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Abstract. This paper presents a navigation component based on a hy-
brid case-based reasoning (CBR) and reinforcement learning (RL) ap-
proach for an Al agent in a real-time strategy (RTS) game. Spatial en-
vironment information is abstracted into a number of influence maps.
These influence maps are then combined into cases that are managed
by the CBR component. RL is used to update the case solutions which
are composed of unit actions with associated fitness values. We present
a detailed account of the architecture and underlying model. Our model
accounts for all relevant environment influences with a focus on two main
subgoals: damage avoidance and target approximation. For each of these
subgoals, we create scenarios in the StarCraft RTS game and look at the
performance of our approach given different similarity thresholds for the
CBR part. The results show, that our navigation component manages to
learn how to fulfill both sub-goals given the choice of a suitable similarity
threshold. Finally, we combine both subgoals for the overall navigation
component and show a comparison between the integrated approach, a
random action selection, and a target-selection-only agent. The results
show that the CBR/RL approach manages to successfully learn how to
navigate towards goal positions while at the same time avoiding enemy
attacks.

1 Introduction

RTS games are becoming more and more popular as challenging test beds that
offer a complex environment for Al research. Commercial RTS game such as
StarCraft in particular are a polished environment that offer complex test set-
tings. These games have been identified as including numerous properties that
are interesting for Al research, such as incomplete information, spatial and tem-
poral reasoning as well as learning and opponent modeling [5]. For these reasons
we chose StarCraft as a test bed for a machine learning (ML) approach that tries
to learn how to manage combat units on a tactical level (“micromanagement”).

Micromanagement requires a large number of actions over a short amount of
time. It requires very exact and prompt reactions to changes in the game envi-
ronment. The micromanagement problem involves things like damage avoidance,



target selection and, on a higher, more tactical level, squad-level actions and unit
formations [18]. Micromanagement is used to maximize the utility of both in-
dividual units and unit groups, as well as to increase the lifespan of a player’s
units. A core component of micromanagement is unit navigation. There are nu-
merous influences a unit has to take into account when navigating the game
world, including static surroundings, opposing units and other dynamic influ-
ences. Navigation and pathfinding is not a problem unique to video games, but
a topic that is of great importance in other areas of research such as autonomous
robotic navigation [9]. The appeal of researching navigation in video games lies
in having a complex environment with various different influences that can be
precisely controlled. Navigation is also integrated as a supplementary task in
the much broader task of performing well at defeating other players and can
therefore be used and evaluated in numerous ways.

The navigation component presented in this paper is also not a standalone
conception. We are currently developing a hierarchical architecture for the en-
tire reactive and tactical layers in an RTS game. The Al agent based on this
architecture uses CBR for its memory management, RL for fitness adaption and
influence maps(IMs)/potential fields [8] for the abstraction of spatial informa-
tion. This approach is based on previous research [19] where we used RL in an
agent in a simplified combat scenario. While StarCraft offers a very large and
complex set of problems, our previous RL agent focuses on a small subset of the
overall problem space and is limited to one simple scenario.

Our high-level aim is to create an adaptive Al agent for RTS games that
minimizes the amount of knowledge that is stored in deterministic sub-functions,
but instead learns how to play the game. We aim to do this by using an approach
that manages large amounts of obtained knowledge in the shape of cases in a case-
base on the one hand, and has the means to acquire and update this knowledge
through playing the game itself on the other hand.

2 Related Work

Unit navigation in an RTS game is closely related to autonomous robotic nav-
igation, especially when looking at robotic navigation in a simulator without
the added difficulties of managing external sensor input [10]. Case-based rea-
soning, sometimes combined with RL, has been used in various approaches for
autonomous robotic navigation. [13] describes the self-improving robotic naviga-
tion system (SINS) which operates in continuous environment. One aim of SINS
is, similar to our approach, to avoid hand-coded, high-level domain knowledge.
Instead, the system learns how to navigate in a continuous environment by using
reinforcement learning to update the cases.

Kruusmaa [9] develops a CBR-based system to choose the least risky routes
in a grid-based map, similar to our infleucen map abstraction, and lead faster
to a goal position. However, the approach only works properly when there are
few, large obstacles and the state space is not too big.



Both of these approaches are non-adversarial however, and thus do not ac-
count for a central feature of RTS games that raise the complexity of the problem
space considerably. We address the presence of opposing units by using influence
maps to abstract the battlefield which can contain dozens of units on either side
at any one time.

The A* algorithm [7] and its many variations are the most common expo-
nents of search-based pathfinding algorithms that are used in video games while
also being successfully applied in other areas. However, the performance of A*
depends heavily on a suitable heuristic and is also very computation-intensive
as they frequently require complex pre-computation to enable real-time perfor-
mance. A* variations, such as the real-time heuristic search algorithm kNN-
LRTA* [4], which uses CBR to store and retrieve subgoals to avoid re-visting
known states too many times, have been used extensively in commercial game
AT and game AT research.

Different forms of both RL and CBR are popular techniques in game Al
research, either separately or as a combination of both approaches. The rein-
forcement learning component in this paper is based on our previous research in
[19] and a subsequent integration of single-pass CBR. While our previous simple
RL approach shows good results for the one specific scenario that is tested, the
work presented in this paper enables the generalization to a much larger and
more complex area of problems through the integration of CBR.

Using only RL for learning diverse actions in a complex environment becomes
quickly unfeasible due to the curse of dimensionality [2]. Therefore, the addition
of CBR to manage the obtained knowledge and to retain information in the form
of cases offers benefits both in terms of the amount of knowledge that is manage-
able and in terms of knowledge generalization. [11] describes the integration of
CBR and RL for navigation in a continuous environment. Both state- and action-
space are continuous and the agent has to learn effective movement strategies for
units in a RTS game. As a trade-off for working with a non-discretized model,
the authors only look at movement component of the game from a meta-level
perspective where actions are given to groups of units instead of individuals. As
a result, this approach is situated on a tactical level rather than the reactive
level in terms of the overall game (see Section 3).

Influence maps or potential fields for the abstraction of spatial information
have been used in a number of domains, including game AI, mostly for navigation
purposes. Initially IMs were developed for robotics [8].

[16] use influence maps to produce kiting in units, also in StarCraft. Kiting
is a hit-and-run movement that is similar to movement patterns that our agent
learns for micromanagement. Their approach is similar to [19] in the behavior
they are trying create and similar to our current approach in that they also use
influence maps. However, their focus lies solely on the hit-and-run action and
not on general maneuverability and the potential to combine pathfinding and
tactical reasoning into a higher-level component as in our current approach.

[6] describes the creation of a multi-agent bot that is able to play entire games
of StarCraft using a number of different artificial potential fields. However, some



of the parts of the bot use non-potential field techniques such as rule-based
systems and scripted behavior, further emphasizing the need to combine different
ML techniques to address larger parts of the problem space in an RTS game.

3 Pathfinding and Navigation as Part of a Hierarchical
Agent Architecture

RTS games can be split into logical tasks that fall into distinct categories such
as strategy, economy, tactics or reactive maneuvers. These tasks can in turn be
grouped into layers [18]. Figure 1 shows the subdivision of an RTS into tasks
and layers that are involved in playing the game.
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Fig. 1. RTS Game Layers and Tasks

For the creation of an Al agent that learns how to play a game, these tasks and
layers can be used to create areas of responsibility for certain parts of an agent
architecture. The layering leads to most RT'S agents being inherently hierarchical
and having a top-down approach when it comes to giving orders or executing
actions and plans [12]. A high-level planer will decide on an action, which will
subsequently be passed down to subordinate managers. These managers might
then pass on parts of these action to managers that are even further down in
the hierarchy.

Macromanagement is the umbrella term commonly used for tasks in the
strategy layer and for high-level tactical decisions like army positioning in terms
of the entire map. Micromanagement on the other hand describes the reactive
layer as well as squad-level decisions in the tactical layer [12].



The ML agent we are currently working on is based on hierarchical CBR
combined with a RL component. The agent learns how to play the entire mi-
cromanagement part of a game, from tactical decision making down to reactive
control and pathfinding.

Hierarchical CBR is a sub-genre of CBR where several case-bases are or-
ganized in an interlinked order. [14] coins the term HCBR to describe a CBR
system for software design. The authors use a blackboard based architecture that
controls reasoning with a hierarchical case-base. The case-base is structured as a
partonomic hierarchy where one case is split into several layers. Finding a solu-
tion to a software design problem requires several iterations where later iterations
are used to fill lower levels of the case.

Our general architecture is similar, though slightly more complex. The case-
bases are not strictly partonomic, since lower-level case-bases do not use solutions
from higher level states as the only input for their case descriptions. Furthermore,
our case-bases are more autonomous in that they run on different schedules which
can result in differing numbers of CBR-cycle executions for different case-bases.

Each level in our architecture is working autonomously while using output
from higher levels as part of its problem description. Each level is also represented
by different case-bases. The pathfinding component presented here is provided
with a target position that is decided on an intermediate level of the overall agent
architecture. The goal given by this intermediate level is one of the influences the
pathfinding component works with. At the same time, while a unit is trying to
reach its goal location, the agent is trying to satisfy two other subordinate goals:
minimizing any damage received and avoiding obstacles in the environment. The
model that was created to reflect these requirements is described in detail in the
next section.

4 CBR/RL Integration and Model

The core part of the pathfinding component is a case-base containing cases based
on the environment surrounding a single unit. Navigation cases use both infor-
mation from the game world and the target position given by a higher-level rea-
soner on the architecture layer above. Case descriptions are mostly abstracted
excerpts of the overall state of the game environment. Case solutions are move-
ment actions of a unit. Units acting on this level are completely autonomous, i.e.
there is only one unit per case. As a result, the information taken from the game
world is not concerned with the entire battlefield, but only with these immediate
surroundings of the unit in question.

4.1 Case Description

The case description consists of an aggregate of the following information:

— Static information about the environment.
— Dynamic information about opposing units.



— Dynamic information about allied units.
— Dynamic information about the unit itself.
— Target specification from the level above.

Most of this information is encoded in the form of influence maps (IMs) [8].
We are using three distinct influence maps: One for the influence of allied units,
one for the influence of enemy units and one for the influence of static map
properties such as cliffs and other impassable terrain. This influence map for
static obstacles also contains information on unit positions, as collision detection
means that a unit can not walk through other units.

While higher levels of reasoning in our architecture use influence maps that
can cover the entire map, the relevant information for a single unit navigating
the game environment on a micromanagement level is contained in its imme-
diate surroundings. Therefore, the perception of the unit is limited to a fixed
7x7 cutout of the overall IM directly surrounding the unit. An example of the
different IMs for varying levels of granularity and other information contained
in the environment can be seen in Figure 2.

The red numbers denote influence values. The influence values are based on
the damage potential of units. This figure only shows enemy influence in order
to not clutter the view. Any square in the two influence maps for enemy and
allied units has assigned to it the damage potential for adjacent units. The IM
containing information on passable terrain only contains a true/false value for
each field. In figure 2, impassable fields are shaded.

The ’local’ IM that represents the perception of a single unit it surrounds,
is marked by the green lines that form a sub-selection of the overall yellow IM.
Only values from this excerpt are used in the case descriptions.

In addition to the spatial information contained in the IMs, three other rel-
evant values are part of a case description: unit type, previous action and target
location. The target location indicates one of the 7x7 fields surrounding a unit
and is the result of a decision on the higher levels. In Figure 2, the current tar-
get location is marked by the blue X. The unit type is indicative of a number of
related values such as speed, maximum health and ability to fly. The previous
action is relevant as units are able to carry momentum over from one action to
the next.

The case solutions are concrete game actions. We currently use four Move
actions for the different directions, one for every 90° (see Figure 3).

The case-base in the CBR part of the pathfinding component reflects a gen-
eral CBR cycle [1], however does not use all of the cycle’s phases. During the
Retrieval step, the best-matching case is found using a simple kNN algorithm
where k = 1, given the current state of the environment. If a similar state is
found, its solution, made up of all possible movement actions and associated
fitness values, is returned. These movement actions can then be Reused by ex-
ecuting them.

Currently, there is no Revision of case descriptions stored in any of the
case-bases. Once a case has been stored, the case descriptions, consisting of the



Fig. 2. Game Situation with Influence Map Overlay

Fig. 3. Possible Movements for a Unit

abstracted game information and of the solutions from higher-up levels, are not
changed anymore. However, the fitness values associated with case solutions are
adjusted each time a case is selected. These updates are done using RL (see
Section 4.2).

Retention is part of the retrieval process. Whenever a case retrieval does
not return a sufficiently similar case, a new one is generated from the current
game environment state.

The similarity measure that is used to retrieve the cases plays a central role,
both in enabling the retrieval of a similar case, and in deciding when new cases
have to be created if no sufficiently similar case exists in the case-base. Part of
the novelty of our approach is the use of influence maps as central part of our
case descriptions. These IMs are then used in the similarity metric when looking
for matching cases.



In all three types of influence maps that are used, the similarity between a
map in a problem case and a map stored in the case base is an aggregate of the
similarities of the individual map fields. Comparing the map on accessibility of
single map plots is comparably easy since each field is identified by a Boolean
value, which means that similarity between plot of IMs in a problem case and in
a case in the case base is either 0% or 100%. The similarity of a single field de-
scribing the damage potential of enemy or own units, is decided by the difference
in damage to its counterpart in the stored case. L.e. if one field has the damage
potential 20 and the counterpart in the stored case has the damage potential 30,
the similarity is decided by the difference of 10. Currently, we are mapping all
differences into one of four similarities between 0% and 100%. This also depends
both on if unit influence exists in both cases and on how big the difference is.
An example similarity computation is shown in Figure 4.
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Fig. 4. Example of IM Field Similarity Computation

We decided not to abstract the information stored in the IM fields any fur-
ther and do a direct field-to-field comparison. However, as a large case-base could
slow the search down considerably, we are also investigating methods to reduce
the current number of cases. This will start with methods to account for simple
geometric transformations on the IMs such as rotation. In higher levels of our
architecture (see Section 3), where larger areas of the map are compared and
a brute-force nearest-neighbor search would be unfeasible, we are already using
more abstract comparisons.Because of the requirement for very precise actions
when navigating, using the same methods for the pathfinding component is im-
practical.

The similarity between Last Unit Actions is determined by how similar the
movement directions for chosen are, i.e. same direction means a similarity of 1,
orthogonal movement 0.5 and opposite direction means 0. Unit Type similarity is
taken from a table that is based on expert knowledge as it takes a large number
of absolute (health,energy, speed) and relative (can the unit fly, special abilities)



attributes into account. The similarity between Target Positions is computed
as a the distance between target positions in cases in relation to the maximum
possible distance (dimension of the local IM field).

Table 1 summarizes the case description and related similarity metrics.

Table 1. Case-Base Summary

Attribute Description Similarity Measure
Agent Unit IM Map with 7x7 fields contain-|Normalized aggregate of
ing the damage potential of|field similarity.

adjacent allied units.
Enemy Unit IM |Map with 7x7 fields contain-|{Normalized aggregate of
ing the damage potential of|field similarity.

adjacent allied units.
Accessibility IM  |Map with 7x7 fields contain-|Normalized aggregate of
ing true/false values about|field similarity.

the accessibility.
Unit Type Type of a unit. Table of unit similarities be-
tween 0 and 1 based on ex-
pert knowledge.

Last Unit Action |The last movement action|Value between 0 and 1 de-

taken. pending on the potential
to keep momentum between
actions.

Target Position Target position within the|Normalized distance.
local 7x7 map.

4.2 Reinforcement Learning for Solution Fitness Adaption

The reinforcement learning component is used to learn fitness values for case
solutions. This part of the architecture is based on our previous research [19].
While the complexity of the model here is much higher, the problem domain
remains the same, which is why we chose to use a one-step Q-learning algorithm
for policy evaluation. One-step Q-learning showed, in this specific setting, the
best performance when compared to other tested algorithms by a small margin.
Furthermore, its implementation is comparably simple and evaluation using one-
step algorithms are computationally inexpensive when compared to algorithms
using eligibility traces.

Q-learning is an off-policy temporal-difference (TD) algorithm that does not
assign a value to states, but to state-action pairs [17]. Since Q-learning works
independent of the policy being followed, the learned action value @ function
directly approximates the optimal action-value function Q*.

In order to use RL, we express the task of updating the fitness of case so-
lutions as a Markov Decision Process (MDP). A specific MDP is defined by a
quadruple (S,A,’P:S,,RZ ). In our case the state space S is defined through

/
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the case descriptions. The action space A is the case solutions. P, are the
transition probabilities. While StarCraft has only few minor non-deterministic
components, its overall complexity means that the transition rules between states
are stochastic. As a result, different subsequent states s;; 1 can be reached when
taking the same action a; in the same state s; at different times in the game.
R‘;S, represents the expected reward, given a current state s, an action a and
the next state s/.

Reward is computed on a per-unit and per-action basis, similar to our simple
RL agent. The reward signal is crucial to enable the learning process of the agent
and has to be carefully selected. As the agent tries to satisfy, depending on the
given scenario, a number of different goals, we use a composite reward signal.For
damage avoidance, the reward signal includes the difference in health h of the
agent unit in question between time ¢t and time ¢ + 1. The reward signal also in-
cludes a negative element that is based on the amount of time ¢, it takes to finish
an action a. This is to encourage fast movement towards the goal position. To
encourage target approximation, the other central requirement besides damage
avoidance, there is a feedback (positive or negative) for the change in distance
dzarget between the unit’s current position and the target position. Finally, to
account for inaccessible fields and obstacles, there is a penalty if a unit chooses
an action that would access a non-accessible field. This penalty is not part of
the regularly computed reward after finishing an action but is attributed when-
ever such an action is chosen and leads to immediate re-selection. The resulting
compound reward that is computed after finishing an action is therefore

R(sls/ == Ahunzt - ta + Adtarget~

When looking at scenarios that evaluate the performance of the two subgoals
target approximation and damage avoidance, only the parts of the reward signal
that are relevant for the respective subgoal are used.

5 Empirical Evaluation and Results

A core parameter to determine in any CBR approach is, given a chosen case
representation and similarity metric, a suitable similarity threshold that enables
the best possible performance for the learning process. That means on the one
hand creating enough cases to distinguish between inherently different situations,
while on the other hand not inundating the case-base with unnecessary cases.
Keeping the number of cases to a minimum is especially important when using
RL. In order for RL to approximate an optimal policy p*, there has to be a
sufficient state- or state-action space coverage [15]. If the case-base contains
too many cases, not only will retrieval speeds go down, but a lack of state-
action space coverage will diminish the performance or even prevent meaningful
learning altogether.

The model described in Section 4 is an aggregate of influences for several sub-
goals. For this reason, we decided to have two steps in the empirical evaluation.
First, the two main parts of our approach, target approximation and damage



avoidance, are evaluated separately. This yields suitable similarity thresholds
for both parts that can then be integrated for an evaluation of the overall navi-
gation component.

For each of the steps we created suitable scenarios in the StarCraft RTS
game. The first capability we evaluate is damage avoidance. The test scenario
contains a large number of enemy units that are arbitrarily spread across a map.
The scenario contains both mobile and stationary opponents, essentially creating
a dynamic maze that the agent has to navigate through. The agent’s aim is to
stay alive as long as possible.

In order to test the agent’s ability to find the target position, it controls a
unit in a limited-time scenario with no enemies and randomly generated target
positions. Therefore, the performance metric is the number of target positions
an agent can reach within the given time. Accessibility penalties, Unit Type and
Previous Action computation are part of both scenarios.

Based on initial test runs and experience from previous experiments, we
used a learning rate a = 0.05 and a discount rate a = 0.3 for our Q-learning
algorithm. The agent uses a declining e-greedy exploration policy that starts
with € = 0.9. This means, that the agent initially selects actions 90% random and
10% greedy, i.e. choosing the best known action. The exploration rate declines
linearly towards 0 over the course of the 1000 games for the damage-avoidance
scenario and 100 games for the target-approximation respectively. After each
full run of 1000 or 100 games, there is another 30 games where the agent uses
only greedy selection. The performance in this final phase therefore showcases
the best policy the agent learned. The difference in the length of experiments
(1000 vs 100 games) is due to the vastly different state-space sizes between the
two scenarios. When looking at target approximation, the target can be any one
of the fields in a unit’s local IM, i.e. one of 49 fields. As a result, there can
be a maximum of 49 different states even with 100% similarity threshold. On
the other hand, there are n*9 possible states based on the damage potential of
units, where n is the number of different damage values. This also explains why
the generalization that CBR provides during case retrieval is essential to enable
any learning effect at all. Without CBR, the state-action space coverage would
remain negligibly small even for low n-values.

The results for both variants are shown in Figure 5 and Figure 6.

The results from the two sub-problem evaluation scenarios were used as a
guideline to decide on a 80% similarity threshold to evaluate the overall algo-
rithm (see Section 6 for more details). Both subgoals were equally weighted. The
scenario for the evaluation of the integrated approach is similar to the one used
for the damage avoidance sub-goal. The target metric is no longer the survival
time however, but the number of randomly generated positions the agent can
reach before it is destroyed. The run length for the experiment was increased
to 1600 games to account for the heightened complexity. The resulting perfor-
mance in the overall scenario can be seen in Figure 7. The figure also shows a
random action selection baseline, as well as the outcome for using only target-
approximation without damage avoidance.
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6 Discussion

The evaluation for the damage avoidance subgoal indicates, that there is only
a narrow window in which learning an effective solution is actually achieved in
the given 1000 episodes: With a similarity threshold of 35% there is not enough
differentiation between inherently different cases/situations and the performance
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Fig. 7. Results for the Combined Scenario

drops of steeply towards the end. On the other end of the spectrum, the worst
results with practically no improvement in the overall score is achieved for a
75%similarity threshold. This means that with such a high threshold, the state-
action space coverage drops to a level where learning a ’good’ strategy is no
longer guaranteed: For a similarity threshold of 75% there are 7000 cases in the
case-base after 1000 episodes played and less than 1/2 of all state-action pairs
have been explored at least once.

Target approximation is slightly different in that an effective solution is
achieved for any similarity threshold above 65%. This is due to the fact that
even at 95% similarity there are still only 49 * 4 = 196 state-action pairs to
explore. The number of cases in the case-base varies however. At 95% similarity
threshold, there is 49 different cases, i.e. the maximum possible number. At 85%
similarity there exist about 20 different cases and at 75% only around 9 cases.
This is important when we combine target approximation with damage avoid-
ance for the overall approach since this also combines the state-space of the two
subgoals. Therefore, twice as many cases for only a 20% higher reward as for the
75% compared to the 85% threshold or the 85% compared to the 95% threshold
is a bad tradeoff. For this reason, we chose to use a 75% similarity threshold for
the target approximation sub-goal.

Both subgoal approaches show a performance improvement in their chosen
metrics over the run of their experiments. Since the target approximation algo-
rithm manages to exhaustively explore the state-action space, the performance
improvement is more visible in this scenario. This also means, that the best
possible solution in this scenario has been found, as a 95% similarity threshold



with all possible states and a fully explored state-action space guarantee that
the optimal policy p* must have been found. For the damage avoidance scenario
on the other hand, there is still a potential for improvement, since significant
parts of the state-action space remain unexplored: Even for a 55% threshold only
about 3/4 of all possible actions are executed at least once.

The results for the overall algorithm in Figure 7 show, that the agent manages
to successfully learn how to navigate towards target positions. The performance
of the agent far outperforms the random action selection. However, the results
also show that the combined algorithm initially only has a small advantage over
the target-approximation-only agent and only towards the end performs better.
This is far less of an improvement than expected, especially given the fact that
these experiments reached a sufficiently high state-action coverage of about 2/3.
This indicates, that the chosen overall similarity threshold of 80% is too low and
there is not enough differentiation between inherently different cases/situations
to find the optimal policy.

7 Conclusion and Future Work

This paper presented an approach to unit navigation based on a combination
of CBR, RL and influence maps for an RTS game AI agent. We illustrated the
general tasks involved in a RTS game, how these tasks can be grouped into
logical layers and how navigation is part of the micromanagement problem that
we aim to address with an agent based on a hierarchical CBR architecture. The
important information was identified and we designed a model that encompasses
these different influences that are important for navigation and pathfinding in
RTS games.

The empirical evaluation showed how our approach learned how to success-
fully learn to achieve partial goals of the navigation problem. Using the findings
from the partial evaluation we ran an evaluation for the entire approach in-
cluding all relevant influences and goals. This evaluation shows that our model
and approach manage to successfully learns how to navigate a complex game
scenario that tests all different sub-goals. Our approach significantly outper-
forms a random action selection and marginally outperforms the partial, target-
approximation-only agent.

In terms of the ML algorithm, a more sophisticated case retrieval method and
an evaluation of alternative RL methods are first on our list for future work. We
are considering k-d trees to pre-index the cases [20] as a larger number of enemy
or own units automatically leads to a more complex state-space, something that
could slow down the retrieval speeds considerably.

We are also looking at using a different RL algorithm for our exploration
strategy such as Softmax action selection [15] or the R-Max algorithm [3].

The next step in terms of the overall approach will be the evaluation of the
integration of the navigation component presented in this paper into the overall
HCBR agent architecture.
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