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Abstract

We consider for a real humber the Kolmogorov complexities of its expan-
sions with respect to different bases. In the paper it is shown that, for usual and
self-delimiting Kolmogorov complexity, the complexity of the prefixes of their ex-
pansions with respect to different baseandb are related in a way which depends
only on the relative information of one base with respect to the other.

More precisely, we show that the complexity of the lenigttog, b prefix of the
baser expansion ofa is the same (up to an additive constant) as the beqgld
complexity of the length prefix of the basé expansion ofx.

Then we use this fact to derive complexity theoretic proofs for the base inde-
pendence of the randomness of real numbers and for some properties of Liouville
numbers.

Kolmogorov Complexity is mainly attributed to finite strings over a finite alphabet. As a
function or, more coarsely, as a limit it measures the complexity of infinite strings.

Real numbers are described by their (infiniteggry expansions. Thus, choosing the base

r, we may attribute Kolmogorov complexity also to real numbers, however, relative to the
chosen base. Consequently, it might happen that the Kolmogorov complexity of a real
number depends on the chosen base

Particular cases, where a property of a real number depends an theapasksjunctive-

ness and Borel normality. An infiniteary expansior§ of the real numbey, (&) := 0.§

is called disjunctive provided every finiteary string appears as an infix &f Borel nor-
mality is defined in a similar way, taking into account also the relative frequencies of the
infixes. For more detailed information see, e.g., [Ca94, He96]. It was already shown in
[Cs59, Sc60] that Borel normality and disjunctiveness are not invariant under changes of
the base. On the other hand, it was shown in [CJ94], and in another context in [HW98],
that the property of randomness of an infinite expansion of a real number is invariant un-
der base change. Besides that it was claimed in [CH94] that the Kolmogorov complexity
(as a limit) does not depend on the chosen lvase
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In this note we investigate in more detail the Kolmogorov complexit@ts, /n) of ex-
pansionst, of a real number with respect to different basesWe show that, if a real
number is expanded in the scalesafndb, respectively, then complexity of the length

| -log, b prefix of the base expansion of is the same (up to an additive constant) as the
log, b-fold complexity of the lengtt prefix of the bas® expansion.

This result provides a third proof of the fact that randomness is base invariant for real num-
bers. Next we investigate the complexity of Liouville numbers, a kind of real numbers
famous for an elegant and constructive proof of the existence of transcendental real num-
bers. Finally, utilizing our complexity theoretic arguments, we calculate the Hausdorff
dimension of the set of Liouville numbers and investigate disjunctive Liouville numbers.

1 Notation and Preliminaries

By IN ={0,1,2,...} we denote the set of natural numbers. In order to treat the Kol-
mogorov complexities for arbitrary alphabets we let faf IN be X, := {O0,...,r — 1}

our alphabet of cardinality caii = r. By X" we denote the set of finite strings (words)
on X;, including theemptyword e. We consider also the spa¢ of infinite sequences
(w-words) overX;. Forw e X* andn € X*UX® let w-n be theirconcatenation This
concatenation product extends in an obvious way to subd$eisX* andF C X U X®.

By w C n we denote the prefix relation, that is,C n if and only if there is am’ such
thatw-n’ =n.

Forn € X" UX® we denote by, (n) := 0.n the real number with (finite or infinite) base

r expansiom.

We will consider the self-delimiting as well as the non self-delimiting complexity (cf.
[Ca94, LVI3]). To this end we fix for evenye IN a universal algorithn, : X — X and

a universal self-delimiting algorithr@; : X" — X/, the domain of the latter is a prefix-
free subset oK. Moreover we fix a recursive standard bijection between IN 3hd
r-string : IN — X*. For the sake of convenience we agree thating(n) is thenth string

in the quasilexicographical order &§. Then|r-string(n)| = [log, (n(r —1) +1)| <1+

log, max{n, 1}.

The Kolmogorov complexitpf a wordw € X/ is defined as; (w) := inf{|1] : t€ X* A

U (1) = w}. Accordingly, theself-delimiting Kolmogorov complexitf a wordw € X is

Hr (w) :=inf{|m : te X* AC; (1) = w}.

In order to prove our results we need the following slight modifications of Theorem 5.1.b.ii
in [Ca94] and Theorem 3.5 in [CC96]. We call a functibnM — M’ of bounded ambi-
guity provided there is & < IN such that for everyn € M’ the preimagef ~1(m) has no
more thark elements, and we call a functitn IN — IN semi-computable from abovfe
the setMy, := {(n, j) : h(n) < j} is recursively enumerable.

Theorem1l 1. Let f:IN — X* be a recursive function of bounded ambiguity. Then
Snent M) <00

2. Ifg:IN — X" isrecursive and hIN — IN is semi-computable from above such that



Snen T < 00 then
de(ce NAYN(n€ IN — H,(g(n)) < h(n)+c)) .

Proof. 1. It is well-known that the self-delimiting complexity satisfies the inequality
Swexe I W < 00 (see [Ca94, LV93)). Let carfd 1(w) < k for everyw € X*. Then

%‘r—Hr(f(n)) = Y cardft(w) - r-HW <k § W <00,
ne weZ(,*

WEXF
2. f Spenr "™ <00 thenalsoy 3 ri=5. 3 r "W < 00. Consequently,
neN j>h(n) neN

there is atm € IN such thaty .y S j>h(n) " —h(n)-m < 1

Let fy : IN — X x IN be a recursive function enumerating the recursively enumerable set
Mp := {(r-string(n), j) : j > h(n) + m}. Above we derived the inequalityr-ring(n).j)cM, I~

< 1. Thus, according to the Kraft-Chaitin Theorem (Theorem 4.17 in [Ca94]) there is a

mappingC : X — X with prefix-free domain such th&(wy j) = r-string(n) for some

wordwp j € X! whenever(r-string(n), j) € Mp.

ThenC' :=gor-string™1oC : X* — X* is a partial recursive function with the same prefix-

free domain a€ andC'(wy ;) = g(n) for all n, j € IN. SinceH,(g(n)) < Hc(g9(n)) +c¢

whereH (w) :=inf{|m : te X AC'(1)) = w}, we haveH,(g(n)) < h(n)+ m+c. O

The next theorem relates the complexitigsandH;, to their counterparts for alphabets of
different size cardy, = b, K, andHy, respectively. To this end we denote fynsy 1=
b-string o r-string ™1 : X* — X* the standard bijection betweerary andb-ary words.

Theorem 2 Let f: IN — X be a recursive function of bounded ambiguity, and let g
IN — X/ be a recursive function. Then there is a constant @ such that for all ne IN
the following inequalities hold true

Kr(g(n)) < log, b-Ky(f(n))+cand
Hr(g(n)) < log b-Hp(f(n))+c.

Proof. Let cardf 1(w) < k for all w € X*. We define a functiomp: X — X* in the
following way:

If |11 < k let @(17) := e (the empty word). Otherwise split the inpai X* in two parts
Ty - T such thatm | = k.

Setm:= (|r-string~(1q)| (modk)) € {1,...,k}.

Then translatat, via the standard bijectiomransy, : X — X into a programo :=
transp (Th) € X. ComputeUp(0) for a universal computer w.r.tXy. If Uy(o) is de-
fined then take from the sét : f(i) = Up(0)} the mth elementn (say), and compute
g(n).

Thus, if f(n) = Uy(0) then card ~(f(n)) < k and there is a prefiry such that we have
@(1y) = g(n) for T0:= Ty - trans;p(0). Finally observe thake(g(n)) < | < k+ [|o] -
log, b].

In the case of self-delimiting complexity, the assertion follows from the previous theorem,
because o r~'0% PHu(f(n) < 00 . O



2 Base independence

In this section we consider expansions of real numbers with respect to different bases. It
is well known that the mappings converting real numbers from sctidescaleb are not
continuous functions mapping theary expansiorg € X of a real numbeno € [0, 1] to
a b-ary expansiord(§) € X of the same number. For instance, in the case3 and

b=2fora= % thatis,§ = 111... € {0,1,2}“ we do not know the first bit of the-word
®(&) € {0,1} until we know the whole infiniteo-word &. For a more detailed account
see [We92].

Despite this fact, we can show that the Kolmogorov complexities of the expansions of the
same real number do not differ too much. To this end we denoteky(&/I) (Hr(§/1))

the (self-delimiting) Kolmogorov complexity of the prefix of lendtlof the w-word § €

X®, thatis,K; (§/1) := Ky (w) (Hr (/1) := H;(w)) wherew & and|w| =1.

The aim of this section is to prove the following theorem.

Theorem 3 Leta € [0,1] be a real number, and l&t € X® andf3 € X be its base r and
base b expansions, respectively.

Then there is a constant ¢ such that for evegylN the following equations hold true:

IKr (/|1 -log b]) —log b-Kp(B/I)| < c,and
[Hr(&/[1-log, b)) —log, b-Hy(B/1)| < c.

In order to prove Theorem 3, it suffices to show the inequalities

Ki(&/|I -logb]) < log,b-Ky(B/1)+c, and (1)
He(&/[1 -log:b]) < logb-Hy(B/1)+c. (2)

To this end we derive the following facts establishing some connections between the pre-
fixes ofr-ary expansionb-ary expansions of the same real number.

Fact4 Let 0 < a3 < a» < 1 for some real numbersiaay € IR and letre IN, r > 2.
Then there is at least onealN such that the intervdlay, a;] is contained in the interval
(&5, &t] where m= [log, 215 |.

This fact is illustrated in the following picture.

ai a
1 |

[ ]

C | ! | ]

0 al & 1
Remark. Observe that fom, —a; < r~™ it is not always possible to cover the interval
[a1,ap] by a singler-ary interval [r%,arin}] Fact 4 shows that, however, it is possible to
cover[a, ay] by two adjacent-ary intervals.
We note still that every reat € [r%, ariml] has arr-ary expansion which starts with the
same prefixwv(a, m) of lengthm, that is, an expansions betweg(a, m) - 0° andw(a, m) -
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(r —1)®. Herew(a,m) is obtained by writing the number< IN in r-ary notation and
filling with leading zeros up to the length provideda < r™.

The following fact summarizes our considerations about the containment of real intervals
in r-ary intervals. To this end lefov, (a1, a;a) denote the above illustrated fact that

[a1,a2] € [ar;n}variﬁﬂ wherem:= |log, azialJ'

Fact 5 The relation
R :={(a1,a2,a) :a1,ap € QN[0,1)Aac IN ACov,(as,ap;a)}

is recursive and contains for every paif,a; € QN[0,1] such that a < a, at least one
triple (a1, ap,a) where ac IN.

As a consequence of Fact 5 we obtain that the functipns > 2 defined by

h : (QNJ0,1])?> — IN where

~ Jupa@aeINACovi(as,ap;a)), ifai<ap (3)
hv(a,82) = {O, otherwise

are computable and satisfy the following properties.

Property 6 Let0 < a; < a, < 1and m:= |log, —|. Then

a—a1
h(ag,a) < r™ and 4)
hr(a1,a2) —1 hy(ag,a2) +1
lag,8] C [ il 1rm2) Bl 1rm2) } . 5)

Proof of Theorem 3.Letv=(1)...3(1), thatis,|v| = |. Then 0< vu(B) —Vp(v) < b~ M.
According to Fact 4 and Property 6 the numbers

av) := h (vb(v),vb(v)+b*|"|> and
m(v) := |log bV

satisfyvp(B) € [ag‘rf?(j)l, 35‘2&31]. Thus there is an-ary expansion ofi,(p) starting with
w(a(v) —1,m(v)) or with w(a(v), m(v)).

Summarizing the preceding discussion, we obtained recursive funttiohs : X; — X’
such thah_ (v) := w(a(v) — 1,m(v)) andh, (v) := w(a(v),m(v)).t

The proof is now finished by applying Theorem 2 in the following way:

w(a(v),m(v)) S o f
g — V= D-string(n) ,

w(a(v) —1,m(v)) «— 2n+1

1The choice between the two functions, h.. provides the missing information which prevented us, in
the general case, from a continuous conversion betlesy andr-ary expansions of real numbers. Ob-
serve, that the information we need to accomplish the choice bet@gn) — 1, m(v)) andw(a(v), m(v))
is only onebit.



that is, we associate with every word X;; two natural numbersrg2n+ 1 via
f(2n) := f(2n+1) := b-string(n) ,

and, on the other hand, the functignmaps the natural numbers 2nd 2+ 1 to the
wordsw(a(v) —1,m(v)) € X andw(a(v),m(v)) € X, respectively:

g(2n) := h_(b-string(n)) and
g(2n+1) := hy(b-string(n)) .

Itis obvious thatf is of bounded ambiguity, so Eqgs. (1) and (2) follow from Theorelnh 2.

3 The complexity of real numbers

In this section we consider the Kolmogorov complexity of real numbers with certain prop-
erties: the first class is the mentioned in the introduction class of random real numbers,
and the second is the class of Liouville numbers, well-known as constructive examples of
transcendental numbers.

To this end we introduce the lower and upper limit of the relative complexity ofamrd
& e X/
K (&/n) Kr (/)
n

. /n .
K(§) := |InI‘EIorc])fT andk(§) := |Irl‘]Tl%lélp

(6)
Since |H;(§/n) — Ky (§/n)| < o(n) it is of no importance whether we use the usual or
self-delimiting complexity.

>From Theorem 3 above we conclude that for a real nuraber0, 1] we can define its
lower and upper limit of complexity in the same way as in Eq. (6):

K(vr(§)) :==K(&) andk(vr(§)) :==K(&) .
3.1 Random reals

It was widely believed that the notion of randomness of a real nunliemdependent of
the base of the expansion in whiahs represented. Sound proofs of this fact were given
only recently by different means [CJ94, HW98]. Here we give a third proof relying on
the following definition of random sequences by self-delimiting Kolmogorov complexity
(cf. [Ca94, Ch87, LV93)).

Definition 1 Anw-word & € X® is called random provided
lim H,(§/1)—1=00.
Jim Hr (&/1)
Now from Theorem 3 the proof of the independence result is immediate.

Lemma 7 Leta € [0,1] be a real number which is random in the scale of r. Then for
be N, b> 2thewwordp € X$° withvy(B) = o is random.
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3.2 The Kolmogorov complexity of Liouville numbers

The real numbers we deal with in this section are named after Liouville who invented them
to demonstrate the existence of transcendental numbers. They are characterized by the
fact that they have, although in a nonconstructive way, very tight rational approximations.

Definition 2 A real numbein € IR is called a Liouville number provided
1. aisirrational.

2.vn(ne N = 3p,q(p,ge NAQ> 1A]a - B < 7).

It should be noted that every Liouville number is transcendental (see [0%71]).
We obtain our first result.

Lemma 8 If a € [0,1] is a Liouville number ther(a) = 0.

Proof. We show that for the binary expansigre {0,1}® of a for everyn € IN there is
anl > nsuch that

Ka(n/1) < log, n
I - n
Let|a — §| < q—ln where 0< p < g. We use the functioh, defined in Eq. (3). Sinca €
p_ 1 p, 1 : e hP_ 1 p, 1 g . qQ" _
(ﬁ —gqt @) , we obtain fora:= hp(§ — g, g + gn) the restrictiora < m:=log, 5 =

n-log,q— 1. As in the discussion following Fact 4 we define word& — 1,m) and
w(a, m) of lengthm= |n-log,q| — 1, one of them being a prefix of.

Both wordsw(a— 1,m) andw(a, m) can be specified by the numberg,q. Utilizing a
prefix-free binary encodingpde : IN — {0, 1}* of the natural numbers, whef@de(n)| <
2-log,n for n > 4, we obtain programs of the form

Th,p,q(i) :=1i-code(n) - code(p) - code(q), i € {0,1},
and a computable functiap: {0,1}* — {0,1}* such that
W(Th,p,g(0)) = w(a—1,m) andy(Th, pg(1)) = w(a,m) .

ConsequentlyKy(w(a — 1,m)),Ky(w(a,m)) < 1+ 2log,n+ 2log, p+ 2log,q < 1+
2log,n+ 4log,q, and henceKy(w(a— 1,m)),Kz(w(a,m)) < c+ 2log,n+ 4log,q for

all triples(n, p,q) such thata — §| < q—ln andn,q > 4. Now, observe that in view of Defi-
nition 2 the values of the denominatgpgrow with the value of the exponent of precision

n. Thus
Ka(n/In-log,q—1J) _ logyn

[n-log,q—1] n
if n (and hence) is large enough. H

In connection with Definition 1 we obtain the following.

“Moreover, sincer > | - (log, k+ 1) and|a — | < 5 imply [(a+ ) — (E+ )| < ﬁ, the sum of a
Liouville number and a rational number is again a Liouville number, whereas, as we shall see below, every

real is the sum of at most two Liouville numbers.



Corollary 9 No Liouville number is a random real.

Though Liouville numbers are not random, we show that the upper limit of complexity
reaches its maximum valu€a) = 1 also for certain Liouville numbers. We consider
the following set constructed similar to the one in Example 3.18 of [St93].

Example 10 Define
F =X []x* )o@ @i
i€N
It is interesting to note that the set of finite prefixedQfA(F) := {w:we XFAFE(§ €
FAwLC &)}, is recursive.
If we considerw-wordsp = 0- [Jicn Wi - 0@+ D@+ where|wi| = 2i - (2i)! andK, (w) >
|wi| — ¢ for somec € IN then Daley’s [Da74] diagonalization argument showg) = 1.
Since the sefw: w e X" AK;(w) > |w| — 2} contains at least two elemenis contains
uncountably mangw-wordsf havingk () = 1.
The following consideration verifies that the set of numbexg¢) : & € F} \ Q consists
entirely of Liouville numbers:
Let& € F, n IN and consider the prefiw C & of length(2n+ 1)! = 14 y2,i -il. Then
vr(w) = p-r~ D! for somep € IN andw- 021)-n+1)! = g
p 1 1
(21 < r(2n+2)!-1 < (r2n1))n
eitherv, (&) is rational or a Liouville number. O

Consequently, & v, (&) — vr(w) = v (&) . Thus,

Remark.In the same way one proves thgt:= {0} - []icpy 02 @) - @+ contains
only rational or Liouville numbers. Itis readily seen that every nunaberv, ({) € [0, 1]
can be represented as the sup({) = v((§) + v (') where§ € F and&’ € F’ are the
letter-by-letter projections af ontoF or F/, respectively. The numbevs(&) andv, (&)
in the above sum are rational or Liouville numbers, thus according to Footrwp(é )2s
a Liouville number or the sum of two Liouville numbers. O

In the subsequent parts, we use the results obtained so far to give a complexity-theoretic
proof of Theorem 2.4 in [Ox71] and to prove the existence of disjunctive Liouville num-
bers.

3.3 The Hausdorff dimension of Liouville numbers

First we consider the Hausdorff dimension of the set of Liouville numle¢s]0, 1]. It
was mentioned in [MS94] that the Hausdorff dimension of a suldset [0, 1] coincides
with the one of(& : & € X® A v, (§) € M}. The latter can be defined as follows.



Definition 3 TheHausdorff dimensioof a setr C X®, dimF, is the smallest real number
a > 0 such that for al > a it holds

Ve(e > 0— IW(W C X*AF CW-XPA %v(rv)|Vv <e)).

>From the definition it is evident that Hausdorff Dimension is monotone with respect to
set inclusion and that dif§} = 0. We mention still that Hausdorff Dimension is also
countably stable.

dim | J K = supdimF, (7)

e icIN

For further properties of the Hausdorff dimension see, e.g., [Fa90]. In the papers [St93,
St98] several connections between Hausdorff dimension and Kolmogorov complexity are
derived. We need here the following one proofs of which can be found in [Ry86] or
[St93].

Lemma 11 For every FC X® the following bound is true.
dimF <sup{k(§):§ € F}
Now we obtain Theorem 2.4 in [Ox71].

Corollary 12 The set of Liouville numbers [0, 1] has Hausdorff dimensiaimL = 0.

3.4 Disjunctive Liouville numbers

In this last part we turn to disjunctive-words. As it was mentioned above, aaword

§ € X is calleddisjunctiveprovided every wordv € X* appears as an infix &, that is,
Yw(we X — Av(vC EAV-wWL §).

Proposition 8 of [JT88] proves that for evary 2 there are uncountably many disjunctive

& € X such thatv, (§) is a Liouville number. The paper [He96] presents examples of
Liouville numbers whose expansions are disjunctive with respect to one base, but not to
with respect to all bases (e.g.ioi’lr*”*i which is not disjunctive in the scale of. We

prove the existence of Liouville numbers disjunctive with respect to all bases.

Lemma 13 There are uncountably many Liouville numbersuch that for every £
IN, r > 2thew-word & € X® with v, (&) = a is disjunctive.

Proof. Egq. (5.3) of [St93] shows that aw-word § € X* with k(§) = 1 is disjunc-
tive. In fact, if§ € X does not contain a word € X* of length|w| = | as infix then
K(€) <171-log, (r' — 1) < 1. Now Example 10 yields the existence of Liouville numbers
which are disjunctive in every scale O
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