
Building Behavior Trees from Observations in
Real-Time Strategy Games

Glen Robertson
Department of Computer Science

University of Auckland
Auckland, New Zealand, 1010
Email: glen@cs.auckland.ac.nz

Ian Watson
Department of Computer Science

University of Auckland
Auckland, New Zealand, 1010
Email: ian@cs.auckland.ac.nz

Abstract—This paper presents a novel use of motif-finding
techniques from computational biology to find recurring action
sequences across many observations of expert humans carrying
out a complex task. Information about recurring action sequences
is used to produce a behavior tree without any additional domain
information besides a simple similarity metric – no action models
or reward functions are provided. This technique is applied to
produce a behavior tree for strategic-level actions in the real-time
strategy game StarCraft. The behavior tree was able to represent
and summarise a large amount of information from the expert
behavior examples much more compactly. The method could still
be improved by discovering reactive actions present in the expert
behavior and encoding these in the behavior tree.

I. INTRODUCTION

An ongoing challenge in Artificial Intelligence (AI) is to
create problem-solving agents that are able to carry out some
task by selecting a series of appropriate actions to get from a
starting state to achieve a goal – the field of planning. Ideally
these agents would be able to be applied to the many practical
problems that require a sequence of actions in order to carry
out a task, such as robotic automation, game playing, and
autonomous vehicles. However, applying a classical planning
agent to a new domain typically requires significant knowl-
edge engineering effort [1]. It would be preferable if domain
knowledge could be learned automatically from examples,
but current automated planning systems capable of learning
domain knowledge are generally designed to operate under
strong assumptions that do not hold in complex domains [2].
Conversely, case-based planning systems capable of acquiring
domain knowledge can make few assumptions about the do-
main, but can have difficulty reacting to failures or exogenous
events [3].

In many potential application areas, a planner capable of
transitioning from any starting state to any goal state is not
actually required, and instead it is sufficient or even desirable
to have an agent capable of robustly carrying out a specific task
or behavior. For example, in game playing, there is usually a
very similar starting state and goal for each match or activity
within a game – in board games this is the starting board
layout and object of the game, and in video games this could
be the starting and win conditions of a match or the daily
activities of a non-player character. In the genre of real-time
strategy games, video game industry developers tend to use
scripting and finite state machines instead of more complex
approaches because those techniques are well-understood, easy

to customise, and are sufficient to produce the desired behavior
[4], [5].

Since their introduction by the video game industry in 2005
[6], Behavior Trees (BTs) have become increasingly common
in the industry for encoding agent behavior [4], [7], [8]. They
have been used in major published games [6] and they are
supported by major game engines such as Unity1, Unreal
Engine2, and CryEngine3. BTs are hierarchical goal-oriented
structures that appear somewhat similar to Hierarchical Task
Networks (HTNs), but instead of being used to dynamically
generate plans, BTs are static structures used to store and
execute plans [4], [9]. This is a vital advantage for game
designers because it allows them fine control over agent behav-
ior by editing the BT, while still allowing complex behavior
and behavior reuse through the hierarchical structure [4], [9].
Although they have fixed structure, BTs produce reactive
behaviour by the interaction of conditional checks and success
and failure propagation within the hierarchy. Various types of
nodes (discussed further in section V) can be composed to
produce parallel or sequential behavior, or choose amongst
different possible behaviors based on the situation [9].

We are creating a system able to automatically learn
domain knowledge from examples of expert behavior, with
few assumptions about the domain, and be able to quickly
react to changes in state during execution. This would combine
some of the benefits of learning systems in automated planning
and case-based planning. Instead of learning a set of planning
operators, we aim to automatically learn to carry out a single
complex task within a domain, creating a less-flexible but still
widely applicable planning system. The learned knowledge
will be represented and acted upon in the form of a BT, which
is ideal for a single task within a domain. Furthermore, the
resulting BT is able to be hand-customised, so this approach
could be used as an initial step, followed by human refinement,
in the process of defining new behavior for an agent.

In the remainder of this paper we start by outlining related
work to automatically learning planning knowledge in the form
of HTNs, case-based planners, and BTs. We concretely define
the challenging problem of learning a task from observations

1Unity — Behavior Designer:
https://www.assetstore.unity3d.com/en/#!/content/15277

2Unreal Engine — Behavior Trees:
https://docs.unrealengine.com/latest/INT/Engine/AI/BehaviorTrees/

3CryEngine — Modular Behavior Tree:
http://docs.cryengine.com/display/SDKDOC4/Modular+Behavior+Tree

of expert behaviour, and outline the domain of the Real-Time
Strategy (RTS) game StarCraft as our motivating example.
We then present our approach to the first part of the learning
system: using a motif-finding technique to find and collapse
repeated patterns of actions. We present some results from the
current system and discuss its limitations. Finally we discuss
potential future directions and conclude the paper.

II. RELATED WORK

Early automated planning systems such as STRIPS [10]
made strong assumptions about the domain in order to operate,
such as a fully observable, deterministic world that changes
only due to agent actions, and actions that are sequential and
instantaneous, with known preconditions and effects. More
recent work has aimed to make planning more practically
applicable by automatically learning action models [1], [11]–
[13], task models [14], [15], or hierarchical structure [16],
[17]. Some work also expands the applicability of planners
by relaxing assumptions from classical planning, addressing
learning with nondeterminism [18], [19], partial observability
[13], [20]–[22], or durative actions [2]. Almost all of this work
on learning in automated planning learns by observing plan
executions, including observations of the world state, as carried
out by an external expert, allowing the learner to get a good
coverage of the common cases in what could be a huge (or
infinite) space of possible actions and observations. All of this
work still requires strong assumptions about the domain, or
domain knowledge provided, usually in the form of accurate
action models.

An alternative approach to learning from examples of
expert behavior is case-based planning, which finds solu-
tion action sequences by retrieving and adapting previously-
encountered solutions to similar problems. Unlike learning
in automated planning, which focuses on acquiring logical
building blocks for the planner, case-based planners learn
associations between initial states and partial or complete plans
as solutions. Case-based planners can operate with very little
domain knowledge and few assumptions about the domain,
but because they do most of the processing at runtime (for
the retrieval and adaptation parts of the case-based planning
process), they can have efficiency issues when problems have
large case bases or time constraints [23]. Case-based plan-
ning also face difficulty in adapting solutions for particular
circumstances – long solutions may react slowly to unexpected
outcomes during execution, while short solutions may react
excessively to small differences in state or have difficulty
reasoning about action ordering [3], [24]. A possible remedy to
these issues is to introduce conditional checks and hierarchical
structure into cases [3], [23], [24].

Other work has examined building probabilistic behavior
models using Hidden Markov Models [25] and Bayesian
Models [26] from examples. These approaches require very
little domain knowledge and are capable of recognising or
predicting plans. However, they are not designed to be used
for creating plans – their predictions could be extrapolated
into a plan but this would likely lead to increasing error and
cyclic behavior. There are also task-learning methods based on
explanation based learning [15], in which the agent explores
the domain but also interacts with a human teacher in order
to learn. This requires an action model for the exploration

phase, and a human operator with domain knowledge in the
interaction phase.

Instead of focusing on learning from examples, some work
has instead used genetic algorithms to evolve BTs in an
exploratory process [27], [28]. These approaches hold promise
but can become prohibitively computationally expensive for
complex domains. They also require the addition of a fitness
function for evaluating evolved BTs. To the best of the authors’
knowledge, no prior work has investigated automatically build-
ing BTs from examples of expert behavior.

Probably the most closely related work to ours involves
automatically learning domain-specific planners from example
plans [23]. These domain-specific planners are static structures
for solving specific planning problems, and are made up of
programming components such as loops and conditionals,
combined with planning operators. The system is provided
with accurate action models in order to build the plans, and
implicitly assumes fully observable, deterministic domains.

III. PROBLEM

We propose a problem definition that relaxes the assump-
tions of the classical planning restricted model (as defined
in [29]) in order to more closely reflect the real world. In
this problem there are a potentially infinite number of states,
which may be partial observations of the complete system. The
system may be nondeterministic and may change without agent
actions. Actions may occur in parallel, may have a duration,
and need not occur at fixed intervals. A policy is learned
instead of action models or a plan library, in order to allow
robust reactive behaviour in a dynamic environment without
expensive replanning [15].

However, we do restrict the problem to learning to carry
out a single task or achieve a single goal that is being carried
out in the examples, instead of the more general automated
planning requirement of being able to form a plan for any
specified goal. This reduces the burden on the learner so that
it is not forced to depend upon accurate action models for these
complex domains. Thus, we define the problem of learning a
single task by observation:

Given a set of examples of experts carrying out a single
high-level task, {E1, E2, . . . , En}
Where an example is a sequence of cases ordered

by time, Ei = (Ci1, Ci2, . . . , Cim)
Where a case is an observation and action pair,

Cij = (Oij , Aij)
Where an observation and an action are arbitrary

information available to the agent, (eg. a
key-value mapping)

Given a similarity metric between pairs of observations
and pairs of actions, M(Oij , Okl) ∈ [0, 1] and
M(Aij , Akl) ∈ [0, 1]

Find a policy that will decide the next action given
previous cases and the current observations,
π((Ci1, Ci2, . . . , Cij−1), Oij)→ Aij

This policy should be able to reproduce the input
action sequences and generalise well to unseen action
sequences

This policy should have low run-time cost for select-
ing actions so that it is applicable for embedded or
real-time applications

Note that no information is given about the preconditions or
effects of actions, or any conceptual reasoning or task structure
behind groups of cases. There is also limited information about
failure, as possible actions considered but unused by experts
will not be observed, and subsequences of actions which had a
negative outcome are observed just like other actions. Experts
are assumed to have made appropriate actions, but there may
not be one optimal action for a given situation.

IV. THE DOMAIN

The domain motivating our problem is the Real-Time Strat-
egy (RTS) video game StarCraft. RTS games are essentially
a simplified military simulation, in which players indirectly
control many units to gather resources, build infrastructure and
armies, and manage units in battle against an opponent. RTS
games present some of the toughest challenges for AI agents,
making it a difficult area for developing competent AI [30]. It
is a particularly attractive area for AI research because of how
human players can quickly become adept at dealing with the
complexity of the game, with experienced humans outplaying
even the best agents from both industry and academia [31].

StarCraft is a very popular RTS game which has recently
been increasingly used as a platform for AI research [5]. Due to
the popularity of StarCraft, there are many expert players avail-
able to provide knowledge and examples of play, and it also
has the advantage of the Brood War Application Programming
Interface (BWAPI), which provides a way for external code to
programmatically query the game state and execute actions
as if they were a player in a match. In terms of complexity,
StarCraft has real-time constraints, hidden information, minor
nondeterminism, long-term goals, multiple levels of abstraction
and reasoning, a vast space of actions and game states, durative
actions, and long-term action effects [3], [30]–[32]. In order to
make the domain slightly more manageable, we have chosen to
deal with only the strategic-level actions: build, train, morph,
research, and upgrade actions. We also assume that only
successfully executed actions are shown, not all inputs from
the human, because in the game of StarCraft most professional
players very rapidly repeat action inputs until they are executed
in order to make actions execute as soon as possible.

V. BEHAVIOR TREES

As mentioned earlier in the paper, Behavior Trees (BTs) are
being used to represent and act upon the knowledge learned
by our system, so this section provides a short overview of
BTs. BTs have a hierarchical structure in which top levels
generally represent abstract tasks, and subtrees represent dif-
ferent subtasks and behavior for achieving each task. Deeper
subtrees represent increasingly-specific behaviors, and leaf
nodes represent conditions and primitive actions that interact
with the agent’s environment (Fig. 1). Although conceptually
represented as trees, it is common for task behaviors to be
reused at different places in the tree, so the resulting structure
is really a directed acyclic graph [6].

Execution of a BT is essentially a depth-first traversal of
the directed graph structure, but there are four main non-leaf

Decorator:

Return Failure

Sequence

Selector

Action Action

Parallel

Action Action

Action

1

2

3

4

5

6 6 *

*

Fig. 1. An example BT, showing the order in which each node would
execute. Asterisks indicate nodes which are not executed. Execution begins at
the root selector node. Next the sequence node begins execution – assuming
the leftmost child is selected first – and executes its children until a failure
is returned by the decorator node. The sequence node returns a failure and
the selector node executes its next child. The parallel node executes both
children simultaneously and successfully returns, allowing the selector to
return successfully.

node types that control the flow of execution in a BT: sequence,
selector, parallel, and decorator nodes [7]. Each node type has
a different effect on the execution of its children, and respond
differently to failures reported by their children. Sequence
nodes run their children in sequence, and usually return with
a failure status if any of their children fail. Selector nodes
run their children in a priority order, switching to the next
child if one of their children fails, and usually return with a
success status if any of their children succeed. Selector nodes
may alternatively be set to cancel the execution of a child
if a higher-priority child becomes executable. Parallel nodes
run all their children in parallel, and usually return with a
success status if a certain number of their children succeed, or
a failure status if a certain number of their children fail. Finally,
decorator nodes add extra modifiers or logical conditions to
other nodes, for example always returning a success status,
or executing only when it has not run before. The specific
behavior and even types of nodes can vary depending on the
needs of the user.

VI. METHOD

The first stage in being able to build BTs is to be able
to locate areas of commonality within action sequences, as
these likely represent common or repeated sub-behaviors. The
overall method for creating the behavior tree is an iterative
process as follows (Fig. 2). First, a maximally specific BT is
created from the given example case sequences. The BT is then
iteratively reduced in size by finding and combining common
patterns of actions. When no new satisfactory patterns are
found, the process stops. By merging similar action patterns,
we are forced to generalise the BT and can find where common
patterns diverge so we can attempt to infer the reasons for
different actions being chosen. Reducing the size of the BT
will also help to make it more understandable if people wish
to read and edit it.4

4The code implementation of this method is avilable online at
https://github.com/phoglenix/bt-builder.

Input Examples

Maximally-specific BT

Find common pattern

Merge into new sequence

Attach to tree

Fig. 2. Overview of the general BT construction process. Input examples
are converted into a maximally-specific BT. The BT is then iteratively reduced
by finding common patterns, merging them into new sequences, and attaching
them to the tree. When no more patterns are found, the process stops.

A. Creating the original BT

The process of creating a maximally-specific BT from a
set of examples is actually fairly trivial. All actions in an
example can simply be made children of a single sequence
node (potentially with a special “delay” action between them
if timing is known). All of these sequence nodes can then
be joined by adding a selector node as their parent to make a
complete BT. The selector node can be set to choose randomly
among its children, or its children compared with the current
state using the observations similarity metric at runtime to
select the most-similar option. We call this tree maximally-
specific because it exactly represents the input example se-
quences without any generalisation or other processing. This
tree is clearly extremely over-fit to the example data, so it
needs to be reduced by finding common patterns.

B. Reducing the BT

Now we iteratively reduce the tree by identifying and
merging common subsequences within the sequence nodes and
rearranging the tree to share these common sections (Fig. 3).
The core of the BT reducing method relies on local sequence
alignment techniques. These techniques are commonly used to
compare two strings, especially DNA strings in computational
biology, to find the indices at which one string aligns best with
another. The best alignment is defined by a scoring system that
rewards matching or similar characters at a position, penalises
mismatching characters, and, importantly, allows but penalises
extra or missing characters. For strings of length m and n,
efficient implementations of this algorithm run in O(mn) time.
In order for this algorithm to be used in our situation, we can
extract sequences of actions on different branches of the BT
and compare them using the similarity metric given in the
problem statement as a scoring system.

While the local alignment algorithm is effective for align-
ing entire sequences against one another, in this case we
are trying to find similar subsequences in cases where the
sequence as a whole may not be similar. For this task we
can make use of another technique: motif finding. Specifically,
we use the Gapped Local Alignment of Motifs (GLAM2)
software [33]. This software uses a simulated annealing-based
approach to gradually select and refine a short pattern that

Input Sequences

to GLAM2

Identified pattern

and alignments

Merged alignments

into new sequence

Merged sequence

replaces aligned

regions

Sequence after

matched region

joined by selector

Fig. 3. Reducing the BT. Sequences are passed in to GLAM2 for pattern
discovery and alignment. Aligned regions are then merged to form a new
sequence. The merged sequence then replaces the aligned regions of the
original patterns. Finally, any sequences following the aligned region are joined
by a selector node.

matches well (scores highly when locally aligned) to many
sequences at once. The BT is converted into sequences by
simply taking each sequence node separately, and passed to
GLAM2. When a pattern has not been improved by GLAM2
for a set number of iterations, it is returned along with the
alignments and scores for each sequence. GLAM2 always
returns a pattern, so the quality of the pattern and alignments
must be checked. We check that all aligned sections have a
score above a set threshold, and any alignments with a score
below the threshold are discarded. This threshold can be set by
informally testing and inspecting the alignments and scores,
or can be more rigorously informed by shuffling the input
sequences and checking the scores found, or concatenating
sequences with shuffled versions of themselves and checking
the alignments are more often in the unshuffled regions [33].
If no aligned sequences have a score above the threshold, the
BT reduction process stops.

Using the pattern and alignments found by GLAM2, we
begin to construct a new sequence node. This sequence is
a generalisation of all of the matching aligned sections of
the sequences. For each position in the matched pattern, all
nodes at that position in the alignment are merged. This
merging produces a weighted combination of the attributes
of the nodes. For example, if five nodes had an action with
a “name” attribute set to “Train Protoss Probe” and two with
“Train Protoss Zealot”, the merged node would have a “name”
attribute with “Train Protoss Probe”×5 and “Train Protoss
Zealot”×2. Any attribute values that were seen in just one
node of the merge are discarded, because they likely represent
unique identifiers or unusual values.

Next, insertion and deletion positions in the sequence
are checked for possible transpositions, where actions have

occurred in different orders in different sequences. These are
detected if an action is almost always inserted either before or
after another sequence of actions, but not both (or equivalently,
deleted from the pattern and inserted somewhere nearby). In
these cases, a parallel node is added with the transposed action
(or action sequence) as one child and the sequence it would
move around as another child. In cases where insertions and
deletions are not detected as parallel or unordered, conditional
decorators are added with records of the state observations.
When executing these actions, the decorator will be able to
check the stored and current state observations in order to
decide whether to execute, based on the similarity metric.

Finally, the newly constructed sequence can be used to
replace the aligned regions of the original sequences. For each
matched sequence, the region before and after the aligned
region are separated. For each section before the aligned
region, the new sequence is added as the final node. Next,
a selector node is added to the end of the newly constructed
sequence. For each section after the aligned region, the section
is added as a child of the selector node. This will allow
the node to select the sequence with the most-similar state
observations at execution time. At this point, each sequence
node in the tree is passed back to GLAM2 for analysis.
Because the previously-found pattern has been collapsed into
one sequence node, it will be far less common, so a new pattern
will be found.

VII. EXPERIMENT

In order to experiment with building behavior trees for
StarCraft, we used an existing dataset from prior work [34]
consisting of 389 matches of expert human players using the
“Protoss” team against another expert “Protoss” team player.
The matches were recorded from each player’s perspective for
a total of 778 examples. The game state observations were
sampled every second, and actions were paired with the most-
recent observations to produce cases. A very simple action
similarity metric was used, producing a score of 1 if the action
names were the same (for example “Train Protoss Probe”), and
0 otherwise.

Although there is nothing fundamentally preventing this
algorithm being implemented with support for an arbitrary
similarity metric between actions or observations, GLAM2
operates only on strings. This meant that the action sequences
needed to be encoded as characters in an extended character set
before being run in GLAM2, and the results decoded in order
to be used as actions again. Even so, GLAM2 was able to find
clear motifs in the dataset and the process was able drastically
reduce the total number of nodes required to represent the
tree, from 218,832 in the original tree, down to 71,294 in
the final tree (Fig. 4). The opening actions in each game, in
particular, were always discovered as a strong motif early on
in the process, as these are very similar every game.

The resulting trees have not yet been tested at actually
playing the game, because they would be unable to perform
the required low level unit commands that would be required
to complement the high-level strategic commands. These re-
sponsibilities are separated out into different modules in many
StarCraft bots due to the difficulty of multi-scale reasoning
[35]. This may be possible to test in future by using the low-

0

50000

100000

150000

200000

250000

0 2 4 6 8 10 12

Iteration

Number of BT Nodes

Fig. 4. Number of nodes in the BT throughout a run reducing the StarCraft
“Protoss vs Protoss” dataset.

level unit control modules from an existing StarCraft bot such
as one of [36] or [37].

VIII. DISCUSSION AND FUTURE WORK

This paper presents a promising start to automatically
producing a reactive AI system from expert examples, but this
approach clearly has some significant limitations. Despite the
approach managing to collapse large amounts of repeated or
similar sequences of actions, it is not sophisticated enough to
separate out most parallel or reactive actions. Parallel actions
can be seen in some motifs, in which certain actions are placed
before or after other actions in the motif. Currently, GLAM2
cannot detect transpositions, so such variability appears in the
alignment as one or more insertion and deletion pairs. This
could potentially be mitigated by searching matched regions
for inserted and deleted items appearing at a similar fre-
quency across all matched regions, or by analysing the action
sequences for ordering relations or a lack thereof. Reactive
actions are somewhat captured by the context-sensitive selector
nodes that are inserted after each merged region, but the
trees produced by this method do not make good use of the
behavior tree’s potential for reactive behavior. Certain motifs
found may very well be reactions to conditions in a game,
but they are currently treated as if they are part of the normal
sequence of actions, instead of an interruption to the normal
sequence. Analysis of the observed conditions leading up to
each discovered motif could allow the addition of conditional
nodes to trigger the reactive behavior dynamically, which
would make the BT much more robust to changes as well as
becoming a better and more compact representation. Ideally,
we could continuously process the tree to have fewer and fewer
nodes while still representing the original information, similar
to [19] or [23].

The way in which the trees are reduced necessarily removes
information, so it is possible that important information is
lost in the process. This is particularly true of the steps in
which patterns are used to merge nodes and subsequently join
the sequence back to the original locations of the matched
regions. In the merging process, only unique attribute values
are discarded, but more attention could be paid to generalising
these values. Numerical values, in particular, may often be
unique, but could be generalised to a range or distribution.
There may also be correlations between attributes, which are
lost if multiple values for those attributes are merged. This
situation might actually be an indication that the node should

be merged into multiple nodes instead of just one. For the
joining of merged regions back to subsequent behavior, this
could potentially break or incorrectly connect longer sequences
for which the merged region was just an interruption. This
issue would be solved with better identification of reactive
actions, as discussed above.

A limitation in the way GLAM2 works is that it always
finds at most one pattern match per input sequence. This means
that sequences may have to be split up before a pattern that
repeats within one sequence will become common enough
to be found as the most prominent motif. A related issue
is that the algorithm becomes less effective at finding motifs
as sequences get shorter and more numerous, which is what
happens naturally as they are broken up by the tree-building
process. This clearly isn’t too major of a problem, because
GLAM2 is still able to find motifs quite effectively for many
iterations, but it does limit its usefulness. Finally GLAM2
complicates the process due to its use of character encodings
for comparison, instead of a more flexible similarity metric.
This is understandable, as it was designed to work with DNA
and nucleotide sequences and is being extended to work in this
scenario.

A useful extension to this work would be to integrate an
unsupervised data mining approach to inferring action precon-
ditions and effects, such as [38]. Even a partial understanding
of the preconditions and effects of actions could help to guide
the BT building process, without having to strongly rely on
accurate action models like in HTN planning. As an addition to
the problem, or possibly an alternative to the similarity metric,
a fitness metric could be provided to the agent to encourage
a more search-based strategy of learning. Additionally, a goal
description could potentially be supplied in some form to make
the problem easier, or a similarity metric could be left for
the agent to infer. As an evaluation mechanism, the similarity
metric could potentially be used to gauge how close a proposed
action was to the expected action, because it may be impossible
to predict the exact action details used by the expert.

IX. CONCLUSION

In this paper we introduced a new planning problem,
in which no action models were supplied and very few
assumptions were made about the domain. In this problem,
the planning system is able to receive information about the
domain only through observing examples of expert behavior
in the domain, and must be able to complete the same task
that the experts were undertaking in the examples. We intro-
duced behavior trees as a potential mechanism for representing
and executing knowledge about the problem and appropriate
actions to take to complete the task. We then introduced
our mechanism for producing a solution behavior tree, which
involves searching for common motifs among sequences of
actions, joining the sequences found, and following them
with selector nodes that allow some reactivity to the current
game state. The behavior tree learning mechanism was shown
to successfully reduce sequences of player actions from the
real-time strategy game StarCraft by almost two orders of
magnitude.

REFERENCES

[1] O. Ilghami, D. S. Nau, H. Muñoz-Avila, and D. W. Aha, “Learning
preconditions for planning from plan traces and htn structure,”
Computational Intelligence, vol. 21, no. 4, pp. 388–413, 2005.

[2] J. Lanchas, S. Jiménez, F. Fernández, and D. Borrajo, “Learning
action durations from executions,” in Proceedings of the International
Conference on Automated Planning and Scheduling (ICAPS) Confer,
2007.

[3] S. Ontañón, “Case acquisition strategies for case-based reasoning in
real-time strategy games,” in Proceedings of the International Florida
Artificial Intelligence Research Society (FLAIRS) Conference, 2012.

[4] G. Florez-Puga, M. Gomez-Martin, P. Gomez-Martin, B. Diaz-Agudo,
and P. Gonzalez-Calero, “Query-enabled behavior trees,” IEEE Trans.
Computational Intelligence and AI in Games, vol. 1, no. 4, pp.
298–308, Dec 2009.

[5] G. Robertson and I. Watson, “A review of real-time strategy game
AI,” AI Magazine, vol. 35, no. 4, pp. 75–104, 2014.

[6] D. Isla, “Proceedings of the game developers conference: Handling
complexity in the Halo 2 AI,” Web page, March 2005. [Online].
Available: http://www.gamasutra.com/view/feature/130663/gdc 2005
proceeding handling .php

[7] A. Champandard, “Getting started with decision making and control
systems,” in AI Game Programming Wisdom. Charles River Media,
2008, vol. 4, pp. 257–264.

[8] R. Palma, P. González-Calero, M. Gómez-Martı́n, and P. Gómez-
Martı́n, “Extending case-based planning with behavior trees,” in
Proceedings of the International FLAIRS Conference, 2011, pp.
407–412.

[9] A. J. Champandard, “Behavior trees for next-gen game AI,” Video,
December 2007, retrieved 15 November 2012. [Online]. Available:
http://aigamedev.com/open/article/behavior-trees-part1/

[10] R. E. Fikes and N. J. Nilsson, “Strips: A new approach to
the application of theorem proving to problem solving,” Artificial
Intelligence, vol. 2, no. 3-4, pp. 189 – 208, 1971.

[11] X. Wang, “Learning by observation and practice: An incremental
approach for planning operator acquisition,” in Proceedings of the
International Conference on Machine Learning (ICML), 1995, pp. 549–
557.

[12] Q. Yang, K. Wu, and Y. Jiang, “Learning action models from plan
examples using weighted max-sat,” Artificial Intelligence, vol. 171,
no. 2, pp. 107–143, 2007.

[13] H. H. Zhuo, D. H. Hu, C. Hogg, Q. Yang, and H. Munoz-Avila,
“Learning htn method preconditions and action models from partial
observations,” in Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), 2009, pp. 1804–1810.

[14] C. Hogg, H. Munoz-Avila, and U. Kuter, “HTN-MAKER: Learning
HTNs with minimal additional knowledge engineering required,” in
Proceedings of the AAAI Conference on AI, 2008, pp. 950–956.

[15] S. Mohan and J. E. Laird, “Learning goal-oriented hierarchical tasks
from situated interactive instruction,” in Proceedings of the Association
for the Advancement of Artificial Intelligence (AAAI) Conference,
2014.

[16] N. Mehta, “Hierarchical structure discovery and transfer in sequential
decision problems,” Ph.D. dissertation, Oregon State University, 2011.

[17] N. Nejati, P. Langley, and T. Konik, “Learning hierarchical task
networks by observation,” in Proceedings of the International
Conference on Machine Learning, 2006, pp. 665–672.

[18] C. Hogg, U. Kuter, and H. Munoz-Avila, “Learning hierarchical task
networks for nondeterministic planning domains,” in Proceedings of
the IJCAI, 2009.

[19] H. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling, “Learning
probabilistic relational planning rules.” in Proceedings of the ICAPS
Conference, 2004, pp. 73–82.

[20] M. D. Schmill, T. Oates, and P. R. Cohen, “Learning planning operators
in real-world, partially observable environments.” in Proceedings of
the Artificial Intelligence Planning and Scheduling Conference, 2000,
pp. 246–253.

[21] D. Shahaf and E. Amir, “Learning partially observable action schemas,”
in Proceedings of the AAAI Conference, 2006, pp. 913–919.

[22] Q. Yang, K. Wu, and Y. Jiang, “Learning actions models from plan
examples with incomplete knowledge,” in Proceedings of the ICAPS
Conference, 2005, pp. 241–250.

[23] E. Winner and M. Veloso, “Distill: Learning domain-specific planners
by example,” in Proceedings of the International Conference on
Machine Learning, 2003, pp. 800–807.

[24] R. Palma, A. Sánchez-Ruiz, M. Gómez-Martı́n, P. Gómez-Martı́n, and
P. González-Calero, “Combining expert knowledge and learning from
demonstration in real-time strategy games,” in Case-Based Reasoning
Research and Development, ser. Lecture Notes in Computer Science,
A. Ram and N. Wiratunga, Eds. Springer Berlin / Heidelberg, 2011,
vol. 6880, pp. 181–195.

[25] E. Dereszynski, J. Hostetler, A. Fern, T. Dietterich, T. Hoang, and
M. Udarbe, “Learning probabilistic behavior models in real-time
strategy games,” in Proceedings of the Artificial Intelligence and
Interactive Digital Entertainment (AIIDE) Conference. AAAI Press,
2011, pp. 20–25.

[26] G. Synnaeve and P. Bessière, “A bayesian model for plan recognition
in RTS games applied to StarCraft,” in Proceedings of the AIIDE
Conference. AAAI Press, 2011, pp. 79–84.

[27] C. Lim, R. Baumgarten, and S. Colton, “Evolving behaviour trees
for the commercial game DEFCON,” in Applications of Evolutionary
Computation, ser. Lecture Notes in Computer Science, C. Chio,
S. Cagnoni, C. Cotta, M. Ebner, A. Ekárt, A. Esparcia-Alcazar, C.-K.
Goh, J. Merelo, F. Neri, M. Preuß, J. Togelius, and G. Yannakakis,
Eds. Springer Berlin / Heidelberg, 2010, vol. 6024, pp. 100–110.

[28] R. Kadlec, “Evolution of intelligent agent behavior in computer
games,” Master’s thesis, Faculty of Mathematics and Physics, Charles
University in Prague, 2008.

[29] M. Ghallab, D. Nau, and P. Traverso, Automated planning: theory &
practice. Elsevier, 2004, chapter 11.

[30] M. Buro and T. M. Furtak, “RTS games and real-time AI research,” in
Proceedings of the Behavior Representation in Modeling and Simulation
Conference. Citeseer, 2004, pp. 63–70.

[31] M. Buro and D. Churchill, “Real-time strategy game competitions,” AI
Magazine, vol. 33, no. 3, pp. 106–108, Fall 2012.

[32] B. Weber, M. Mateas, and A. Jhala, “Building human-level AI for
real-time strategy games,” in Proceedings of the AAAI Fall Symposium
Series. AAAI, 2011, pp. 329–336.

[33] M. C. Frith, N. F. W. Saunders, B. Kobe, and T. L. Bailey, “Discov-
ering sequence motifs with arbitrary insertions and deletions,” PLoS
Computational Biology, vol. 4, no. 5, p. e1000071, 2008.

[34] G. Robertson and I. Watson, “An improved dataset and extraction
process for StarCraft AI,” in Proceedings of the FLAIRS Conference,
2014.

[35] B. Weber, P. Mawhorter, M. Mateas, and A. Jhala, “Reactive planning
idioms for multi-scale game AI,” in Proceedings of the IEEE
Conference on Computational Intelligence and Games. IEEE, 2010,
pp. 115–122.

[36] S. Ontañón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and
M. Preuss, “A survey of real-time strategy game AI research and
competition in StarCraft,” IEEE Trans. Computational Intelligence and
AI in Games, vol. 5, no. 4, pp. 293–311, 2013.

[37] S. Wender and I. Watson, “Integrating case-based reasoning with
reinforcement learning for real-time strategy game micromanagement,”
in PRICAI 2014: Trends in Artificial Intelligence. Springer, 2014, pp.
64–76.

[38] M. A. Leece and A. Jhala, “Sequential pattern mining in StarCraft:
Brood War for short and long-term goals,” in In Proceedings of the
AIIDE Conference, 2014.

