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DEGREE- AND TIME- CONSTRAINED BROADCAST NETWORKS

MICHAEL J. DINNEEN
�

, GEOFFREY PRITCHARD, AND MARK C. WILSON

Abstract. We consider the problem of constructing networks with as many nodes as pos-

sible, subject to upper bounds on the degree and broadcast time. This paper includes the

results of an extensive empirical study of broadcasting in small regular graphs using a sto-

chastic search algorithm to approximate the broadcast time. Signi�cant improvements on

known results are obtained for cubic broadcast networks.

1. Introduction

Broadcasting is the process of sending a message originating at one node of a network to

all other nodes, with the restriction that each node can only forward the message to one of

its neighbors at a time. In other words, this is the familiar telephone (or point-to-point)

communication model. For a comprehensive survey of this and other communication models

see [11].

The classic broadcast design problem was introduced by Farley and others (see [8]). This

is the problem of �nding graphs of a given order with the least number of edges such that one

can broadcast in minimum time from each vertex. It is easy to observe that the minimum

time to broadcast in a network of order n is dlog2 ne, since at each time step the number

of vertices that have received the message can at most double. The current state of this

broadcast problem is presented in [7].

Formally, a broadcast protocol for a vertex v (called the originator) of a graph G = (V;E)

may be de�ned as follows. It is a sequence V0 = fvg; E1; V1; E2; : : : ; Et; Vt = V such that

each Vi � V , each Ei � E, and for 1 � i � t:

1. each edge in Ei has exactly one endpoint in Vi�1,

2. no two edges in Ei share a common endpoint, and

3. Vi = Vi�1 [ fw j fu;wg 2 Eig.
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Figure 1. Two di�erent (3; 4) broadcast graphs.

Here Vi is the set of vertices which have been informed after i steps. During time step i,

each vertex in Vi nVi�1 receives the message from a unique vertex in Vi�1, and each informed

vertex in Vi�1 sends to at most one uninformed neighbor.

The broadcast time for a vertex v of G, denoted b(G; v), is the minimal length t of a

broadcast protocol for v. The broadcast time of the graph G is b(G) = max(b(G; v) j v 2 G).

This paper focuses on the broadcasting problem from a slightly di�erent perspective. In-

stead of �xing the order and minimizing the number of edges, we constrain both the degree

� and the broadcast time T while maximizing the order. A (�; T ) broadcast graph is a graph

G such that (1) the degree of every vertex v 2 V (G) is at most � and (2) the broadcast time

of G is at most T . We de�ne B(�; T ) (respectively Btr(�; T )) to be the maximum number

of vertices possible for a graph (respectively, a transitive graph) with maximum degree �

and broadcast time T .

Two examples of (3; 4) broadcast graphs of order 14 are given in Figure 1. One broad-

cast protocol is indicated for the symmetric Heawood graph by labeling the edges with the

transmission times. The non-symmetric graph on the right requires three di�erent broadcast

protocols (one for each white/black/gray node).

The degree- and time- constrained broadcast problem, also called the (�; T ) problem, was

introduced in [4] as an engineering alternative to the previously-mentioned broadcast problem

of Farley. The (�; T ) problem is related to the degree/diameter network problem. In that

situation, the communication model allows a node to simultaneously send a message to all

its neighbors in one time step (the multi-cast model). Network designers want the largest

possible architecture that satis�es the physical constraints on the number of connections per

processor (degree) and limitations on overall communication time (diameter). In the classic
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broadcast problem, it is observed that these sparse graphs often have a few vertices of very

high degree, making networks modeled on these graphs impractical.

We say that a (�; T ) broadcast graph G is optimal if jV (G)j = B(�; T ). It is trivial to see

that the cycle C2T is optimal for � = 2 and T � 2. However for � � 3 the (�; T ) problem

is decidedly nontrivial. The main reason is that, in general, the problem of computing the

broadcast time of a given graph is very di�cult.

It is straightforward to reduce the instances of the three dimensional matching problem to

a corresponding minimum broadcast time problem and thereby prove NP-completeness for

the general case of unbounded-degree networks [9]. A simple proof showing that the problem

of �nding the broadcast time of networks of maximum degree 3 is NP-complete is presented

in [6]. A more involved proof by Middendorf [13] shows that, in the context of broadcasting

with multiple originators in cubic planar graphs, even the problem of determining whether

the broadcast time is at most 2 is NP-complete. Since exact algorithms are impractical for

large networks, several heuristics have been proposed (for example, see [20, 12, 16]). Also,

because of the general hardness of this problem, some research has been restricted to speci�c

families of \nice" graphs. For example, a near-optimal broadcasting algorithm for the pancake

graphs, a family of Cayley graphs, is given in [10].

The di�culty of exhibiting broadcast protocols (evident even in the second graph in Fig-

ure 1) is one reason for concentrating on transitive (also called vertex-transitive or vertex-

symmetric) graphs. By de�nition, each vertex of such a graph G may be mapped to any

other vertex by a suitable automorphism of the graph (in other words, the automorphism

group Aut(G) acts transitively on V (G)). Hence it su�ces to �nd a protocol for a single

originator instead of one for each possible originator.

An important subclass of transitive graphs is the class of Cayley graphs. Recall that

given a group (G; �) and a set S of generators of G which is closed under inverses, the

Cayley graph � = Cay(G;S) is de�ned by V (�) = G, and E(�) = ffx; x � sg j x 2 G; s 2 Sg.
Cayley graphs, because of their accessibility and their transitivity properties, have been

systematically and successfully used to model many of the largest known degree/diameter

networks (e.g., see [5, 18]). Thus an investigation of these graphs is a natural starting point

in an attempt to establish lower bounds for the (�; T ) problem.

An outline of the paper follows. In Section 2, we present the best lower bounds known

for B(�; T ) and Btr(�; T ), for small values of � and T . We discuss explicit examples of

graphs which achieve these bounds. Section 3 contains various necessary conditions on (�; T )

networks, including some upper bounds on B(�; T ) and Btr(�; T ). Some further graph

constructions, establishing lower bounds on B(�; T ) and Btr(�; T ), appear in Section 4,
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including a result on the asymptotic behaviour of B(�; T ) as T ! 1. Section 5 contains

comments on our methodology and Section 6 �nishes with a list of selected open problems.

We end this introduction by mentioning two more broadcasting problems related to the

(�; T ) problem, neither of which we study in this paper. Both of these place limits on the

broadcast time but have no degree constraints (as they were originally proposed).

One variation of time-constrained broadcasting problem is the bounded depth broadcasting

problem of Peters and Peters [14], where there is a limit on the number of times information

can be retransmitted before it becomes unusable. They de�ne a (t; d)-broadcast graph to be

a graph in which broadcasting can be completed from any originator in time t and depth d.

Another time-restricted broadcasting problem was introduced by Shastri [19] where the

goal is to �nd the sparsest networks of order n with broadcast time slightly more than

the minimum time. Here a t-relaxed minimal broadcast network G is a network in which

broadcasting can be accomplished in dlog2 v(G)e+ t time units from any node. It turns out

that for relatively small t the sparsest networks are trees, so this parametrized problem is

probably not of much interest to engineers.

2. Numerical results

In this section we present the best known lower bounds on B(�; T ) for small values of �

and T , and explicitly present graphs attaining these bounds.

For � > 2, there are only two in�nite families of graphs which are known to be optimal

for the (�; T ) problem. For T = �, the hypercube Q� (the Cayley graph of (Z2)
� with

respect to the standard generating involutions) is optimal. For T = �+1, the Cayley graph

of the dihedral group D2��1�1 = ha; b j a2 = b2
�
�1 = (ab)2 = 1i, with respect to generatorsn

ab2
i
�1 j 0 � i � �� 1

o
, is optimal (see [4]). In each of these cases a protocol exists which

is as simple as possible. Speci�cally, there is an ordering s0 < s1 < � � � < s��1 of the set

of generators such that at time step i, vertex x sends to vertex xsj , where 0 � j � � � 1

and j � i mod �. In other words, at a given time step all transmissions are in a �xed

\dimension", and these dimensions cycle through the elements of S. We shall call such a

protocol a simple protocol. We believe that simple protocols are rather rare amongst graphs

that are close to optimal for this problem.

We now present our numerical results. Details of our methodology are delayed until Sec-

tion 5.

Table 1 presents the best known lower bounds on B(�; T ) for small values of � and T ,

T � � � 3. In Table 1, bold entries are known to be optimal. All of these in fact attain

the upper bound on B(�; T ) given in Table 2. Italicized entries are new results. All entries

in Table 1 are obtained explicitly from Cayley graphs unless indicated by a superscript. An
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Table 1. Orders of the largest known broadcast networks with degree � �

and broadcast time � T .

� T 3 4 5 6 7 8 9 10 11 12

3 8 14 24 40� 64 96 144 216 324 506

4 16 30 56 90 156 260 444 710 1220

5 32 62 108 186 336 612 1088 1958

6 64 126 220 390 750 1320 2430

7 128 254 440y 816 1500 y 2712

8 256 510 880 1632 y 3000 y

9 512 1022 1760 y 3264 y

10 1024 2046 3520 y

Table 2. Upper bounds on B(�; T ).

� T 3 4 5 6 7 8 9 10 11 12

3 8 14 24 40 66 108 176 286 464 752

4 16 30 56 104 192 354 652 1200 2208

5 32 62 120 232 448 864 1666 3212

6 64 126 248 488 960 1888 3712

7 128 254 504 1000 1984 3936

8 256 510 1016 2024 4032

9 512 1022 2040 4072

10 1024 2046 4088

asterisk (*) indicates that the entry is transitive but not a Cayley graph, while a dagger (y)
means that the entry is obtained from a compound construction as explained in Section 4.

We note that, while it is possible that B(3; 7) = 66, so that the (3; 7) entry need not be

optimal, it can be shown that Btr(3; 7) = 64 (since all cubic transitive graphs of order 66

are known, and can be eliminated by the methods of Section 3). For comparison we have

included, in Table 2, some upper bounds on B(�; T ). For the origin of these bounds, see

Section 3.

Table 3 shows the properties of the largest cubic broadcast graphs for T � 12. All of these

graphs are transitive. In brackets we list how many non-isomorphic graphs that we have

found of the given order. For comparison we list, in the third column, the order of the largest

known cubic (transitive) graph with diameter T . We believe that our bounds for diameters
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Table 3. Vital statistics of the largest-known cubic broadcast networks.

General transitive lower bounds Properties of best broadcast graph

T Max #V (b(G) = T ) Max #V (diam(G) = T ) Girth Diameter #Aut Symmetric?
broadcast graph multi-cast graph

3 8 [2] 14 4 3 48 yes

4 14 [1] 26 6 3 336 yes

5 24 [4] 60 6 4 144 yes

6 40 [1] 82 8 6 480 yes

7 64 [6] 168 8 7 384 yes

8 96 [1] 300 10 7 96 no

9 144 [3] 506 10 8 288 no

10 216 [3] 882 12 8 1296 yes

11 324 [2] 1220 12 9 324 no

12 506 [1] 1830 14 9 506 no

T = 4, T = 6 and T � 10 are new (see Appendix A of [21]). In the remaining columns we

state properties of what we considered to be the \best" one of the broadcast graphs obtaining

the broadcast time T . This is often a symmetric graph, that is, Aut(G) is transitive on the

set of directed edges. In addition, each best broadcast graph is bipartite (many of the others

are not).

We now discuss our new entries in Table 1 in more detail (see [4] for previous details).

(3; 5): There are exactly four cubic transitive graphs with 24 vertices and broadcast time

5, all of which are Cayley graphs. Of these we discuss two in more detail. For the �rst, let

G be the symmetric group S4 and let S = fs0; s1; s2g = f(13); (14); (12)(34)g � G. Then

the graph � = Cay(G;S) has a simple protocol with the generators taken in the given order.

The second graph is the unique symmetric graph of this order, and does not have a simple

protocol.

(3; 6): There is a unique cubic transitive graph � with 40 vertices and broadcast time 6.

� is also the unique cubic symmetric graph of order 40, and is not a Cayley graph. It di�ers

from the (3; 6)-graph of order 40 presented in [1], which is not even transitive.

(3; 7): There are exactly six cubic transitive graphs with 64 vertices and broadcast time

7. One of these has diameter 6. Among these is the unique symmetric graph of this order.

This graph � occurs as the Cayley graph of four non-isomorphic groups of order 64.

(3; 8): We have found a cubic Cayley graph � with 96 vertices and broadcast time 8, and

there are at most 14 such graphs. � is not symmetric. One description of � as Cay(G;S),

is as follows. The group G is the semidirect product C o D16, where D16 is generated by
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involutions a; b subject to (ab)16 = 1 and their action on a generator t of the cyclic group C

of order 3 is given by ata�1 = t; btb�1 = t�1. We can take S =
�
a; b; (ab)3at

	
.

(3; 9): We have found three cubic Cayley graphs with 144 vertices and broadcast time 9.

One such is the Cayley graph of the groupG = ha; b j a2 = ab4ab�4 = (b2ab)3 = (abab2)2 = 1i,
with respect to

�
a; b; b�1

	
.

(3; 10): We have found three cubic Cayley graphs with 216 vertices and broadcast time

10. Among these is one of the three symmetric graphs of this order, known as F216C in the

Foster Census (see [17]).

(3; 11): We have found two cubic Cayley graphs with 324 vertices and broadcast time 11,

neither of which is symmetric. One such is the Cayley graph of G = ha; b; c j a2 = b2 = c2 =

cbacabacabca = 1; (cab)2 = (bca)2i, with respect to fa; b; cg.
(3; 12): We have found a cubic Cayley graph with 506 vertices and broadcast time 12. One

representation is as Cay(G;S) where G is the semidirect product Z23 o Z22. The action is

determined by the requirement that the generator 1 2 Z22 maps to the generator 5 2 Z�23 �=
Aut(Z23). We can take S to be the set f(1; 21); (18; 1); (0; 11)g � Z23� Z22.
(4; 6): There is a degree 4 transitive graph � of order 56 and broadcast time 6 which was

presented in [1]. A broadcast protocol is given in that paper. � may be represented as a

Cayley graph of D28 = ha; b j a2 = b28 = (ab)2 = 1i, with respect to the set of generating

involutions
�
a; ba; b9a; b26a

	
.

All other new entries which we have found are Cayley graphs similar to the description of

the (3; 12) entry. The groups are all semidirect products of two cyclic groups Zm o Zn. In

Table 4, the triple (m;n; k) indicates that the homomorphism from Zn into Z
�

m
�= Aut(Zm) is

determined by the requirement that it map the generator 1 of Zn to an element k 2 Z�m such

that kn = 1. The ordered pairs represent the � generators of the Cayley graph in the usual

way as elements of the set Zm� Zn. The group multiplication in ZmoZn, which is usually

non-commutative, of the elements (m1; n1) and (m2; n2) is the element (m1+k
n1 �m2; n1+n2).

3. Upper bounds

In this section we derive upper bounds on the size of a (�; T ) graph in terms of easily

computable graph-theoretic properties of the graph. These results help us eliminate many

potential candidates while searching for large (�; T ) graphs.

Let �(d) be the in�nite rooted tree in which every vertex has d children. Then �(d) has an

obvious broadcast protocol from the root, in which every vertex sends to its children in turn

(in some speci�ed �xed order). For each t � 0, let �(d; t) be the subtree of �(d) consisting of

all vertices which have received the message after t time steps.
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Table 4. Data for Cayley graphs of semidirect products of cyclic groups.

(�; T ) (m,n,k) generators

(4,8) (13,12,2) (5,11), (3,1), (1,6), (0,6)

(4,9) (13,20,8) (7,17), (4,3), (1,19), (5,1)

(4,10) (37,12,8) (23,6), (1,6), (24,5), (7,7)

(4,11) (71,10,14) (51,7), (68,3), (42,7), (56,3)

(4,12) (61,20,8) (2,2), (40,18), (55,17), (22,3)

(5,10) (51,12,13) (5,9), (31,3), (15,7), (9,5), (0,6)

(5,11) (68,16,3) (67,10), (49,6), (10,9), (26,7), (0,8)

(5,12) (89,22,81) (27,4), (31,18), (35,10), (76,12), (0,11)

(6,11) (66,20,5) (27,19), (63,1), (9,18), (39,2), (35,15), (53,5)

(6,12) (135,18,4) (46,0), (89,0), (83,1), (13,17), (6,13), (66,5)

(7,12) (113,24,18) (60,17), (72,7), (31,11), (106,13), (58,14), (79,10), (0,12)

More immediately relevant to broadcasting is �0(d), the in�nite rooted tree in which every

vertex has degree d (so the root has d children and all other vertices have d�1 children). De�ne
�0(d; t) analogously to �(d; t): the vertices informed after t broadcast steps. Throughout this

section we will assume d � 2 for �(d) and d � 3 for �0(d) in order to avoid trivial cases.

Let F (d; t) be the number of vertices of �(d; t), let f(d; t; k) be the number of vertices of

�(d; t) of depth at most k, and let g(d; t; k) = F (d; t)� f(d; t; k) be the number of vertices of

�(d; t) of depth greater than k. De�ne analogous quantities F 0; f 0; g0 for �0(d).

The following easily established formulas are useful in calculating the above quantities.

Proposition 3.1. The following relations hold for the above values of d.

The function F satis�es the recurrence

F (d; 0) = 1; F (d; T ) = 1 +

min(d;T )X
i=1

F (d; T � i) for T � 1.

The function F 0 is given by

F 0(d; T ) = 2F (d� 1; T � 1):

The function f satis�es the recurrence

f(d; T; k) =

8<
:
1 +

Pmin(d;T )
i=1 f(d; T � i; k � 1); if T � 1 and k � 1

1; if T = 0 or k = 0:

The function f 0 is given by

f 0(d; T; k) = f(d� 1; T � 1; k) + f(d� 1; T � 1; k � 1):
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If a graph G has maximum degree � and a broadcast protocol of time T originating from a

vertex v0, then this protocol induces a broadcast tree (the subgraph S of G on the same vertex

set, incorporating only those edges used in the broadcast). Of course S is a tree rooted at

v0. We may also view S as a subtree of �0(�; T ) in an obvious way. Thus, F 0(�; T ) provides

an upper bound for B(�; T ). This argument is the basis of the table of upper bounds for

B(�; T ) given earlier.

The next result extends this kind of counting argument still further, to obtain a useful

method for bounding the broadcast times of particular graphs.

Proposition 3.2. Let G be a graph with maximum degree � and broadcast time T . Let v0

be a vertex of G. Then for 0 � k � T ,

# fvertices w of G j �G(v0; w) > kg � g0(�; T; k):

Here �G denotes the usual graph-theoretic distance metric on the vertex set of G, and # the

cardinality of a set.

Proof. Let S be a broadcast tree for G with originator v0 and time T . Note that for any

vertices v; w of G we have �G(v; w) � �S(v; w). Then

# fvertices w of G j �G(v0; w) > kg

�# fvertices w of S j �S(v0; w) > kg

�#
�
vertices w of �0(�; T ) j ��0(�;T )(v0; w) > k

	
=g0(�; T; k):

For the last step, we have viewed S as a subtree of �0(�; T ).

If we apply the above result with k = T , we recover the obvious fact that b(G) � diam(G),

that is, the diameter of a graph may not exceed its broadcast time.

We now move on to consider what e�ect the girth (the length of the smallest cycle) of a

graph has on its broadcast time. Intuitively, for regular graphs of degree d, one expects that

large trees �0(d; T ) cannot be embedded in a graph G if the root is to lie in a small cycle of

G. The next result makes this idea precise.

Let �(�; g; T ) be the maximum number of vertices amongst all graphs � with maximum

degree �, girth g and broadcast time T , and let �tr(�; g; T ) denote the same function re-

stricted to the transitive graphs.
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Proposition 3.3. The following relations hold.

�(3; g; T ) �

8<
:
B(3; T ); if g � T

g + F (2; T � 1) +
Pg+1

i=3 F (2; T � i); if g < T :

�tr(2; g; T ) =

8<
:
F (2; T ); if 0 � T � g � 1

g +
Pg

i=2 �
tr(2; g; T � i); if g � T :

�tr(3; g; T ) = 2�tr(2; g; T � 1):

It follows from the recurrences given in Proposition 3.1 that for �xed d, F (d; T ) grows

as (�d)
T as T ! 1, where �d is the unique root in the interval (1; 2) of the polynomial

xd+1 � 2xd + 1. This then gives an upper bound on the exponential rate of growth of

B(�; T ). Note that as d increases, �d increases with limit 2.

4. Lower bounds

In this section we present graph-theoretic constructions which provide general lower bounds

for B(�; T ).

Combination methods. In this subsection we explore some ways of constructing graphs

with good broadcast times out of smaller graphs with good broadcast times. Initially we

consider the possibility of compounding two graphs.

De�nition 4.1. Given two graphs G and H, the compound product G 
 H has vertex set

V (G)� V (H), and edges:

1. f(u;w); (v; w)g whenever fu; vg is an edge of G, and

2. f(u; v); (u;w)g whenever fv; wg is an edge of H.

Proposition 4.2. B(�1 +�2; T1 + T2) � B(�1; T1)B(�2; T2).

Proof. Let G1, G2 be two optimal broadcast graphs for (�1; T1) and (�2; T2) respectively.

ConsiderG = G1
G2. It is clear that G has maximum degree at most �1+�2. To broadcast

in G in time T1 + T2 from an originator (u0; v0), we �rst take T1 steps to inform all vertices

of form (u; v0) where u 2 V (G1), using any broadcast protocol which works for G1. Then,

beginning from each (u; v0), take T2 steps to inform all vertices (u; v), where v 2 V (G2),

using any protocol which works for G2.

Corollary 4.3. B(� + 1; T + 1) � 2B(�; T ).

Proof. In Proposition 4.2, take one of the graphs to be K2, the graph with two vertices and

one edge.
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Corollary 4.4. For k � 2, B(� + 2; T + k) � 2kB(�; T ).

Proof. In Proposition 4.2, take one of the graphs to be C2k, the cycle of length 2k.

Proposition 4.5. B(� + 1; T + 3) � 4B(�; T ).

Proof. Let G be an optimal broadcast graph for (�; T ). Since G is connected we may take a

spanning tree of G and use it to characterize every vertex of G as even or odd, according to

its distance from the root. Let G0 = G
C4. (As usual, the vertex set of the cycle C4 is taken

to be Z4 and the edge set ffx; yg j y = x+ 1g.) For each even vertex v of G, delete from G0

the edges between (v; 0) and (v; 1) and between (v; 2) and (v; 3). For each odd vertex v of

G, delete from G0 the edges between (v; 1) and (v; 2) and between (v; 3) and (v; 0). Thus, G0

has maximum degree at most � + 1.

To broadcast in G0 from an originator (v; x), proceed as follows. At the �rst step, inform

(v; y) where y = x� 1 depending on the parity of v. At the second step, inform (w; x) and

(w; y) where w is a neighbour of v with the opposite parity to v. At the third step, we can

inform (w; z1) and (w; z2), where z1 and z2 are such that fx; y; z1; z2g = Z4. The remainder

of the broadcast can be accomplished by applying the original protocol for G to the sets

f(v; t) j v 2 v(G)g, where t = x; y; z1 or z2.

We conjecture that B(�+1; T +2) � 3B(�; T ). This is almost shown by the next result,

which requires one extra hypothesis.

De�nition 4.6. A graph G is pairable if it has a 1{regular subgraph which includes all the

original vertices. Such a subgraph connects the vertices of G into pairs (such pairings are

also called 1-factorizations or perfect matchings).

Proposition 4.7. Let G be a pairable graph with maximum degree at most � and broadcast

time T . Then there exists a pairable graph G0 with maximum degree at most � + 1 and

broadcast time at most T + 2, and #V (G0) = 3#V (G).

Proof. Let G0 be the disjoint union of three copies of G. If fu; vg is a pair in G, then

f(u; i); (v; i)g is a pair in G0 for i = 1; 2; 3. For each such pair, add edges f(u; 1); (v; 2)g,
f(u; 2); (v; 3)g, and f(u; 3); (v; 1)g.
Now if the originator is, say, (u; 1), we inform (v; 1) at the �rst time step and (v; 2) and

(u; 3) at the second. The remainder of the broadcast proceeds separately in each of the three

copies of G.

The maximum degree has increased for all of the methods mentioned so far. To complete

this subsection, we give a way of constructing broadcast graphs with lower degree.
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De�nition 4.8. From an adjacency list A the partial function fA(u; v) is de�ned to be i if v

is the i-th neighbor of u. A 2-way split of a graph G = (V;E), with respect to an adjacency

list A representation, is a graph H = (V 0; E0) where V 0 = V � f0; 1g and E0 = E1 [ E2 as

de�ned below:

E1 = ff(v; 0); (v; 1)g j v 2 V g ;
E2 = ff(u; b); (v; c)g j fu; vg 2 E; b = (fA(v; u) � deg(u)=2) and c = (fA(u; v) � deg(v)=2)g :

This splicing idea may be generalized by replacing each vertex with k vertices and parti-

tioning the neighbors evenly into k parts. Instead of using a clique (as was done in the 2-way

split) the k copies of each of V are connected with a broadcast graph of low degree and small

broadcast time.

Proposition 4.9. B(d�=2e+ 1; 2T ) � 2B(�; T ).

Proof. From a (�; T ) broadcast graph G of order n we create a 2-way split H of order 2n.

The graph H has broadcast time at most 2T by following the broadcast protocols of G. Here,

whenever a vertex (v; b) is informed from a vertex (u; c), u 6= v, a single time step delay is

used to inform (v; 1 � b) before proceeding.

A direct construction. The cube-connected cycles, introduced by Preparata and Vuillemin

[15], are a well-known family of cubic graphs with an underlying hypercube-like structure.

Below we provide a lower bound on the broadcast time of these networks. An immediate

consequence of this result is that for all � � 3, B(�; T ) grows exponentially with T .

The cube-connected cycles, n-CCC, are similar to the n-cubes. The vertices are given as

pairs (i; V ) where i ranges between 0 and n� 1 and V is a bit vector of length n. For edges,

vertex (i; V ) is connected to vertex (i0; V 0) if and only if i = i0 and V 0 di�ers in only the i-th

bit from V , or ji� i0j = 1 and V = V 0.

The cube-connected cycles were shown to be transitive by Carlsson et al. [3]. In fact, they

explicitly presented a larger family, the generalized cube-connected cycles, as Cayley graphs.

Theorem 4.10. The broadcast time of the cube-connected cycle(s) d-CCC is at most

�
5d� 2

2

�
.

Proof. Let G be the graph d-CCC. Since G is transitive we only need to provide one broadcast

protocol. We will use an optimal underlying broadcast protocol for the hypercube H of

dimension d to construct a broadcast protocol for G. Let C(v) = f(i; v) j i = 0; : : : ; d � 1g
represent the set of vertices of (cycle of) G that corresponds to a vertex v of H. Note that

the set fC(v) j v 2 V (H)g partitions the vertices of G into equivalence classes.

We now describe the broadcast protocol. First note that we can optimally broadcast in H

by using a simple protocol (sending messages to neighbors at dimension t at time t). With



DEGREE- AND TIME- CONSTRAINED BROADCAST NETWORKS 13

1

2

2

3

3
4

4

5

5

4

4

2

0

0

1 1

11

1 1

1 1

0

0

0

0

0

0

2

2 2

2

2

2

2

5

5

6

77

7 7

6

6

6

6

6

1

2

2

3

3
4

4

5

5

4

4

2

0

0

1 1

11

1 1

1 1

0

0

0

0

0

0

2

2 2

2

2

2

2

5

5

3

3

5

5

6

6

6

6

6

6

Figure 2. The cube-connected cycle(s) 3-CCC and two broadcast protocols:

(1) via Theorem 4.10 and (2) via a minimal broadcast tree.

vertex (0; 00 : : : 00) as originator in G, the �rst broadcast is to vertex (0; 00 : : : 01), that is,

we use dimension 1. At time 2 both these vertices send to their �rst neighbor on the cycle

C(v). At time 3 the informed vertices (1; 00 : : : 00) and (1; 00 : : : 01) send to their neighbors

in dimension 2. Continue the process as follows: at time step 2t � 1 an informed vertex

(t� 1; V ) broadcasts in dimension t to its neighbor (t� 1; V + 2t).

There is a transmission delay of one time step after the �rst vertex of C(v) is informed and

before the next neighbor outside of C(v) is informed. Since it takes d time steps to broadcast

in the d-cube H, plus d�1 delays, at least one vertex in each C(v) is informed by time 2d�1.

To �nish o� the broadcasting in G we need at most dd=2e time steps for a representative

v of C(v) to inform any remaining vertices of the cycle C(v). Thus we can broadcast in at

most 2d� 1 + dd=2e = d5d�2
2
e time steps.

Corollary 4.11. B(3; d5d�2
2
e) � d2d :

Proof. This result follows from Theorem 4.10 and the fact that d-CCC has d2d vertices.

The broadcast bounds given in the previous theorem are not sharp. We have found broad-

cast protocols for the cube-connected cycles 3-CCC and 5-CCC with broadcast times 6 and

11, respectively (one less than our general bound). However, the actual best broadcast

time for 4-CCC matches our general bound of 9. On the right of Figure 2 we show a nice

broadcast protocol of minimum time for 3-CCC (here one simply broadcasts clockwise or

counter-clockwise around each 3-cycle depending on the parity of the time that the �rst

vertex in the cycle receives the message).
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5. Comments on our Computation

The examples in Section 2 were generated by examining known graphs with a high degree

of symmetry. In particular, the authors found the online database [17] maintained by Gordon

Royle to be invaluable. The enumeration of transitive cubic graphs in that database was the

raw material for Table 3. The generation of random Cayley graphs, based on semidirect

products of cycles (see [5]), was the source of the other �{regular graphs that yield new

lower bounds in Table 1.

Once we have a list of potential graphs, the next requirement is to know their broadcast

times. As mentioned in Section 1, �nding the broadcast time is very di�cult. We were

comfortably able to compute broadcast times of cubic graphs with up to about 80 vertices

(time T � 8). For graphs of higher degree (� � 4) our current tractable range drops down

to graphs with fewer than 50 vertices.

It is possible to partially overcome this di�culty by using a stochastic search algorithm to

�nd broadcast protocols. We used the following simple rule: at each time step, each informed

vertex selects one of its uninformed neighbours at random to inform. This generates a random

protocol which will inform the whole graph in some �nite time. The process may be repeated

as often as desired; the smallest of the times found is an upper bound for the broadcast

time of the graph. If this upper bound matches a known lower bound, for a given number

of vertices, then we have found the broadcast time of the graph. For the examples given

in Section 2, the number of attempted random protocols ranged from a few hundred to a

few hundred thousand. Since all of our input graphs were transitive, it was su�cient for our

C++ implementation to search for broadcast protocols originating from a single vertex (e.g.,

in the case of Cayley graphs we started from the identity vertex).

To lessen our computational e�ort we explored several results which bound the broadcast

time of a graph in terms of easily computable properties, such as the girth and the diameter.

The results mentioned earlier in Section 3 were helpful. Proposition 3.2 proved to be an

especially sharp test. For computing many of these graph bounds (on a sequence of graphs)

we used the Magma program [2] (called from Perl scripts [22]).

We observed that graphs with large girth and small diameter often have small broadcast

times. This suggests that we should look for graphs with a high girth/diameter ratio. In

the cases we examined, we found that among all transitive cubic graphs on n vertices which

pass the tests in Section 3, the minimal broadcast time always occurs for a graph whose

girth/diameter ratio is maximal. Another simple heuristic which should work well in practice

is to consider graphs with large automorphism groups. We did not use these non-rigorous

ideas to eliminate any graphs in our search, but found them accurate enough to mention.
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6. Some conjectures and open problems

Many problems and conjectures arose in the course of this work. We state only a few of

them below.

� We know now that B(�; T ) grows exponentially with T for � � 3. It is natural to

wonder whether this growth has a limiting exponential rate, i.e. whether the quantity

f(�) = lim
T!1

lnB(�; T )

T

exists. One could also ask what value it takes. The answer might give a succinct, quan-

titative description of the bene�ts of higher connectivity (i.e. higher degree). Assume

the limit exists. It is trivial to see that f(2) = 0, and that f(�) is an increasing func-

tion of �. We have seen in this paper that f(�) > 0 for � � 3. The simple estimate

B(�; T ) � B(T; T ) = 2T gives the upper bound f(�) � ln 2 for all �. The estimates in

Section 3 give more precise upper bounds; in particular f(3) � ln((1+
p
5)=2) � 0:4812.

� All known examples suggest that B(�; T + 1) � (3=2)B(�; T ). This, if true, would of

course be a strong lower bound on the actual growth rate of B(�; T ).

� Is it true that for all T � 2, there is an optimal (3; T ) broadcast graph with girth T +2

if T is even and T + 1 if T is odd?

� Besides our diameter and girth bounds, does there exist a good polynomial-time algo-

rithm that predicts whether a graph has a small broadcast time?
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