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Abstract

We prove that any Chaitin Ω number (i.e., the halting probability of a universal
self-delimiting Turing machine) is wtt-complete, but not tt-complete. In this way
we obtain a whole class of natural examples of wtt-complete but not tt-complete r.e.
sets. The proof is direct and elementary.

1 Introduction

Kučera [8] has used Arslanov’s completeness criterion1 to show that all random sets of
r.e. T-degree are in fact T-complete. Hence, every Chaitin Ω number is T-complete. In
this paper we will strengthen this result by proving that every Chaitin Ω number is weak
truth-table complete. However, no Chaitin Ω number can be tt-complete as, because of
a result stated by Bennett [1] (see Juedes, Lathrop, and Lutz [9] for a proof), there is no
random sequence x such that K ≤tt x.2 Notice that in this way we obtain a whole class
of natural examples of wtt-complete but not tt-complete r.e. sets (a fairly complicated
construction of such a set was given by Lachlan [10]).
∗The first has been partially supported by AURC A18/XXXXX/62090/F3414056, 1996. The second
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We continue with a piece of notation. Let N,Q be the sets of non-negative integers
and rationals. Let Σ = {0, 1} denote the binary alphabet, Σ∗ is the set of (finite) binary
strings, Σn is the set of binary strings of length n; the length of a string x is denoted by
|x|. By x|r we denote the prefix of length r of the string x. Let p(x) be the place of x
in Σ∗ ordered quasi-lexicographically. Let Σω the set of infinite binary sequences. The
prefix of length n of the sequence x ∈ Σω is denoted by x|n. For every X ⊂ Σ∗, XΣω

stands for the cylinder generated by X, i.e., set of all sequences having a prefix in X.
Fix an acceptable gödelization (ϕx)x∈Σ∗ of all partial recursive (p.r.) functions from

Σ∗ to Σ∗, and let Wx = dom(ϕx) be the domain of (ϕx). Denote by K the set {x ∈
Σ∗ | x ∈ Wx}. A Chaitin computer (self-delimiting Turing machine) is a p.r. function
C : Σ∗ o→ Σ∗ with a prefix-free domain dom(C). The program-size (Chaitin) complexity
induced by Chaitin’s computer C is defined by HC(x) = min{|y| | y ∈ Σ∗, C(y) = x}
(with the convention min ∅ =∞).

A Chaitin computer U is universal if for every Chaitin computer C, there is a
constant c > 0 (depending upon U and C) such that for every x there is x′ such that
U(x′) = C(x) and |x′| ≤ |x|+ c;3 c is the “simulation” constant of C on U .

A Martin-Löf test is an r.e. sequence (Vi)i≥0 of subsets of Σ∗ satisfying the following
measure-theoretical condition:

µ(ViΣω) ≤ 2−i,

for all i ∈ N. Here µ denotes the usual product measure on Σω, given by µ({w}Σω) =
2−|w|, for w ∈ Σ∗.

An infinite sequence x is random if for every Martin-Löf test (Vi)i≥0, x /∈ ⋂i≥0AiΣ
ω.

A real α ∈ (0, 1) is random in case its binary expansion is a random sequence.4

The halting probability of Chaitin’s computer C is

ΩC = µ(dom(U)Σω) =
∑

x∈dom(C)

2−|x|.

Any real ΩC is recursively enumerable (r.e.) in the sense that the set {q ∈ (0, 1) ∩Q |
q < ΩC} is r.e. (see more about r.e. reals in [3]). Reals of the form ΩU , for some
universal Chaitin computer U , are called Chaitin (Ω) numbers (see [4, 6, 2]). Chaitin
[4] has proved that every Chaitin number is random. See Calude [2] for more details.

For a set A ⊂ Σ∗ we denote by χA the characteristic function of A. We say that A
is Turing reducible to B, and we write A ≤T B, if there is an oracle Turing machine
ϕBw such that ϕBw(x) = χA(x). We say that A is weak truth-table reducible to B, and
we write A ≤wtt B, if A ≤T B via a Turing reduction which on input x only queries
strings of length less than g(x), where g : Σ∗ → N is a fixed recursive function. We

3In fact, c can be effectively obtained from U and C.
4Actually, the choice of base is irrelevant, cf. Theorem 6.111 in Calude [2].
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say that A is truth-table reducible to B, and we write A ≤tt B, if there is a recursive
sequence of Boolean functions {Fx}x∈Σ∗ , Fx : Σrx+1 → Σ, such that for all x, we have
χA(x) = Fx(χB(0)χB(1) · · ·χB(rx)).5 An r.e. set A is tt(wtt)-complete if K ≤tt A
(K ≤wtt A). See Odifreddi [11] for more details.

2 Main Results

In what follows we will fix a universal Chaitin computer U and write H = HU , Ω = ΩU .

Theorem 2.1 The set H = {(x, n) | x ∈ Σ∗, n ∈ N, H(x) ≤ n}6 is wtt-complete.

Proof. We will refine the proof by Arslanov and Calude in [7]. To this aim we will use
Arslanov’s Completeness Criterion (see Theorem III.8.17 in Odifreddi [11], p. 338) for
wtt-reducibility

an r.e. set A is wtt-complete iff there is a function f ≤wtt A without fixed-
points

and the estimation due to Chaitin [4, 5] (see Theorem 5.4 in Calude [2], pp. 77):

max
x∈Σn

H(x) = n+ O(logn). (1)

First we construct a positive integer c > 0 and a p.r. function ψ : Σ∗ o→ Σ∗ such
that for every x ∈ Σ∗ with Wx 6= ∅,

U(ψ(x)) ∈Wx, (2)

and

|ψ(x)| ≤ p(x) + c. (3)

Consider now a Chaitin computer C such that C(0p(x)1) ∈ Wx whenever Wx 6= ∅.
Let c′ be the simulation constant of C on U , and let θ be a p.r. function satisfying the
following condition: if C(u) is defined, then U(θ)(u) = C(u) and |θ(u)| ≤ |u|+ c′. Put

5Note that in contrast with tt-reductions, a wtt-reduction may diverge.
6This set is essential in deriving Chaitin’s information-theoretical version of incompleteness, [4].
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c = c′ + 1 and notice that in case Wx 6= ∅, C(0p(x)1) ∈ Wx, so θ(0p(x)1) is defined and
and belongs to Wx. Finally, put ψ(x) = θ(0p(x)1) and notice that

|ψ(x)| = |θ(0p(x)1)| ≤ |0p(x)1|+ c′ = p(x) + c.

Next define the function

F (y) = min{x ∈ Σ∗ | H(x) > p(y) + c},

where the minimum is taken according to the quasi-lexicographical order and c comes
from (3). In view of (1) it follows that

F (y) = min{x ∈ Σ∗ | H(x) > p(y) + c, |x| ≤ p(y) + c}.

The function F is total, H-recursive and U(ψ(y)) 6= F (y) whenever Wy 6= ∅. Indeed,
if Wy 6= ∅ and U(ψ(y)) = F (y), then ψ(y) is defined, so U(ψ(y)) ∈ Wy and |ψ(y)| ≤
p(y)+c. But, in view of the construction of F , H(F (y)) > p(y)+c, an inequality which
contradicts (3): H(F (y)) ≤ |ψ(y)| ≤ p(y) + c.

Let f be an H-recursive function satisfying Wf(y) = {F (y)}. To compute f(y) in
terms of F (y) we need to perform the test H(x) > p(y) + c only for those strings x
satisfying the inequality |x| ≤ p(y) + c, so the function f is wtt-reducible to H.

We conclude by proving that for every y ∈ Σ∗, Wf(y) 6= Wy. If Wf(y) = Wy, then
Wy = {F (y)}, so by (3), U(ψ(y)) ∈ Wy, that is U(ψ(y)) = F (y). Consequently, by (2)
H(F (y)) ≤ |ψ(y)| ≤ p(y) + c, which contradicts the construction of F . 2

Theorem 2.2 The set H is wtt-reducible to Ω.

Proof. Let g : N → Σ∗ be a recursive, one-to-one function which enumerates the
domain of U and put ωm =

∑m
i=0 2−|g(i)|. Given x and n > 0 we compute the smallest

t ≥ 0 such that
ωt ≥ 0.Ω0Ω1 · · ·Ωn.

From the relations

0.Ω0Ω1 · · ·Ωn ≤ ωt < ωt +
∞∑

s=t+1

2−|g(s)| = Ω < 0.Ω0Ω1 · · ·Ωn + 2−n
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we deduce that |g(s)| > n, for every s ≥ t + 1. Consequently, if x is not produced by
an element in the set {g(0), g(1), . . . , g(t)}, then H(x) > n as H(x) = |g(s)|, for some
s ≥ t+1; conversely, if H(x) ≤ n, then x must be produced via U by one of the elements
of the set {g(0), g(1), . . . , g(t)}. 2

Since the result in Juedes, Lathrop, and Lutz [9] is obtained in a rather indirect way,
we conclude the paper by proving directly that K 6≤tt x, for every random sequence x.

Theorem 2.3 If K ≤tt x, then x is not random.

Proof. Assume x is random and K ≤tt x, that is there exists a recursive sequence of
Boolean functions {Fu}u∈Σ∗ , Fu : Σru+1 → Σ, such that for all w ∈ Σ∗, we have χA(w) =
Fw(x0x1 · · ·xrw). We will construct a Martin-Löf test V such that x ∈ ⋂n≥0 VnΣ

ω, which
will contradict the randomness of x.

For every string z let

M(z) = {u ∈ Σrz+1 | Fz(u) = 0}.

Consider the set
{z ∈ Σ∗ | µ(M(z)Σω) ≥ 1

2
}

of inputs to the tt-reduction of K to x where at least half of the possible oracle strings
give the output 0. This set is r.e., so let Wz0 be a name for it. From the construction
it follows that

z0 ∈ K ⇔ Fz0(x0x1 · · ·xrz0 ) = 1,

hence if we put r = rz0 + 1 and

V0 = {u ∈ Σr | µ(M(z0)Σω) ≥ 1
2
⇔ Fz0(u) = 1}

we ensure that V is r.e. and µ(V0Σω) ≤ 1
2
. Moreover x ∈ V0Σω, because if u = x|r, then

µ(M(z0)Σω) ≥ 1
2
⇔ z0 ∈ K ⇔ Fz0(u) = 1.

Assume now that zn, Vn have been constructed such that x ∈ VnΣω and µ(VnΣω) ≤
2−n−1. Let zn+1 6∈ {z0, z1, . . . , zn} be such that

Wzn+1 = {u ∈ Σ∗ | µ(M(u)Σω ∩ VnΣω) ≥ 1
2
· µ(VnΣω)}.
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Then
zn+1 ∈ K ⇔ µ(M(u)Σω ∩ VnΣω) ≥ 1

2
· µ(VnΣω).

Finally put r = rzn+1+1 and

Vn+1 = {u ∈ Σr | u|rzn ∈ Vn ∧ (µ(M(zn+1)Σω ∩ VnΣω) ≥ 1
2
· µ(VnΣω)⇔ Fzn+1(u) = 1)}

and note that Vn+1 is r.e., x ∈ Vn+1 and

µ(Vn+1Σω) ≤ 1
2
· µ(VnΣω) ≤ 2−n−2.

Consequently, (Vn)n is a Martin-Löf test with x ∈ ⋂n≥0 VnΣ
ω. 2
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