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Abstract

We prove that any Chaitin  number (i.e., the halting probability of a universal
self-delimiting Turing machine) is wtt-complete, but not tt-complete. In this way
we obtain a whole class of natural ezamples of wtt-complete but not tt-complete r.e.
sets. The proof is direct and elementary.

1 Introduction

Kucera [8] has used Arslanov’s completeness criterion! to show that all random sets of
r.e. T-degree are in fact T-complete. Hence, every Chaitin Q2 number is T-complete. In
this paper we will strengthen this result by proving that every Chaitin (2 number is weak
truth-table complete. However, no Chaitin €} number can be tt-complete as, because of
a result stated by Bennett [1] (see Juedes, Lathrop, and Lutz [9] for a proof), there is no
random sequence x such that K <, x.2 Notice that in this way we obtain a whole class
of natural examples of wtt-complete but not tt-complete r.e. sets (a fairly complicated
construction of such a set was given by Lachlan [10]).
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YAn r.e. X is Turing equivalent to the halting problem iff there is a Turing computable in X function
f without fized-points, i.e. Wo # Wy(s), for all x; see Soare [12], p. 88.

2To keep the paper self-contained, a direct simple proof for Bennett result will be included.



We continue with a piece of notation. Let N, Q be the sets of non-negative integers
and rationals. Let ¥ = {0, 1} denote the binary alphabet, >* is the set of (finite) binary
strings, " is the set of binary strings of length n; the length of a string x is denoted by
|z|. By z|r we denote the prefix of length r of the string x. Let p(z) be the place of x
in X* ordered quasi-lexicographically. Let ¥ the set of infinite binary sequences. The
prefix of length n of the sequence x € ¥ is denoted by x|n. For every X C ¥*, X3¢
stands for the cylinder generated by X, i.e., set of all sequences having a prefix in X.

Fix an acceptable godelization (¢, )es- of all partial recursive (p.r.) functions from
¥* to ¥*, and let W, = dom(y,) be the domain of (¢,). Denote by K the set {z €
Y* | x € W, }. A Chaitin computer (self-delimiting Turing machine) is a p.r. function
C : ¥* % ¥* with a prefix-free domain dom(C). The program-size (Chaitin) complexity
induced by Chaitin’s computer C' is defined by He(x) = min{ly| | y € £*,C(y) = «}
(with the convention min ) = 00).

A Chaitin computer U is universal if for every Chaitin computer C', there is a
constant ¢ > 0 (depending upon U and C') such that for every x there is 2’ such that
U(z') = C(x) and |2'| < |z| + ¢;* ¢ is the “simulation” constant of C' on U.

A Martin-Lof test is an r.e. sequence (V;);>o of subsets of ¥* satisfying the following
measure-theoretical condition:

p(Vixe) <277,

for all i € N. Here p denotes the usual product measure on ¥, given by p({w}¥«) =
2= 1wl for w € ¥*.

An infinite sequence x is random if for every Martin-Lof test (V;)i>0, X & (>0 Ai2%.
A real o € (0,1) is random in case its binary expansion is a random sequence.?

The halting probability of Chaitin’s computer C' is

Qc = p(dom(U)2) = > 27kl

z€dom(C)

Any real Q¢ is recursively enumerable (r.e.) in the sense that the set {g € (0,1) N Q |
g < Q¢} is r.e. (see more about r.e. reals in [3]). Reals of the form €y, for some
universal Chaitin computer U, are called Chaitin (2) numbers (see [4, 6, 2]). Chaitin
[4] has proved that every Chaitin number is random. See Calude [2] for more details.
For a set A C 3* we denote by x4 the characteristic function of A. We say that A
is Turing reducible to B, and we write A <p B, if there is an oracle Turing machine
©B such that ¢B(z) = xa(xz). We say that A is weak truth-table reducible to B, and
we write A <, B, if A <¢ B via a Turing reduction which on input z only queries
strings of length less than g(x), where g : ¥* — N is a fixed recursive function. We

3In fact, ¢ can be effectively obtained from U and C.
4 Actually, the choice of base is irrelevant, cf. Theorem 6.111 in Calude [2].



say that A is truth-table reducible to B, and we write A <;; B, if there is a recursive
sequence of Boolean functions {F}},es, Fy : £ — 3. such that for all x, we have
xa(z) = Fo(xs(0)xp(1) - x5(r:))." An re. set A is tt(wtt)-complete if K <, A
(K <y A). See Odifreddi [11] for more details.

2 Main Results

In what follows we will fix a universal Chaitin computer U and write H = Hy, Q = Q.

Theorem 2.1 The set H = {(z,n) |z € X*,n €N, H(x) <n}® is wit-complete.

Proof. We will refine the proof by Arslanov and Calude in [7]. To this aim we will use
Arslanov’s Completeness Criterion (see Theorem IT1.8.17 in Odifreddi [11], p. 338) for
wtt-reducibility

an r.e. set A is wtt-complete iff there is a function f <., A without fired-
points

and the estimation due to Chaitin [4, 5] (see Theorem 5.4 in Calude [2], pp. 77):

max H(z) = n+ O(logn). (1)

reX™

First we construct a positive integer ¢ > 0 and a p.r. function ¢ : £* % 3* such
that for every x € ¥* with W, # 0,

U(p(x)) € Wa, (2)

and
()] < px) +c. (3)

Consider now a Chaitin computer C' such that C(0?®1) € W, whenever W, # (.
Let ¢ be the simulation constant of C' on U, and let 6 be a p.r. function satisfying the
following condition: if C'(u) is defined, then U(6)(u) = C(u) and |6(u)| < |u| + ¢/. Put

5Note that in contrast with tt-reductions, a wtt-reduction may diverge.
This set is essential in deriving Chaitin’s information-theoretical version of incompleteness, [4].



¢ = ¢ + 1 and notice that in case W, # 0, C(0P®1) € W,, so (0P(*)1) is defined and
and belongs to W,. Finally, put ¥(x) = #(0®)1) and notice that

()] = 00" 1)] < 071 + ¢’ = p(2) +c.

Next define the function
F(y) = min{z € ¥* | H(z) > p(y) + c},

where the minimum is taken according to the quasi-lexicographical order and ¢ comes
from (3). In view of (1) it follows that

F(y) = min{z € ¥* | H(z) > p(y) + ¢, |z| < p(y) + c}.

The function F is total, H-recursive and U (¢(y)) # F(y) whenever W, # (. Indeed,
if W, # 0 and U(¢(y)) = F(y), then ¥(y) is defined, so U(¢(y)) € W, and |[¢(y)| <
p(y) +c. But, in view of the construction of F, H(F'(y)) > p(y) + ¢, an inequality which
contradicts (3): H(F(y)) < [¢(y)| < p(y) +c.

Let f be an H-recursive function satisfying Wy, = {F(y)}. To compute f(y) in
terms of F(y) we need to perform the test H(x) > p(y) + ¢ only for those strings x
satisfying the inequality |x| < p(y) + ¢, so the function f is wtt-reducible to H.

We conclude by proving that for every y € X%, Wy, # W,. If Wy = Wy, then
W, = {F(5)}, 50 by (3), U(t(y)) € W,, that is U($(y)) = F(y). Consequently, by (2)
H(F(y)) < |¥(y)| < p(y) + ¢, which contradicts the construction of F'. O

Theorem 2.2 The set H is wtt-reducible to €.

Proof. Let g : N — 3* be a recursive, one-to-one function which enumerates the
domain of U and put w,,, = >_1", 271901 Given z and n > 0 we compute the smallest
t > 0 such that

wy > 0.920Q -+ - Q,,.

From the relations

O.Q()Ql ce Qn S wr < Wy + Z 2—|g(s)\ =0< O.Q()Ql ce Qn +2™"
s=t+1



we deduce that |g(s)| > n, for every s > t + 1. Consequently, if  is not produced by
an element in the set {g(0),g(1),...,g(¢)}, then H(z) > n as H(z) = |g(s)|, for some
s > t+1; conversely, if H(x) < n, then x must be produced via U by one of the elements

of the set {g(0),¢(1),...,g(t)}. O

Since the result in Juedes, Lathrop, and Lutz [9] is obtained in a rather indirect way,
we conclude the paper by proving directly that K £;; x, for every random sequence x.

Theorem 2.3 If K <; x, then x is not random.

Proof. Assume x is random and K <;; x, that is there exists a recursive sequence of
Boolean functions {F, } e+, Fy : X7 — ¥ such that for all w € ¥*, we have x4 (w) =
F,(xoxy - x,.,). We will construct a Martin-Lof test V' such that x € (,>, V,.2*, which
will contradict the randomness of x. -

For every string z let

M(z) ={ue X" | F.(u) =0}.

Consider the set 1
(=€ | (M=) > 5)

of inputs to the tt-reduction of K to x where at least half of the possible oracle strings
give the output 0. This set is r.e., so let W, be a name for it. From the construction
it follows that

2 € K & F, (zoz1--- 20, ) = 1,

hence if we put r =r,, + 1 and
1
Vo={ue X | p(M(20)X") 2 5 & F;,(u) =1}
we ensure that V is r.e. and p(V5X*) < 3. Moreover x € VyX*, because if u = x|r, then

p(M(z0)X) > - 2z € K < F, (u) = 1.

DO | =

Assume now that z,,V,, have been constructed such that x € V,, X and u(V,,2¢) <
271 Let 2,41 € {20,21,---,2,} be such that

Wers = (u € S | p(M()S* NV,52) > - u(V,S2)}.

N —



Then

1
Zni1 € K & p(M(u)Z* NV,2Y) > 3 (V).
Finally put r =r, . 4, and
1
Vi ={ue X |ulr,, € Vo N(u(M(z,01)2° NV,2Y) > 3 uw(VpX¥) e F,  (u) =1)}

and note that V,,,; isr.e., x € V,,, 1 and

M(Vn-i-lzw) S : M(Vnzw) S 27”72'

N =

Consequently, (V,,), is a Martin-Lof test with x € (1,5, V,, 2% O
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