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Abstract. In previous papers we have presented our autonomous poker
playing agent (SARTRE) that uses a memory-based approach to create
a betting strategy for two-player, limit Texas Hold’em. SARTRE partici-
pated in the 2009 IJCAI Computer Poker Competition where the system
was thoroughly evaluated by challenging a range of other computerised
opponents. Since the competition SARTRE has undergone case-based
maintenance. In this paper we present results from the 2009 Computer
Poker Competition and describe the latest modifications and improve-
ments to the system. Specifically, we investigate two claims: the first
that modifying the solution representation results in changes to the prob-
lem coverage and the second that different policies for re-using solutions
leads to changes in performance. Three separate solution re-use policies
for making betting decisions are introduced and evaluated. We conclude
by presenting results of self-play experiments between the pre and post
maintenance systems.

1 Introduction

Games offer a well suited domain for Artificial Intelligence (AI) investigation
and experimentation [1] due to the fact that a game is usually composed of sev-
eral well-defined rules which players must adhere to. Most games have precise
goals and objectives which players must meet to succeed. For a large majority
of games the rules imposed are quite simple, yet the game play itself involves a
large number of very complex strategies. Furthermore, a performance metric is
naturally embedded into the game itself. Success can therefore easily be mea-
sured by factors such as the amount of games won or the ability to beat certain
opponents.

Games are often classified by the amount of information available to the
players. If a player has access to all the information they require about the
game during play then the game can be classified as having perfect information.
However, if some of that information is hidden from the player the game is known

? If you wish to challenge the latest version of SARTRE, you may do so at
http://www.cs.auckland.ac.nz/poker/
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as having imperfect information. Take for example the game of chess. Chess is a
game of perfect information because each player can look down upon the board
and obtain all the information necessary to make their playing decisions. On
the other hand, the game of poker is a game of imperfect information. In poker
players are given cards which only they can see, therefore players now have
to make decisions based on hidden information because they cannot see their
opponents’ cards.

Games can be further classified as either deterministic or stochastic. If a game
contains chance elements, such as the roll of a dice, this introduces randomness
into the game. These types of games are known as stochastic games and examples
include bridge, backgammon and poker. The absence of these chance elements
ensures the game is deterministic. Games such as chess, checkers and go are
examples of deterministic games.

Poker is a sequential, stochastic game with imperfect information. It is se-
quential because players choose their actions in sequence. It is stochastic because
the shuffling of cards introduces randomness into the game. It is a game of im-
perfect information because players cannot see their opponent’s cards, therefore
players need to make decisions based on hidden information. Given the relatively
simple rules of the game there is an enormous amount of subtle and sophisticated
scenarios that can occur during a hand of play (this is particularly true of the
Texas Hold’em variation).

In previous papers [2, 3] we introduced our autonomous poker agent SARTRE
(Similarity Assessment Reasoning for Texas hold’em via Recall of Experience)
that plays the game of 2-player, limit Texas Hold’em. SARTRE constructs a
poker betting strategy using a memory-based approach where cases are stored in
a database which describe past game state information, along with the betting
decisions made and the eventual outcome of those decisions. SARTRE chooses a
betting action by consulting this memory of past games and retrieving similar
game states. Once the most similar game state has been found its solution is
re-used.

In 2009 we submitted SARTRE to the IJCAI Computer Poker Competition,
where the system was thoroughly evaluated by challenging many different types
of opponents. In this paper we present the results of the 2009 limit competitions
in which SARTRE participated. Since the competition, case-base maintenance [4]
has been conducted on the SARTRE system. This maintenance phase resulted
in changes to SARTRE’s solution representation. In this paper we introduce the
latest modifications and improvements to the system. In particular, we address
the following two claims:

Claim 1: Changes in solution representation results in changes to problem cov-
erage.

Claim 2: Different policies for re-using solutions leads to changes in perfor-
mance.

We introduce 3 separate policies for making betting decisions, which we label
solution re-use policies. The performance of each solution re-use policy is evalu-
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ated and the experimental results presented, along with the results of self-play
experiments between the pre-maintenance and post-maintenance systems.

The paper proceeds as follows. Section 2 briefly describes the rules of Texas
Hold’em. Section 3 reviews related work and introduces two broad types of poker
strategies. An overview of our memory-based approach is given in Section 4, along
with details regarding the maintenance that the system has undergone since the
2009 Computer Poker Competition. For the purposes of this paper we will refer
to the version of SARTRE that participated in the 2009 competition as SARTRE-
1 and the updated, post-maintenance system as SARTRE-2. Section 5 presents
the results of the 2009 Computer Poker Competition along with further self-
play experiments between SARTRE-1 and SARTRE-2. Conclusions of the work
are discussed in Section 7 and avenues for future research discussed in Section
8.

2 Texas Hold’em

Here we briefly describe the game of Texas Hold’em, highlighting some of the
common terms which are used throughout this work. For a more in depth intro-
duction to Texas Hold’em consult [5].

The game of Texas Hold’em is played in 4 stages – preflop, flop, turn and
river. During the preflop all players at the table are dealt two hole cards, which
only they can see. Before any betting takes place, two forced bets are contributed
to the pot, i.e. the small blind and the big blind. The big blind is typically
double that of the small blind. The player to the left of the big blind, known
as under the gun, then begins the betting by either folding, calling or raising.
The possible betting actions common to all variations of poker are described as
follows:

Fold: When a player contributes no further chips to the pot and abandons their
hand and any right to contest the chips which have been added to the pot.

Check/Call: When a player commits the minimum amount of chips possible in
order to stay in the hand and continue to contest the pot. A check requires a
commitment of zero further chips, whereas a call requires an amount greater
than zero.

Bet/Raise: When a player commits greater than the minimum amount of chips
necessary to stay in the hand. When the player could have checked, but
decides to invest further chips in the pot, this is known as a bet. When the
player could have called a bet, but decides to invest further chips in the pot,
this is known as a raise.

In a limit game all bets are in increments of a certain amount. In a no limit
game, players can wager up to the total amount of chips they possess in front of
them. Once the betting is complete, as long as at least two players still remain
in the hand, play continues onto the next stage. Each further stage involves
the drawing of community cards from the deck. Players combine their hole
cards with the public community cards to form their best 5 card poker hand.
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The number of community cards revealed at each stage is as follows: flop – 3
community cards, turn – 1 community card, river – 1 community card. Each
stage also involves its own round of betting and as long as there are players left
who have not folded their hands, play continues. A showdown occurs after the
river where the remaining players reveal their hole cards and the player with
the best hand wins all the chips in the pot. If two or more players have the
same best hand then the pot is split amongst the winners. The list of poker
hand categories in ascending order of strength is as follows: high-card, one-pair,
two-pair, three-of-a-kind, straight, flush, full-house, four-of-a-kind, straight-flush.

3 Related Work

There are two main types of strategies that a poker agent may employ:

1. A Nash equilibrium strategy, or
2. an exploitive strategy

A strategy in this context refers to a mapping between game states and the
actions that an agent will take at that game state. Typically, an agent’s strategy
consists of specifying a probability triple at every game state. A probability
triple, (f,c,r), specifies the proportion of the time an agent will either fold (f ),
check/call (c) or bet/raise (r) at a particular point in the game.

A Nash equilibrium is a robust, static strategy that attempts to limit its
exploitability against a worst-case opponent. In general, a set of strategies are
said to be in equilibrium if the result of one player diverging from their equilib-
rium strategy (while all other players stick to their current strategy) results in a
negative impact on the expected value for the player who modified their strat-
egy [6]. Currently, it is intractable to compute exact Nash equilibria for full-scale
Texas Hold’em [7], but by applying simplifying abstractions to the game it is
possible to approximate a Nash equilibrium strategy. The University of Alberta
Computer Poker Research Group1 (CPRG) were the first to approximate a Nash
equilibrium for the full-scale game of two-player Texas Hold’em [8]. One of the
outcomes of this research was the poker agent Sparbot, which is available within
the commercial software product Poker Academy Pro 2.52. GS1 [9] and GS2
[10] developed by Andrew Gilpin and Thomas Sandholm at Carnegie Mellon Uni-
versity are also examples of early attempts to derive approximate equilibrium
solutions for limit hold’em.

Over the years it has become possible to construct and solve larger mathe-
matical models of the poker game tree via improved iterative procedures, such as
counterfactual regret minimization (CFRM) [11, 7]. Typically, by applying fewer
simplifying abstractions to the game model, stronger Nash equilibrium strate-
gies have been produced. The University of Alberta CPRG’s latest Nash based
agent is Hyperborean-Eqm and it was constructed via the CFRM algorithm. The
1 http://poker.cs.ualberta.ca/
2 http://www.poker-academy.com/



Similarity-Based Retrieval and Solution Re-Use Policies 5

winner of the limit equilibrium division at the 2009 IJCAI Computer Poker Com-
petition was GGValuta. GGValuta was developed by a team of students from the
University of Bucharest based on the CFRM algorithm [12].

As a Nash equilibrium strategy assumes an unknown, worst-case opponent,
it will limit its own exploitability at the expense of taking advantage of weaker
opponents. Hence, while this sort of strategy may not lose, it will also not win
by as much as it could against weaker opponents. On the other hand, a player
that attempts to isolate the weaknesses of their opponent and capitalize on
those weaknesses is said to employ an exploitive (or maximal) strategy. This
is typically achieved by constructing a model of an opponent and using it to
inform future actions. A consequence of an exploitive strategy is that it no
longer plays near the equilibrium and hence is vulnerable to exploitation itself,
especially if the model of the opponent is incorrect or no longer valid. Vexbot [13]
is an example of an exploitive poker agent that has been created using opponent
modeling and imperfect information game tree search. Vexbot is also available
within Poker Academy Pro 2.5.

Other approaches used to construct exploitive agents include the use of
Monte-Carlo simulation [14, 15] and the Monte-Carlo Tree Search algorithm
[16], which involve the evaluation of nodes in the game tree by drawing re-
peated random samples. More recent exploitive strategies such as Restricted
Nash Response (RNR) [17, 7] and Data Biased Response (DBR) [18] attempt to
optimise the trade-off between the robust nature of Nash equilibrium strategies
and the power of exploitive strategies that rely on opponent modelling. Finally,
various machine learning approaches have been used to construct strong poker
agents. For example, the winner of the limit bankroll division of the 2009 IJ-
CAI Computer Poker Competition was MANZANA, developed by hobbyist Marv
Andersen. MANZANA employed the use of artificial neural networks trained on
data from the best agent of the previous year’s competition [12].

3.1 CBR Motivation

The focus of this paper is on generating case-based poker strategies. When a
new problem is encountered similar cases are retrieved from the case-base of
poker hands and their solutions are adapted or re-used to solve the problem. As
Nash equilibrium-based strategies are very large a current goal of our research
is to determine how close this type of strategy can be approximated with a com-
pact case-base that relies on finding similar cases and generalising the observed
actions. Case-based strategies can easily be used to approximate the play of a
selected “expert” or group of “experts” via observation and case generation.
Expert players can be human players or other computerised agents. By sim-
ply updating the case-base, different types of players can be modelled without
relying on the creation of complicated mathematical models or algorithms.

CASPER [19, 20], is an example of a previous poker agent constructed using
a case-based strategy. CASPER was designed to play 10-player limit hold’em.
Our latest poker agent, SARTRE [2] has been specialised to play 2-player, limit
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hold’em. We refer to the approach used by SARTRE as a memory-based approach
and it is introduced in the next section.

4 Our Approach

4.1 Overview

An overview of the memory-based approach used by SARTRE is as follows:

– A database of cases is built by observing actual poker hands. Each case
consists of a collection of attribute-value pairs that encapsulate game state
information.

– Separate case-bases are constructed for each round of play (preflop, flop,
turn, river).

– When SARTRE is required to make a betting decision a target case is
created to describe the current state of the game and the appropriate case-
base (collection of source cases) is searched to locate similar cases.

– A betting decision is made by employing 1 of 3 solution re-use policies:
probabilistic, majority-rules or best-outcome (refer to Section 4.5).

The details of the above approach are now presented.

4.2 Case Representation

Table 1 depicts the post-flop case representation3. Every case is made up of 3
attributes that capture information about the current game state. The attributes
were selected by the authors as they are believed to encapsulate the salient as-
pects of the game in a concise manner. The first attribute (hand type) classifies
the 5-card hand of a player into a category which represents information about
its current strength and ability to improve (such as whether the opponent has a
flush or straight draw). The next attribute (betting sequence) simply enumer-
ates the betting that has been witnessed up till the current point in the hand.
An r stands for a bet or a raise, a c stands for a check or a call and a hyphen
delimits the betting rounds. The final attribute (board texture) highlights im-
portant information about the public community cards such as whether there
are 3 or more cards of the same suit present on the board and hence a player
could have a flush (i.e. Flush-Possible and Flush-Highly-Possible)4.

Each case also contains a solution, which is made up of an action triple and
an outcome triple. The action triple suggests a probability distribution, (f, c,
r), over betting actions that the agent should select given the current state of
the game. The outcome triple records the average quantitative profit or loss
that has been observed in the past given the various betting decisions. Outcomes
that have never been observed are labelled with -∞.
3 Pre-flop cases are slightly different in that they only contain hand type and bet-

ting sequence features, where hand type refers to 1 of the standard 169 pre-flop
equivalence classes.

4 A complete listing of all the hand type and board texture categories can be found
at www.cs.auckland.ac.nz/research/gameai/sartreinfo.html
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Table 1. A case is made up of three attribute-value pairs which describe the current
state of the game. A solution consists of an action triple and an outcome triple, which
records the average numerical value of applying the action in this case (-∞ refers to
an unknown outcome).

Attribute Type Example

High-Card, Pair, Two-Pair,
1. Hand Type Class Set, Flush, Pair-with-Flush-Draw,

High-Card-with-Straight-Draw, ...

2. Betting Sequence String rc-c, crrc-crrc-cc-, r, ...

No-Salient, Flush-Possible,
3. Board Texture Class Straight-Possible, Flush-Highly-Possible,

...

Action Triple (0.0, 0.5, 0.5), (1.0, 0.0, 0.0), ...

Outcome Triple (-∞, 4.3 , 15.6), (-2.0,-∞,-∞), ...

Claim 1 in section 1 states that: changes in solution representation results in
changes to problem coverage. In particular, SARTRE-1 represented actions and
outcomes as single characters or numerical values, respectively. At decision time
all similar cases were retrieved and the solutions combined to form a probability
triple. Using this representation SARTRE-1 was forced to store many duplicate
cases within each of its case-bases. SARTRE-2 now uses full probability triples
as its solution representation. To derive the probability triples, SARTRE-2 must
first pre-process the training data. By pre-processing the training data SARTRE-
2 allows a much more compact case-base size, due to the fact that it no longer
retains many duplicate cases (see Table 2).

4.3 Similarity-Based Retrieval

The k -nearest neighbour algorithm (k -NN) is used to retrieve the most similar
case from the case-base. The k -NN algorithm involves positioning the target
case in an n-dimensional search space of source cases. Similarity between the
target and source cases individual attributes is calculated using specific similarity
metrics, described in detail below. The target case is compared to every case in
the appropriate case-base and similarity computed for each attribute in the case.

For SARTRE-1 the value of k could vary between 0 to N , where N was only
bounded by the number of cases in the case-base. If 0 cases were retrieved a
default policy of Always-Call was adopted. Furthermore, SARTRE-1 required ex-
act matches, otherwise the default policy was used. Given SARTRE-2’s updated
representation, k is now set to 1. SARTRE-2 no longer requires a default pol-
icy as the solution of the most similar case is always used, no matter what the
similarity.
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4.4 Similarity Metrics

In order to compute global similarity, each of the attributes represented in Table
1 requires their own local similarity metric. The attributes’ specific local simi-
larity metrics are described below, where the values within the brackets indicate
the allowable similarity values:

Hand Type [0, 1]: Either a combination of cards are mapped into the same
category as another combination of cards, in which case a similarity value
of 1.0 is assigned, or they map into a separate category, in which case a
similarity value of 0 is given. This same metric is used for both SARTRE-1
and SARTRE-2.

Board Texture [0, 1]: As above.
Betting Sequence [0, 0.8, 0.9, 1]: SARTRE-1 used a simplistic all or noth-

ing similarity metric for the betting sequence attribute, where similarity was
either 0 or 1. SARTRE-2 improves upon this simplistic metric by assigning
stepped levels of similarity. The first level of similarity (level0) refers to the
situation when one betting sequence exactly matches that of another. If the
sequences do not exactly match the next level of similarity (level1) is evalu-
ated. If two distinct betting sequences exactly match for the active betting
round and for all previous betting rounds the total number of bets/raises
made by each player are equal then level1 similarity is satisfied and a value
of 0.9 is assigned. Consider the following example where the active betting
round is the turn and the two betting sequences are:
1. crrc-crrrrc-cr
2. rrc-rrrrc-cr

Here, level0 is clearly incorrect as the sequences do not match exactly. How-
ever, for the active betting round (cr) the sequences do match. Furthermore,
during the preflop (1. crrc and 2. rrc) both players made 1 raise each, albeit
in a different order. During the flop (1. crrrrc and 2. rrrrc) both players
now make 4 raises each. Given that the number of bets/raises in the previ-
ous rounds (preflop and flop) match, these two betting sequences would be
assigned a similarity value of 0.9.
If level1 similarity was not satisfied the next level (level2) would be evaluated.
Level2 similarity is less strict than level1 similarity as the previous betting
rounds are no longer differentiated. Consider the river betting sequences:
1. rrc-cc-cc-rrr
2. cc-rc-crc-rrr

Once again the sequences for the active round (rrr) matches exactly. This
time, the number of bets/raises in the preflop round are not equal (the same
applies for the flop and the turn). Therefore, level1 similarity is not satisfied.
However, the number of raises encountered for all the previous betting rounds
combined (1. rrc-cc-cc and 2. cc-rc-crc) are the same for each player, namely
1 raise by each player. Hence, level2 similarity is satisfied and a similarity
value of 0.8 would be assigned. Finally, if level0, level1 and level2 are not
satisfied level3 is reached where a similarity value of 0 is assigned.
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4.5 Solution Re-Use Policies

Once the above similarity metrics have been applied and a similar case retrieved,
a betting decision is required. Claim 2 of this paper states: different policies for
re-using solutions leads to changes in performance. To investigate this claim we
have experimented with three separate approaches for making betting decisions,
which we refer to as solution re-use policies. They are as follows:

Probabilistic: this solution re-use policy probabilistically selects a betting de-
cision based on the (f, c, r) proportions specified by the solution of the
retrieved case or cases. Betting decisions that have greater proportion values
will be made more often then those with lower values.

Majority-Rules: the majority-rules solution re-use policy will re-use the deci-
sion that was made the majority of the time, as specified by the proportions
contained within the solution of the most similar case or cases.

Best-Outcome: rather than re-use a case’s action triple, the best-outcome so-
lution re-use policy will make a betting decision based on the values in the
outcome triple of the most similar case or cases. The betting decision which
has the greatest average outcome overall is the one that is chosen.

4.6 Case-Base Construction

A beneficial property of the approach described above is the ability to eas-
ily “plug-in” different case-bases that have been trained on the hand history
logs of various “expert” players. Typically, data obtained from a single Nash
equilibrium-based player is chosen to train the system. A single expert is chosen,
rather than multiple experts to avoid conflicting decisions. The expert’s original
strategy is then approximated by constructing cases and generalising the ob-
served actions by retrieving the most similar case at decision time. The case-base
used by SARTRE-1 was trained on the hand history logs of Hyperborean-Eqm,
who was the winner of the limit equilibrium division at the 2008 Computer Poker
Competition [21]. SARTRE-2 was trained on the hand history logs of MANZANA,
which was the winner of the limit hold’em bankroll competition at the 2009 Com-
puter Poker Competition [22]. Table 2 depicts the number of cases recorded for
each separate betting round for both SARTRE-1 and SARTRE-2.

Given SARTRE-1’s requirement to store a large number of cases, the amount
of data used to train the system had to be restricted due to the corresponding
storage costs. On the other hand, the use of probability triples along with pre-
processing the training data ensures SARTRE-2 stores a more compact case-base.
The reduced storage costs associated with SARTRE-2 allows a larger set of data
to be used to train the system. The final result of this increased training is that
SARTRE-2 encounters (and stores cases for) a wider range of problems than
SARTRE-1.
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Table 2. Total cases recorded per round for SARTRE-1 and SARTRE-2.

Round Total Cases (SARTRE-1) Total Cases (SARTRE-2)

Preflop 201,335 857
Flop 300,577 6,743
Turn 281,529 35,464
River 216,597 52,088

Total 1,000,038 95,152

5 Experimental Results

5.1 2009 IJCAI Computer Poker Competition

The Annual Computer Poker Competition5 (CPC) has been held each year ei-
ther at the AAAI or IJCAI conference since 2006. The CPC involves separate
competitions for different varieties of Texas Hold’em, such as both limit and
no-limit competitions as well as heads-up and multiple-opponent competitions.
Entrance into the competition is open to anyone and the agents submitted typ-
ically represent the current state of the art in computer poker. The CPC uses a
duplicate match structure. For a heads-up match a duplicate match proceeds as
follows: N hands are played between two agents after which the agent’s memo-
ries are wiped and the N hands played again, but in the reverse direction, i.e.
the cards that were initially given to player A are instead given to player B
and vice-versa. This way both players get to play both sets of N cards and this
minimises the variance that is involved in simply playing a set of N hands in one
direction only. In the 2009 competition, N = 3000 was used and many duplicate
matches were played in order to achieve significant results.

The annual CPC typically involves two winner determination methods. The
first is known as the equilibrium competition and the second is the bankroll
competition. The equilibrium competition analyses the results of a set of
matches in a way that rewards agents that play close to a Nash equilibrium.
The bankroll competition rewards agents that are able to maximally exploit
other agents, resulting in increased bankrolls.

Measurements are made in small bets per hand (sb/h), where the total
number of small bets won or lost are divided by the total hands played. For
example, assuming a $10/$20 hold’em game, imagine after 3000 hands a player
has made a total profit of $1800. To calculate the sb/h value, first the total profit
is divided by the small bet ($10) which is then divided by the total hands (3000)
which gives a final value of +0.06 sb/h.

Final results for the 2009 IJCAI Computer Poker Competition are depicted
in Table 3 for the 2-player limit hold’em bankroll and equilibrium divisions,
respectively. For this competition SARTRE-1 used a majority-rules solution re-
use policy and a default always-call policy when no similar cases were retrieved.

5 http://www.computerpokercompetition.org/
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Table 3. 2009 limit heads up bankroll and equilibrium results, respectively.

Place Competitor sb/h

1 MANZANA 0.186± 0.002
2 Hyperborean-BR 0.116± 0.002
3 GGValuta 0.110± 0.002
4 Hyperborean-Eqm 0.116± 0.002
5 Rockhopper 0.103± 0.002
6 Sartre 0.097± 0.002
7 Slumbot 0.096± 0.002
8 GS5 0.082± 0.002
9 AoBot −0.002± 0.003
10 dcurbHU −0.07± 0.002
11 LIDIA −0.094± 0.002
12 GS5Dynamic −0.201± 0.002

Place Competitor

1 GGValuta
2 Hyperborean-Eqm
3 MANZANA
4 Rockhopper
5 Hyperborean-BR
6 Slumbot
7 Sartre
8 GS5
9 AoBot
10 GS5Dynamic
11 LIDIA
12 dcurbHU
13 Tommybot

Table 3 (left) shows that SARTRE-1 placed 6th out of 12 competitors in the
bankroll division, achieving an average profit of 0.097 sb/h. Table 3 (right) de-
picts the final placings for the equilibrium competition, which rewards agents
that play closer to a Nash equilibrium. In this division, SARTRE-1 placed 7th
out of 13 competitors.

5.2 Self-play Experiments

This section presents the results of self-play experiments between:

– The 3 solution re-use policies of SARTRE-2, and
– The pre and post maintenance systems, SARTRE-1 and SARTRE-2.

The purpose of these experiments is to determine the validity of the claims
put forward in section 1 and to investigate whether the maintenance process had
any affect on the actual performance of the system.

Solution Re-Use Policies Table 4 presents the first set of results where the 3
solution re-use policies (described in Section 4.5) were played against each other.
A round robin tournament structure was used, where each policy challenged
every other policy. The figures presented are in small/bets per hand. Each match
consisted of 3 separate duplicate matches, where N = 3000. Hence, in total
18,000 hands of poker were played between each competitor. All results are
statistically significant.

Table 4 shows that the majority-rules policy outperforms its probabilistic and
best-outcome counterparts. Of the three, best-outcome fairs the worst, losing all
of its matches.
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Table 4. Results of self play experiments between 3 solution re-use policies of SARTRE-
2.

Majority-rules Probabilistic Best-outcome Average

Majority-rules 0.011± 0.005 0.076± 0.008 0.044± 0.006

Probabilistic −0.011± 0.005 0.036± 0.009 0.012± 0.004

Best-outcome −0.076± 0.008 −0.036± 0.009 −0.056± 0.005

SARTRE-1 Vs. SARTRE-2 Given the above results we selected the majority-
rules solution re-use policy for SARTRE-2 and conducted a further set of exper-
iments where SARTRE-2 challenged SARTRE-1. Table 5 presents the outcomes
of 10 duplicate matches, where N = 3000. The figures presented are the small
bets per hand SARTRE-2 won against SARTRE-1. In total 60,000 hands of poker
were played between the two systems.

Table 5. Results of self play matches between SARTRE-2 and SARTRE-1. Each match
consists of 6000 hands. Results for SARTRE-2 are recorded in sb/h.

Match SARTRE-2 (sb/h)

1 −0.034
2 0.30
3 0.016
4 0.005
5 0.001
6 −0.013
7 −0.004
8 0.011
9 0.004
10 0.000

Mean: 0.0286
Std dev: 0.096368
95% CI: [-0.04034, 0.09754]

Table 5 shows that for the 10 duplicate matches played, SARTRE-2 won
on average 0.0286 sb/h against SARTRE-1. Out of the 10 matches SARTRE-
2 won 6 and lost 3. The final match was a draw. A 95% confidence interval
was calculated on the sample using a student’s t-distribution. The result shows
that while SARTRE-2 achieves a greater average profit than SARTRE-1, further
evaluation is required to achieve statistical significance.

6 Discussion

The results indicate that simply re-using the decision made the majority of the
time results in better performance than mixing from a probability triple and
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that choosing the decision that resulted in the best outcome was the worst solu-
tion re-use policy. Moreover, while we have not presented results against other
computerised agents, our initial testing appears to suggest the same outcomes
are observed.

One of the reasons for the poor performance of best-outcome is likely due
to the fact that good outcomes don’t necessarily represent good betting decisions
and vice-versa. The reason for the success of the majority-rules policy is less
clear. We believe this has to do with the type of opponent being challenged,
i.e. Nash equilibrium-based agents. As an equilibrium-based strategy doesn’t
attempt to exploit any bias in its opponent strategy, it will only gain when
the opponent ends up making a mistake. Therefore, biasing actions towards the
decision that was made the majority of the time is likely to go unpunished when
challenging an equilibrium-based agent. Furthermore, sticking to this decision
avoids any exploration errors made by choosing other actions. On the other
hand, against an exploitive opponent the bias imposed by choosing only one
action is likely to be detrimental to performance and therefore it would become
more important to mix up decisions.

By modifying the way knowledge is encoded within the case-base knowl-
edge container, SARTRE-2 allows a significant reduction in case-base size. In
particular, SARTRE-2 stores 904,886 fewer cases than SARTRE-1. Futhermore,
the results of experiment 2 (SARTRE-1 Vs. SARTRE-2) show that SARTRE-2
appears to perform a little better than SARTRE-1. Once again, initial results
against other computerised agents (not included in the paper) appear to sup-
port this observation. There are many factors that could have contributed to
this difference in performance, including training on different “expert” players,
the updated betting sequence similarity metric, as well as the improved problem
coverage of SARTRE-2 as a result of the updated solution representation.

7 Conclusions

We have presented the SARTRE system. Given hand log training data the
SARTRE system stores the betting decisions in a case-base and generalises the
observed decisions to inform a betting strategy. During game play, actions are
chosen by searching the appropriate case-base and retrieving cases similar to
the present situation. SARTRE selects a betting action based on 1 of 3 solu-
tion re-use policies. A version of the SARTRE system, which we have labelled
SARTRE-1, was submitted to the 2009 IJCAI Computer Poker Competition. The
competitors in this competition typically represent the current state-of-the-art
in computer poker agents. In the 2009 competition, SARTRE placed 6th out of
12 in the limit bankroll event and 7th out of 13 in the equilibrium event. Given
the simplistic nature of the approach the results are quite positive.

Case-base maintenance was applied to the system. In this paper we referred
to the post-maintenance system as SARTRE-2. Observations made during the
maintenance process provided support for claim 1 that changes in solution rep-
resentation results in changes to problem coverage. In particular, updates to
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SARTRE-2’s solution representation resulted in the removal of duplicate cases
from the case-base. Reducing the number of cases required for storage had the
effect of increasing the amount of scenarios SARTRE-2 was able to encounter
and use for training purposes. This led to a more comprehensive case-base being
generated.

SARTRE-2’s case representation is concise which allows a compact representa-
tion of a betting strategy for limit Texas Hold’em. The attribute-value pairs that
make up SARTRE’s case representation were described along with the betting
sequence similarity metrics used by the system, which allow graceful degradation
when an exactly matching case is unable to be retrieved.

The second claim investigated was that different policies for re-using solu-
tions leads to changes in performance. Empirical results, presented in Table 4,
were used to support this claim. Three solution re-use policies were introduced
and comparatively evaluated. The results showed that the majority-rules pol-
icy achieved the greatest profit during self-play experiments. Given this result,
SARTRE-1 was challenged by SARTRE-2 using a majority-rules decision re-use
policy. The results showed that on average SARTRE-2 achieved a greater profit
than SARTRE-1. However, as the systems are still closely related in strength,
many more hands are required in order to display a significant difference.

8 Future Work

In the future we wish to introduce opponent modeling. Currently SARTRE at-
tempts to approximate a robust betting strategy that is able to perform well
against a range of opponents without paying any attention to how the opponent
plays. We wish to investigate possible ways of augmenting the current system
with opponent modeling information, which could be used to exploit weaker
opponents.
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