Applying Learning by Observation and Case-Based Reasoning
to Improve Commercial RTS Game Al

Glen Robertson
Supervisor: Assoc. Prof. Ian Watson
Department of Computer Science
University of Auckland
Auckland, New Zealand
{firstname } @cs.auckland.ac.nz

Abstract

This document summarises my research in the area of Real-
Time Strategy (RTS) video game Aurtificial Intelligence (Al).
The main objective of this research is to increase the quality
of Al used in commercial RTS games, which has seen little
improvement over the past decade. This objective will be ad-
dressed by investigating the use of a learning by observation,
case-based reasoning agent, which can be applied to new RTS
games with minimal development effort. To be successful,
this agent must compare favourably with standard commer-
cial RTS Al techniques: it must be easier to apply, have rea-
sonable resource requirements, and produce a better player.
Currently, a prototype implementation has been produced for
the game StarCraft, and it has demonstrated the need for pro-
cessing large sets of input data into a more concise form for
use at run-time.

Introduction

Despite increasing academic interest in video game Artifi-
cial Intelligence (AI) over the past decade, and a rapidly
changing games industry which often competes on new tech-
nology (Laird and VanLent 2001), Al in video games has not
improved as much as graphics, sound, animation or game-
play (Mehta et al. 2009; Tozour 2002). Adoption of aca-
demic research in Al is slow, likely because the industry
considers it to be too impractical or risky to be applied in
commercial games and because the underlying goals of aca-
demic and industry game Al often differ (Baekkelund 2006;
Woodcock 2002).

Real-Time Strategy (RTS) is a genre of games which
presents some of the toughest challenges for Al agents, mak-
ing it an interesting area for academic research and a diffi-
cult area for developing competent Al. Even the best aca-
demic agents are still outmatched by experienced humans,
while non-cheating industry agents are unable to provide a
challenge to players past an intermediate level of skill, as
they tend to exhibit predictable, inflexible behaviour (Baum-
garten, Colton, and Morris 2009). In order to provide a chal-
lenge, agents are often allowed to “cheat” (given an advan-
tage), but this can make the game less enjoyable if noticed
by the players (Davis 1999).

Copyright (© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Research Problem

The general problem examined by this research is the poor
playing ability of commercial RTS game AI agents. This
problem is broken down into two main sub-problems: the
difficulty of creating RTS game AI (for both academia
and industry), and the poor transfer of knowledge between
academia and industry. The research aims to address these
problems simultaneously by facilitating the creation of bet-
ter RTS game Al suitable for commercial games.

Creating RTS game Al is a difficult problem, as it com-
bines many different challenges which are difficult in their
own right. These include reasoning at different levels of
granularity, adversarial reasoning, long-term planning, a
vast space of possible game states and player actions, long
delays between actions and effects, randomness, hidden in-
formation, and real-time constraints (Buro and Furtak 2004;
Laird and VanLent 2001; Mehta et al. 2009; Weber, Mateas,
and Jhala 2010). The high degree of difficulty leads aca-
demic researchers to create complex Al agents which at-
tempt to deal with the challenges but require large amounts
of development effort. The simpler commercial game agents
are unable to adapt to situations unforeseen by their de-
velopers, making them monotonous or easily exploitable
by human players (Baumgarten, Colton, and Morris 2009;
Tozour 2002).

Al used in commercial RTS games has remained largely
the same over the past decade, generally using scripted be-
haviour with manually predetermined rules and behaviours.
For example, the recent major RTS game Starcraft II',
which was released over a decade after the original, still
used a hand-made script-based Al (Sigaty 2008). One poten-
tial reason for this lack of change is the additional time and
risk involved in attempting to use a new and more complex
Al technique, particularly in a large and very time-pressured
project like a commercial game (Baekkelund 2006). The risk
is amplified if the Al is difficult to understand, test or debug,
which is especially the case for non-deterministic techniques
(Florez-Puga et al. 2009; Tozour 2002). Another reason may
be the higher run-time resource usage of some techniques,
which would reduce resources available to other elements of
the game such as graphics (Baekkelund 2006). Also linked

'Blizzard Entertainment: StarCraft II:
blizzard.com/games/sc2/

to this problem is the view that most game Al research is
not practical enough to be used in commercial games, with
most research only using games as a testbed (Champan-
dard 2011). Finally, there is a difference in underlying goals
in academia and industry: academia tends to aim to create
strong players which are most capable of winning the game,
while Al in commercial games aims to provide a fun chal-
lenge to the player (Baumgarten, Colton, and Morris 2009;
Davis 1999; Tozour 2002).

Requirements

To carry out the aim of making it easier to create better com-
mercial RTS game Al, an Al framework will be produced by
this research. For the framework to address the problems set
out above and be preferable to existing techniques used in
commercial Al, the following requirements must be met:

e The Al produced by the framework must be at least as
proficient at playing RTS games as existing Al in com-
mercial games. It should also be more varied in behaviour,
and less prone to exploitation by particular tactics which
cause it to behave inappropriately. Ideally this would re-
sult in an Al which is more fun to play against, but mea-
suring “fun” is beyond the scope of this work.

o Al should be approximately as easy to develop using the
framework as it would be using the methods commonly
used for commercial RTS games. This means it should be
easy to test, debug and understand, and easy to apply to a
range of RTS games, so that it could be quickly tried or
used in a new game project. It should also be easily cus-
tomisable, so it carries out particular behaviour in certain
situations, to allow for story elements to be added.

e The Al should not be heavily resource intensive. Although
it is unlikely to be as simple to run as existing methods,
it should require a minority of the resources of a modern
computer system.

Related Work

The work most closely related to this research topic lies
in the areas of Learning From Demonstration (LFD) and
Learning By Observation (LBO). LFD has been applied to
RTS games already, but still requires significant develop-
ment effort to apply, while LBO requires less development
effort, but has not yet been applied to RTS games. To the au-
thor’s knowledge, neither approach has been used in a com-
mercial RTS game.

LFD seeks to shift the work required in creating Al from
the developer to the agent, by allowing the agent to learn
from examples of correct behaviour instead of being explic-
itly programmed with correct behaviour (Mehta et al. 2009;
Ontaiién et al. 2008). This should result in reduced devel-
opment time required to create or modify an agent, and a
wider range of agent behaviour, as the correct behaviour can
be demonstrated more quickly than it can be programmed. It
should also result in reduced debugging effort, as the correct
behaviour can be demonstrated and incorporated if the agent
is acting incorrectly in a particular situation (Mehta et al.
2009; Ontafién et al. 2008). However, the systems described

by Mehta et al. (2009) and Ontafén et al. (2008) still require
a significant amount of effort to annotate the demonstrated
behaviour, in order to inform the LFD agent of the goals
being undertaken by each action in the demonstration. This
adds to the development effort required each time a new be-
haviour is demonstrated, but makes learning the correct be-
haviour easier for the agent and allows more direct control
of the agent behaviour. It is also possible to automate much
of the annotation process, but this still requires all of the
possible goals an agent could be undertaking to be defined,
which adds to the work required and results in a limited set
of available goals (Weber and Ontafién 2010).

LBO is very similar to LFD, but emphasises that the
agent purely observes the correct behaviour in each given
situation, and is not given additional information to reveal
any underlying reasoning (Floyd and Esfandiari 2011). This
means that the agent must perform additional analysis in
order to learn the appropriate behaviour in complex situa-
tions, but also means that no extra development effort is re-
quired to train an agent in new behaviours (Floyd and Esfan-
diari 2011). The Java Learning by ObservAtion Framework
(JLOATF) allows LBO to be easily applied to a wide variety
of situations because it uses a Case-Based Reasoning (CBR)
framework which operates on generic inputs (observations
about the current state) and outputs (actions in response to
the current state) (Floyd and Esfandiari 2011). In order to ap-
ply JLOAF to a new domain, all that is required is an adap-
tor to convert from a state description to the generic input
format, and from the generic output format to an action de-
scription (Floyd and Esfandiari 2011).

Recently Weber, Mateas, and Jhala (2012) and Jaidee,
Muiioz-Avila, and Aha (2011) have also applied CBR to
learn to play RTS games. They use Goal-Driven Auton-
omy (GDA) to create agents which form plans to achieve
goals, and can dynamically respond to failures in the plan
execution by choosing new goals and plans to compensate.
Because significant domain knowledge is required for GDA,
these systems both use learning to gather domain knowledge
— Weber, Mateas, and Jhala (2012) uses LFD from game
logs (replays) while Jaidee, Mufioz-Avila, and Aha (2011)
learns by playing the game.

Research Plan

In order to address the research problem and meet the re-
quirements set out above, LBO and CBR will be used in a
generic framework which can be easily adapted to different
games. CBR is effective at working with missing informa-
tion and uncertainty (Floyd and Esfandiari 2009), and given
sufficient training data, it should be able to behave correctly
in a wide range of situations. LBO will allow an agent to be
trained by simply demonstrating correct play, thus making
such an agent easy to create. To apply the framework to a
new game, all that is required is to adapt the user input and
game state output into a generic format which is understood
by the CBR system. This will build upon the work on jJLOAF
(Floyd and Esfandiari 2011), customising the framework to
specialise in RTS gameplay.

To test this approach, it will be applied to StarCraft?, us-
ing replays of expert players to train the agent. After this ini-
tial implementation, there are a number of areas which may
be investigated for improvement. Firstly, and most impor-
tantly, a method for automated feature weighting and case
generalisation will be necessary in order to reduce the vast
amount of information available and extract useful knowl-
edge. Next, investigation into optimising the case base struc-
ture for traces should decrease retrieval time and resource
usage. Tools will also be added to aid in understanding and
debugging of the agent’s actions. Finally, the agent may be
integrated with reinforcement learning in order to produce
better short-term tactical behaviour, or with case-based plan-
ning for better long-term strategic behaviour.

At each stage, the agent will be tested against the built-in
StarCraft Al tools could be provided to aid in understanding
and debugging the agent’s actions and evaluated against the
requirements.

Progress

At this stage the JLOAF framework has been applied to Star-
Craft using the processed dataset from Gabriel Synnaeve’s’
“bwrepdump” tool as training data. This has produced an
extremely large number of cases (approximately 90 million)
which must be reduced to a manageable size in order to be
used in real-time. This highlights the need for generalisa-
tion of the case base in order to combine the information of
many similar cases into a few representative cases, and opti-
misation of the case base in order to make the relevant cases
quickly accessible during game play. In order to produce a
working prototype, a subset of the data is being used and
many features are being excluded. The next stage will be au-
tomating the optimisation process to allow for large numbers
of cases to be processed into a more concise set of represen-
tative cases without additional human input to decide which
cases are similar or unique.

References

Baekkelund, C. 2006. Academic Al research and relations
with the games industry. In Rabin, S., ed., Al Game Pro-
gramming Wisdom, volume 3. Boston, MA: Charles River
Media. 77-88.

Baumgarten, R.; Colton, S.; and Morris, M. 2009. Com-
bining Al methods for learning bots in a real-time strategy
game. International Journal of Computer Games Technol-

ogy 2009:10.

Buro, M., and Furtak, T. M. 2004. RTS games and real-time
Al research. In Proceedings of the Behavior Representation
in Modeling and Simulation Conference, 63-70. Citeseer.

Champandard, A. J. 2011. This year in game Al:
Analysis, trends from 2010 and predictions for 2011.
http://aigamedev.com/open/editorial/

?Blizzard Entertainment: StarCraft:
blizzard.com/games/sc/

3Gabriel Synnaeve’s homepage:
emotion.inrialpes.fr/people/synnaeve/

2010-retrospective/. Retrieved 26 September

2011.

Davis, I. L. 1999. Strategies for strategy game Al. In Pro-
ceedings of the AAAI Spring Symposium on Al and Com-
puter Games, 24-27.

Florez-Puga, G.; Gomez-Martin, M.; Gomez-Martin, P.;
Diaz-Agudo, B.; and Gonzalez-Calero, P. 2009. Query-
enabled behavior trees. [EEE Transactions on Computa-
tional Intelligence and Al in Games 1(4):298-308.

Floyd, M., and Esfandiari, B. 2009. Comparison of clas-
sifiers for use in a learning by demonstration system for a
situated agent. In Workshop on CBR for Computer Games
at the International Conference on Case-Based Reasoning
(ICCBR).

Floyd, M. W., and Esfandiari, B. 2011. A case-based rea-
soning framework for developing agents using learning by
observation. In Proceedings of the IEEE International Con-
ference on Tools with AI, 531-538.

Jaidee, U.; Munoz-Avila, H.; and Aha, D. 2011. Case-based
learning in goal-driven autonomy agents for real-time strat-
egy combat tasks. In Proceedings of the Workshop on CBR
for Computer Games at ICCBR, 43-52.

Laird, J., and VanlLent, M. 2001. Human-level AI’s
killer application: Interactive computer games. Al Magazine
22(2):15-26.

Mehta, M.; Ontandn, S.; Amundsen, T.; and Ram, A. 2009.
Authoring behaviors for games using learning from demon-
stration. In Workshop on CBR for Computer Games at
ICCBR.

Ontafién, S.; Mishra, K.; Sugandh, N.; and Ram, A. 2008.
Learning from demonstration and case-based planning for
real-time strategy games. In Prasad, B., ed., Soft Comput-
ing Applications in Industry, volume 226. Springer Berlin /
Heidelberg. 293-310.

Sigaty, C. 2008. Blizzard answers your questions,
from Blizzcon. http://interviews.slashdot.
org/story/08/10/15/1639237/blizzard-
answers—-your—questions—-from-blizzcon.
Retrieved 13 June 2012.

Tozour, P. 2002. The evolution of game Al. In Rabin, S.,
ed., AI Game Programming Wisdom, volume 1. Hingham,
MA: Charles River Media. 3—15.

Weber, B., and Ontafién, S. 2010. Using automated replay
annotation for case-based planning in games. In Workshop
on CBR for Computer Games at ICCBR.

Weber, B.; Mateas, M.; and Jhala, A. 2010. Applying goal-
driven autonomy to starcraft. In Proceedings of the Artificial
Intelligence and Interactive Digital Entertainment (AIIDE)
Conference, 101-106. AAAI Press.

Weber, B.; Mateas, M.; and Jhala, A. 2012. Learning from
demonstration for goal-driven autonomy. In Proceedings of
the AAAI Conference on Al, 1176-1182.

Woodcock, S. 2002. Foreword. In Buckland, M., ed., Al
Techniques for Game Programming. Premier Press.

