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ESSAY REVIEW

Facets of Quantum logic

MikloH s ReHdei

K. Svozil, Quantum Logic (Springer Series in Discrete Mathematics and Com-
puter Science) (Singapore: Springer, 1998), vi#214 pp., ISBN 981-4021-07-5.

1. Four Attitudes Towards Quantum Logic

Since its "rst appearance in the works of von Neumann (1932) and Birkho! and
von Neumann (1936) in the late twenties and mid-thirties, quantum logic has
become a vast, mixed "eld lying at the crossroads of and drawing on the
methods of physics, mathematics, logic and philosophy. The approaches to and
the interpretations of quantum logic have become very diverse in the past sixty
years with literally thousands of papers and dozens of monographs in the "eld
(see Pavicic's (1992) bibliography on quantum logic). One of the recent works on
quantum logic is Svozil's book. In this essay I review Svozil's book by relating its
content to the following four groups of major themes that comprise what came
to be called quantum logic:

The attitude of the algebraist: non-distributive (in particular: orthomodular)
lattices form a fascinating class of lattices, with a number of technically non-
trivial problems. For the algebraist &quantum logic' is just an exotic name for
an ordinary, well-behaved and well-de"ned mathematical structure, which is
part of a well-established branch of mathematics (lattice theory).

The viewpoint of the measure theorist/probabilist: a non-distributive lattice with
additive real-valued maps on it is a natural generalisation of classical
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measure theory. For the quantum probabilist in particular, quantum logic
with the quantum states de"ned on it is just a non-classical (i.e. non-
commutative) probability theory, and the challenge is to develop it to a full-
#edged probability theory, complete with non-commutative integration and
other non-commutative versions of the classical concepts.

The approach of the logician: in algebraic logic one transforms logical notions
and problems into algebraic ones, whereby the investigation of logic and its
properties gets subsumed under the authority of algebra. In this approach
quantum logic appears as a logic which is determined semantically by
a particular algebraic structure.

The perspective of the philosopher: the philosopher would like to understand
how the above mentioned di!erent aspects of quantum logic hang together,
and whether any of the above attitudes helps in clarifying interpretational
issues concerning quantum mechanics.

These four attitudes de"ne four interdependent "elds of research and mono-
graphs dealing with quantum logic are typically mixtures with di!erent weights
of these four &pure' attitudes. Svozil's work is rather a superposition than
a mixture of the above mentioned attitudes since the algebraic, measure theor-
etic, logical and philosophical topics are treated in it simultaneously.

I will discuss these attitudes, in order, in the following sections. Su$ce it to
say, by way of introduction, that the book consists of ten chapters (plus
a mathematical Appendix). There does not seem to be a discernible logical
structure behind the partition represented by the chapters; in fact, I "nd the logic
of the presentation sometimes confusing: occasionally, and without a real
didactic or conceptual advantage, the same topic disappears and re-surfaces
several times in di!erent chapters. For instance the issue of embeddability of an
orthomodular lattice into a Boolean algebra, and the Kochen}Specker theorem
in particular, are taken up and dropped in Section 6.2, and in Chapters 7, 8 and
9; also, the description of the algebraic properties of the Hilbert space lattice are
scattered over di!erent chapters in the book (in Chapter 2, Chapter 4 and
Appendix A); hence the reader does not get a crisp, comprehensive picture
of the elementary properties of a Hilbert space lattice by reading only
Chapter 4 (entitled: &Hilbert Lattices').

Svozil has chosen a semi-formal way of presenting the material: the math-
ematical de"nitions, statements and claims are not spelled out in the book in
a technically and notationally formal manner and proofs are typically not given.
This method has both advantages and drawbacks. The advantage is that the
reader is not forced to digest a lot of technical notation, the disadvantage is that
it is di$cult to avoid ambiguities; indeed there remain a few in the text (see the
examples in Section 2 below). On the other hand, it is a very attractive feature of
the book that it presents many examples of lattices highlighting speci"c features
of non-distributivity by using many excellently drawn diagrams (both Hasse and
Greechie) of a number of lattices.
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2. Algebras, Lattice Theory and Quantum Logic

The core observation which the standard concept of quantum logic is based
on is the fact that the set P(H) of all closed linear subspaces of a (complex, "nite
or in"nite dimensional) Hilbert space H is an (atomic, atomistic, irreducible)
complete, orthomodular lattice with respect to the set theoretical inclusion as
partial ordering -"), set theoretical intersection as greatest lower bound
W"', closure of the linear sum as least upper bound (&union') AsB and the
orthogonal AM complement as orthocomplementation ACAM. Orthomodular-
ity of the lattice means that the following equation holds:

ifA)B and AM)C, thenAs(B'C)"(AsB)'(AsC). (1)

Orthomodularity is a weakening of the following distributivity law (which is not
valid in P(H)):

As(B'C)"(AsB)'(AsC) for all A,B, C . (2)

But the orthomodularity property is not the minimal weakening of distributi-
vity: the following modularity property

ifA)B, thenAs(B'C)"(AsB)'(AsC) (3)

is stronger than orthomodularity. It is not di$cult to prove (see p. 44
for a partial proof ) the highly signi"cant fact that P(H) is modular if
and only if H is xnite-dimensional (we write (H

n
) for the Hilbert space of

dimension n).
Hilbert lattices are not the only examples of orthomodular lattices: a parti-

cularly rich source of such lattices are the projection lattices P(N) of von
Neumann algebras N. Hilbert lattices are in fact special types of von Neumann
lattices: P(H)"P(N) with N being the von Neumann algebra B(H) of all
bounded operators on H.

Non-Boolean lattices also emerge as "nite automaton logics or partition logics,
which is the topic of Chapter 10 (&Quasi-classical Analogies') of Svozil's book
(see also Svozil (1998)). Mathematically considered, automaton logics are just
pastings of Boolean algebrasB

E
generated by partitions E of a setS (a partition

E of S is a family Mm
j
N of sets m

j
-S such that m

i
Wm

j
"0 (iOj) and

X
i
m

i
"S); given a family of partitions B, &the pasting of the Boolean algebras

B
E
,E3B on the atomic level is called a partition logic, denoted by (S,B)' (pp.

152}153 and Appendix A.4.2). Automaton logics emerge by taking S to be the
state space of an automaton, which is a black-box machine that for any input
i delivers an output o that can be given either by a computable function j on S,
j(i)"o, (a Moore automaton, (p. 148)) or by a computable function that also
depends on the internal state i of the machine: j(s, i)"o. The latter type of
automaton is called a Mealy automaton (p. 148). The partition ofS is then given
by the inverse map j~1, using partitions of the output and input-output sets.
Svozil formulates several claims concerning automaton logics, among them the

103Facets of Quantum logic



following ones:

1. &[2] every partition logic corresponds to an automaton logic and vice versa
(p. 153).

2. &[2] the set of two-valued probability measures on any automaton logics is
separating. That is,

3. automaton logics can be embedded into classical Boolean algebras, whereas
certain quantum logics cannot' (p. 157). In particular &Kochen}Specker
con"gurations cannot be realized' as automaton logics (p. 157).

4. &[2] all "nite subalgebras of "nite dimensional Hilbert logics can be ob-
tained by automaton partition logics' (p. 167). (&A subalgebra of an orthocom-
plemented lattice is a subset which is closed under the operations o, ' and
s and which contains 0 and 1', i.e. a subalgebra of P(H

n
) is a sub-orthocom-

plemented lattice of P(H
n
) (p. 187)).

The above claims entail the interesting and surprising consequence (not
spelled out in Svozil's work) that only an inxnite sub-orthocomplemented lattice
of P(H

n
) can contain a Kochen}Specker type xnite partial Boolean subalgebra

of P(H
n
), where a partial algebra is called Kochen}Specker type if it cannot be

embedded into a Boolean algebra by a partial Boolean algebra homomorphism
(see below).

Chapter 10 is the most original in the book; it contains the author's
own contribution to the "eld. This chapter gives many examples of automaton
logics and illustrates them by diagrams. A wide range of other deep issues*
in connection with both automaton logics and with quantum mechanics
in general*also pop up in this chapter's text, especially in Section 10.2.6
(such as logical, computational and physical reversibility and irreversibility,
no-cloning theorems, quantum computing and modelling the measure-
ment process). The treatment of these latter issues is rather sketchy,
however.

About one "fth of Svozil's book is devoted to reviewing results related to
the existence of certain embeddings of non-distributive lattices into Boolean
lattices and Boolean algebras. Since the null space of a lattice homomorphism
h from P(H) into a Boolean algebra is a non-trival prime ideal in P(H)
and since there exist no such ideals in P(H), a Hilbert lattice cannot be
mapped into a Boolean algebra by a lattice homomorphism h, whether injective
("embedding) or not. This leads to the question of what weakening of
the lattice homomorphism property of h permits the embedding by h of an
orthomodular lattice L into a Boolean algebra. In his chapter &What Price
Value De"niteness?' Svozil reviews the possible weakenings. A classic result
of Kochen and Specker (1967) shows that relaxing the lattice homomorphism
property of h by requiring it to be only a partial Boolean algebra homomor-
phism is not enough: there exists no partial algebra homomorphism h (injective
or not) from the partial Boolean algebra P(R3) into a Boolean algebra,
hence there is also no partial Boolean algebra homomorphism from P(H)
into a Boolean algebra (where h is de"ned to be a partial Boolean algebra
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homomorphism from P(H) into a Boolean algebra if the restriction of h to
any Boolean subalgebra of P(H) is a Boolean algebra homomorphism).
Consequently, there exist no partial Boolean algebra embeddings or weak
embeddings ("restrictions of which to Boolean subalgebras of P(H) are
injective) of P(H) into any Boolean algebra. The Kochen}Specker result
is described in great detail in Svozil's Chapter &Contextuality', and besides
describing the original Kochen}Specker construction the author also reviews
similar arguments given by Bell, Peres and Mermin and Greenberger}
Horne}Zeilinger}Mermin. It is very useful to have these arguments available in
a collected form.

A very recent result obtained by Meyer (1999) in this direction shows that
the Kochen}Specker theorem is not stable under a natural topological
weakening of the assumptions: the original Kochen}Specker proof is based
on showing that the points on the unit sphere S2 cannot be coloured by
two colours in such a manner that one in every three points that de"ne an
orthogonal set of unit vectors is coloured di!erently from the other two.
Meyer shows that points on S2 having rational coordinates can be coloured
in the required manner. This result has recently been used to create
non-contextual hidden variable models (Kent, 1999; Clifton and Kent,
1999).

However, embeddings of non-Boolean lattices to Boolean ones that
do not preserve either 'ors but preserve orthogonality are known to
exist. Svozil mentions these (p. 130) but only in four lines, so that for the
details the reader is referred to the original papers. Another type of result
mentioned in the book is when h &[2] preserves the order relation. However,
it neither preserves the binary operations and and or nor the complement'
(p. 130; &Malhas embedding'). In connection with Malhas embeddings
Svozil refers to Malhas' original papers and gives an example of a Malhas
embedding of the six element &chinese lantern' lattice on pp. 130}132. In
the example the ' operation is preserved under the embedding (the orthocom-
plement and s are not).

A related embeddability result that Svozil mentions is the existence of
Kalmbach embeddings h

K
of partially ordered sets P (posets) into orthomodular

lattices LP : by de"nition such a h
K

preserves the ordering and the partial
lattice structure of P (if any). Furthermore, LP is embeddable into a
Boolean algebra by an injective map h preserving orthocomplementation and
the lattice operations between orthogonal elements. However, as Svozil
emphasises, the combined map h l h

K
(Svozil calls it the combined Kalmbach

embedding) is not a lattice homomorphism (p. 127), in conformity with the basic
no-go results. Again, it would be nice to have the proof of these statements in the
book, but the reader interested in the details has no choice but to turn to the
papers of Kalmbach. Further su$cient conditions excluding embeddability of
an orthomodular lattice into Boolean algebras, formulated in terms of proper-
ties of the set of probability measures on the lattice, are also discussed in the
book: see the next section.
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3. Quantum Logic and Non-Commutative Measure Theory

Replacing a Boolean (p) algebra S with an orthomodular (p) lattice L and
a classical measure k on S with an additive (p-additive in case of a p-lattice)
map /:LPR

`
(called a &state' if /(I)"1), one obtains a non-commutative

measure space (L,/). Note that it is not at all trivial that, given an L there
exists an additive h on L. In fact, examples of simple, "nite element orthomodu-
lar lattices have been given by Greechie and by Ptak and Pullmannova that do
not admit such an additive measure on them; Svozil's nicely drawn Greeche
diagrams of these lattices can be found on p. 65.

The Hilbert lattice P(H) does, however, admit a large number of states, in the
case of dim(H)*3 this being one consequence of Gleason's theorem, which
Svozil recalls on p. 60: given a state / there exists a density operator o such that
/(X)"¹r (oX), and conversely, every / given by /(X)"¹r (oX) with a density
matrix o is a state.

The signi"cance of Gleason's theorem is not only that it shows that there exist
a lot of non-commutative probability measures. Equally important is the fact
that the theorem shows at the same time that the non-commutative probability
measures can be extended from the lattice of projections to a linear state on the
set of all bounded observables on the Hilbert space*exactly as a classical
measure can be extended from the Boolean algebra of measurable sets to the set
of bounded measurable functions. This is because, given a density operator o,
the expression /(Q)"Tr (Qo) makes sense for any bounded operator Q on H.
The procedure of extending a classical measure from the Boolean algebra of
measurable sets to the set of bounded functions is known as integration theory,
so Gleason's theorem is a theorem in non-commutative integration.

Gleason's theorem remains valid for von Neumann lattices: if the von
Neumann algebra N does not have the complete matrix algebra M

2
on the

two-dimensional Hilbert space (H
2
) as a component in its direct sum decompo-

sition (i.e. &N does not have I
2

as a direct summand') then every additive map on
the lattice P(N) can be extended to a normal state on the algebra N. So von
Neumann lattices and algebras with normal states on them are the natural
non-commutative generalisations of classical probability theory in measure
theoretic form, and non-commutative analogues of concepts in classical measure
theory can and have been worked out in von Neumann algebra theory (¸p

spaces, non-commutative conditional expectation etc.).
One area of investigation concerns properties of the states, and the features of

the set e(L) of all states, on an orthomodular lattice L. The state / is called
a Jauch}Piron state if /(A)"1 and /(B)"1 implies /(A'B)"1 (p. 77).
A lattice is called a Jauch}Piron lattice if every state on it is a Jauch}Piron state.
All normal states on a von Neumann lattice are Jauch}Piron, and a complete
classi"cation of Jauch}Piron lattices is known in the von Neumann algebra
category: if N does not contain an I

2
direct summand, then P(N) is

Jauch}Piron if and only if it is the direct sum of a commutative algebra and
"nitely many "nite-dimensional factors (Hamhalter, 1993). A set e@-e of states
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is called full (p. 86) if for any two non-orthogonal A, B there exists a /3e@ such
that /(A)"/ (B)"1; separating (p. 88) if for any two elements AOB there is
a /3e@ such that /(A)O/ (B) and unital (p. 112) if for every AO0 there is
a /3e@ such that /(A)"1.

Svozil formulates several claims concerning these measure theoretic notions,
but again, since the claims are not spelled out in a mathematically explicit
manner and are not accompanied with proofs, it is not always clear what the
precise content of the claim is or how it could be true. For instance Svozil states
that if e@ is full, then it is separating and if e@ is separating then it is unital (p. 112),
which is fairly clear. Less obvious is in precisely what sense of &embedding' it is
true that both non-separability and non-unitality (of the whole state space
e(L)?) is su$cient for non-embeddability of L into a Boolean algebra (p. 84);
and so the precise content of the conjecture &[2] nonunitality may be the
weakest measure theoretic criterion for nonembeddability [2]' (p. 112) re-
mains vague.

It also is unclear in what sense &[t]he notion of unitality introduced here is
a special case of Kochen and Specker's notion of weak embeddability [2]', since
Svozil does not specify for which set of states on L is (non-)unitality relevant for
the weak (non-)embeddability of L. Certainly not the whole set of states, since
the set of all states on P(H) is clearly unital but P(H) is not weakly embeddable
into a Boolean algebra by the Kochen}Specker theorem. Maybe Svozil's last
claim is to be understood as &if the set of dispersion-free states on L is unital then
L is weakly embeddable into a Boolean algebra (but not conversely)', a claim
which might be true; however, so interpreted, unitality does not seem to be
a genuine special case of weak embeddability but appears equivalent to it by
another result of Kochen and Specker: a partial Boolean algebra A is weakly
embeddable into a Boolean algebra if and only if for every 0OA3A there exists
a partial Boolean algebra homomorphism h from A into the two element
Boolean algebra B

2
such that h(A)"I (Kochen and Specker, 1967)*and

a partial Boolean algebra homomorphism into B
2

is just a two-valued state.

4. Algebraic Semantics and Quantum Logic

Interpreting statements of the form sent (Q, d)"&Observable Q has its value in
set d (with probability 1)' as sentence letters in the sense of formal logic, one can
de"ne by induction in the standard way the set of formulas F using &(not) and
& (and ) as primitive connectives. In algebraic semantics the semantic notions for
F (such as truth, falsity, logical truth etc.) are given in terms of a map v:FPL,
where L is a certain algebraic structure. In the case of quantum logic L is
assumed to be at least an ortholattice, and the map v is required to be
a &homomorphism' in the sense of satisfying v(&a)"v(a)M and v(a&b)"
v(a)'v(b). The map v is called a valuation (not to be confused with the notion of
valuation as a Boolean algebra homomorphism from a lattice into the two
element Boolean algebra). The pair (L, v) is called a realisation of F. The
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formula a is called true in realisation (L, v) (or (L, v) is called a model of a) if
v(a)"1, and a is called a tautology if it is true in every realisation (model).
A formula a is a consequence of a set ¹ of formulas in realisation (L, v) if for any
x3L we have: if for every b3¹ it holds that x)v(b) then it also holds that
x)v(a). A formula a is a logical consequence of ¹ if it is a consequence of ¹ in
every realisation.

An alternative way of de"ning models for F is in terms of a Kripkean
semantics K"SJ,R, %,oT: here one associates with every formula a the set
o(a)3%-J of possible worlds in which a is true, where R is the accessibility
relation on the set J of possible worlds. The map o is again required to satisfy
o(&a)"o(a)M and o(a&b)"o(a)Wo(b), where XM is now the set of possible
worlds that are inaccessible from every world in X. The set %"Mo(a) : a
a formulaN is called the set of propositions; it turns out that % is an ortholattice if
the accessibility relation R is re#exive and symmetric, in which case (J,R) is
called an orthoframe. Truth, logical truth, consequence and logical consequence
are de"ned in K in analogy with the algebraic de"nitions (by replacing v by o).
One method of obtaining a K is to take a (pre-)Hilbert space H as J, to de"ne
R"R

W,X
by R

W,X
(t, m) i! St, mTO0, and to take % as the set of subsets X-H

such that (XM)M"X; we call (H,R
W,X

) a Hilbertian orthoframe.
Semantic ideas are treated by Svozil brie#y on pages 9}12 and 42}45. His

treatment is in less general terms than the ones used above; in particular,
algebraic and Kripkean semantics are not distinguished in the book and Svozil's
description of the mentioned semantic notions is intertwined in his book's text
with the description of the lattice properties of Hilbert lattices. Presenting the
semantic notions in the book in this convoluted way is somewhat unfortunate
because the algebraic properties of Hilbert lattices and the logical ideas related
to algebraic semantics are conceptually separate issues and keeping them* and
algebraic and Kripkean semantics* apart enables one to raise certain logical
and metalogical issues concerning quantum logic, issues which otherwise are
di$cult to explicate.

One such topic is whether the algebraic semantics and the Kripkean seman-
tics determine the same logic, where by &determining the same logic' is meant
that for any formula a and any set ¹ of formulas a is a logical consequence of
¹ in the sense of algebraic semantics i! it is a logical consequence of ¹ in the
sense of Kripkean semantics. As it turns out, the algebraic semantics and the
Kripkean semantics determine the same logic.

However, there is a signi"cant di!erence between the orthomodular and
ortholattice cases: the ortholattice property of % can be characterised in terms of
properties of R (% is an ortholattice if the accessibility relation is re#exive and
symmetric) but orthomodularity of % cannot be de"ned in terms of elementary
properties of the accessibility relation, in the sense that there exists no "rst-order
language containing the name of the accessibility relation RK and containing
a sentence S such that for every orthoframe (J,R) we have: S is a theorem in
(J,R) i! % is orthomodular: this is Goldblatt's theorem, the &intractability of
orthomodularity'. This can be seen by referring to the Hilbertian orthoframe:
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a % determined by a Hilbertian orthoframe (H, R
W,X

) is orthomodular i!H is
a Hilbert space (i.e. metrically complete), and, in conformity with metric com-
pleteness not being an elementary property, orthomodularity is also a non-
elementary property. Partly due to the fact that Svozil deliberately restricts his
investigations in the book to "nite quantum logic ("nite-dimensional Hilbert
spaces and "nite lattices), a treatment of such metalogical properties of quantum
logic is not aimed at in his work (see Chiara and Giuntini (2000) for an extensive
discussion of metalogical properties of quantum logic).

5. Philosophical and Historical Comments

The ideal relation of logic and probability theory is exempli"ed by the
classical case: a Boolean algebra S represents both the set of events for classical
probability theory (S,k) and the propositional logic, the latter being related to
the events in the most natural way; namely an event can be identi"ed with the
proposition stating that the event happens, and this identi"cation preserves the
Boolean algebra structures of the logic and of the events. This classical harmony
is made complete by the fact that the probability measure k has the following
&strong subadditivity' property:

k(A)#k(B)"k(AsB)#k(A'B). (4)

The signi"cance of (4) is that it is necessary if the probabilities k(X) are to be
interpretable as relative frequencies, an interpretation which, the standard
conceptual di$culties relating to the frequency view notwithstanding, seems to
be the only serious candidate for an interpretation in the context of physics.

In the Birkho!}von Neumann paper (1936) the authors' original intention
was not simply to create a non-classical, i.e. quantum logic, but to create it in
such a manner that an interpretation of quantum logic can be given that mirrors
the classical situation just described. Speci"cally, they wished to interpret
quantum logic as an event structure for a non-commutative probability with
probability understood as relative frequency. The trouble is that no quantum
state / on P(H) satis"es (4), hence no quantum probability can be interpreted
as relative frequency* with the understanding that A 'B represents the joint
occurrence of A and B.

Svozil mentions this problem by discussing, following SzaboH (1998), &counter-
intuitive probabilities' in two chapters (Chapter 6 &Probabilities' and Chapter
10, p. 75 and 181), i.e. probabilities that violate (4) in the strong form of
/(A)"0.999999"k(B) and /(A'B)"0. However Svozil's position concern-
ing the problem posed by these counter-intuitive probabilities is not entirely
clear in the book. Some passages in the book (e.g. p. 76) seem to indicate that he
considers results of counterfactual arguments irrelevant on the grounds that they
do not have operational consequences, and /(A'B)"0 in the above situation
is indeed a &counterfactual' probability in the sense that A and B are non-
commuting, so that /(A'B) cannot be experimentally measured. But one just
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cannot declare /(A'B)"0 irrelevant if one wishes to interpret quantum logic
as an event structure along the lines of the classical case. Quite to the contrary:
the existence of nonsensical (in the sense of relative frequency) probabilities is
highly relevant, and their signi"cance is that (4) is generally violated. Hence one
is forced to choose between

1. giving up the interpretation of quantum logic as an event structure;
2. giving up the relative frequency view of quantum probability;
3. giving up the interpretation of P(H) as quantum logic.

None of these options is particularly attractive. (1) and (2) mean abandoning the
hope of creating a non-commutative version of the classical harmony, whereas
option (3) means abandoning the Hilbert space formalism of quantum mechan-
ics. Surprisingly, Birkho! and von Neumann both saw this di$culty and had
already opted for (iii) in their original 1936 paper. That is to say, they postulated
quantum logic to be a modular lattice, which P(H) is not. The concept of
quantum logic they preferred over P(H) was the modular von Neumann lattice
P(N) of a type II

1
von Neumann algebra N, a type of algebra that had been

discovered by Murray and von Neumann just before the idea of quantum logic
was formulated by Birkho! and von Neumann. This von Neumann algebra is
distinguished by the fact that there exists a probability measure q on N whose
restriction to P(N) satis"es (4), and this was the main reason why von
Neumann preferred P(N) to P(H). It is worth adding that von Neumann was
not satis"ed even with this notion of quantum logic, and after 1936 he aban-
doned the relative frequency interpretation of probability in connection with
quantum logic (see ReH dei 1998, 2000) for a detailed analysis of von Neumann's
views.)

Svozil's book can be recommended for two types of readers: the expert and
the novice. Those who already know the topic well and do not need detailed
proofs of the facts and statements presented will enjoy Svozil's picture of the
world of non-Boolean lattices in "nite-dimensional Hilbert space. The unin-
itiated who just wishes to get a "rst taste of quantum logic without being
overburdened by technical subtletics will also bene"t from reading this book.
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