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Abstract— An approximate Nash equilibrium strategy is difficult 
for opponents of all skill levels to exploit, but it is not able to 
exploit opponents. Opponent modeling strategies on the other 
hand provide the ability to exploit weak players, but have the 
disadvantage of being exploitable to strong players. We examine 
the effects of combining an approximate Nash equilibrium 
strategy with an opponent based strategy. We present a statistical 
exploitation module that is capable of adding opponent based 
exploitation to any base strategy for playing No Limit Texas 
Hold’em. This module is built around the idea of recognizing 
statistical anomalies in the opponent’s play and capitalize on 
them through the use of expert designed statistical exploitations. 
The use of expert designed statistical exploitations ensures that 
the addition of the module does not increase the exploitability of 
the base strategy. In this paper we merge an approximate Nash 
equilibrium strategy with the statistical exploitation module. This 
approach has shown promising results in our initial experiments 
against a range of static opponents with varying exploitability’s. 
It could lead to a champion level player once the module is 
improved to deal with dynamic opponents. 

Keywords— artificial intelligence, game AI, opponent 
modeling, nash equilibrium, exploitation, poker, Texas Hold’em 

 

I. TERMINOLOGY 
The term "Opponent Modeling" has been ambiguously used 

in the literature to mean playing an opponent based strategy. 
This is not intuitive; intuitively one would think that the 
opponent model would be the collection of information about 
the opponent that represents the way in which the opponent 
plays. From this definition opponent modeling would just be 
the creation of this model, but in the literature it has been used 
to also incorporate the way in which the models are used to 
play an opponent based strategy. We believe that for ease of 
understanding, the ambiguous usage of the term "Opponent 
Modeling" should be broken into three terms: 
  

• Opponent Model: the set of information that 
represents the opponent's play style. 

• Opponent based actions: the way in which you use 
the given Opponent Model to determine actions that 
are suited towards the opponent you are facing. 

• Opponent based strategy: The combination of 
creating an opponent model for your opponent and 

using this model to determine opponent based 
actions. There are two types of opponent based 
strategies that can be employed: 

o Fully opponent based strategy: The agent 
uses the opponent model to play an 
opponent based action for every action. 

o Partially opponent based strategy: The 
agent plays opponent based actions only 
some of the time. 

II.  INTRODUCTION  
Many online poker players use Heads up Displays (HUD’s). 

A HUD shows the player the recorded frequency statistics for 
each of his/her opponents and him/her self. Many novice 
online players play a relatively static strategy as they learn the 
game, which they alter only if they see anomalies in the 
statistics of their opponents. When they see these anomalies 
they devise statistical exploits: ways to alter their strategy to 
take advantage of the statistical anomaly such that they 
increase their win rate against the opponent. The statistical 
exploitation module presented in this paper is built around the 
idea of recognizing statistical anomalies and allowing the bot 
to capitalize on them through the use of expert designed 
statistical exploitations, in the domain of heads up no-limit 
Texas Hold’em poker. An overview of the modules design and 
its parts is given in section VI. 
 

The module is not a complete strategy in and of itself. It is a 
module that is to be added to a base strategy. The resulting 
strategy of the combination is an enhanced version of the base 
strategy which is now able to capitalize on statistical 
anomalies, exploiting opponents. We decided on using an 
approximate Nash equilibrium strategy as our base strategy for 
testing the module. A Nash equilibrium strategy is described 
as “a strategy for each player of the game, with the property 
that no single player can do better by changing to a different 
strategy” in [1]. Johanson [1] reasons that while playing such a 
strategy one can do no worse than tie the game, since the 
opponent cannot do better by playing a strategy other than the 
equilibrium. Johanson [1] recognizes that “using such a 
strategy allows us to defend against any opponent, or allows 
us to learn an opponent’s tendencies safely for several hands 
before attempting to exploit them”. Finding a Nash 
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equilibrium in a complex game is very difficult, so instead 
they are approximated, providing a suboptimal strategy, a 
strategy which is exploitable. However the closer the 
approximation, the closer the strategy is to being un-
exploitable, therefore, approximate Nash equilibrium 
strategies are very difficult to exploit. We felt that such a 
defensive strategy would be the ideal base strategy. We thus 
tried to preserve the desirable aspect of the base strategy, 
being difficult to exploit; and added the ability to exploit 
opponents, producing a strong bot that can do well against 
both weak and strong opponents.  
 

The idea of combining a Nash equilibrium strategy and 
exploitation abilities has been done before in the poker bot 
Polaris created in [1]. We will give an overview of Polaris in 
section IV. The tradeoff between difficulty to exploit and 
exploitability of opponents is the main challenge faced when 
trying to add exploitation abilities to a Nash equilibrium 
strategy. In section VIII we will compare our technique of 
combining exploitation abilities with a Nash equilibrium 
strategy to the technique used by Polaris, and discuss why the 
statistical exploitation module had a much easier time with 
this challenge than the Polaris bot. 
 

Section III provides a brief overview of the game of No 
Limit Texas Hold’em, the game that our module has been 
designed for. In section IV we discuss related work, 
particularly in the area of combining a Nash equilibrium 
strategy and opponent exploitation abilities. Section V 
discusses the role of frequency statistics in opponent 
modeling, how they are used by many opponent based 
strategies, and how our usage of them differs to enhance our 
strategy. Section VI provides an overview of the modules 
design along with a deeper look into the various parts of the 
module. Thereafter we illustrate our experimental 
methodology and present our results in Section VII, for the 
strategy resulting from an approximate Nash equilibrium base 
strategy and the addition of the statistical exploitation module. 
Section VIII provides conclusions and a comparison between 
our technique for adding exploitation to a Nash equilibrium 
strategy versus the technique described in [1]. Section IX 
discusses avenues for future work. 

 
 

III. NO LIMIT TEXAS HOLD’EM 
We describe briefly the game of Texas Hold’em focusing 

on two-player no limit Hold’em as our module has been 
specialized for this domain. If a game consists of only two 
players, it is described as being a heads-up match. The game 
of heads-up no limit Texas Hold’em consists of four stages: 
pre-flop, flop, turn and river. During the pre-flop stage each 
player is dealt two hole cards, which only they can see. Two 
forced bets are contributed to the pot, these being the small 
blind (SB) and the big blind (BB) before any betting takes 
place. The big blind is usually double the value of the small 
blind. In the game of heads-up Texas Hold’em the dealer 

contributes the small blind and the non-dealer contributes the 
big blind. The dealer signifies the player who is first to act 
during the pre-flop stage of the game and last to act for each of 
the other stages of the game. The betting actions, which are 
common to all variations of poker, are described as follows:  
 

• Fold: When a player abandons their hand, no longer 
committing any chips to the pot and giving up any 
right to contest the chips that make up the pot.  

• Check/Call: When a player commits the minimum 
amount of chips with which he/she is able to continue 
to contest the pot. A check requires zero chips to be 
committed, and a call requires an amount greater than 
zero to be committed.  

• Bet/Raise: When a player commits a larger number 
of chips than the amount necessary to continue to 
contest the pot, this is known as a bet. If a player is in 
the position where he/she must call a bet to continue, 
but then decides to invest more than the call amount 
in the pot, this is known as a raise.  

 
In a no limit game a player may bet any amount they 
desire up to the total value of chips they possess. Once the 
betting in one stage of the game is complete and as long 
as no players have folded, play continues on to the next 
stage. Each further stage after the pre-flop stage involves 
the drawing of community cards from the shuffled deck of 
cards as follows:  

 
• Flop: 3 community cards  
• Turn: 1 community card  
• River: 1 community card  

 
In a standard heads-up no-limit poker game the chip stacks 

of each player would fluctuate between hands depending on 
who won the previous hand. To reduce the variance of this 
structure a variation known as Doyle’s Game is played during 
our experiments where the starting stacks of both players are 
reset to a specified amount at the beginning of every hand. 
 
 

IV. RELATED WORK 

A. Polaris 
Polaris is a collection of techniques for creating poker bots, 

which are described in [1]. Johanson [1] outlines a new 
approach to calculating approximate Nash equilibrium 
strategies that require linear memory in the number of 
information sets instead of in the number of game states as 
was previously the case. This technique is called 
Counterfactual Regret Minimization. A new technique for 
calculating abstract game best responses is also presented, 
called Frequentist Best Response. A technique called 
Restricted Nash Response is illustrated, that creates a bot 
which is a compromise between the two previously mentioned 
techniques. The last technique presented in [1] is creating a 
meta-agent which is made up of agents created from the 
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previous techniques, along with a “coach” agent which 
decides which agent to use for every hand. We will delve 
deeper into the last two techniques as they are the ones which 
deal with combining an approximate Nash equilibrium 
strategy with exploitation abilities. 
 

1) Restricted Nash Response (RNR) 
Counterfactual Regret Minimization creates an agent that is 

difficult to defeat, but is unable to exploit its opposition so 
does not win very much. Frequentist Best Response creates an 
agent that can exploit specific opponents, but is easily defeated 
by opponents it is not designed to defeat. The Restricted Nash 
Response technique uses Regret Minimization to find a 
compromise between these two extremes, creating agents that 
exploit particular opponents or classes of opponents and still 
provide a bound on their exploitability. This strategy is 
constructed by finding a Nash equilibrium in a restricted 
game, where the opponent must play according to a fixed 
strategy with probability p. p is chosen when creating the 
strategy and determines the proportion of time the opponent 
must use the fixed strategy. p ranges between zero and one: a 
p of zero means that the opponent never plays the fixed 
strategy so a Nash equilibrium is computed; and a p of one 
means that the opponent only uses the fixed strategy so a best 
response is computed. All values for p between zero and one 
represent a tradeoff between exploitation and exploitability. 
Instead of constructing the usual two agents who play and 
adapt to one another for millions of hands to approach a Nash 
equilibrium, three agents are used for computing the 
Restricted Nash Response strategy: the RNR agent that learns 
the Restricted Nash Response and two agents for the 
opponent: a learning agent and a static agent. During the 
millions of games the RNR agent tries to minimize its regret 
against both the learning and the static components of the 
opponent. p is used to determine the amount of weight placed 
on each part of the regret. 
 

2) Meta-Agent 
In competitions the opponents will be unknown. So which 

of the previously discussed agents should be used against each 
opponent? Each of the previous agents have their pros and 
cons. In order to obtain the benefits of each, [1] created a team 
of agents comprising several agents of various types, thereby 
creating a meta-agent. The problem faced by the meta-agent 
of: which of the team of agents to choose when selecting an 
action is solved by expert algorithms. In this case the 
algorithm UCB1 was chosen, it is designed to trade off 
exploration and exploitation when choosing the agent. Since 
there are various types of agents in the team, the UCB1 
algorithm uses different costs of exploration for different 
types. For example the cost of exploring the use of a 
Frequency Best Response agent is very high, whereas the cost 
of exploring a Restricted Nash Response is lower and the cost 
of using the Nash equilibrium agent is the lowest. Johanson 
[1] found that using a team of agents provided better results 
than using only one of its parts. 
 

3) Discussion 
A single RNR performs worse against arbitrary opponents 

overall in comparison to an equilibrium strategy. RNR agents 
are only able to exploit opponents that play strategies similar 
to the strategy they were trained against and are easier for 
opponents to exploit. This means that not only will the 
majority of opponents the RNR agent plays not be exploited 
by it, they will also be able to exploit it better than they would 
an equilibrium strategy. In the experimental results shown in 
[1] a team of RNR, and a team of Frequentist Best Response 
(FBR) agents played 4 opponents that they had a counter-
strategy against and 2 opponents that were unknown. The FBR 
team performed worse than an equilibrium agent against the 
opponents and the RNR team did better. There is a cost 
associated with exploring the various agents in the team. The 
FBR team performed worse because the cost of choosing the 
wrong FBR agent is high, since FBR agents are easily 
exploited by opponents they are not designed against. The 
RNR team performed better because the cost of exploring 
suboptimal RNR agents is low, since the agents play strategies 
that are close to an approximate equilibrium strategy. In these 
experiments the RNR team performed better, not only on the 
known opponents, but also on the unknown opponents. 
Although [1] states that they have no prior reason to believe 
that the counter agents employed by their team of agents 
should work against the unknown opponents, it stands to 
reason that the team would only do better against the 
opponents if at least one of the agents in the team was able to 
exploit each of the unknown opponents.  
 

To create a meta-agent using this technique that does better 
than an equilibrium strategy on average over arbitrary 
opponents should be relatively straightforward. A number of 
RNR agents along with a Nash equilibrium agent should do 
better than just a Nash equilibrium agent overall. The counter 
strategies the RNR agents employ will allow this meta-agent 
to exploit certain play styles; and if the meta-agent comes 
across a play style it does not have a counter-strategy for it 
should just play the Nash equilibrium strategy. The RNR 
agent’s strategies are similar to the strategy employed by a 
Nash equilibrium agent and therefor also similar to one 
another’s strategies. Due to this it may take the “coach” agent 
a long time to determine which agent is best against an 
opponent. The more RNR agents in the meta-agent the longer 
the exploration phase would take. Although the cost of 
exploring an RNR agent is low it does add up, and if the 
exploration phase is long enough, may cause the meta-agent to 
perform worse than a single Nash equilibrium agent. 
 

Creating an optimal meta-agent using this technique would 
be very difficult. It would have to be determined what mix of 
Nash equilibrium and best response would be best for the meta 
agent, i.e. what p value the RNR agents should be created 
with. This is a difficult question because it could go either 
way. With a lower p value the RNR agents are closer to Nash 
equilibrium agents. This would make the cost of exploring 
them lower, but would also make it take longer to distinguish 
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the best among the team for the opponent, increasing 
exploration time. The RNR agents would also be unable to 
exploit opponents as well as those created with a higher p. A 
higher p value on the other hand would create RNR agents that 
are closer to Frequentist Best Response agents. These agents 
would have a higher exploration cost, but would be easier to 
distinguish which is best, decreasing exploration time. They 
would also be able to exploit opponents better. It would 
require a lot of testing to determine the p to use for creating 
the RNR agents and the number of RNR agents to use to 
create a meta-agent which minimizes its exploitability and 
maximizes its exploitation of opponents.  

 
 

V. FREQUENCY STATISTICS 
Poker is an incomplete information game as well as a 

stochastic game, making it very difficult for a player to know 
where they stand in a hand. How can a player make good 
decisions without knowing what the opponent has, or what 
they will do? If a player wishes to make decisions based on the 
opponent they must have knowledge of the opponent. This 
knowledge comes in the form of history, the history of actions 
that the opponent carried out in their previous hands. 
Statistical opponent models record and use past play by 
keeping statistics of the opponent’s action frequencies for use 
in later similar situations to improve the quality of decision 
making and to maximize profit. Keeping statistics on the 
opponent's action frequencies gives the player a good 
indication of how the opponent will act and react in given 
situations. Such indication follows from the probability 
distributions for the possible actions an opponent can make in 
each situation. 
 

Schauenberg [2] describes two problems faced when using 
frequency statistics for opponent modeling. The first problem 
is that without enough observations of a situation the action 
distribution statistics can be largely inaccurate. There are two 
possible solutions to this problem: using priors, or not using 
the statistics to impact the action decisions until the game 
states they correlate to have been observed enough times to 
make their probability distributions statistically significant. 
The second problem is that opponents often alter their strategy 
throughout the game, invalidating the statistics that have been 
observed. If the opponent's play does not match the 
frequencies the player is using to make their decisions the 
opponent will be exploiting the player’s incorrect information, 
causing them to lose money. This problem can be solved 
through decaying history, a technique through which the 
statistics are only affected by the latest x hands. x needs to be 
set to a small enough number, so that, if the opponent changes 
his/her strategy, the statistic will depict the alteration quickly.  
 

The statistics used in opponent modeling research are 
usually limited in number and simplistic in nature, each 
generalizing greatly over a large set of game states. Many 
researchers are only using simple statistics such as: raise, call, 

fold percentage per street, VPIP (voluntary put money in pot) 
how often one calls or raises pre-flop, PFR(pre-flop raise) how 
often one raises pre-flop and aggression factor: the ratio of the 
number of times the player is aggressive vs. the number of 
times he is passive. Opponent model research that has utilized 
only such simple statistics includes [2], [3], [4], [5], and [6]. 
Adding in more statistics, while possibly making opponent 
models more expressive and better at capturing the nuances of 
an opponent play style, will also increase the computation and 
complexity of the program. Such complexity is needed to 
extract relevant data from the statistics to make betting 
decisions and leads to the tradeoff between program 
complexity and required computation verses opponent model 
expressivity. 
 

Commercial heads up displays or HUD’s, currently 
prevalent in online poker, provide a full observation model. 
They provide the player with any thinkable statistic because 
they save every hand. Online players have been using HUD’s 
for some time now and have discovered many statistics, not 
generally used in opponent modeling research, that are very 
helpful for determining an opponent's play style. We believe 
opponent models can be greatly improved by adding some of 
the statistics that have become popular in online play through 
the HUD’s. For example 3bet, i.e. how often the opponent re 
raises a pre-flop raise, and fold to 3bet; cbet, i.e. how often an 
opponent bets the flop after raising pre-flop and fold to cbet 
and various other statistics are now a staple for online player's 
HUD’s to allow them to gain a better idea of opponent's play 
styles.  
 

The thought is that if statistics for a situation are specific for 
that situation they will be better than generic statistics in 
predicting the opponent’s action. For example, in the case 
where the opponent was last to raise preflop and is first to act 
on the flop a statistic for cbet percentage (continuation bet 
percentage: how often the opponent bets the flop after being 
the last to raise preflop) will be more accurate in determining 
how the opponent will act than the generic fold, check, bet 
flop percentages. Online players have understood this and 
populated their HUDs with statistics for situations which occur 
frequently and are frequently played incorrectly. Much of the 
research on opponent modeling, however, uses generic 
frequency statistics instead of situation specific ones. The 
reason for this is that much of the opponent modeling research 
has been conducted on fully opponent based strategies, which 
must use the statistics when making every action decision. 
Researchers usually keep frequency statistics general, thereby 
reducing the complexity of determining which statistics to use 
in order to impact the action decision, and the weight that each 
statistic will be given. If a fully opponent-based strategy were 
to use situation specific frequency statistics, the logic to 
determine which statistics to use and their impact on the action 
decisions would have to be largely altered. One would have to 
consider which of the specific frequency statistics to use and 
how to weight their impacts on the action decision for every 
possible game state. Although the use of specific frequency 
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statistics could increase the accuracy of the opponent models 
used by fully opponent based strategies, it would make the 
agents much more complex, and would be difficult and time 
consuming to implement.  
 

Consequently, our statistical exploitation module is based 
around the use of specific frequency statistics. Each 
exploitation uses a situation specific statistic along with some 
generic statistics to determine if the opponent is playing that 
situation incorrectly and if it can profitably exploit this.  The 
module provides a partially opponent based strategy, using 
frequency statistics to determine an action only if an exploit is 
available for the situation. Unlike a fully opponent-based 
strategy it does not have to use frequency statistics for every 
situation; rather, it plays the base strategy in situations where 
an exploit does not exist or an exploit does not apply.  The 
workings of the statistical exploitation module will be 
presented in more detail in the next section. 

 
 

VI. MODULE SYSTEM DESIGN 
We have created a module that we have added to SartreNL, 

presented in [7], that exploits players through the use of 
statistical exploits. This produces a bot which has a 
significantly increased win rate, without increasing its 
exploitability. This was accomplished by creating a statistical 
model that records detailed frequency statistics of an opponent 
in many contexts, and a number of exploits that provide highly 
profitable actions in the situation they apply to. The module 
also includes an opponent exploiter that tracks the exploits that 
apply to a given opponent model at any given time and 
provides the underlying bot with actions from the exploits 
when a situation arises in which one of the exploits applies. 
We have used SartreNL as the underlying agent. However, 
this module could be added to any underlying agent through 
minor changes made to the opponent exploiter and the 
underlying agent chosen.  

 
Fig. 1. Model of exploitation system design 
 

Fig. 1 depicts the manner in which the individual parts 
work together to provide the addition of a partially opponent 
based strategy to SartreNL. Partially opponent based because 
the actions determined by the bot/module combination are not 
always dependent upon the module’s opponent model; actions 

are only dependent on the module’s opponent model when an 
exploit applies to both the current game state and the modules 
opponent model. Our opponent model is based on frequency 
statistics and thus faces the two problems discussed in section 
V. The first problem is easily overcome since our bot is 
playing a partially opponent based strategy. If the frequency 
statistics are not significant the agent merely plays the base 
strategy. The second problem, however is not yet overcome. In 
section IX we discuss a way in which we aim to solve the 
problem, but currently the bot can only guarantee safe 
exploitation against opponents who play static strategies. 
 

SartreNL is used as the underlying poker agent because it 
plays an approximate Nash equilibrium strategy, providing the 
trait of being difficult to exploit, and is the only poker agent 
that was readily available to us. SartreNL uses the opponent 
imitator described in [8] to play the style of the player whom 
its case-base was trained on. In the case of SartreNL the case-
base was trained on the Hyperborian bot’s hand histories from 
the 2011 AAAI Heads-up No-Limit Texas Hold’em 
competition. This bot plays an approximate Nash equilibrium 
strategy, so the approximate Nash equilibrium strategy should 
emerge in SartreNL’s play. 
 

A. Opponent model 
The opponent model is a collection of counters and 

variables representing the frequency statistics. After each hand 
is played out the counters are updated and then the statistics 
are recalculated based on the updated counters. In the poker 
framework used in the Annual Computer Poker Competitions 
(ACPC), messages are passed to and from the bots. The 
messages sent to the bots include all of the contextual 
information from the game; and the messages sent from the 
bots contain the actions they wish to take. The bulk of the 
code for the opponent model consists of methods that update 
the counters from the information found in the messages sent 
from the server. The statistics that are used in the model are 
often context based and in order to update the counters one has 
to check numerous conditions for each.  
 

B. Exploit specifications 
Exploits are basically rule modules that adhere to the 

generic exploit template. The generic exploit template includes 
two methods: applysToStats and getAction. applysToStats is 
the same for every exploit, it takes a stats model object and 
returns whether the given exploit applies to the stats model. 
An exploit can only apply if the prerequisite statistics have 
been observed enough times to be considered statistically 
significant, the threshold for statistical significance is expert 
defined for each statistic in each exploit. The getAction 
method is given the game context and returns an action if the 
exploit applies to the specified context. There are two versions 
of this method: one for pre-flop exploits and one for post-flop 
exploits. They differ in that the pre-flop exploits are given the 
two card hand ranking and the post-flop exploits are given a 
hand ranking calculated by SartreNL which takes into account 



 

the community cards. For getAction to be called 
applysToStats must have been called previously and must 
have returned true.  
 

The profitability of each exploit is determined by 
calculating the exploit’s expected value to ensure the exploit is 
profitable. In order to determine this we must first calculate 
the equity. Equity is the chance that a hand or range of hands 
(the possible hand the opponent could have) will win the pot. 
We used Poker Stove [9] to calculate the equities that were 
used in our expected value calculations. Exploits have hand 
rank thresholds to determine which action to take. The value 
of these thresholds is dependent of the opponent’s statistics. 
The threshold determines the range of hands with which the 
bot will take the action. The opponent’s range is estimated, 
using the statistics from the opponent model. The estimation 
always takes from the top of the opponent’s range so that, as 
long as the opponent model is correct, the opponent’s range 
will never be stronger than the estimated one. However, it may 
be weaker but this works in our favor. SartreNLs hand range, 
based on the thresholds, and the opponent’s hand range are 
used to calculate our equities when calculating the 
exploitation’s expected value. Expected Value (EV) is the 
long term expected outcome of a given hand or situation. 
Expected value is calculated using the following equation: 
 
EV = [Our Equity] * [What we win] - [Opponent's equity] * [What we lose] 
 

Through the use of this calculation we can ensure that our 
exploits are profitable. This ensures that as long as the 
opponent model is accurate, our use of an exploit should never 
be exploitable by the opponent. 
 

C. Opponent exploiter 
The opponent exploiter is the module that provides the 

interaction between SartreNL, the statistical model, and the 
exploits. The opponent exploiter has a statistical model 
associated with it and has four lists of exploits: pre-flop, flop, 
turn and river. Each list represents all the exploits that apply to 
the associated statistical model for each of the four betting 
rounds. These lists are populated through the 
findApplicableExploits method which goes through each 
exploit, calling its applysToStats method, and supplying the 
statistical model the opponent exploiter is associated with as 
the parameter. If an exploit returns true, it is added to the list 
of exploits for the betting round it applies to. The opponent 
exploiter also has a method for each betting round that takes 
the game state information and calls the getAction method for 
each exploit in the list for the given betting round. If an exploit 
returns a non-null value this is passed along to the bot, that 
then uses the action.  
 

VII. EXPERIMENTAL RESULTS 

A. Methodology 
We required several opponents to challenge in order to 

evaluate the results of using our statistical exploitation 
module. Optimally we would evaluate statistical exploitation 
against a variety of competencies, ranging from easily 
exploitable to un-exploitable.  The participants in the Annual 
Computer Poker Competition (ACPC) represent a good 
variety of computer players. While it is not possible to 
challenge the agents submitted to the competition directly, due 
to them not being publicly available, the hand history 
information is available for each agent that participated. 
Expert imitator case-bases were created for several of the no 
limit Texas Hold’em participants from the 2011 ACPC that 
imitate and generalize the opponent’s style of play from their 
hand histories. These case-bases were created to be used by 
the expert imitation based framework described in [8], training 
each expert imitator on the decisions made in the competition 
by each of the chosen agent. Agents imitating an opponent 
through the use of the expert imitator always play a static 
strategy since the case-base used to determine their actions do 
not change. For these experiments this is fortunate because the 
statistical exploitation module is currently only able to handle 
static opponents. To create a strong poker bot its necessary to 
be able to deal with non-static strategies, and we will be 
addressing this in section VIII. The agents chosen cover a 
variety of exploitability, ranging from highly exploitable to 
difficult to exploit. Table 1 shows the author’s views on the 
exploitability of the various agents. 

 
Table 1. Exploitability of the opposition 

Player Exploitability 
POMPEIA highly exploitable 
Kappa highly exploitable 
Hugh highly-moderately exploitable 
Lucky7 moderately exploitable 
Hyperborean-iro difficult to exploit 
Hyperborean-tbr difficult to exploit 

 
 Six opponents were challenged against SartreNL without 
exploits, and SartreNL with the addition of exploits which will 
henceforth be denoted as SartreNLExp. Each of the six bots 
played two seeded duplicate matches against both SartreNL 
and SartreNLExp. A duplicate match consists of 20,000 hands 
in total. 10,000 hands are initially played, the players then 
switch seats and the same 10,000 hands are played again. This 
way each of the players receives the cards that their opponents 
received before. The duplicate match style was used to 
decrease the variance that is normally involved in poker. To 
decrease the overall variance further, the same seed value was 
used for each of the duplicate matches played between each of 
the variants of SartreNL and the various opponents. 
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 Overall 24 duplicate matches were played; SartreNL 
played two duplicate matches against each of the opponents 
and SartreNLExp also played two duplicate matches against 
each opponent. To determine the effectiveness of the addition 
of the partially opponent based strategy based on statistical 
exploits on SartreNL the duplicate matches were split into two 
subsets: Run 1 and Run 2. Run 1 consisted of the first 
duplicate match SartreNL played against each of the 
opponents and the first duplicate match SartreNLExp played 
against each opponent. Run 2 consisted of the second 
duplicate match that SartreNL and SartreNLExp ran against 
each of the opponents. The bots played each run without any 
knowledge of the opponent they were facing.  
 

In each run the match SartreNL played against a 
particular opponent is used as the base-line. The difference in 
performance between SartreNL and SartreNLExp can then be 
taken as the effect of the exploits. Some of the bots have some 
randomness associated with their strategies, so although the 
same hands and community cards came up in all matches this 
does not mean the bots chose the same action each time. Due 
to this it is likely that the scores fluctuated between matches. 
Furthermore an exploit was not applied to every hand and 
SartreNLExp chooses the actions as SartreNL normally would 
for hands where exploits are not applied to. Therefore, the 
situation could have occurred where exploitations were used 
and the overall score for SarterNLExp was lower than 
SarterNL’s score. This would not have been due to the 
exploits losing money, since exploits always have a large 
positive expected value, it would have been caused by the fact 
that there is randomness in SarterNL’s action selection 
process. This means that although the exploits had positive 
effects, SarterNLExp chose less profitable actions in the hands 
in which exploits were not used, causing SarterNLExp’s 
overall score to be lower than SarterNL’s.  
 

To combat these problems we only compared the 
resulting scores of the hands in which exploits were used. 
There exists a duplicate match between SartreNLExp and each 

opponent and a corresponding duplicate match between 
SartreNL and each opponent in each run. The scores for the 
exploited hands were found for both the SartreNL and 
SartreNLExp match by going through the log files and tallying 
up the result for each of the hands in which exploits were 
used. The difference between these two scores shows the 
impact of the exploits much more accurately than the 
difference between the overall scores. 
 

B. Results 
Table 2 presents the results against the set of chosen 

opponents from the 2011 ACPC competition. The opponent in 
the match is given as the column heading, which is further 
split into the two Runs. The table is split into two sections due 
to spatial limitations. The SartreNL row depicts the outcome 
of SartreNL’s matches. The SartreNLExp row depicts the 
outcome of SartreNLExp’s matches. The match outcomes are 
depicted in milli-big blinds per hand, and only take into 
account hands in which exploits were used by SartreNLExp. 
Milli-big blinds records the average number of big blinds won 
per hand, multiplied by 1000. The number of hands row shows 
the number of hands in the match in which exploits were used 
by SartreNLExp. The difference row depicts the difference in 
win rate in milli-big blinds per hand between SartreNLExp 
and SartreNL, clearly indicating the effect the use of exploits 
had on the hands. 

 
All of the results shown in Table 2 indicate statistically 

significant improvement in performance when statistical 
exploits are used. The results suggest that the statistical 
exploits module is able to appropriately determine and exploit 
statistical anomalies found in the play of opponents. The fact 
that significant increases are seen not only against the highly 
exploitable opponents, but also against the difficult to exploit 
opponents suggests that using an approximate Nash 
equilibrium strategy as the base strategy is having the desired 
effect. That being, SartreNLExp is able to remain difficult to 
exploit while concurrently exploiting its opposition. 
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VIII. CONCLUSION 
 In conclusion, we have presented an approach for 
exploiting statistical anomalies in the game of No Limit Texas 
Hold’em. Rather than create a fully opponent based agent we 
have created a module which can be added to a base strategy 
to create a partially opponent based agent. This allowed us to 
easily overcome one of the major problems faced by 
frequency statistic based opponent models, allowing us to play 
the base strategy as we wait for our frequency statistics to 
become statistically significant. We added the statistical 
exploitation module to an approximate Nash equilibrium base 
strategy to create an agent which was both difficult to exploit 
and able to exploit opponents. The module was able to safely 
exploit static opponents, by which we mean it was able to 
exploit opponents without making itself any more exploitable 
than the base strategy. Our experimental results show that the 
use of statistical exploitations not only did not make the agent 
more exploitable, but significantly increased the win rate of 
the agent in the hands in which exploits were used.  
 

The statistical exploitation module’s tradeoff comes not in 
the form of increasing the agent’s exploitability to allow for 
the ability to exploit opponents, as done in Polaris [1]. Instead 
we limit the type of opponent exploitation to only statistical 
exploitation, allowing the module to exploit opponents without 
increasing the exploitability of the base strategy. This 
limitation means the statistical exploitation module is not able 
to fully exploit an opponent like a best response would. 
However we feel that ensuring the agent is as difficult for 
opponents to exploit as possible is more important than 
allowing it the ability to maximally exploit some opponents.  

 
 

IX. FUTURE WORK 
There are several improvements that could be made to 

increase the performance of the current system and increase 
the scalability. The most obvious improvement is the addition 
of more exploits. The more exploits that are in the system, the 
better it is at exploiting opponents. So far the system does not 
have a large number of exploits. Currently the frequency 
statistics model does not use any form of decaying history and 
is unable to remember opponents. Decaying history is an 
important upgrade as the system is currently vulnerable to any 

non-static strategies as it cannot react quickly to strategy 
alterations after it has built up a view of its opponent.  
 

The module would be improved greatly by the re-
implement of the statistical model to store hand histories. This 
would improve the performance and scalability of the 
statistical model by making it easy to include and compute 
further frequency statistics and allowing the ability to 
recognize previously played opponents again. Decaying 
history would also be easier to implement for a system that 
stored hand histories than for the current system that has only 
counters. If only counters are available, it is difficult to 
determine how to alter the counter to implement decaying 
history. While, if hand histories are stored, it would be simple 
to determine what the last M hands were and how they 
affected each counter. Stored hand histories would also allow 
the module to have statistic specific histories. In this way, 
statistics could be based on the last k occurrences of the 
situation the statistic is associated with, instead of just having 
the last M hands played. 
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