
Integrating Case-Based Reasoning with
Reinforcement Learning for Real-Time Strategy

Game Micromanagement

Stefan Wender and Ian Watson

The University of Auckland, Auckland, New Zealand
s.wender@cs.auckland.ac.nz, ian@cs.auckland.ac.nz

Abstract. This paper describes the conception of a hybrid Reinforce-
ment Learning (RL) and Case-Based Reasoning (CBR) approach to man-
aging combat units in strategy games. Both methods are combined into
an AI agent that is evaluated by using the real-time strategy (RTS) com-
puter game StarCraft as a test bed. The eventual aim of this approach
is an AI agent that has the same actions and information at its disposal
as a human player. As part of an experimental evaluation, the agent is
tested in different scenarios using optimized algorithm parameters. The
integration of CBR for memory management is shown to improve the
speed of convergence to an optimal policy, while also enabling the agent
to address a larger variety of problems when compared to simple RL.
The agent manages to beat the built-in game AI and also outperforms
a simple RL-only agent. An analysis of the evolution of the case-base
shows how scenarios and algorithmic parameters influence agent per-
formance and will serve as a foundation for future improvement to the
hybrid CBR/RL approach.

1 Introduction

RTS games, such as StarCraft, provide a challenging test bed for AI research.
They offer a polished environment that includes numerous properties that are
interesting for AI research, such as imperfect information, spatial and temporal
reasoning as well as learning and opponent modeling [1]. However, these charac-
teristics also make RTS game environments very complex. Even sub-problems,
such as the control of units in combat situations, can not be completely solved
by brute force algorithms. Furthermore, deterministic approaches such as state
machines and decision trees are unable to simulate human-level AI in this type
of environment. For these reasons, we chose StarCraft as a test bed for a machine
learning (ML) approach that tries to learn how to manage combat units on a
tactical level (“micromanagement”).

Micromanagement requires a large number of actions over a short amount of
time. It requires very exact and prompt reactions to changes in the game envi-
ronment. The problem involves concepts like damage avoidance, target selection
and, on a higher, more tactical level, squad-level actions and unit formations



[2]. The requirements are made more difficult by the use of a commercial game
that, while enabling complete access to its functionality, not always reacts in the
most exact and prompt fashion. Due to these factors, research in this area often
focuses on more high-level problems such as strategic decision making and plan-
ning [3] [4]. We propose, that the characteristics of micromanagement that we
mention above make it a challenging yet rewarding test bed for ML approaches
such as CBR which focuses heavily on the acquisition and reuse of knowledge.

In this paper we describe a hybrid ML approach to managing units in Star-
Craft at a micromanagement level. This approach is based on previous work
[5], where we use RL in an agent in a simplified combat scenario. While Star-
Craft offers a very large and complex set of problems, that RL agent focuses
on a small subset of the overall problem space and is limited to one simple
scenario. In its limited area of application, the simple RL approach is very suc-
cessful in learning how to beat the built-in game AI. The hybrid CBR/RL agent
presented here uses a more generalized model that is able to handle a broader
set of problems. Combining CBR with RL helps to offset shortcomings of our
simple RL agent, while retaining key features of its performance. Our hybrid
agent uses CBR for its memory management, RL for fitness adaption and an
influence map(IM)/potential field [6] for the abstraction of spatial information.
Eventually, we plan to create an agent that has the actions and information at
its disposal to learn how to handle the tactical and reactive layers of the game
at the same level a human player does.

2 Related Work

Using StarCraft as a test bed for game AI research has recently seen a great
boost in popularity. There are annual competitions for computer agents (’bots’)
playing complete games at different conferences [7]. The bots competing in these
competitions usually employ a number of different AI techniques for the different
problems (strategy, tactics, resource management, etc.) of the game. [2] describes
the architecture of EISBot, a reactive planning agent that is based on a concep-
tual partitioning of gameplay into areas of competence. Each area is in turn
handled by a separate manager. [8] describes the use of heuristic search to sim-
ulate combat outcomes and control units accordingly. Since the StarCraft game
environment lacks in speed and precision, the authors first create their own sim-
ulator, SparCraft, to evaluate their approach. Using this simulator and a modied
version of alpha-beta pruning, they look for the best moves for a given congu-
ration of units. In [9], the authors introduce both a variation of UCT search,
UCT Considering Durations, and a greedy-search-based technique called Port-
folio Greedy Search and evaluate them against each other with Portfolio Greedy
Search performing the strongest. The authors also include SparCraft-based com-
bat simulation in their UAlbertaBot, currently the strongest competition bot [7].

Different forms of both RL and CBR are popular techniques in game AI
research, either separately or as a combination of both approaches. The rein-
forcement learning component in this paper is based on [5]. While the simple



RL approach there shows good results for the one specific scenario that is tested,
the work presented in this paper improves most its aspects by integrating CBR
and thus enabling the generalization to a much larger and more complex area of
problems. [10] describes the implementation of a simple, specialized RL-based
agent for micro-managing combat units similar to [5]. However, their chosen state
representation is highly tailored towards the experiments that they run and the
size of the state space limits the efficiency of the learning agent. An extension of
the managed units beyond those used in the experiments does not seem possible
without entirely redesigning the RL model.

Using only RL for learning diverse actions in a complex environment becomes
quickly unfeasible due to the curse of dimensionality [11]. Therefore, the addition
of CBR to manage the obtained knowledge and to retain information in the
form of cases offers benefits both in terms of the amount of knowledge that
is manageable and knowledge generalization. [12] describes the integration of
CBR and RL in a continuous environment. Both state- and action-space are
continuous and the agent has to learn effective movement strategies for units
in a RTS game. This approach is unique in that other approaches discretize
these spaces to enable machine learning. As a trade-off for working with a non-
discretized model, the authors only look at movement component of the game
from a meta-level perspective where actions are given to groups of units instead
of individuals and no actions concerning attacks are given.

Influence maps or potential fields for the abstraction of spatial information
have been used in a number of domains, including game AI, after initially being
developed for robotics [6]. [13] use influence maps to produce kiting in units,
also in StarCraft. Kiting is a hit-and-run movement that is similar to movement
patterns that our agent learns for micromanagement. However, spatial reasoning
only covers parts of the micromanagement problem. [14] describes the creation of
a multi-agent bot that is able to play entire games of StarCraft using a number
of different artificial potential fields. However some of the parts of the bot use
non-potential field techniques such as rule-based systems and scripted behavior,
further emphasizing the need to combine different ML techniques to address
larger parts of the problem space in an RTS game.

To our knowledge, all of the previous research in the area of machine learn-
ing techniques used for learning and controlling micromanagement and tactical
decisions in RTS in general and StarCraft in specific have one thing in common:
none of them address the entire micromanagement problem in dynamic fashion
using a homogenous approach. Either only parts of the problem are addressed
dynamically (i.e. either tactical decisions or reactive control) while other parts
are controlled by scripted expert knowledge encoded as decision trees, finite state
machines or in a similar fashion. Often the micromanagement problem is also
split into different tasks, which are then addressed individually using different
approaches that require extensive interfaces to communicate between each other.

Our goal therefore is to create an agent that is able to learn how to control
any part of the problem space, resulting in a bot that can control the game much
like a human can.



3 Agent Architecture

Our agent uses a CBR-based memory which utilizes RL to learn the fitness of its
case solutions. The model of the game world is based on two different case-bases
for different levels of abstraction of the current game state. RL is used to update
the value of unit actions. Those unit actions represent the case solutions.

3.1 Case-Based Reasoning Component

The CBR component reflects a general CBR cycle [15], however does not use all
of the cycle’s phases. Two separate case-bases are used to reflect two different
levels of granularity within the game. The first case-base contains information
on the overall game state at a certain point in time. This includes information
on the number and types of unit in the game as well as information on the
state of the surroundings in the form of an IM. The second case-base stores and
administrates per-unit information.

Retrieval is a multi-tiered process. At first, cases matching the overall cur-
rent game in terms of agent and opponent units exactly and the overall game
environment state to a certain degree of similarity are retrieved. The game en-
vironment state is encoded as an IM that reflects the areas of influence of the
AI agent units and of enemy units. Figure 1 shows an excerpt of the field repre-
senting enemy unit influence. This influence is based on the damage potential of

Fig. 1. Excerpt of the Influence Map

the units. Since an IM can theoretically be as big as a whole game map (up to
256*256 = 65536 fields), a suitable abstraction has do be found to compare simi-
larities. We decided to use a histogram-based comparison [16]. This is possible if
we regard an IM as a simple greyscale picture with intensity values representing
the influence values. After converting IMs into histograms, we can use correla-
tion to determine similarity. A nearest neighbor (NN) retrieval of cases in the
case-base is done based on this similarity.

Cases from the game state case-base are linked to cases from the unit state
case-base, i.e. each unit case is secondary to a game case (Figure 2). This results
in a tree-like structure where each game state case branches out into a subset
of unit state cases. Unit cases contain general information on units as well as a
local IM, i.e. an influence map for the immediate surroundings of the unit. As



Fig. 2. Logical Structure of Cases and the Information they contain

this is the only precise spatial information the unit has, these unit-specific IMs
can not be converted into histograms since that would invalidate the information
they hold on positioning. Both general information and IM are used to compose
a similarity score for comparison with the problem unit case.

The final step in the case retrieval process returns actions with assigned
fitness values. These actions can then be Reused to solve the current problem
case.

Currently, there is no Revision of case descriptions stored in the case-bases.
Once a case has been stored, the case descriptions consisting of the general
attributes and the IM that describe a game state or unit state are not changed
anymore. The case solution that consists of actions and associated fitness values
however, are adjusted each time they are selected and executed.

Retention is part of the retrieval process. In the first step of that process,
if there is no sufficiently similar overall case, a new one is generated from the
current environment state. Likewise, when searching the database for unit cases
does not lead to any sufficiently similar results, a new unit case is created from
the current problem.

3.2 Reinforcement Learning Component

The reinforcement learning component is used to learn fitness values for case so-
lutions. This part of the agent is based on [5]. Because of this similarity, we chose
to also use a Q-learning algorithm for policy evaluation. One-step Q-learning and
Watkins’ Q(λ), which uses eligibility traces, showed, in this specific setting, the
best performance when compared to other tested algorithms by a small margin.

Q-learning is an off-policy temporal-difference (TD) algorithm that does not
assign a value to states, but to state-action pairs [17]. Since Q-learning works
independent of the policy being followed, the learned action value Q function
directly approximates the optimal action-value function Q∗. Equation 1 shows
the value update function for One-Step Q-learning.

Q(st, at) ← Q(st, at) + α [rt+1 + γmaxaQ(st+1, at)−Q(st, at)] . (1)

This function is used to update the value of taking an action at in state st
resulting in state st+1, given the learning rate α and a discount factor for future
reward γ.



4 Model

Since RL is used to update the fitness values, the game environment has to be
expressed in terms of a RL framework. The agent in a RL framework makes
its decisions based on the state s an environment is in at any one time. If this
state signal contains all the information of present and past sensations, it is said
to have the Markov property. If a RL task presents the Markov property, it is
a Markov Decision Process (MDP). A specific MDP is defined by a quadruple
(S,A,Pa

ss′ ,Ra
ss′). RL problems are commonly modeled as MDPs, where S is the

state space, A is the action space, Pa
ss′ are the transition probabilities and Ra

ss′

represents the expected reward, given a current state s, an action a and the
next state s′. The MDP is used to maximize a cumulative reward by deriving
an optimal policy π according to the given environment.

States States are represented by the cases of the CBR component minus
the case solutions. Case architecture is explained in detail in section 3.1. A
state is mostly specific to a given unit at a certain time, but also contains some
information on the general game state. The unit-specific part of a state contains
general information such as unit health, unit type and weapon cooldown. Both
the general part and the unit-specific part contain an IM for spatial information.
In the general game state part, this IM is abstracted into histograms. The local,
unit-specific IM is made up of 7x7 tiles of the general IM and not abstracted.

Actions There are nine possible actions for the units in this model, one
Attack action and eight Move actions. The Move actions are a compromise
between freedom of action and limiting complexity, unit movement is abstracted
to eight discrete directions, one for each 45◦. The Attack action is handled by a
very simple combat manager. The combat manager determines all enemy units
within the agent’s unit’s range and selects the opponent with the lowest health.

Transition Probabilities While StarCraft has only few non-deterministic
components, its overall complexity means that the transition rules between states
are stochastic. As a result, different subsequent states st+1 can be reached when
taking the same action at in the same state st at different times in the game.
There are no fixed time intervals, each unit will start and finish actions in a
potentially different game frame. A unit transitions to a new state once its
current action is finished.

Reward Signal Rewards, similar to cases, are computed on a per-unit basis.
Rewards reflect the fitness value of an action that a certain unit took in a certain
state. The reward signal is based on the difference in health of the agent unit in
question, as well as the difference in health for enemy units it attacks. In other
terms, this means the agent measures its success in the amount of damage it is
able to deal while trying to retain as much of its own health as possible.

5 Empirical Evaluation and Results

There are three parts to our empirical evaluation. The first part, supplementary
to the overall approach, is an optimization of algorithmic parameters for the



CBR and RL components. The second and most important part is evaluating
the performance of our approach in different scenarios, compared both against
the built-in game AI and our previous simple RL algorithm. In the third part, we
also looked at the behavior of the case-bases that serve as the agent’s memory
during the performance evaluation. The motivation behind this is to identify
trends pointing to bottle-necks in our approach and in order to find interesting
behavior and points that require future improvement if we want to further extend
the agent’s abilities. We do this by recording and analyzing additional meta-
data for CBR. This includes the time that experimental runs take, as well as
several metrics relating to action selection and case-base size. In order for RL
to approximate an optimal policy p∗, there has to be a sufficient state- or state-
action space coverage [18]. The amount of coverage that is sufficient in this
context can be determined by evaluating at what point the agent is able to
reliably achieve optimal results in terms of reward.

5.1 Experimental Setup and Parameter Selection

The agent is evaluated in two different scenarios. In Scenario A, the agent con-
trols one fast, weak combat unit against six slower, stronger enemy units. This
scenario is identical to the one that is used for the simple RL agent for 500-
and 1000-game runs in [5], i.e. here the performance of the RL/CBR approach
can be directly compared to simple RL. Scenario B is a variation of the first
scenario that uses the same types of units. However, there are now three agent
units and eight opponents. This scenario is targeted at evaluating both the ef-
fects and interactions of multiple units as well as a generally bigger scenario in
comparison to the first, simplified one. Since the simple RL agent in [5] is only
able to control one unit at a time, results for scenario B can not be compared
to this, only against the built-in game AI.

In order to achieve the best performance possible, a first step is to optimize
the parameters involved in both algorithmic components of our hybrid approach.
A number of parameters are already decided through previous design decisions:
Following the approach in [5], we decided to use Q-Learning as our RL algo-
rithm. Both One-Step Q-Learning and Watkins’ Q(λ) were tried and Watkins’
Q(λ), as the better performing one, was eventually chosen for the performance
evaluation. The retrieval method in the CBR component is a NN algorithm that
uses histogram-based similarity. The similarity threshold during retrieval is not
fixed and a set of different values is tested.

The optimal configuration of parameters was decided by running a large
number of initial experiments and analyzing the results. Table 1 shows a sum-
mary of all variables selected for the scenarios as well as algorithmic parameters
found through this initial evaluation. One change that was suggested by the first
test runs was a change to the similarity metric used for the game state cases.
These initial runs showed only very little learning success since the correlation
similarity threshold that was used resulted in too many game states. As there is
no reuse of unit cases that are grouped below different game cases, this leads to
a state space that is too big to be sufficiently explored in reasonable time. For



this reason, the similarity metric for the game state was adjusted to the point
where game states are purely dependent on unit numbers.

The agent uses a declining ε-greedy exploration policy that starts with ε =
0.9. This means, that the agent initially selects actions 90% random and 10%
greedy, i.e. choosing the best known action. The exploration rate declines linearly
towards 0 over the course of the 50, 500 or 000 games respectively.

Table 1. Evaluation Parameters

Parameter Values

Number of Games 50, 500, 1000

Scenario A(1vs6), B(3vs8)

Algorithm Watkins’ Q(λ)

CBR Similarity Threshold 60%, 80%,

RL Learning Rate α 0.2

RL Discount Factor γ 0.9

Trace Decay Rate 0.9

RL Exploration Rate ε 0.9 - 0

5.2 Performance

Having identified the optimal parameters, the next step is to run experiments
using these parameters to analyze the agent’s performance as a benchmark of the
viability of our approach. In this step we run experiments of length 50 games, 500
games and 1000 games, each configuration 20 times. Shorter runs force the agent
to earlier exploit its knowledge while longer runs allow a more extensive explo-
ration of the state-action space. Figure 3, Figure 4 and Figure 5 show the results
of running experiments on both scenarios with 50-game runs, 500-game runs and
1000-game runs. Since there was no statistically significant difference between
results for the 60% similarity threshold and for the 80% similarity threshold, the
diagrams display the results for 60% only, to improve readability. The average
reward values are normalized to a range of 0% to 100% of the achievable score
in a scenario, so the two scenarios can be compared with each other. Achieving
100% of the possible reward means, that the agent played a perfect game in
which it destroyed all opposing units without sustaining any damage itself. The
figures also show the results of random action selection which serves as a base-
line for comparison. Furthermore, the results for scenario A are compared with
results of the simple reinforcement learner in [5]. Since [5] uses a different model,
there is a different initial minimum value for the reward. Reward development
and overall reward are comparable though. The diagrams also include error bars
that give a 95% confidence interval for the results.



Fig. 3. Results for 50 Game Runs

Fig. 4. Results for 500 Game Runs

Fig. 5. Results for 1000 Game Runs



5.3 Case Base Development and State-Action Space Exploration

Table 2 shows the meta-data describing the development of the unit case-base
for both scenarios. Since the number of game state cases is directly tied to the
number of agent units, these cases are not separately listed. Scenario A has only
one possible game state, Scenario B has three.

Table 2. Case Base Statistics

Scenario A Scenario B

Similarity 60% 80% 60% 80% 95%

Number of Unit Cases:50 Games 2.26 7.3 6.63 101.8 1117.4

Number of Unit Cases:500 Games 2.3 11.1 7.8 204.67 2545.75

Number of Unit Cases:1000 Games 2.8 13.15 16.42 243.5 -

Visits per S/A Pair:50 Games 150.10 44.78 112.49 6.92 0.45

Visits per S/A Pair:500 Games 1264.20 252.15 806.93 32.83 0.04

Visits per S/A Pair:1000 Games 2041.49 441.34 1540.33 57.29 -

Unexplored S/A Pairs:50 Games 4.13% 26.33% 5.91% 52.90% 87.59%

Unexplored S/A Pairs:500 Games 2.90% 29.18% 2.35% 24.45% 85.24%

Unexplored S/A Pairs:1000 Games 2.58% 28.90% 1.69% 17.19% -

Time Per Game in ms:50 Games 2716.11 2773.32 4218.20 7983.05 17559.11

Time Per Game in ms:500 Games 2678.18 2758.58 4506.65 7486.93 115486.5

Time Per Game in ms:1000 Games 2689.96 2726.64 4619.32 7729.05 -

The table also contains data from additional runs in Scenario B using a 95%
similarity threshold. This threshold was introduced to see performance implica-
tions for the current model and algorithm when working with larger case-bases.
The runs are not listed in the performance charts so as not to overload the di-
agrams. However, the obtained reward is considerably worse compared to lower
similarity thresholds: only about 40% of the maximum reward in the 50 game
runs and 70% for 500 game runs. The experimental run over 1000 games with
a 95% similarity threshold could not be finished since, after about 600 games,
a single game takes up to ten minutes to complete on a normal PC due to the
amount of case comparisons required during each step.

6 Discussion

The figures show that the agent performs very well in both scenarios and is able
to learn an optimal or near-optimal policy. The performance is far better than the
random action selection baseline. Furthermore, the CBR/RL agent outperforms
simple RL in 500-game runs in Scenario A where both can be compared. This
suggests a faster speed of convergence to an optimal policy for the CBR/RL
approach. Generally, the highest increase in reward obtained for both scenarios
is in the second half of a run when exploration is slowly cut back and knowledge
has already been obtained. Apart from a slightly more volatile development also



shown by wider error bars, the policies learned within 50 games are basically on
the same level as those of longer runs in terms of reward.

The average reward obtained by the CBR/RL agent over the course of one
episode of 50, 500 or 1000 games follows a similar pattern for both scenarios.
For Scenario A, the initial values are slightly higher than for Scenario B. This
is potentially since three units that share the same memory are much faster at
obtaining a basic level of knowledge than a single one. Eventually, the average
reward for Scenario A becomes similar to that for Scenario B. When compared to
the simple RL results, it is noticeable that the initial average reward for CBR/RL
is lower. This is because of the different models used, especially the differences
in action spaces. The model presented here has a much higher complexity than
the one used in [5]. The initial average reward for simple RL is at the same level
as random action selection in that model.

The data in Table 2 shows, that for 60% and 80% similarity thresholds,
the number of unit cases in the case-base is relatively stable for experiments of
different lengths, while varying considerably between similarities. The similarity
in performance also means, that the number of unit cases in the case-base and
thus the average number of visits to a state-action pair have a very wide range
in which optimal results can be achieved. For Scenario B, the number of cases
for different unit situations can range from just below 6 to more than 250.

An important metric for the performance of RL is the percentage of actions
that are never explored. Since the RL methodology requires an infinite number
of visits to each possible action or state-action pair to guarantee convergence, a
large number of unexplored actions points to a potential problem. In this case,
the performance did mostly not seem to be influenced in a negative way, despite
some experiments having up to 50% unexplored actions. The performance only
dropped significantly for runs with a 95% similarity threshold that resulted in
more than 80% unexplored actions. However, even for experiments with a 80%
similarity threshold where the performance is good, the amount of unexplored
actions means that a large number of potentially good policies are never explored.

While the performance remains stable for similarity thresholds within a cer-
tain range, computational effort does not. The increased number of comparisons
for retrieval resulting from the larger case-bases, leads to longer run times. For
thresholds of 80% and especially 95%, running a larger number of games results
in a large increase of unit cases. With lower thresholds the agent stops adding
new unit cases at some point, and only explores the existing ones. For higher
thresholds it keeps adding new unit states and new unexplored actions for much
longer, potentially until the end of a run. This shows bad scaling and similarity
thresholds that are too high for the given scenario, since cases are still being
added despite greedy action selection. The behavior for a 60% similarity thresh-
old, which is close to constant in terms of unit case numbers and time required,
is ideal. For 80%, this is still partially true, however the number of unit cases
does increase for longer runs, even though not in an extensive way.

The ideal similarity threshold depends on the complexity of the scenario.
Both scenarios used in this evaluation are comparably simple, Scenario B slightly



less than Scenario A. While it was not experienced in these experiments, it is to
be expected that there is, depending on scenario complexity, a lower boundary
for the similarity threshold beyond which cases are too general and learning is no
longer possible. For these reasons, using a full scale combat scenario will require
a careful selection of the similarity threshold.

7 Conclusion and Future Work

In this paper, we describe the integration of CBR and RL in an agent that con-
trols units in combat situations in the RTS game StarCraft. The empirical eval-
uation demonstrates, that the model that is developed reflects the environment
well, and that the agent scales appropriately when used with a larger scenario
where the agent controls multiple units. The optimized algorithm parameters
manage to obtain good results. The hybrid CBR/RL approach performs as well
as or even better than our previous simple RL approach in the smaller scenarios
where they are comparable, and manages to converge significantly faster towards
a near-optimal policy.

As the eventual aim of our research is the creation of an agent that can han-
dle the entire micromanagement problem, the analysis of the recorded meta-data
gives valuable insights into the behavior of the current architecture of the CBR
component and its potential for future developments. The current experiments
work best with a low similarity threshold. Very high thresholds can lead to sig-
nificant increases in terms of run-time and case-base size, while at the same time
decreasing the agent’s performance. However, since the number of cases also in-
creases for more complex scenarios, a better handling of large scale case-bases is
a problem that will have to be addressed in the future. When using the current
approach in larger scenarios and eventually for the full micromanagement prob-
lem, higher similarity thresholds might also be required to distinctively separate
between cases. Optimizing the case-retrieval method can improve the perfor-
mance of the CBR component. Currently, a NN algorithm is used. However,
with a larger case-base a more sophisticated method is needed to keep run times
at reasonable levels, for example k-d trees to pre-index the cases [19].

Having shown the viability of hybrid CBR/RL, the next step in our research
will be an increase in the complexity of the problem space by enabling the
agent’s full access to all StarCraft unit types and their associated actions and
abilities. The next increment should also include the ability to manage groups
of units at squad level. At the moment, the behavior of allied units is not taken
into account at all in the reward computation to avoid diluting the effect of the
units’ own action. In the future we would like to change this to enable more team-
oriented strategies. Since this is a significant increase in complexity, a further
generalization might be required leading to a more generic CBR/RL architecture.
Once our bot is able to handle this level of play, a comparison to the numerous
existing competition bots, especially with the search-based micromanagement
approach in UAlbertaBot, should provide an even better performance benchmark
for hybrid CBR/RL RTS game micromanagement.



References

1. Buro, M., Furtak, T.: Rts games and real-time ai research. In: Proceedings of
the Behavior Representation in Modeling and Simulation Conference (BRIMS),
Citeseer (2004) 63–70

2. Weber, B., Mateas, M., Jhala, A.: Building human-level ai for real-time strategy
games. In: 2011 AAAI Fall Symposium Series. (2011)

3. Weber, B., Mateas, M., Jhala, A.: Applying goal-driven autonomy to starcraft.
In: Proceedings of the Sixth Conference on Artificial Intelligence and Interactive
Digital Entertainment. (2010)

4. Churchill, D., Buro, M.: Build order optimization in starcraft. In: Proceedings of
the Seventh Artificial Intelligence and Interactive Digital Entertainment Interna-
tional Conference (AIIDE 2011). (2011) 14–19

5. Wender, S., Watson, I.: Applying reinforcement learning to small scale combat
in the real-time strategy game starcraft:broodwar. In: Computational Intelligence
and Games (CIG), 2012 IEEE Symposium on. (2012)

6. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. The
international journal of robotics research 5(1) (1986) 90–98

7. Ontanón, S., Synnaeve, G., Uriarte, A., Richoux, F., Churchill, D., Preuss, M.: A
survey of real-time strategy game ai research and competition in starcraft. (2013)

8. Churchill, D., Saffidine, A., Buro, M.: Fast heuristic search for rts game combat
scenarios. In: AIIDE. (2012)

9. Churchill, D., Buro, M.: Portfolio greedy search and simulation for large-scale
combat in starcraft. In: Computational Intelligence in Games (CIG), 2013 IEEE
Conference on, IEEE (2013) 1–8

10. Micić, A., Arnarsson, D., Jónsson, V.: Developing game ai for the real-time strategy
game starcraft. Technical report, Reykjavik University (2011)

11. Bellman, R.: Adaptive control processes: a guided tour. Volume 4. Princeton
university press Princeton (1961)

12. Molineaux, M., Aha, D., Moore, P.: Learning continuous action models in a real-
time strategy environment. In: Proceedings of the Twenty-First Annual Conference
of the Florida Artificial Intelligence Research Society. (2008) 257–262

13. Uriarte, A., Ontañón, S.: Kiting in rts games using influence maps. In: Workshop
Proceedings of the Eighth Artificial Intelligence and Interactive Digital Entertain-
ment Conference. (2012)

14. Hagelbäck, J.: Multi-Agent Potential Field Based Architectures for Real-Time
Strategy Game Bots. PhD thesis, Blekinge Institute of Technology (2012)

15. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological
variations, and system approaches. AI communications 7(1) (1994) 39–59

16. Davoust, A., Floyd, M., Esfandiari, B.: Use of fuzzy histograms to model the spatial
distribution of objects in case-based reasoning. In Bergler, S., ed.: Advances in
Artificial Intelligence. Volume 5032 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg (2008) 72–83

17. Watkins, C.: Learning from Delayed Rewards. PhD thesis, University of Cam-
bridge, England (1989)

18. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press
(1998)

19. Wess, S., Althoff, K., Derwand, G.: Using k-d trees to improve the retrieval step
in case-based reasoning. Topics in Case-Based Reasoning (1994) 167–181


