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Abstract

We consider for a real numberα the Kolmogorov complexities of its expan-
sions with respect to different bases. In the paper it is shown that, for usual and
self-delimiting Kolmogorov complexity, the complexity of the prefixes of their ex-
pansions with respect to different basesr andb are related in a way which depends
only on the relative information of one base with respect to the other.

More precisely, we show that the complexity of the lengthl � logr b prefix of the
baser expansion ofα is the same (up to an additive constant) as the logr b-fold
complexity of the lengthl prefix of the baseb expansion ofα.

Then we use this fact to derive complexity theoretic proofs for the base inde-
pendence of the randomness of real numbers and for some properties of Liouville
numbers.

Kolmogorov Complexity is mainly attributed to finite strings over a finite alphabet. As a
function or, more coarsely, as a limit it measures the complexity of infinite strings.
Real numbers are described by their (infinite)r-ary expansions. Thus, choosing the base
r, we may attribute Kolmogorov complexity also to real numbers, however, relative to the
chosen base. Consequently, it might happen that the Kolmogorov complexity of a real
number depends on the chosen baser.
Particular cases, where a property of a real number depends an the baser are disjunctive-
ness and Borel normality. An infiniter-ary expansionξ of the real numberνr(ξ) := 0:ξ
is called disjunctive provided every finiter-ary string appears as an infix ofξ. Borel nor-
mality is defined in a similar way, taking into account also the relative frequencies of the
infixes. For more detailed information see, e. g. , [Ca94, He96]. It was already shown in
[Cs59, Sc60] that Borel normality and disjunctiveness are not invariant under changes of
the baser. On the other hand, it was shown in [CJ94], and in another context in [HW98],
that the property of randomness of an infinite expansion of a real number is invariant un-
der base change. Besides that it was claimed in [CH94] that the Kolmogorov complexity
(as a limit) does not depend on the chosen baser.
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In this note we investigate in more detail the Kolmogorov complexities,Kr(ξ=n) of ex-
pansionsξ of a real number with respect to different basesr. We show that, if a real
number is expanded in the scales ofr andb, respectively, then complexity of the length
l � logr b prefix of the baser expansion of is the same (up to an additive constant) as the
logr b-fold complexity of the lengthl prefix of the baseb expansion.

This result provides a third proof of the fact that randomness is base invariant for real num-
bers. Next we investigate the complexity of Liouville numbers, a kind of real numbers
famous for an elegant and constructive proof of the existence of transcendental real num-
bers. Finally, utilizing our complexity theoretic arguments, we calculate the Hausdorff
dimension of the set of Liouville numbers and investigate disjunctive Liouville numbers.

1 Notation and Preliminaries

By IN = f0;1;2; : : :g we denote the set of natural numbers. In order to treat the Kol-
mogorov complexities for arbitrary alphabets we let forr 2 IN be Xr := f0; : : : ; r � 1g
our alphabet of cardinality cardXr = r. By X�

r we denote the set of finite strings (words)
on Xr , including theemptyword e. We consider also the spaceXω

r of infinite sequences
(ω-words) overXr . For w 2 X�

r andη 2 X�
r [Xω

r let w �η be theirconcatenation. This
concatenation product extends in an obvious way to subsetsW� X�

r andF � X�
r [Xω

r .

By wv η we denote the prefix relation, that is,wv η if and only if there is anη0 such
thatw�η0 = η.

For η 2 X�
r [Xω

r we denote byνr(η) := 0:η the real number with (finite or infinite) base
r expansionη.

We will consider the self-delimiting as well as the non self-delimiting complexity (cf.
[Ca94, LV93]). To this end we fix for everyr 2 IN a universal algorithmUr : X�

r !X�
r and

a universal self-delimiting algorithmCr : X�
r ! X�

r , the domain of the latter is a prefix-
free subset ofX�

r . Moreover we fix a recursive standard bijection between IN andX�
r ,

r-string : IN! X�
r . For the sake of convenience we agree thatr-string(n) is thenth string

in the quasilexicographical order ofX�
r . Thenjr-string(n)j = blogr(n(r�1)+1)c � 1+

logr maxfn;1g.

TheKolmogorov complexityof a wordw2 X�
r is defined asKr(w) := inffjπj : π 2 X�

r ^
Ur(π) = wg. Accordingly, theself-delimiting Kolmogorov complexityof a wordw2X�

r is
Hr(w) := inffjπj : π 2 X�

r ^Cr(π) = wg.

In order to prove our results we need the following slight modifications of Theorem 5.1.b.ii
in [Ca94] and Theorem 3.5 in [CC96]. We call a functionf : M!M0 of bounded ambi-
guity provided there is ak 2 IN such that for everym2M0 the preimagef�1(m) has no
more thank elements, and we call a functionh : IN! IN semi-computable from aboveif
the setMh := f(n; j) : h(n)� jg is recursively enumerable.

Theorem 1 1. Let f : IN ! X�
r be a recursive function of bounded ambiguity. Then

∑n2IN r�Hr( f (n)) <∞ :

2. If g : IN!X�
r is recursive and h: IN! IN is semi-computable from above such that
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∑n2IN r�h(n) <∞ then

9c(c2 IN^8n(n2 IN!Hr(g(n))� h(n)+c)) :

Proof. 1. It is well-known that the self-delimiting complexity satisfies the inequality
∑w2X�

r
r�Hr(w) <∞ (see [Ca94, LV93]). Let cardf�1(w)� k for everyw2 X�

r . Then

∑
n2IN

r�Hr( f (n)) = ∑
w2X�

r

cardf�1(w) � r�H(w) � k � ∑
w2X�

r

r�Hr(w) <∞ :

2. If ∑n2IN r�h(n) < ∞ then also ∑
n2IN

∑
j�h(n)

r� j = r
r�1 � ∑

n2IN
r�h(n) < ∞. Consequently,

there is anm2 IN such that∑n2IN ∑ j�h(n) r
�h(n)�m� 1.

Let fh : IN! X�
r � IN be a recursive function enumerating the recursively enumerable set

Mh := f(r-string(n); j) : j� h(n)+mg. Above we derived the inequality∑(r-string(n); j)2Mh
r� j

� 1. Thus, according to the Kraft-Chaitin Theorem (Theorem 4.17 in [Ca94]) there is a
mappingC : X�

r ! X�
r with prefix-free domain such thatC(wn; j) = r-string(n) for some

wordwn; j 2 X j
r whenever(r-string(n); j) 2Mh.

ThenC0 := g� r-string�1�C : X�
r !X�

r is a partial recursive function with the same prefix-
free domain asC andC0(wn; j) = g(n) for all n; j 2 IN. SinceHr(g(n)) � HC0(g(n))+ c
whereHC0(w) := inffjπj : π 2 X�

r ^C0(π) = wg, we haveHr(g(n))� h(n)+m+c. ❏

The next theorem relates the complexitiesKr andHr to their counterparts for alphabets of
different size cardXb = b, Kb andHb, respectively. To this end we denote bytransb;r :=
b-string� r-string�1 : X�

r ! X�
b the standard bijection betweenr-ary andb-ary words.

Theorem 2 Let f : IN ! X�
b be a recursive function of bounded ambiguity, and let g:

IN! X�
r be a recursive function. Then there is a constant c> 0 such that for all n2 IN

the following inequalities hold true

Kr(g(n)) � logr b�Kb( f (n))+c and
Hr(g(n)) � logr b�Hb( f (n))+c :

Proof. Let cardf�1(w) � k for all w 2 X�
b . We define a functionφ : X�

r ! X�
r in the

following way:
If jπj � k let φ(π) := e (the empty word). Otherwise split the inputπ 2 X�

r in two parts
π1 �π2 such thatjπ1j= k.
Setm := (jr-string�1(π1)j (modk)) 2 f1; : : : ;kg.
Then translateπ2 via the standard bijectiontransb;r : X�

r ! X�
b into a programσ :=

transb;r(π2) 2 X�
b . ComputeUb(σ) for a universal computer w.r.t.X�

b . If Ub(σ) is de-
fined then take from the setfi : f (i) = Ub(σ)g the m-th element,n (say), and compute
g(n).
Thus, if f (n) =Ub(σ) then cardf�1( f (n))� k and there is a prefixπ1 such that we have
φ(π) = g(n) for π := π1 � transr;b(σ). Finally observe thatKφ(g(n)) � jπj � k+ djσj �
logr be.
In the case of self-delimiting complexity, the assertion follows from the previous theorem,
because∑n2IN r� logr b�Hb( f (n)) <∞ : ❏
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2 Base independence

In this section we consider expansions of real numbers with respect to different bases. It
is well known that the mappings converting real numbers from scaler to scaleb are not
continuous functions mapping ther-ary expansionξ 2 Xω

r of a real numberα 2 [0;1] to
a b-ary expansionΦ(ξ) 2 Xω

b of the same number. For instance, in the caser = 3 and
b= 2 for α = 1

2, that is,ξ = 111: : :2 f0;1;2gω we do not know the first bit of theω-word
Φ(ξ) 2 f0;1gω until we know the whole infiniteω-word ξ. For a more detailed account
see [We92].

Despite this fact, we can show that the Kolmogorov complexities of the expansions of the
same real numberα do not differ too much. To this end we denote byKr(ξ=l) (Hr(ξ=l))
the (self-delimiting) Kolmogorov complexity of the prefix of lengthl of theω-word ξ 2
Xω

r , that is,Kr(ξ=l) := Kr(w) (Hr(ξ=l) := Hr(w)) wherew@ ξ andjwj= l .

The aim of this section is to prove the following theorem.

Theorem 3 Let α 2 [0;1] be a real number, and letξ 2 Xω
r andβ 2 Xω

b be its base r and
base b expansions, respectively.

Then there is a constant c such that for every l2 IN the following equations hold true:

jKr(ξ=bl � logr bc)� logr b�Kb(β=l)j � c , and

jHr(ξ=bl � logr bc)� logr b�Hb(β=l)j � c :

In order to prove Theorem 3, it suffices to show the inequalities

Kr(ξ=bl � logr bc) � logr b�Kb(β=l)+c , and (1)

Hr(ξ=bl � logr bc) � logr b�Hb(β=l)+c : (2)

To this end we derive the following facts establishing some connections between the pre-
fixes ofr-ary expansionsb-ary expansions of the same real number.

Fact 4 Let 0� a1 < a2 � 1 for some real numbers a1;a2 2 IR and let r2 IN; r � 2.
Then there is at least one a2 IN such that the interval[a1;a2] is contained in the interval�a�1

rm ; a+1
rm

�
where m:= blogr

1
a2�a1

c.

This fact is illustrated in the following picture.

a�1
rm

a+1
rm

a
rm

a1 a2

0 1

Remark. Observe that fora2� a1 � r�m it is not always possible to cover the interval
[a1;a2] by a singler-ary interval

� a
rm;

a+1
rm

�
. Fact 4 shows that, however, it is possible to

cover[a1;a2] by two adjacentr-ary intervals.

We note still that every realα 2
� a

rm;
a+1
rm

�
has anr-ary expansion which starts with the

same prefixw(a;m) of lengthm, that is, an expansions betweenw(a;m) �0ω andw(a;m) �
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(r � 1)ω. Herew(a;m) is obtained by writing the numbera 2 IN in r-ary notation and
filling with leading zeros up to the lengthmprovideda< rm.

The following fact summarizes our considerations about the containment of real intervals
in r-ary intervals. To this end letCovr(a1;a2;a) denote the above illustrated fact that
[a1;a2]�

�a�1
rm ; a+1

rm

�
wherem := blogr

1
a2�a1

c.

Fact 5 The relation

Rr := f(a1;a2;a) : a1;a2 2Q\ [0;1]^a2 IN^Covr(a1;a2;a)g

is recursive and contains for every pair a1;a2 2 Q\ [0;1] such that a1 < a2 at least one
triple (a1;a2;a) where a2 IN.

As a consequence of Fact 5 we obtain that the functionshr ; r � 2 defined by

hr : (Q\ [0;1])2! IN where

hr(a1;a2) =

�
µa(a2 IN^Covr(a1;a2;a)); if a1 < a2

0; otherwise
(3)

are computable and satisfy the following properties.

Property 6 Let 0� a1 < a2� 1 and m:= blogr
1

a2�a1
c. Then

hr(a1;a2) � rm and (4)

[a1;a2] �

�
hr(a1;a2)�1

rm ;
hr(a1;a2)+1

rm

�
: (5)

Proof of Theorem 3.Let v= β(1) : : :β(l), that is,jvj= l . Then 0� νb(β)�νb(v)� b�jvj.
According to Fact 4 and Property 6 the numbers

a(v) := hr

�
νb(v);νb(v)+b�jvj

�
and

m(v) := blogr bjvjc

satisfyνb(β) 2
h

a(v)�1
rm(v) ; a(v)+1

rm(v)

i
. Thus there is anr-ary expansion ofνb(β) starting with

w(a(v)�1;m(v)) or with w(a(v);m(v)).
Summarizing the preceding discussion, we obtained recursive functionsh�;h+ : X�

b!X�
r

such thath�(v) := w(a(v)�1;m(v)) andh+(v) := w(a(v);m(v)).1

The proof is now finished by applying Theorem 2 in the following way:

w(a(v);m(v))
g
 � 2n

w(a(v)�1;m(v))
g
 � 2n+1

9=
;

f
�! v= b-string(n) ;

1The choice between the two functionsh
�

;h+ provides the missing information which prevented us, in
the general case, from a continuous conversion betweenb-ary andr-ary expansions of real numbers. Ob-
serve, that the information we need to accomplish the choice betweenw(a(v)�1;m(v)) andw(a(v);m(v))
is onlyonebit.
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that is, we associate with every wordv2 X�
b two natural numbers 2n;2n+1 via

f (2n) := f (2n+1) := b-string(n) ;

and, on the other hand, the functiong maps the natural numbers 2n and 2n+ 1 to the
wordsw(a(v)�1;m(v)) 2 X�

r andw(a(v);m(v)) 2 X�
r , respectively:

g(2n) := h�(b-string(n)) and

g(2n+1) := h+(b-string(n)) :

It is obvious thatf is of bounded ambiguity, so Eqs. (1) and (2) follow from Theorem 2.❏

3 The complexity of real numbers

In this section we consider the Kolmogorov complexity of real numbers with certain prop-
erties: the first class is the mentioned in the introduction class of random real numbers,
and the second is the class of Liouville numbers, well-known as constructive examples of
transcendental numbers.
To this end we introduce the lower and upper limit of the relative complexity of anω-word
ξ 2 X�

r .

κ(ξ) := liminf
n!∞

Kr(ξ=n)
n

andκ(ξ) := limsup
n!∞

Kr(ξ=n)
n

(6)

Since jHr(ξ=n)�Kr(ξ=n)j � o(n) it is of no importance whether we use the usual or
self-delimiting complexity.
>From Theorem 3 above we conclude that for a real numberα 2 [0;1] we can define its
lower and upper limit of complexity in the same way as in Eq. (6):

κ(νr(ξ)) := κ(ξ) andκ(νr(ξ)) := κ(ξ) .

3.1 Random reals

It was widely believed that the notion of randomness of a real numberα is independent of
the base of the expansion in whichα is represented. Sound proofs of this fact were given
only recently by different means [CJ94, HW98]. Here we give a third proof relying on
the following definition of random sequences by self-delimiting Kolmogorov complexity
(cf. [Ca94, Ch87, LV93]).

Definition 1 Anω-word ξ 2 Xω
r is called random provided

lim
l!∞

Hr(ξ=l)� l = ∞ :

Now from Theorem 3 the proof of the independence result is immediate.

Lemma 7 Let α 2 [0;1] be a real number which is random in the scale of r. Then for
b2 IN; b� 2 theω-word β 2 Xω

b with νb(β) = α is random.
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3.2 The Kolmogorov complexity of Liouville numbers

The real numbers we deal with in this section are named after Liouville who invented them
to demonstrate the existence of transcendental numbers. They are characterized by the
fact that they have, although in a nonconstructive way, very tight rational approximations.

Definition 2 A real numberα 2 IR is called a Liouville number provided

1. α is irrational.

2. 8n(n2 IN!9p;q(p;q2 IN^q> 1^jα� p
qj<

1
qn)).

It should be noted that every Liouville number is transcendental (see [Ox71]).2

We obtain our first result.

Lemma 8 If α 2 [0;1] is a Liouville number thenκ(α) = 0.

Proof. We show that for the binary expansionη 2 f0;1gω of α for everyn2 IN there is
an l � n such that

K2(η=l)
l

�
log2n

n
.
Let jα� p

qj<
1
qn , where 0� p� q. We use the functionh2 defined in Eq. (3). Sinceα 2�

p
q�

1
qn ;

p
q +

1
qn

�
, we obtain fora := h2(

p
q�

1
qn ;

p
q +

1
qn) the restrictiona�m := log2

qn

2 =

n � log2q� 1. As in the discussion following Fact 4 we define wordsw(a� 1;m) and
w(a;m) of lengthm= bn� log2qc�1, one of them being a prefix ofη.
Both wordsw(a�1;m) andw(a;m) can be specified by the numbersn; p;q. Utilizing a
prefix-free binary encodingcode : IN!f0;1g� of the natural numbers, wherejcode(n)j �
2� log2n for n� 4, we obtain programs of the form

πn;p;q(i) := i � code(n) � code(p) � code(q); i 2 f0;1g ;

and a computable functionψ : f0;1g�!f0;1g� such that

ψ(πn;p;q(0)) = w(a�1;m) andψ(πn;p;q(1)) = w(a;m) :

Consequently,Kψ(w(a� 1;m));Kψ(w(a;m)) � 1+ 2log2n+ 2log2 p+ 2log2q � 1+
2log2n+ 4log2q, and henceK2(w(a� 1;m));K2(w(a;m)) � c+ 2log2n+ 4log2q for
all triples(n; p;q) such thatjα� p

qj<
1
qn andn;q� 4. Now, observe that in view of Defi-

nition 2 the values of the denominatorq grow with the value of the exponent of precision
n. Thus

K2(η=bn� log2q�1c)
bn� log2q�1c

�
log2n

n

if n (and henceq) is large enough. ❏

In connection with Definition 1 we obtain the following.

2Moreover, sincen� l � (log2k+1) andjα� p
q j<

1
qn imply j(α+ m

k )� ( p
q +

m
k )j <

1
(q�k)l

, the sum of a

Liouville number and a rational number is again a Liouville number, whereas, as we shall see below, every
real is the sum of at most two Liouville numbers.
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Corollary 9 No Liouville number is a random real.

Though Liouville numbers are not random, we show that the upper limit of complexity
reaches its maximum valueκ(α) = 1 also for certain Liouville numbersα. We consider
the following set constructed similar to the one in Example 3.18 of [St93].

Example 10 Define
F := Xr �∏

i2IN
X2i�(2i)!

r �0(2i+1)�(2i+1)! :

It is interesting to note that the set of finite prefixes ofF, A(F) := fw : w2 X�
r ^9ξ(ξ 2

F ^w@ ξ)g, is recursive.

If we considerω-wordsβ = 0�∏i2IN wi �0(2i+1)�(2i+1)! wherejwij= 2i �(2i)! andKr(wi)�
jwij�c for somec2 IN then Daley’s [Da74] diagonalization argument showsκ(β) = 1.
Since the setfw : w2 X�

r ^Kr(w) � jwj�2g contains at least two elements,F contains
uncountably manyω-wordsβ havingκ(β) = 1.

The following consideration verifies that the set of numbersfνr(ξ) : ξ 2 FgnQ consists
entirely of Liouville numbers:
Let ξ 2 F, n2 IN and consider the prefixw@ ξ of length(2n+1)! = 1+∑2n

i=0 i � i!. Then
νr(w) = p� r�(2n+1)! for somep2 IN andw�0(2n+1)�(2n+1)!

@ ξ.

Consequently, 0� νr(ξ)� νr(w) = νr(ξ)�
p

r(2n+1)!
<

1

r(2n+2)!�1
�

1

(r(2n+1)!)n
. Thus,

eitherνr(ξ) is rational or a Liouville number. ❏

Remark.In the same way one proves thatF 0 := f0g�∏i2IN 02i�(2i)! �X(2i+1)�(2i+1)!
r contains

only rational or Liouville numbers. It is readily seen that every numberα = νr(ζ) 2 [0;1]
can be represented as the sumνr(ζ) = νr(ξ)+ νr(ξ0) whereξ 2 F andξ0 2 F 0 are the
letter-by-letter projections ofζ ontoF or F 0, respectively. The numbersνr(ξ) andνr(ξ0)
in the above sum are rational or Liouville numbers, thus according to Footnote 2νr(ζ) is
a Liouville number or the sum of two Liouville numbers. ❏

In the subsequent parts, we use the results obtained so far to give a complexity-theoretic
proof of Theorem 2.4 in [Ox71] and to prove the existence of disjunctive Liouville num-
bers.

3.3 The Hausdorff dimension of Liouville numbers

First we consider the Hausdorff dimension of the set of Liouville numbers,L � [0;1]. It
was mentioned in [MS94] that the Hausdorff dimension of a subsetM � [0;1] coincides
with the one offξ : ξ 2 Xω

r ^νr(ξ) 2Mg. The latter can be defined as follows.

8



Definition 3 TheHausdorff dimensionof a setF �Xω
r , dimF, is the smallest real number

α� 0 such that for allγ > α it holds

8ε(ε > 0!9W(W� X�
r ^F �W �Xω

r ^ ∑
w2W

(rγ)jwj < ε)) :

>From the definition it is evident that Hausdorff Dimension is monotone with respect to
set inclusion and that dimfξg = 0. We mention still that Hausdorff Dimension is also
countably stable.

dim
[

i2IN

Fi = sup
i2IN

dimFi (7)

For further properties of the Hausdorff dimension see, e.g., [Fa90]. In the papers [St93,
St98] several connections between Hausdorff dimension and Kolmogorov complexity are
derived. We need here the following one proofs of which can be found in [Ry86] or
[St93].

Lemma 11 For every F� Xω
r the following bound is true.

dimF � supfκ(ξ) : ξ 2 Fg

Now we obtain Theorem 2.4 in [Ox71].

Corollary 12 The set of Liouville numbers L� [0;1] has Hausdorff dimensiondimL= 0.

3.4 Disjunctive Liouville numbers

In this last part we turn to disjunctiveω-words. As it was mentioned above, anω-word
ξ 2 Xω

r is calleddisjunctiveprovided every wordw2 X�
r appears as an infix ofξ, that is,

8w(w2 X�
r !9v(v@ ξ^v�w@ ξ).

Proposition 8 of [JT88] proves that for everyr � 2 there are uncountably many disjunctive
ξ 2 Xω

r such thatνr(ξ) is a Liouville number. The paper [He96] presents examples of
Liouville numbers whose expansions are disjunctive with respect to one base, but not to
with respect to all bases (e.g.∑∞

i=1 r�i!�i which is not disjunctive in the scale ofr). We
prove the existence of Liouville numbers disjunctive with respect to all bases.

Lemma 13 There are uncountably many Liouville numbersα such that for every r2
IN; r � 2 theω-word ξ 2 Xω

r with νr(ξ) = α is disjunctive.

Proof. Eq. (5.3) of [St93] shows that anω-word ξ 2 Xω
r with κ(ξ) = 1 is disjunc-

tive. In fact, if ξ 2 Xω
r does not contain a wordw 2 X�

r of length jwj = l as infix then
κ(ξ)� l�1 � logr(r

l �1)< 1. Now Example 10 yields the existence of Liouville numbers
which are disjunctive in every scaler. ❏
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