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Deterministic Automata: Simulation,
Universality and Minimality∗

Cristian Calude,† Elena Calude,‡ Bakhadyr Khoussainov§

Abstract

Finite automata have been recently used as alternative, discrete models in theoretical physics,
especially in problems related to the dichotomy between endophysical/intrinsic and exophysi-
cal/extrinsic perception (see, for instance [15, 18, 16, 7, 17, 4]). These studies deal with Moore
experiments; the main result states that it is impossible to determine the initial state of an au-
tomaton, and, consequently, a discrete model of Heisenberg uncertainty has been suggested. For
this aim the classical theory of finite automata–which considers automata with initial states–is not
adequate, and a new approach is necessary. A study of finite deterministic automata without initial
states is exactly the aim of this paper. We will define and investigate the complexity of various types
of simulations between automata. Minimal automata will be constructed and proven to be unique
up to an isomorphism. We will build our results on an extension of Myhill–Nerode technique; all
constructions will make use of “automata responses” to simple experiments only, i.e., no information
about the internal machinery will be considered available.

1 Introduction

Recent applications of automata to theoretical physics (see [8, 12, 15, 18, 16, 7, 17]) have shown that the
classical theory of finite automata–which considers automata with initial states–is not adequate, and a
new approach is necessary. Briefly, here is the story.

The theory of relativity altered the classical concept of physical objectivity but left open the pos-
sibility of a supreme mathematician who, in Einstein’s view, neither cheats nor plays dice. Quantum
mechanics went one step further: it not only did situate the experimenter in the universe, but it has
stated that the experimenter can be modeled as a “sturdy, classical entity” composed of a macroscopic
number of microscopic objects. The observer–who can neither predict nor control certain “spontaneous”
microphysical events–is bound by complementarity—that is, informally speaking, either experience one
certain type of observation (exclusive) or a different, complementary one. Complementarity is tied up
with measurement, a highly controversial matter, as contemplations by Wigner [21], Wheeler [19], and
Bell [1], among many others, show.1

Moore [14] was the first to study some experiments on finite deterministic automata2 in an attempt
to understand what kind of conclusions about the internal conditions of a finite machine it is possible to
draw from input-output experiments. Machines we are going to consider are finite in the sense that they
∗The first and third authors have been partially supported by AURC A18/XXXXX/62090/F3414056, 1996.
†Computer Science Department, The University of Auckland, Private Bag 92109, Auckland, New Zealand, e-mail:

cristian@cs.auckland.ac.nz.
‡Computer Science Department, The University of Auckland, Private Bag 92109, Auckland, New Zealand, e-mail:
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§Computer Science Department, The University of Auckland, Private Bag 92109, Auckland, New Zealand, e-mail:

bmk@cs.auckland.ac.nz. Mathematics Department, Cornell University, Ithaca, USA
1The easiest way to prove this fact is to observe that in certain instances it is possible to “reconstruct” the quantum

wave function after its alledged “collapse” [11]. Thereby, not a single (quantum) bit of information should remain available
from the previous “measurement”. In such a scenario, it is possible to “measure” complementary observables: the price to
be paid amounts to the total ignorance of the first “measurement outcome”.

2To emphasize the conceptual nature of his experiments, Moore has borrowed from physics the word “gedanken”.



               

have a finite number of states, a finite number of input symbols, and a finite number of output symbols.
A (simple) Moore experiment can be described as follows: a copy of the machine will be experimentally
observed, i.e. the experimenter will input a finite sequence of input symbols to the machine and will
observe the sequence of output symbols. The correspondence between input and output symbols depends
on the particular chosen machine and on its initial state. The experimenter will study the sequences of
input and output symbols and will try to conclude that “the machine being experimented on was in state
q at the beginning of the experiment”.3 Moore’s experiments have been studied from a mathematical
point of view by various researchers, notably by Ginsburg [10], Gill [9], Chaitin [5], Conway [6], Brauer
[3], Calude, Calude, Svozil and Yu [4]. The main conclusion of these studies is that in it is impossible to
determine the initial state of an automaton, and, consequently, a discrete model of Heisenberg uncertainty
has been suggested. For this aim the classical theory of finite automata–which considers automata with
initial states–is not adequate, so in this paper we are going to study finite deterministic automata without
initial states. We will define and study the complexity of various types of simulations between automata.
Minimal automata will be constructed and proven to be unique up to an isomorphism; this situation
parallels and extends the classical theory of deterministic automata (see, for instance, [3, 13]). We will
build our results on an extension of Myhill–Nerode technique; all constructions will only make use of
“automata responses” to simple experiments, i.e., no information about the internal machinery will be
considered available.

2 Notation

If S is a finite set, then | S | denotes the cardinality of S. Let Σ be a finite set (sometimes called
alphabet); the set Σ? stands for the set of all finite words over Σ with the empty word denoted by λ.
The length of a string x is denoted by | x |. In what follows all automata will be finite, i.e, they operate
with a finte number of states, on finite input and output alphabets.

We fix two finite alphabets Σ and O: Σ contains input symbols, and O contains output symbols.
A finite deterministic automaton consists of a finite set of states and a set of transitions from state to
state that occur on input symbols chosen from Σ. For each symbol there is exactly one transition out
of each state, possibly back to the state itself. Any state “emits” an output from the set O. Formally,
a deterministic (finite) automaton over the alphabets Σ and O is a quadruple A = (SA,∆A, FA),
where

• SA is a finite nonempty set called the set of states,

• ∆A is function from SA × Σ to the states set SA, called the transition table, and

• FA is a mapping from the set of states SA into output alphabet O, called the output function.

The above definition does not include the so called initial states; this fact makes our definition
different from the classical ones.

In this section we will deal only with deterministic automata; for this reason here we will omit the
word deterministic.

Let A be an automaton. We can naturally extend the transition diagram ∆A to a function, also
denoted by ∆A, from SA × Σ? to SA as follows:

∆A(s, λ) = s, ∆A(s, σw) = ∆A(∆A(s, σ), w),

for all s ∈ SA, σ ∈ Σ and w ∈ Σ?.
In drawing graph representations of automata, we denote states by ◦ and label them with symbols

from the output alphabet. The picture

����-���� σ p|µq|ν

means that there is a transition σ from q to p, that is ∆(q, σ) = p, and FA(q) = ν, FA(p) = µ.

3This is often referred to as a state identification experiment.
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2.1 Responses

Our goal is to define the notion of response of the automaton A = (SA,∆A, FA) to an input signal,
that is, to a word from Σ?. We give several definitions to formalize this notion.

• The total response of the automaton A is the function RA : SA × Σ? → O? defined as follows:

RA(s, λ) = FA(s),

RA(s, σ1 . . . σn) = FA(s)FA(∆A(s, σ1))FA(∆A(s, σ1σ2)) . . . FA(∆A(s, σ1 . . . σn)),

where σi ∈ Σ, s ∈ SA, n ≥ 1, 1 ≤ i ≤ n.

• The final response of A is the function fA : SA × Σ? → O? defined, for all s ∈ SA and w ∈ Σ?,
by fA(s, w) = FA(∆A(s, w)).

• The initial response of A is the function iA : SA ×Σ? → O? defined, for all s ∈ SA and w ∈ Σ?,
by iA(s, w) = FA(s).

Here is an example. Consider Σ = {a, b}, O = {0, 1} and the three state automaton A presented in
Figure 1.
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Figure 1.

The output function is defined by FA(s) = FA(p) = 0 and FA(q) = 1. Clearly, RA(s, aab) =
0011, RA(p, aab) = 0100, RA(q, aab) = 1000. We also have fA(s, aab) = 1, fA(p, aab) = 0, fA(q, aab) =
0, iA(s, aab) = 0, iA(p, aab) = 0, iA(q, aab) = 1.

2.2 Strong Simulation

We continue by giving a formal definition of the strong simulation. Informally, an automaton A is
strongly simulated by B if B can perform all computations of B exactly in the same way. We say that A
and B are strongly equivalent if they strongly simulate each other. Intuitively, a strong simulation has
to take into account the “internal machinery” of the automaton, not only on the outputs.

Let A = (SA,∆A, FA) and B = (SB ,∆B , FB) be automata. We say that

• A is strongly simulated by B, or, equivalently, B strongly simulates A if there is a mapping
h : SA → SB such that

1. For all s ∈ SA and σ ∈ Σ, h(∆A(s, σ)) = ∆B(h(s), σ).

2. For all s ∈ SA and w ∈ Σ?, RA(s, w) = RB(h(s), w).

We denote this by A¿ B.
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• A is strongly f-simulated (i–simulated) by B, or, equivalently, B strongly f-simulates (i–
simulates) A if there is a mapping h : SA → SB such that

1. For all s ∈ SA and σ ∈ Σ, h(∆A(s, σ)) = ∆B(h(s), σ).

2. For all s ∈ SA and w ∈ Σ?, fA(s, w) = fB(h(s), w) (iA(s, w) = iB(h(s), w)).

We denote this fact by A¿f B (A¿i B).

Lemma 2.1 If h : SA → SB and B strongly simulates A via h (or A¿f B or A¿i B via h), then for
all s ∈ SA and w ∈ Σ? we have h(∆A(s, w)) = ∆B(h(s), w).

Proof. The proof follows directly using the induction on the length of w. If |w| = 1, then w = σ for
some σ ∈ Σ and hence h(∆A(s, σ)) = ∆B(h(s), σ). Suppose that h(∆A(s, w)) = ∆B(h(s), w) for all w
such that |w| ≤ n− 1. Let now w be vσ with |v| = n− 1. Then

h(∆A(s, w)) = h(∆A(∆A(s, v), σ))

= ∆B(h(∆A(s, v), σ)) = ∆B(∆B(h(s), v), σ) = ∆B(h(s), w). 2

Clearly, the strong simulation implies both strong f as well as strong i–simulations. In fact all these
three notions are equivalent.

Theorem 2.1 Let A and B be automata. The following conditions are equivalent:

1) The automaton A is strongly simulated by B.

2) The automaton A is strongly i–simulated by B.

3) The automaton A is strongly f–simulated by B.

Proof. The implications 1) ⇒ 2) and 1) ⇒ 3) are obvious. We prove the implication 2) ⇒ 1).
Suppose that B strongly i–simulates A via h : SA → SB . We need to show that the equality

RA(s, w) = RB(h(s), w), (1)

holds for all s ∈ SA and w ∈ Σ.
We prove (1) by induction on the length of w. For w = λ the equality RA(s, w) = RB(h(s), w)

follows from the definition of strong i–simulation. Suppose that (1) holds for all s ∈ SA and w ∈ Σ?

with |w| ≤ n− 1. Let w ∈ Σ∗, |w| = n− 1 and σ ∈ Σ. Then

RA(s, wσ) = RA(s, w)FA(∆A(∆A(s, w), σ)).

By induction hypothesis RA(s, w) = RB(h(s), w). Since ∆A(∆A(s, w), σ) = ∆A(s, wσ), we have
h(∆A(s, wσ)) = ∆B(h(s), wσ). Therefore

FA(∆A(s, wσ)) = FB(h(∆A(s, wσ))) = FB(∆B(h(s), wσ)).

Finally we have:
RB(h(s), wσ) = RB(h(s), w)FB(∆B(h(s), wσ)) = RA(s, wσ).

We continue with the implication 3)⇒ 1). Suppose that B strongly f–simulates A via h : SA → SB .
Again we will prove formula (1) by induction on the length of w. For w = λ, FA(s) = fA(s, λ) =
fB(h(s), λ) = FB(h(s)). The induction step then can be performed similar to the computation corre-
sponding to the i–simulation, as RA(s, wσ) = RA(s, w)fA(s, wσ). 2
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2.3 Behavioral Simulation

From an algebraic point of view, strong simulations are morphisms between automata; they make es-
sential use of the internal machinery of automata, i.e. of the transition ∆, which is sometimes difficult
to access. In this section we discuss another notion of simulation, the behavioral simulation, which is
weaker than strong simulation. The behavioral simulation makes use only of the outputs produced by
the automaton.

To motivate the formalization, we begin by presenting two automata A and B such that neither A
strongly simulates B nor B strongly simulates A. However, in a behavioral sense these two automata
“simulate” each other, i.e. they have the same behaviour. The input alphabet is {a} and the output
alphabet is {0, 1}. Figure 2 gives a graph representation of A and Figure 3 represents B:
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It is not hard to see that A cannot strongly simulate B and B cannot strongly simulate A. However,
the mapping h : SA → SB defined by:

h(s0) = p6, h(s1) = p7, h(s2) = p8, h(s6) = p0, h(s7) = p1,

h(s8) = p2, h(s4) = p7, h(s5) = p8, h(s3) = p9, h(s9) = p3
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satisfies the following property for all s ∈ SA and all w ∈ Σ?:

RA(s, w) = RB(h(s), w),

and the reader can immediately find a function h′ : SB → SA such that for all s ∈ SB and all w ∈ Σ?,
RA(h′(s), w) = RB(s, w).

Now we are ready to give the definition of behavioral simulation (called in what follows, simply,
simulation). Let A = (SA,∆A, FA) and B = (SB ,∆B , FB) be automata. We say that

• A is simulated by B, or, equivalently, B simulates A if there is a mapping h : SA → SB such
that for all s ∈ SA and w ∈ Σ?, RA(s, w) = RB(h(s), w). We denote this by A ≤ B.

• A is f-simulated (i–simulated) by B, or, equivalently, B f-simulates (i–simulates) A if there
is a mapping h : SA → SB such that for all s ∈ SA and w ∈ Σ?, fA(s, w) = fB(h(s), w) (iA(s, w) =
iB(h(s), w)). We denote this fact by A ≤f B (A ≤i B).

A partial analogue of Theorem 2.1 holds true.

Theorem 2.2 An automaton A is simulated by B if and only if A can be f–simulated by B.

Proof. It is clear that if A ≤ B, then A ≤f B. Assume that fA(s, w) = fB(h(s), w) holds true for
all s ∈ SA and w ∈ Σ∗. We prove, by induction on the length of w, that for all s ∈ SA and w ∈ Σ∗,

RA(s, w) = RB(h(s), w). (2)

Clearly, RA(s, λ) = FA(s) = fA(s, λ) = fB(h(s), λ) = RB(h(s), λ). For σ ∈ Σ,

RA(s, σ) = FA(s)FA(∆A(s, σ))
= FB(h(s))FA(∆A(s, σ))
= FB(h(s))fA(s, σ)
= FB(h(s))fB(h(s), σ)
= RB(h(s), σ).

Finally, if (2) holds true, then for every σ ∈ Σ we have:

RA(s, wσ) = RA(s, w)FA(∆A(s, w), σ)
= RA(s, w)fA(s, wσ)
= RB(h(s), w)fB(h(s), wσ)
= RB(h(s), w)FB(∆B(h(s), wσ))
= RB(h(s), wσ). 2

A counter-example showing that i–simulation is not equivalent to simulation can be found easily as
iA(s, w) = FA(s), for all s ∈ SA and w ∈ Σ∗.

2.4 Generalized Myhill–Nerode Equivalences

Let A = (SA,∆A, FA) be an automaton. Let R be one of the response functions on A, that is, let
R ∈ {RA, fA, iA}. Two states p and q from SA are R–equivalent if for all w ∈ Σ?, R(p, w) = R(q, w).
If p and q are R–equivalent we denote this fact by p ≡R q.

Intuitively, if p and q are R–equivalent, then all computations of A which begin from p cannot be
R–distinguished by computations of A which begin from q and vice-versa. It is immediate that ≡R is
an equivalence relation on SA.

Lemma 2.2 Let A be an automaton. Then for all p, q ∈ SA, p ≡RA q if and only if p ≡fA q.
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Proof. Clearly, if p ≡RA q, then p ≡fA q. Conversely, suppose that p ≡fA q. First, RA(p, λ) =
FA(p) = fA(p, λ) = fA(q, λ) = FA(q, ). Assume now that RA(p, w) = RA(q, w), for some w ∈ Σ∗. Then,
for every σ ∈ Σ, we have:

RA(p, wσ) = RA(p, w)fA(p, wσ)
= RA(q, w)fA(q, wσ)
= RA(q, wσ). 2

Remarks. a) Note that for every w ∈ Σ?, we have ∆A(p, w) ≡fA ∆A(q, w). Indeed, for all u ∈ Σ? we
have:

fA(∆A(p, w), u) = FA(∆A(∆A(p, w), u))
= FA(∆A(p, wu))
= fA(∆A(p, wu))
= fA(∆A(q, wu))
= fA(∆A(q, w), u).

b) Note that p ≡RA q implies p ≡iA q, but the converse implication fails to hold true.

2.5 Universal Minimal Automata

Suppose that we have a finite class C containing pairs (Ai, qi) of automata Ai = (Si,∆i, Fi) and initial
states qi ∈ Si, i = 1, . . . , n. An automaton A = (SA,∆A, FA) is universal for the class C if the following
conditions hold:

1. For any 1 ≤ i ≤ n there is a state si ∈ SA such that RA(s, w) = RAi(qi, w), for all w ∈ Σ?.

2. For any s ∈ SA there is an i such that RA(s, w) = RAi(qi, w), for all w ∈ Σ?.

Every finite class which possesses universal automata is said to be complete. It is not hard to
see that every automaton A (with no initial states) naturally defines a class C(A) for which A itself is
universal. Indeed, let q1, . . . , qn ∈ SA be all states of A and for each i, define Ai = A. Clearly A is
universal for the class C(A) = {(A1, q1), . . . (An, qn)}.

Not every finite class of finite automata has a universal automaton. However, every class can be
embedded into a complete one.

Proposition 2.1 Let C′ be a finite class of pairs of automata and initial states. There is a complete
class C containing C′.

Proof. Let C′ = {(Ai = (Si,∆i, Fi), qi) | 1 ≤ i ≤ n}. Assume that all the states of these automata
are pairwise disjoint. Consider the automaton A obtained by taking the union of all these automata,
that is

A = (∪ni Si,∪ni ∆i,∪ni Fi).

Consider now the class C(A) as defined above. Clearly C′ is contained in C(A) and A is universal for C.
2

It turns out that the notion of universality is closely related to the notion of simulation.

Theorem 2.3 The automata A and B simulate each other if and only if A and B are universal for the
same class.

Proof. Suppose that A and B simulate each other via h1 : SA → SB and h2 : SB → SA. Consider
the class C(A). By Proposition 2.1 the automaton A is universal for C(A). We show that B is universal
for C(A). Suppose that (A1 = (SA,∆A, FA), q1, ) belongs to C(A). Then for all w ∈ Σ?, we have
RA1(q1, w) = RB(h(q1), w). For every q ∈ SB there exists a state q′ ∈ SA such that for the pair
(A′ = (SA,∆A, FA), q′) we have RA′(q′, w) = RB(q, w), for all w ∈ Σ?. Hence B is universal for C(A).
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Now assume that A and B are universal for the class C = {(A1, q1), (A2, q2) . . . , , (An, qn)}. For every
q ∈ SA there exists an i such that RA(q, w) = RAi(qi, w), for all w ∈ Σ?. Since (Ai, qi) ∈ C and B is
universal for C there is a p(qi) ∈ SB such that RAi(qi, w) = RB(p(qi), w), for all w ∈ Σ?. Hence A is
simulated by B via mapping q → p(qi). Similarly, B can be simulated by A. 2

Our next goal is to show that every complete class has a minimal universal automata. An automaton
A universal for the class C is minimal if for every automaton B universal for the class C we have
| SA |≤| SB |.

From this definition and Theorem 2.3 above we obtain the following:

Corollary 2.1 The following are equivalent:

1) The automaton A is a minimal universal automaton for a class C.

2) For every automaton B, if A ≤ B and B ≤ A, then | SA |≤| SB |.

Informally, a minimal automaton A is one which has the minimal possible number of states among
all automata which have the same “computational power” as A. We will soon show that the notion of
minimality implies uniqueness up to an “isomorphism”.

An automaton A = (SA,∆A, FA) is isomorphic to B = (SB ,∆B , FB) if there is a one to one onto
mapping h : SA → SB such that for all σ ∈ Σ we have h(∆A(s, σ)) = ∆B(h(s), σ) and FA(s) = FB(h(s)).

Clearly, ifA is isomorphic toB, then A andB strongly simulate (hence simulate) each other. However,
the converse implication is not always true. A simple example consists of two automata A and B over
the alphabets Σ = {a} and O = {0, 1}. The automaton A has two states p and q such that FA(p) = 0,
FA(q) = 0, ∆A(p, a) = p, ∆A(q, a) = q. The automaton B has one state s such that FA(s) = 0 and
∆A(s, a) = s. Thus, A and B strongly simulate each other but they are not isomorphic.

Let A = (SA,∆A, FA) be an automaton. We provide a construction of a minimal automaton for C(A)
using the generalized Myhill–Nerode equivalence relation ≡fA on SA. We shall omit the index fA and
write simply ≡ instead of ≡fA .4 For any s ∈ SA, [s] denotes the equivalence class of s under ≡, that is
[s] = {p ∈ SA|s ≡ p}. We first list two properties of ≡.

Property 2.1 For all p, q ∈ SA, p ≡ q implies FA(p) = FA(q).

Proof. Indeed, RA(p, λ) = FA(p) = RA(q, λ) = FA(q). 2

Property 2.2 For all p, q ∈ SA, and all σ ∈ Σ, if p ≡ q, then ∆A(p, σ) ≡ ∆(q, σ).

Proof. Indeed, suppose that p′ = ∆A(p, σ) and q′ = ∆A(q, σ). Take any w ∈ Σ?. Then

FA(p)RA(p′, w) = RA(p, σw) = RA(q, σw) = FA(q)RA(q′, w).

Since FA(p) = FA(q), we get RA(p′, w) = RA(q′, w). 2

Define a new automaton M(A) as follows:

• The set of states of M(A) is SM(A) = {[s]|s ∈ SA}.

• For all [s] and σ ∈ Σ, put ∆M(A)([s], σ) = [∆A(s, σ)].

• For all [s], put FM(A)([s]) = FA(s).

The above two properties show that the automaton M(A) is well–defined.

Lemma 2.3 For every automaton A, the automata M(A) and M(M(A)) are isomorphic.

Proof. Indeed, if [p] ≡fM(A) [q], then clearly p ≡M(A) q, that is [p] = [q]. Hence the mapping [p]→ [[p]]
is an isomorphism from M(A) to M(M(A)). 2

Lemma 2.4 The automaton M(A) simulates A.
4Note that by Theorem 2.3 we could equally use ≡RA .
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Proof. The automaton A is simulated by M(A) via the mapping h : SA → SM(A) defined by h(s) = [s].
Indeed, by the definition of [s] we see that for all w ∈ Σ?, we have RA(s, w) = RM(A)([s], w). 2

The above just proved lemma shows that A ≤ M(A). The next lemma takes care of the case
M(A) ≤ A.

Lemma 2.5 The automaton A simulates M(A).

Proof. We can assume that the set of states of the automaton A is linearly ordered. Therefore each class
[s] contains minimal element min[s] with respect to the order. We define the mapping h : SM(A) → SA
by setting h([s]) = min[s], for all [s] ∈ SM(A). Thus, for all [s] ∈ SM(A) and w ∈ Σ? we have:

RM(A)([s], w) = RA(s, w) = RA(min[s], w) = RA(h([s]), w).

It follows that A simulates M(A). 2

Lemma 2.6 Let A be an automaton.

1) The automaton M(A) is minimal.

2) If B and A simulate each other and B is minimal, then M(A) and B are isomorphic.

Proof. Suppose that B and A simulate each other and B is minimal. To prove the first part of the
lemma suppose that |SB | < |M(A)|. There is a mapping h : SM(A) → SB such that M(A) is simulated
by B via h. Since |SB | < |M(A)| there exist two distinct states [p], [q] ∈ SM(A) such that h([p]) = h([q]).
It follows that

RA(p, w) = RM(A)([p], w) = RB(h([p]), w) = RM(A)([q], w) = RA(q, w),

for all w ∈ Σ?. It follows that p ≡ q, hence [p] = [q]. This is a contradiction, hence M(A) is minimal.
We now prove 2). Since M(A) and B simulate each other there is mapping h : SM(A) → SB such

that RM(A)([s], w) = RB(h([s]), w), for all w ∈ Σ?. By 1) we see that h is one–one. The function h is
also onto since B is minimal. We need to show that for all [s] ∈ SM(A) and σ ∈ Σ,

h(∆M(A)([s], σ)) = ∆B(h([s]), σ).

Suppose that the above equality does not hold for some [p] ∈ SM(A). Then for all w ∈ Σ?, we have

RB(h(∆M(A)([s], σ)), w) = RB(∆B(h([s]), σ), w).

Indeed, on one hand:

RB(∆B(h([s]), σ), w) = FB(∆B(h([s]), σw)) = RB(h([s]), σw).

On the other hand:

RB(h([s]), σw) = RM(A)([p], σw) = RM(A)(∆M(A)([p], σ), w) = h(∆M(A)([s], σ)).

Hence the state h(∆M(A)([s], σ)) is equivalent to the state ∆B(h([s]), σ) in B. Since B is minimal, M(A)
is isomorphic to B. It follows that

h(∆M(A)([s], σ)) = ∆B(h([s]), σ). 2

We have proved:

Theorem 2.4

1) Any complete class has a minimal universal automaton which is unique up to an isomorphism.

2) Any two minimal automata which simulate each other are isomorphic.
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Corollary 2.2 Let A and B be minimal automata. The following are equivalent:

1. The automata A and B strongly simulate each other.

2. The automata A and B simulate each other.

3. The automata A and B are isomorphic.

Remarks. a) A minimal automaton can be characterized by Moore’s condition A (see [14, 4]): every
pair of distinct states (p, q) is distinguishable by an experiment, that is, there exists w ∈ Σ∗ such that
RA(p, w) 6= RA(q, w).

b) Consider the example of the automaton A in Figure 2. It is not hard to see that A is strongly
simulated by M(A), but the converse does not hold. Therefore M(A) cannot be a minimal automaton
in the class of all automata B such that A¿ B and B ¿ A.

c) If A is an automaton, A = (SA,∆A, FA), and q ∈ SA, then the (classical) minimal automaton
corresponding to the pair (A, q), i.e. to A with the initial state q, can be obtained from the universal
minimal automaton M(A) by restricting ∆M(A) and FM(A) to the set {[p] | p ∈ SA, ∆A(q, w) =
p′, for some w ∈ Σ∗, p′ ≡RA p}. In other words, from M(A) one can immediately deduce the classical
minimal automaton (but the converse is not true). This is another reason for calling M(A) universal
minimal.
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[7] Dvurečenskij, A., Pulmannová, S., and Svozil, K. Partition logics, orthoalgebras and au-
tomata. Helvetica Physica Acta 68 (1995), 407–428.

[8] Finkelstein, D., and Finkelstein, S. R. Computational complementarity. International Jour-
nal of Theoretical Physics 22, 8 (1983), 753–779.

[9] Gill, A. State-identification experiments in finite automata. Information and Control 4 (1961),
132–154.

[10] Ginsburg, S. On the length of the smallest uniform experiment which distinguishes the terminal
states of the machine. Journal of the Association for Computing Machinery 5 (1958), 266–280.

[11] Greenberger, D. B., and YaSin, A. “Haunted” measurements in quantum theory. Foundation
of Physics 19, 6 (1989), 679–704.

[12] Grib, A. A., and Zapatrin, R. R. Automata simulating quantum logics. International Journal
of Theoretical Physics 29, 2 (1990), 113–123.

[13] Hopcroft, J. E., and Ullman, J. D. Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Reading, MA, 1979.

10



   

[14] Moore, E. F. Gedanken-experiments on sequential machines. In Automata Studies, C. E. S. anf
J. McCarthy, Ed. Princeton University Press, Princeton, 1956.

[15] Schaller, M., and Svozil, K. Partition logics of automata. Il Nuovo Cimento 109B (1994),
167–176.

[16] Schaller, M., and Svozil, K. Automaton partition logic versus quantum logic. International
Journal of Theoretical Physics 34, 8 (August 1995), 1741–1750.

[17] Schaller, M., and Svozil, K. Automaton logic. International Journal of Theoretical Physics
35, 4 (April 1996), 911–940.

[18] Svozil, K. Randomness & Undecidability in Physics. World Scientific, Singapore, 1993.

[19] Wheeler, J. A. Law without law. In Quantum Theory and Measurement, J. A. Wheeler and
W. H. Zurek, Eds. Princeton University Press, Princeton, 1983, pp. 182–213. [20].

[20] Wheeler, J. A., and Zurek, W. H. Quantum Theory and Measurement. Princeton University
Press, Princeton, 1983.

[21] Wigner, E. P. Remarks on the mind-body question. In The Scientist Speculates, I. J. Good,
Ed. Heinemann and Basic Books, London and New York, 1961, pp. 284–302. Reprinted in [20, pp.
168-181].

11


