proof. The inclusion LPA C RFE follows from Church-Turing thesis or can be proved
directly, in a straightforward (but involving a long construction) way. This implies the
inclusion PsLPA C PsRE. So, we only have to prove the inclusion PsRE C PsLPA.
To this aim, we make use of the equality PsRE = PsMAT,.. Let G = (N,T,S, M, F)
be a matrix grammar with appearance checking in the binary normal form, with N =
N1UN,U{S, #} and matrices of the four forms mentioned above. Each matrix of the form
(X > MA—z), X € N, A€ Ny,x € T is replaced by (X — Z, A — z), where Z is a
new symbol. We denote by G’ the obtained grammar. Assume that we have n; matrices
of the form (X — Y, A — z), with X € N1,Y € NyU{Z},z € (N2UT)*, and ny matrices
of the form (X — Y, A — #), X,Y € N;, A € N,. (That is, we consider separately the
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matrices having rules used in the appearance checking mode and the matrices not having
such rules.)

We construct the P system (with p = ny + ny + 2 initial membranes)
II= (MTaHal’cawla"'awpaR)a
with

V=NUNUTU{Zt}
U{X | X e N}
U{{z) |z e (NUT)*, (X —Y,A— z)is a matrix in G'},
H={1,2,...,p},
p= 1ol PR [y ]21[n1+1 ]gl+1 R S ]21+n2]p_1]2’
w; = A, foralli e M — {p— 1},
w,—1 = XA, for (S — X A) the initial matrix of G,

and the following set R of rules:

1. For each matrix m; = (X — Y, A — z), 1 <i < ng, we introduce the rules:

X[ 10 = Y11
AL AL
=,

)

|

_>
_>

B

as well as the rules
[ () = 2]

2. For each matrix m; = (X — Y, A — #), n; + 1 < i < ny + ng, we introduce the
rules:

X[, 18— [ X,

X0 = [ X]LY),,
Y P P s YR o Y Y e
AT =[S,

Y17 = [ 1Y,
it — 117

3. We also consider the following rules, for all a € T',

0 0
[p—la]p—l — [p—l ]p_1a7

0 0
as well as the following rules for all & € N; U N,

0
[oia—al, .
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The system works as follows.

Membranes labeled with 1,2,...,n; are associated with matries not used in the ap-
pearance checking mode; each matrix is simulated with the help of the associated mem-
brane. In any moment, in membrane p — 1 there is only one symbol from the set N;. If
this symbol enters a membrane with the label 7, 1 < 7 < n;, then the membrane gets
the “electrical charge” + (initially, all membranes are neutral). We can continue only
by introducing in this membrane i also the corresponding symbol A (at that time, the
membrane gets a negative “electrical charge”). The continuation is deterministic: we send
out of membrane i the symbol (z) (and the membrane is again neutral), then we send
out also the symbol Y; at the second step, the symbol (z) is replaced in membrane p — 1
by the string z. In this way, in membrane p — 1 we have simulated the use of the matrix
m; = (X — Y, A — z). Note how the “electrical charge” of the membrane controls the
process and that the symbol Y is available in membrane p — 1 only after completing the
simulation of the matrix.

Membranes with labels ny + 1,...,n; + ny are associated with matrices used in the
appearance checking mode. Let 7,n; + 1 < ¢ < ny + ny, be such a membrane, associated
with m; = (X — Y, A — #). As above, the symbol X can enter membrane 7 (unchanged);
having this symbol inside, this membrane is divided in two membranes, of opposite po-
larity. In the first membrane, that with positive “charge”, we check whether or not any
occurrence of A is present in the membrane p — 1. This is done as follows. Because of this
opposite polarity of membranes with label i, membrane p — 1 is also divided, in a copy of
positive “charge” and a neutral copy. In this way, all objects from the former membrane
with the label p — 1 are duplicated and introduced in each of these membranes. If the
symbol A is present, then at the same step when membrane p— 1 is divided, we introduce
the trap-object T in the positively “charged” copy of membrane p — 1. This object will
evolve for ever, so the computation will never finish. Also in parallel with membrane p—1
division, we release the symbol Y in the copy of membrane p — 1 which is neutral. Thus,
the simulation of the matrix m; is successful if and only if the computation will ever stop,
that is, if and only if the symbol A was not present.

The process can continue. Each terminal symbol present in the membrane with the
label p — 1 and of neutral polarity is sent to the skin membrane and from here it is
sent out of the system. As long as any nonterminal symbol from N; U N, is present
in the membrane with the label p — 1 and of neutral polarity, the computation is not
halting. (Note that the copies of membrane p — 1 produced for simulating matrices in
the appearance checking mode and used only for checking the non-appearance of symbols
A € N, have a positive charge, so the nonterminal symbols present in them do not evolve.)
Consequently, we simulate in IT exactly the terminal derivations in G'. Because the symbol
Z cannot evolve, we have the equality Ur(L(G)) = ¥r(L(II)). O

In the construction above we have used rules of all types (a) — (f), with the excception
of dissolving rules of type (d).

Because the division of membranes is used only for simulating matrices which contain
rules used in the appearance checking manner, from the previous construction we obtain
the fact that the Parikh sets of languages in M AT are the same with the Parikh sets of
languages generated by P systems which do not use membrane division. We denote by
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LPA(ndiv) this family of languages, hence we can write:
Corollary 4.1 PsMAT C PsLPA(ndiv).
Actually, this is a proper inclusion, because of the following result:

Theorem 4.2 LPA(ndiv) — MAT # (.

Proof. We consider the P system

IT = ({a,b}, {a}, {1}, [, 1}, ab, R),

R={[ja— aa][l], [,b— b][l], [lb]0 —

L= LY Laly = [ 17 ah

1711 1

As long as membrane 1 is neutral, the number of occurrences of object a is doubled. At
the same time, the object b is “doing nothing”. At any moment, object b can determine
the change of the polarity of membrane 1 (it becomes positive). From now on, no other
rule can be used than those which send out of the system all available copies of object a.
Consequently, we have L(IT) = {a*" | n > 1}. This is not a language in the family M AT
(it is a non-regular one-letter language). O

5 Final Remarks

The P systems were introduced as parallel computing models of a biochemical inspiration,
but up to now their usefulness from the computational complexity point of view was not
investigated. An explanation can be the fact that the parallelism inherent to a P system
(all evolution rules which can be used, in all membranes, are used at the same time)
seems not to be sufficient in order to obtain a significant speed-up of computations (in
comparison, for instance, with a Turing machine).

The variant we have introduced here has an enhanced parallelism: the membranes
themselves can be multiplied by division. In this way, the number of membranes (and
membrane sub-structures, hence “processors” of our computing device) can increase expo-
nentially. We have shown that this feature leads to easy solutions to intractable problems:
SAT can be solved in linear (parallel) time. Moreover, this class of P systems is still com-
putationally universal, any recursively enumerable set of vectors of natural numbers (in
particular, each recursively enumerable set of natural numbers) can be generated by such
a system.

Several natural problems appear in this framework. For instance, it can be of interest
to find other problems which are known to be hard (even NP complete) and which can
be solved in an easy way by P systems with active membranes. Then, a question of a
practical importance is to try to implement a P system of this type, either in biochemical
media or in electronic media. To this aim, it could be necessary to consider variants of
P systems with membrane division possibilities which are more “realistic”, whatever this
would mean. This is, of course, a topic for an interdisciplinary research.
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