

A Statistical Exploitation Module for Texas Hold’em
And Its Benefits When Used With an Approximate Nash Equilibrium Strategy

Kevin Norris
Department of Computer Science

University of Auckland
Auckland, New Zealand

knor031@aucklanduni.ac.nz

Ian Watson
Department of Computer Science

University of Auckland
Auckland, New Zealand
ian@cs.auckland.ac.nz

Abstract— An approximate Nash equilibrium strategy is difficult
for opponents of all skill levels to exploit, but it is not able to
exploit opponents. Opponent modeling strategies on the other
hand provide the ability to exploit weak players, but have the
disadvantage of being exploitable to strong players. We examine
the effects of combining an approximate Nash equilibrium
strategy with an opponent based strategy. We present a statistical
exploitation module that is capable of adding opponent based
exploitation to any base strategy for playing No Limit Texas
Hold’em. This module is built around the idea of recognizing
statistical anomalies in the opponent’s play and capitalize on
them through the use of expert designed statistical exploitations.
The use of expert designed statistical exploitations ensures that
the addition of the module does not increase the exploitability of
the base strategy. In this paper we merge an approximate Nash
equilibrium strategy with the statistical exploitation module. This
approach has shown promising results in our initial experiments
against a range of static opponents with varying exploitability’s.
It could lead to a champion level player once the module is
improved to deal with dynamic opponents.

Keywords— artificial intelligence, game AI, opponent
modeling, nash equilibrium, exploitation, poker, Texas Hold’em

I. TERMINOLOGY
The term "Opponent Modeling" has been ambiguously used

in the literature to mean playing an opponent based strategy.
This is not intuitive; intuitively one would think that the
opponent model would be the collection of information about
the opponent that represents the way in which the opponent
plays. From this definition opponent modeling would just be
the creation of this model, but in the literature it has been used
to also incorporate the way in which the models are used to
play an opponent based strategy. We believe that for ease of
understanding, the ambiguous usage of the term "Opponent
Modeling" should be broken into three terms:

• Opponent Model: the set of information that
represents the opponent's play style.

• Opponent based actions: the way in which you use
the given Opponent Model to determine actions that
are suited towards the opponent you are facing.

• Opponent based strategy: The combination of
creating an opponent model for your opponent and

using this model to determine opponent based
actions. There are two types of opponent based
strategies that can be employed:

o Fully opponent based strategy: The agent
uses the opponent model to play an
opponent based action for every action.

o Partially opponent based strategy: The
agent plays opponent based actions only
some of the time.

II. INTRODUCTION
Many online poker players use Heads up Displays (HUD’s).

A HUD shows the player the recorded frequency statistics for
each of his/her opponents and him/her self. Many novice
online players play a relatively static strategy as they learn the
game, which they alter only if they see anomalies in the
statistics of their opponents. When they see these anomalies
they devise statistical exploits: ways to alter their strategy to
take advantage of the statistical anomaly such that they
increase their win rate against the opponent. The statistical
exploitation module presented in this paper is built around the
idea of recognizing statistical anomalies and allowing the bot
to capitalize on them through the use of expert designed
statistical exploitations, in the domain of heads up no-limit
Texas Hold’em poker. An overview of the modules design and
its parts is given in section VI.

The module is not a complete strategy in and of itself. It is a
module that is to be added to a base strategy. The resulting
strategy of the combination is an enhanced version of the base
strategy which is now able to capitalize on statistical
anomalies, exploiting opponents. We decided on using an
approximate Nash equilibrium strategy as our base strategy for
testing the module. A Nash equilibrium strategy is described
as “a strategy for each player of the game, with the property
that no single player can do better by changing to a different
strategy” in [1]. Johanson [1] reasons that while playing such a
strategy one can do no worse than tie the game, since the
opponent cannot do better by playing a strategy other than the
equilibrium. Johanson [1] recognizes that “using such a
strategy allows us to defend against any opponent, or allows
us to learn an opponent’s tendencies safely for several hands
before attempting to exploit them”. Finding a Nash

Unknown

Unknown

Deleted: Reference

Deleted: Reference

equilibrium in a complex game is very difficult, so instead
they are approximated, providing a suboptimal strategy, a
strategy which is exploitable. However the closer the
approximation, the closer the strategy is to being un-
exploitable, therefore, approximate Nash equilibrium
strategies are very difficult to exploit. We felt that such a
defensive strategy would be the ideal base strategy. We thus
tried to preserve the desirable aspect of the base strategy,
being difficult to exploit; and added the ability to exploit
opponents, producing a strong bot that can do well against
both weak and strong opponents.

The idea of combining a Nash equilibrium strategy and
exploitation abilities has been done before in the poker bot
Polaris created in [1]. We will give an overview of Polaris in
section IV. The tradeoff between difficulty to exploit and
exploitability of opponents is the main challenge faced when
trying to add exploitation abilities to a Nash equilibrium
strategy. In section VIII we will compare our technique of
combining exploitation abilities with a Nash equilibrium
strategy to the technique used by Polaris, and discuss why the
statistical exploitation module had a much easier time with
this challenge than the Polaris bot.

Section III provides a brief overview of the game of No
Limit Texas Hold’em, the game that our module has been
designed for. In section IV we discuss related work,
particularly in the area of combining a Nash equilibrium
strategy and opponent exploitation abilities. Section V
discusses the role of frequency statistics in opponent
modeling, how they are used by many opponent based
strategies, and how our usage of them differs to enhance our
strategy. Section VI provides an overview of the modules
design along with a deeper look into the various parts of the
module. Thereafter we illustrate our experimental
methodology and present our results in Section VII, for the
strategy resulting from an approximate Nash equilibrium base
strategy and the addition of the statistical exploitation module.
Section VIII provides conclusions and a comparison between
our technique for adding exploitation to a Nash equilibrium
strategy versus the technique described in [1]. Section IX
discusses avenues for future work.

III. NO LIMIT TEXAS HOLD’EM
We describe briefly the game of Texas Hold’em focusing

on two-player no limit Hold’em as our module has been
specialized for this domain. If a game consists of only two
players, it is described as being a heads-up match. The game
of heads-up no limit Texas Hold’em consists of four stages:
pre-flop, flop, turn and river. During the pre-flop stage each
player is dealt two hole cards, which only they can see. Two
forced bets are contributed to the pot, these being the small
blind (SB) and the big blind (BB) before any betting takes
place. The big blind is usually double the value of the small
blind. In the game of heads-up Texas Hold’em the dealer

contributes the small blind and the non-dealer contributes the
big blind. The dealer signifies the player who is first to act
during the pre-flop stage of the game and last to act for each of
the other stages of the game. The betting actions, which are
common to all variations of poker, are described as follows:

• Fold: When a player abandons their hand, no longer
committing any chips to the pot and giving up any
right to contest the chips that make up the pot.

• Check/Call: When a player commits the minimum
amount of chips with which he/she is able to continue
to contest the pot. A check requires zero chips to be
committed, and a call requires an amount greater than
zero to be committed.

• Bet/Raise: When a player commits a larger number
of chips than the amount necessary to continue to
contest the pot, this is known as a bet. If a player is in
the position where he/she must call a bet to continue,
but then decides to invest more than the call amount
in the pot, this is known as a raise.

In a no limit game a player may bet any amount they
desire up to the total value of chips they possess. Once the
betting in one stage of the game is complete and as long
as no players have folded, play continues on to the next
stage. Each further stage after the pre-flop stage involves
the drawing of community cards from the shuffled deck of
cards as follows:

• Flop: 3 community cards
• Turn: 1 community card
• River: 1 community card

In a standard heads-up no-limit poker game the chip stacks

of each player would fluctuate between hands depending on
who won the previous hand. To reduce the variance of this
structure a variation known as Doyle’s Game is played during
our experiments where the starting stacks of both players are
reset to a specified amount at the beginning of every hand.

IV. RELATED WORK

A. Polaris
Polaris is a collection of techniques for creating poker bots,

which are described in [1]. Johanson [1] outlines a new
approach to calculating approximate Nash equilibrium
strategies that require linear memory in the number of
information sets instead of in the number of game states as
was previously the case. This technique is called
Counterfactual Regret Minimization. A new technique for
calculating abstract game best responses is also presented,
called Frequentist Best Response. A technique called
Restricted Nash Response is illustrated, that creates a bot
which is a compromise between the two previously mentioned
techniques. The last technique presented in [1] is creating a
meta-agent which is made up of agents created from the

SIT� 12/3/13 12:14 PM
Formatted: Normal, Indent: Left: 0.63
cm, No bullets or numbering

Unknown
Deleted: Reference

previous techniques, along with a “coach” agent which
decides which agent to use for every hand. We will delve
deeper into the last two techniques as they are the ones which
deal with combining an approximate Nash equilibrium
strategy with exploitation abilities.

1) Restricted Nash Response (RNR)
Counterfactual Regret Minimization creates an agent that is

difficult to defeat, but is unable to exploit its opposition so
does not win very much. Frequentist Best Response creates an
agent that can exploit specific opponents, but is easily defeated
by opponents it is not designed to defeat. The Restricted Nash
Response technique uses Regret Minimization to find a
compromise between these two extremes, creating agents that
exploit particular opponents or classes of opponents and still
provide a bound on their exploitability. This strategy is
constructed by finding a Nash equilibrium in a restricted
game, where the opponent must play according to a fixed
strategy with probability p. p is chosen when creating the
strategy and determines the proportion of time the opponent
must use the fixed strategy. p ranges between zero and one: a
p of zero means that the opponent never plays the fixed
strategy so a Nash equilibrium is computed; and a p of one
means that the opponent only uses the fixed strategy so a best
response is computed. All values for p between zero and one
represent a tradeoff between exploitation and exploitability.
Instead of constructing the usual two agents who play and
adapt to one another for millions of hands to approach a Nash
equilibrium, three agents are used for computing the
Restricted Nash Response strategy: the RNR agent that learns
the Restricted Nash Response and two agents for the
opponent: a learning agent and a static agent. During the
millions of games the RNR agent tries to minimize its regret
against both the learning and the static components of the
opponent. p is used to determine the amount of weight placed
on each part of the regret.

2) Meta-Agent
In competitions the opponents will be unknown. So which

of the previously discussed agents should be used against each
opponent? Each of the previous agents have their pros and
cons. In order to obtain the benefits of each, [1] created a team
of agents comprising several agents of various types, thereby
creating a meta-agent. The problem faced by the meta-agent
of: which of the team of agents to choose when selecting an
action is solved by expert algorithms. In this case the
algorithm UCB1 was chosen, it is designed to trade off
exploration and exploitation when choosing the agent. Since
there are various types of agents in the team, the UCB1
algorithm uses different costs of exploration for different
types. For example the cost of exploring the use of a
Frequency Best Response agent is very high, whereas the cost
of exploring a Restricted Nash Response is lower and the cost
of using the Nash equilibrium agent is the lowest. Johanson
[1] found that using a team of agents provided better results
than using only one of its parts.

3) Discussion
A single RNR performs worse against arbitrary opponents

overall in comparison to an equilibrium strategy. RNR agents
are only able to exploit opponents that play strategies similar
to the strategy they were trained against and are easier for
opponents to exploit. This means that not only will the
majority of opponents the RNR agent plays not be exploited
by it, they will also be able to exploit it better than they would
an equilibrium strategy. In the experimental results shown in
[1] a team of RNR, and a team of Frequentist Best Response
(FBR) agents played 4 opponents that they had a counter-
strategy against and 2 opponents that were unknown. The FBR
team performed worse than an equilibrium agent against the
opponents and the RNR team did better. There is a cost
associated with exploring the various agents in the team. The
FBR team performed worse because the cost of choosing the
wrong FBR agent is high, since FBR agents are easily
exploited by opponents they are not designed against. The
RNR team performed better because the cost of exploring
suboptimal RNR agents is low, since the agents play strategies
that are close to an approximate equilibrium strategy. In these
experiments the RNR team performed better, not only on the
known opponents, but also on the unknown opponents.
Although [1] states that they have no prior reason to believe
that the counter agents employed by their team of agents
should work against the unknown opponents, it stands to
reason that the team would only do better against the
opponents if at least one of the agents in the team was able to
exploit each of the unknown opponents.

To create a meta-agent using this technique that does better
than an equilibrium strategy on average over arbitrary
opponents should be relatively straightforward. A number of
RNR agents along with a Nash equilibrium agent should do
better than just a Nash equilibrium agent overall. The counter
strategies the RNR agents employ will allow this meta-agent
to exploit certain play styles; and if the meta-agent comes
across a play style it does not have a counter-strategy for it
should just play the Nash equilibrium strategy. The RNR
agent’s strategies are similar to the strategy employed by a
Nash equilibrium agent and therefor also similar to one
another’s strategies. Due to this it may take the “coach” agent
a long time to determine which agent is best against an
opponent. The more RNR agents in the meta-agent the longer
the exploration phase would take. Although the cost of
exploring an RNR agent is low it does add up, and if the
exploration phase is long enough, may cause the meta-agent to
perform worse than a single Nash equilibrium agent.

Creating an optimal meta-agent using this technique would
be very difficult. It would have to be determined what mix of
Nash equilibrium and best response would be best for the meta
agent, i.e. what p value the RNR agents should be created
with. This is a difficult question because it could go either
way. With a lower p value the RNR agents are closer to Nash
equilibrium agents. This would make the cost of exploring
them lower, but would also make it take longer to distinguish

SIT� 12/3/13 12:16 PM
Formatted: Font:10 pt, Italic
SIT� 12/3/13 12:16 PM
Formatted: Font:10 pt, Italic
SIT� 12/3/13 12:16 PM
Formatted: Font:10 pt, Italic
SIT� 12/3/13 12:16 PM
Formatted: Font:10 pt, Italic
SIT� 12/3/13 12:16 PM
Formatted: Font:10 pt, Italic
SIT� 12/3/13 12:16 PM
Formatted: Font:10 pt, Italic

SIT� 12/3/13 12:17 PM
Formatted: Font:10 pt, Italic

SIT� 12/3/13 12:17 PM
Formatted: Font:10 pt, Italic
SIT� 12/3/13 12:17 PM
Formatted: Font:10 pt, Italic
Unknown
Deleted: Reference

the best among the team for the opponent, increasing
exploration time. The RNR agents would also be unable to
exploit opponents as well as those created with a higher p. A
higher p value on the other hand would create RNR agents that
are closer to Frequentist Best Response agents. These agents
would have a higher exploration cost, but would be easier to
distinguish which is best, decreasing exploration time. They
would also be able to exploit opponents better. It would
require a lot of testing to determine the p to use for creating
the RNR agents and the number of RNR agents to use to
create a meta-agent which minimizes its exploitability and
maximizes its exploitation of opponents.

V. FREQUENCY STATISTICS
Poker is an incomplete information game as well as a

stochastic game, making it very difficult for a player to know
where they stand in a hand. How can a player make good
decisions without knowing what the opponent has, or what
they will do? If a player wishes to make decisions based on the
opponent they must have knowledge of the opponent. This
knowledge comes in the form of history, the history of actions
that the opponent carried out in their previous hands.
Statistical opponent models record and use past play by
keeping statistics of the opponent’s action frequencies for use
in later similar situations to improve the quality of decision
making and to maximize profit. Keeping statistics on the
opponent's action frequencies gives the player a good
indication of how the opponent will act and react in given
situations. Such indication follows from the probability
distributions for the possible actions an opponent can make in
each situation.

Schauenberg [2] describes two problems faced when using
frequency statistics for opponent modeling. The first problem
is that without enough observations of a situation the action
distribution statistics can be largely inaccurate. There are two
possible solutions to this problem: using priors, or not using
the statistics to impact the action decisions until the game
states they correlate to have been observed enough times to
make their probability distributions statistically significant.
The second problem is that opponents often alter their strategy
throughout the game, invalidating the statistics that have been
observed. If the opponent's play does not match the
frequencies the player is using to make their decisions the
opponent will be exploiting the player’s incorrect information,
causing them to lose money. This problem can be solved
through decaying history, a technique through which the
statistics are only affected by the latest x hands. x needs to be
set to a small enough number, so that, if the opponent changes
his/her strategy, the statistic will depict the alteration quickly.

The statistics used in opponent modeling research are
usually limited in number and simplistic in nature, each
generalizing greatly over a large set of game states. Many
researchers are only using simple statistics such as: raise, call,

fold percentage per street, VPIP (voluntary put money in pot)
how often one calls or raises pre-flop, PFR(pre-flop raise) how
often one raises pre-flop and aggression factor: the ratio of the
number of times the player is aggressive vs. the number of
times he is passive. Opponent model research that has utilized
only such simple statistics includes [2], [3], [4], [5], and [6].
Adding in more statistics, while possibly making opponent
models more expressive and better at capturing the nuances of
an opponent play style, will also increase the computation and
complexity of the program. Such complexity is needed to
extract relevant data from the statistics to make betting
decisions and leads to the tradeoff between program
complexity and required computation verses opponent model
expressivity.

Commercial heads up displays or HUD’s, currently
prevalent in online poker, provide a full observation model.
They provide the player with any thinkable statistic because
they save every hand. Online players have been using HUD’s
for some time now and have discovered many statistics, not
generally used in opponent modeling research, that are very
helpful for determining an opponent's play style. We believe
opponent models can be greatly improved by adding some of
the statistics that have become popular in online play through
the HUD’s. For example 3bet, i.e. how often the opponent re
raises a pre-flop raise, and fold to 3bet; cbet, i.e. how often an
opponent bets the flop after raising pre-flop and fold to cbet
and various other statistics are now a staple for online player's
HUD’s to allow them to gain a better idea of opponent's play
styles.

The thought is that if statistics for a situation are specific for
that situation they will be better than generic statistics in
predicting the opponent’s action. For example, in the case
where the opponent was last to raise preflop and is first to act
on the flop a statistic for cbet percentage (continuation bet
percentage: how often the opponent bets the flop after being
the last to raise preflop) will be more accurate in determining
how the opponent will act than the generic fold, check, bet
flop percentages. Online players have understood this and
populated their HUDs with statistics for situations which occur
frequently and are frequently played incorrectly. Much of the
research on opponent modeling, however, uses generic
frequency statistics instead of situation specific ones. The
reason for this is that much of the opponent modeling research
has been conducted on fully opponent based strategies, which
must use the statistics when making every action decision.
Researchers usually keep frequency statistics general, thereby
reducing the complexity of determining which statistics to use
in order to impact the action decision, and the weight that each
statistic will be given. If a fully opponent-based strategy were
to use situation specific frequency statistics, the logic to
determine which statistics to use and their impact on the action
decisions would have to be largely altered. One would have to
consider which of the specific frequency statistics to use and
how to weight their impacts on the action decision for every
possible game state. Although the use of specific frequency

SIT� 12/3/13 12:17 PM
Formatted: Font:10 pt, Italic
SIT� 12/3/13 12:17 PM
Formatted: Font:10 pt, Italic

SIT� 12/3/13 12:17 PM
Formatted: Font:10 pt, Italic

SIT� 12/3/13 12:19 PM
Formatted: Font:10 pt, Bold
SIT� 12/3/13 12:19 PM
Formatted: Font:10 pt, Bold

Unknown

SIT� 12/3/13 12:18 PM
Formatted: Font:10 pt, Italic
SIT� 12/3/13 12:19 PM
Formatted: Font:10 pt, Italic

Deleted: Reference

statistics could increase the accuracy of the opponent models
used by fully opponent based strategies, it would make the
agents much more complex, and would be difficult and time
consuming to implement.

Consequently, our statistical exploitation module is based
around the use of specific frequency statistics. Each
exploitation uses a situation specific statistic along with some
generic statistics to determine if the opponent is playing that
situation incorrectly and if it can profitably exploit this. The
module provides a partially opponent based strategy, using
frequency statistics to determine an action only if an exploit is
available for the situation. Unlike a fully opponent-based
strategy it does not have to use frequency statistics for every
situation; rather, it plays the base strategy in situations where
an exploit does not exist or an exploit does not apply. The
workings of the statistical exploitation module will be
presented in more detail in the next section.

VI. MODULE SYSTEM DESIGN
We have created a module that we have added to SartreNL,

presented in [7], that exploits players through the use of
statistical exploits. This produces a bot which has a
significantly increased win rate, without increasing its
exploitability. This was accomplished by creating a statistical
model that records detailed frequency statistics of an opponent
in many contexts, and a number of exploits that provide highly
profitable actions in the situation they apply to. The module
also includes an opponent exploiter that tracks the exploits that
apply to a given opponent model at any given time and
provides the underlying bot with actions from the exploits
when a situation arises in which one of the exploits applies.
We have used SartreNL as the underlying agent. However,
this module could be added to any underlying agent through
minor changes made to the opponent exploiter and the
underlying agent chosen.

Fig. 1. Model of exploitation system design

Fig. 1 depicts the manner in which the individual parts
work together to provide the addition of a partially opponent
based strategy to SartreNL. Partially opponent based because
the actions determined by the bot/module combination are not
always dependent upon the module’s opponent model; actions

are only dependent on the module’s opponent model when an
exploit applies to both the current game state and the modules
opponent model. Our opponent model is based on frequency
statistics and thus faces the two problems discussed in section
V. The first problem is easily overcome since our bot is
playing a partially opponent based strategy. If the frequency
statistics are not significant the agent merely plays the base
strategy. The second problem, however is not yet overcome. In
section IX we discuss a way in which we aim to solve the
problem, but currently the bot can only guarantee safe
exploitation against opponents who play static strategies.

SartreNL is used as the underlying poker agent because it
plays an approximate Nash equilibrium strategy, providing the
trait of being difficult to exploit, and is the only poker agent
that was readily available to us. SartreNL uses the opponent
imitator described in [8] to play the style of the player whom
its case-base was trained on. In the case of SartreNL the case-
base was trained on the Hyperborian bot’s hand histories from
the 2011 AAAI Heads-up No-Limit Texas Hold’em
competition. This bot plays an approximate Nash equilibrium
strategy, so the approximate Nash equilibrium strategy should
emerge in SartreNL’s play.

A. Opponent model
The opponent model is a collection of counters and

variables representing the frequency statistics. After each hand
is played out the counters are updated and then the statistics
are recalculated based on the updated counters. In the poker
framework used in the Annual Computer Poker Competitions
(ACPC), messages are passed to and from the bots. The
messages sent to the bots include all of the contextual
information from the game; and the messages sent from the
bots contain the actions they wish to take. The bulk of the
code for the opponent model consists of methods that update
the counters from the information found in the messages sent
from the server. The statistics that are used in the model are
often context based and in order to update the counters one has
to check numerous conditions for each.

B. Exploit specifications
Exploits are basically rule modules that adhere to the

generic exploit template. The generic exploit template includes
two methods: applysToStats and getAction. applysToStats is
the same for every exploit, it takes a stats model object and
returns whether the given exploit applies to the stats model.
An exploit can only apply if the prerequisite statistics have
been observed enough times to be considered statistically
significant, the threshold for statistical significance is expert
defined for each statistic in each exploit. The getAction
method is given the game context and returns an action if the
exploit applies to the specified context. There are two versions
of this method: one for pre-flop exploits and one for post-flop
exploits. They differ in that the pre-flop exploits are given the
two card hand ranking and the post-flop exploits are given a
hand ranking calculated by SartreNL which takes into account

the community cards. For getAction to be called
applysToStats must have been called previously and must
have returned true.

The profitability of each exploit is determined by
calculating the exploit’s expected value to ensure the exploit is
profitable. In order to determine this we must first calculate
the equity. Equity is the chance that a hand or range of hands
(the possible hand the opponent could have) will win the pot.
We used Poker Stove [9] to calculate the equities that were
used in our expected value calculations. Exploits have hand
rank thresholds to determine which action to take. The value
of these thresholds is dependent of the opponent’s statistics.
The threshold determines the range of hands with which the
bot will take the action. The opponent’s range is estimated,
using the statistics from the opponent model. The estimation
always takes from the top of the opponent’s range so that, as
long as the opponent model is correct, the opponent’s range
will never be stronger than the estimated one. However, it may
be weaker but this works in our favor. SartreNLs hand range,
based on the thresholds, and the opponent’s hand range are
used to calculate our equities when calculating the
exploitation’s expected value. Expected Value (EV) is the
long term expected outcome of a given hand or situation.
Expected value is calculated using the following equation:

EV = [Our Equity] * [What we win] - [Opponent's equity] * [What we lose]

Through the use of this calculation we can ensure that our
exploits are profitable. This ensures that as long as the
opponent model is accurate, our use of an exploit should never
be exploitable by the opponent.

C. Opponent exploiter
The opponent exploiter is the module that provides the

interaction between SartreNL, the statistical model, and the
exploits. The opponent exploiter has a statistical model
associated with it and has four lists of exploits: pre-flop, flop,
turn and river. Each list represents all the exploits that apply to
the associated statistical model for each of the four betting
rounds. These lists are populated through the
findApplicableExploits method which goes through each
exploit, calling its applysToStats method, and supplying the
statistical model the opponent exploiter is associated with as
the parameter. If an exploit returns true, it is added to the list
of exploits for the betting round it applies to. The opponent
exploiter also has a method for each betting round that takes
the game state information and calls the getAction method for
each exploit in the list for the given betting round. If an exploit
returns a non-null value this is passed along to the bot, that
then uses the action.

VII. EXPERIMENTAL RESULTS

A. Methodology
We required several opponents to challenge in order to

evaluate the results of using our statistical exploitation
module. Optimally we would evaluate statistical exploitation
against a variety of competencies, ranging from easily
exploitable to un-exploitable. The participants in the Annual
Computer Poker Competition (ACPC) represent a good
variety of computer players. While it is not possible to
challenge the agents submitted to the competition directly, due
to them not being publicly available, the hand history
information is available for each agent that participated.
Expert imitator case-bases were created for several of the no
limit Texas Hold’em participants from the 2011 ACPC that
imitate and generalize the opponent’s style of play from their
hand histories. These case-bases were created to be used by
the expert imitation based framework described in [8], training
each expert imitator on the decisions made in the competition
by each of the chosen agent. Agents imitating an opponent
through the use of the expert imitator always play a static
strategy since the case-base used to determine their actions do
not change. For these experiments this is fortunate because the
statistical exploitation module is currently only able to handle
static opponents. To create a strong poker bot its necessary to
be able to deal with non-static strategies, and we will be
addressing this in section VIII. The agents chosen cover a
variety of exploitability, ranging from highly exploitable to
difficult to exploit. Table 1 shows the author’s views on the
exploitability of the various agents.

Table 1. Exploitability of the opposition

Player Exploitability
POMPEIA highly exploitable
Kappa highly exploitable
Hugh highly-moderately exploitable
Lucky7 moderately exploitable
Hyperborean-iro difficult to exploit
Hyperborean-tbr difficult to exploit

 Six opponents were challenged against SartreNL without
exploits, and SartreNL with the addition of exploits which will
henceforth be denoted as SartreNLExp. Each of the six bots
played two seeded duplicate matches against both SartreNL
and SartreNLExp. A duplicate match consists of 20,000 hands
in total. 10,000 hands are initially played, the players then
switch seats and the same 10,000 hands are played again. This
way each of the players receives the cards that their opponents
received before. The duplicate match style was used to
decrease the variance that is normally involved in poker. To
decrease the overall variance further, the same seed value was
used for each of the duplicate matches played between each of
the variants of SartreNL and the various opponents.

SIT� 12/3/13 12:21 PM
Formatted: Font:8 pt

 Overall 24 duplicate matches were played; SartreNL
played two duplicate matches against each of the opponents
and SartreNLExp also played two duplicate matches against
each opponent. To determine the effectiveness of the addition
of the partially opponent based strategy based on statistical
exploits on SartreNL the duplicate matches were split into two
subsets: Run 1 and Run 2. Run 1 consisted of the first
duplicate match SartreNL played against each of the
opponents and the first duplicate match SartreNLExp played
against each opponent. Run 2 consisted of the second
duplicate match that SartreNL and SartreNLExp ran against
each of the opponents. The bots played each run without any
knowledge of the opponent they were facing.

In each run the match SartreNL played against a
particular opponent is used as the base-line. The difference in
performance between SartreNL and SartreNLExp can then be
taken as the effect of the exploits. Some of the bots have some
randomness associated with their strategies, so although the
same hands and community cards came up in all matches this
does not mean the bots chose the same action each time. Due
to this it is likely that the scores fluctuated between matches.
Furthermore an exploit was not applied to every hand and
SartreNLExp chooses the actions as SartreNL normally would
for hands where exploits are not applied to. Therefore, the
situation could have occurred where exploitations were used
and the overall score for SarterNLExp was lower than
SarterNL’s score. This would not have been due to the
exploits losing money, since exploits always have a large
positive expected value, it would have been caused by the fact
that there is randomness in SarterNL’s action selection
process. This means that although the exploits had positive
effects, SarterNLExp chose less profitable actions in the hands
in which exploits were not used, causing SarterNLExp’s
overall score to be lower than SarterNL’s.

To combat these problems we only compared the
resulting scores of the hands in which exploits were used.
There exists a duplicate match between SartreNLExp and each

opponent and a corresponding duplicate match between
SartreNL and each opponent in each run. The scores for the
exploited hands were found for both the SartreNL and
SartreNLExp match by going through the log files and tallying
up the result for each of the hands in which exploits were
used. The difference between these two scores shows the
impact of the exploits much more accurately than the
difference between the overall scores.

B. Results
Table 2 presents the results against the set of chosen

opponents from the 2011 ACPC competition. The opponent in
the match is given as the column heading, which is further
split into the two Runs. The table is split into two sections due
to spatial limitations. The SartreNL row depicts the outcome
of SartreNL’s matches. The SartreNLExp row depicts the
outcome of SartreNLExp’s matches. The match outcomes are
depicted in milli-big blinds per hand, and only take into
account hands in which exploits were used by SartreNLExp.
Milli-big blinds records the average number of big blinds won
per hand, multiplied by 1000. The number of hands row shows
the number of hands in the match in which exploits were used
by SartreNLExp. The difference row depicts the difference in
win rate in milli-big blinds per hand between SartreNLExp
and SartreNL, clearly indicating the effect the use of exploits
had on the hands.

All of the results shown in Table 2 indicate statistically

significant improvement in performance when statistical
exploits are used. The results suggest that the statistical
exploits module is able to appropriately determine and exploit
statistical anomalies found in the play of opponents. The fact
that significant increases are seen not only against the highly
exploitable opponents, but also against the difficult to exploit
opponents suggests that using an approximate Nash
equilibrium strategy as the base strategy is having the desired
effect. That being, SartreNLExp is able to remain difficult to
exploit while concurrently exploiting its opposition.

SIT� 12/3/13 12:22 PM
Deleted: t

VIII. CONCLUSION
 In conclusion, we have presented an approach for
exploiting statistical anomalies in the game of No Limit Texas
Hold’em. Rather than create a fully opponent based agent we
have created a module which can be added to a base strategy
to create a partially opponent based agent. This allowed us to
easily overcome one of the major problems faced by
frequency statistic based opponent models, allowing us to play
the base strategy as we wait for our frequency statistics to
become statistically significant. We added the statistical
exploitation module to an approximate Nash equilibrium base
strategy to create an agent which was both difficult to exploit
and able to exploit opponents. The module was able to safely
exploit static opponents, by which we mean it was able to
exploit opponents without making itself any more exploitable
than the base strategy. Our experimental results show that the
use of statistical exploitations not only did not make the agent
more exploitable, but significantly increased the win rate of
the agent in the hands in which exploits were used.

The statistical exploitation module’s tradeoff comes not in
the form of increasing the agent’s exploitability to allow for
the ability to exploit opponents, as done in Polaris [1]. Instead
we limit the type of opponent exploitation to only statistical
exploitation, allowing the module to exploit opponents without
increasing the exploitability of the base strategy. This
limitation means the statistical exploitation module is not able
to fully exploit an opponent like a best response would.
However we feel that ensuring the agent is as difficult for
opponents to exploit as possible is more important than
allowing it the ability to maximally exploit some opponents.

IX. FUTURE WORK
There are several improvements that could be made to

increase the performance of the current system and increase
the scalability. The most obvious improvement is the addition
of more exploits. The more exploits that are in the system, the
better it is at exploiting opponents. So far the system does not
have a large number of exploits. Currently the frequency
statistics model does not use any form of decaying history and
is unable to remember opponents. Decaying history is an
important upgrade as the system is currently vulnerable to any

non-static strategies as it cannot react quickly to strategy
alterations after it has built up a view of its opponent.

The module would be improved greatly by the re-
implement of the statistical model to store hand histories. This
would improve the performance and scalability of the
statistical model by making it easy to include and compute
further frequency statistics and allowing the ability to
recognize previously played opponents again. Decaying
history would also be easier to implement for a system that
stored hand histories than for the current system that has only
counters. If only counters are available, it is difficult to
determine how to alter the counter to implement decaying
history. While, if hand histories are stored, it would be simple
to determine what the last M hands were and how they
affected each counter. Stored hand histories would also allow
the module to have statistic specific histories. In this way,
statistics could be based on the last k occurrences of the
situation the statistic is associated with, instead of just having
the last M hands played.

REFERENCES
[1] M. Johanson, "Robust Strategies and Counter-Strategies: Building a

Champion Level Computer Poker Player," M. Sc. Thesis, 2007.
[2] T. Schauenberg, "Opponent Modelling and Search in Poker," M. Sc.

Thesis, 2006.
[3] D. Billings, D. Papp, J. Schaeffer, D. Szafron "Opponent Modeling in

Poker," Proceedings of the Fifteenth National Conference of the
American Association for Artificial Intelligence (AAAI), 1998.

[4] D. Billings, L. Pena, J. Schaeffer, D. Szafron, "Using Probabilistic
Knowledge and Simulation to play Poker," Proceedings of the Sixteenth
National Conference of the American Association for Artificial
Intelligence (AAAI), 1999.

[5] Davidson, "Opponent Modeling in Poker: Learning and Acting in a
Hostile and Uncertain Environment," M. Sc. Thesis, 2002.

[6] J. Rubin, I. Watson, 1st Initial. , "Opponent Type Adaptation for Case-
Based Strategies in Adversarial Games," ICCBR 2012, Vol. , no. , 357-
368, 2012.

[7] J. Rubin, I. Watson, 1st Initial. , "Successful Performance via Decision
Generalisation in No Limit Texas Hold\'em," ICCBR 2011, Vol. , no. ,
467-481, 2011.

[8] J. Rubin, I. Watson, 1st Initial. , "Similarity-based retrieval and solution
re-use policies in the game of texas hold'em," 18th International
Conference on Case-Based Reasoning, ICCBR 2010, Vol. , no. , 465-
479, 2010.

[9] (2012), PokerStove, . Available from: , :
http://www.pokerstove.com/blog/ [Accessed: Oct 12, 2012].

