
Combining Case-Based Reasoning and
Reinforcement Learning for Tactical Unit
Selection in Real-Time Strategy Game AI

Stefan Wender and Ian Watson

The University of Auckland, Auckland, New Zealand
s.wender@cs.auckland.ac.nz, ian@cs.auckland.ac.nz

Abstract. This paper presents a hierarchical approach to the problems
inherent in parts of real-time strategy games. The overall game is decom-
posed into a hierarchy of sub-problems and an architecture is created that
addresses a significant number of these through interconnected machine-
learning (ML) techniques. Specifically, individual modules that use a
combination of case-based reasoning (CBR) and reinforcement learning
(RL) are organised into three distinct yet interconnected layers of rea-
soning. An agent is created for the RTS game StarCraft and individual
modules are devised for the separate tasks that are described by the
architecture. The modules are individually trained and subsequently in-
tegrated in a micromanagement agent that is evaluated in a range of test
scenarios. The experimental evaluation shows that the agent is able to
learn how to manage groups of units to successfully solve a number of
different micromanagement scenarios.

Keywords: CBR, Reinforcement Learning, Game AI, Layered Learning

1 Introduction

An area that has always been at the forefront of interesting AI utilization is
games. Games provide a fertile breeding ground for new approaches and an in-
teresting and palpable test area for existing ones. And as games such as checkers
and chess are devised as high-level abstractions of mechanisms and processes in
the real world, creating AI that works in these games can eventually lead to AI
that solves real-world problems.

One of the most popular genres of computer video games is real-time strat-
egy (RTS). RTS is a genre of computer video games in which players perform
simultaneous actions while competing against each other using combat units.
Often, RTS games include elements of base building, resource gathering and
technological developments and players have to carefully balance expenses and
high-level strategies with lower-level tactical reasoning. RTS games incorporate
many different elements and are related to areas such as robotics and military
simulations. RTS games can be very complex and, especially given the real-time



aspect, hard to master for human players. Since they bear such a close resem-
blance to many real-world problems, creating powerful AI in an RTS game can
lead to significant benefits in addressing those related real-world tasks.

The creation of powerful AI agents that perform well in computer games is
made considerably harder by the enormous complexity these games exhibit. The
complexity of any board game or computer game is defined by the size of its
state- and decision space. A state in chess is defined by the position of all pieces
on the board while the possible actions at a certain point are all possible moves
for these pieces. [14] estimated the number of possible states in chess as 1043.
The number of possible states in RTS games is vastly bigger. [2] estimated the
decision-complexity of the Wargus RTS game (i.e. the number of possible actions
in a given state) to be in the 1,000s even for simple scenarios that involve only a
small number of units. StarCraft, a pioneering commercial RTS game from 1998,
is even more complex than Wargus, with a larger number of different unit types
and larger combat scenarios on bigger maps, leading to more possible actions. [20]
estimated the number of possible states in StarCraft, defined through hundreds
of possible units for each player on maps that can have maximum dimension
of 256x256 tiles, to be in excess of 1011500. In comparison, chess has a decision
complexity of about 30.

The topic of this paper is the creation of an agent that focuses on the tactical
and reactive tasks in RTS games, the so-called ‘micromanagement’. Our agent
architecture is split into several interconnected layers that represent different
levels of the decision making process. The agent uses a set of individual CBR/RL
modules on these different levels of reasoning in a fashion that is inspired by the
layered learning model [16]. The combination of CBR and RL that is described in
in this paper is performed in order to enable the agent to address more complex
problems by using CBR as an abstraction- and generalisation-technique.

2 Related Work

Creating the overall model as well as the individual sub-components of the ar-
chitecture was influenced by previous research that evaluated the suitability of
RL for the domain [21] and a combination of CBR and RL for small-to-medium-
sized micromanagement problems [23].

Reinforcement Learning The application of RL algorithms in computer game
AI has seen a big increase in popularity within the past decade, as RL is very
effective in computer games where perfect behavioural strategies are unknown
to the agent, the environment is complex and knowledge about working solu-
tions is usually hard to obtain. Recently, the UCT algorithm (Upper Confidence
Bounds applied to Trees) [9], an algorithm based on Monte-Carlo Tree Search
(MCTS), has lead to impressive results when applied to games. MCTS and UCT
are closely related to RL which is partially based on Monte-Carlo methods.

[7] overcame this and described the use of heuristic search to simulate com-
bat outcomes and control units accordingly. Because of the aforementioned lack
in speed and precision of the StarCraft game environment, the authors first
created their own simulator, SparCraft, to evaluate their approach and later re-



integrate the results into a game-playing agent. Apart from MCTS and UCT
however, few of the new theoretical discoveries in RL have made it into game
AI research. Most research in computer game AI, including this paper, works
with the well-tested temporal difference (TD) RL algorithms such as Q-learning
[19]. Q-learning integrates different branches of previous research such as dy-
namic programming and trial-and-error learning into RL. [3] extended an online
Q-learning technique with CBR elements in order for the agent to adapt faster
to a change in the strategy of its opponent. The resulting technique, CBRetali-
ate, tried to obtain a better matching case whenever the collected input reading
showed that the opponent was outperforming it. As a result of the extension, the
CBRetaliate agent was shown to significantly outperform the Q-learning agent
when it came to sudden changes in the opponent’s strategy.

Case-Based Reasoning and Hybrid Approaches Using only RL for learn-
ing diverse actions in a complex environment quickly becomes infeasible and
additional modifications such as ways of inserting domain knowledge or combin-
ing RL with other techniques to offset its shortcomings are necessary.

Combining CBR with RL has been identified as a rewarding hybrid approach
[5] and has been done in different ways for various problems.

[8] extended the standard GDA algorithm presented in [12] into Learning
GDA. LGDA was created by integrating CBR with RL, i.e. the agent tried to
choose the best goal, based on the expected reward. While the integration of
CBR and RL differs from the approach pursued in the CBR/RL modules in this
paper, the online acquisition of knowledge using a CBR/RL approach is similar.

[11] described the integration of CBR and RL in a continuous environment to
learn effective movement strategies for units in a RTS game. This approach was
unique in that other approaches discretize these spaces to enable machine learn-
ing. As a trade-off for working with a non-discretized model, the authors only
looked at the movement component of the game from a meta-level perspective
where orders are given to groups of units instead of individuals and no orders
concerning attacks are given.

An example of an approach which obtains knowledge directly from the en-
vironment is [4]. The authors used an iterative learning process that is similar
to RL and employed that process and a set of pre-defined metrics to measure
and grade the quality of newly-acquired knowledge while performing in the RTS
game DEFCON. Similar to this approach, the aim in this paper and the CBR/RL
modules created as part of it is to acquire knowledge directly through interaction
with the game. The learning process is controlled by RL which works well in this
type of unknown environment without previous examples of desired outcomes.
CBR is then used for managing the acquired knowledge and generalising over
the problem space.

Hierarchical Approaches and Layered Learning Combining several ML
techniques, such as CBR and RL, into hybrid approaches leads to more pow-
erful techniques that can be used to address more complex problems. However,
problems such as those simulated by commercial RTS games with many actors



in diverse environments still need significant abstraction in order for agents to
solve the problems they are confronted with. A common representation of the
problems that are part of RTS games is in a hierarchical architecture [13].

An early application of hierarchical reasoning in RTS games was described
in [6], where planning tasks in RTS games are divided into a hierarchy of three
different layers of abstraction. This is similar to the structure identified in the
next section, with separate layers for unit micromanagement, tactical planning in
combat situations and high-level strategic planning. The authors used MCPlan, a
search/simulation based Monte Carlo planning algorithm, to address the problem
of high-level strategic planning.

Layered learning (LL) was devised for computer robot soccer, an area of
research that pursues similar goals as RTS games and can be regarded as a sim-
plified version of these combat simulations [16]. The main differences between
the two are the less complex domain and less diverse types of actors in computer
soccer. Additionally, computer soccer agents often compute their actions au-
tonomously while RTS game agents orchestrate actions between large numbers
of objects [13]. Because of the many similarities, LL makes an excellent, though
as of now mostly unexplored, paradigm for a machine learning approach to RTS
game AI. [10] combine both original and a concurrent LL approach [24] to create
overlapping layered learning for tasks in the simulated robotic soccer domain.
The original paradigm froze components once they had acquired learning for
their tasks. The concurrent paradigm purposely kept them open during learning
subsequent layers, thus finding a middle ground between freezing each layer once
learning is complete and always leaving previously learned layers open.

3 A Hybrid Hierarchical CBR/RL Architecture

The hierarchical architecture and its constituent separate modules that address
the micromanagement problem in RTS games are based on previous approaches
described in [21] and [23]. Subdividing the problem enables a more efficient so-
lution than when addressing the problem on a single level of abstraction, some-
thing which would either result in case representations which are too complex
to be used for learning in reasonable time, or that require such a high level of
abstraction that it prevents any meaningful learning process.

The structure of the core problems inherent in RTS games such as Star-
Craft, shown in Figure 1, leads to most RTS agents being hierarchical [13]. The
architecture we devised covers the micromanagement component of the game,
enclosed in the solid red square shown in Figure 1. Reconnaissance is currently
not part of the framework, as the CBR/RL agent only works with units which
are already visible.

Based on this task decomposition, three distinct organisational layers are
identified. The Tactical Level is the highest organisational level and represents
the entire world the agent has to address, i.e. the entire battlefield and the entire
solid red square in the figure. The Squad Level is indicated by the dotted green
square. Sub-tasks represented here concern groups of units, potentially spread
over the entire battlefield. Finally, the Unit Level is the bottommost layer. This



layer covers pathfinding, works on a per-unit basis and is denoted by the dashed
blue square in the diagram. Translating this layered problem representation

Fig. 1. RTS Micromanagement Tasks

into a CBR/RL architecture is done through a number of hierarchically inter-
connected case-bases. The approach to hierarchical CBR here is strongly inspired
by that in [15], which describes a hierarchical CBR (HCBR) system for software
design. One major difference between the approach described here and the one
in [15] is that the use of RL for updating fitness values in the hierarchically in-
terconnected case-bases means that each case-base has its own Adaptation-part
of the CBR cycle [1]. Figure 2 shows the case-bases resulting from modeling

Fig. 2. Hierarchical Structure of the Case-Bases

the problem in this hierarchical fashion. Both the tactical level and the unit
level are represented by a single case-base. The unit level is only responsible
for Navigation. The intermediate squad level has one case-base for two possible



actions on that level, Attack and Formation. Each case-base is part of a dis-
tinct CBR/RL module. Higher levels can then use the lower level components
to interpret their solutions. As a result, higher levels base their learning process
on the knowledge previously acquired on lower levels. RL relies in its learning
process on the fact that similar actions lead to to similar results. Otherwise
the learning process continues until a stable policy is found with non-changing
fitness values for state-action pairs. This would be difficult to achieve within a
reasonable time if lower-level case-bases change fitness values at the same time
as higher-level case-bases. Therefore, it was decided to evaluate and train lower
level components first, retain the acquired knowledge for the respective tasks in
the appropriate case-bases and subsequently evaluate the next-higher level us-
ing the lower-level cases as a foundation. In order to avoid diluting the learning-
and evaluation process of higher levels, cases in lower-level case-bases are not
changed once they are reused by a higher-level evaluation.

This evaluation and training procedure is not ideal since it partially negates
the online learning characteristic of the CBR/RL agent. However, the alternative
is a very noisy learning process that would seriously complicate the use of RL.

4 Lower-Level Modules
The individual modules that make up the overall architecture all follow a sim-
ilar design and use a hybrid CBR/RL approach [23]. This section sums up the
three lower-level modules (Pathfinding, Attack and Formation) and the MDP
framework that is created for them [17]. All modules use a Q-learning algorithm
to learn how to maximise the rewards for their respective tasks. Structure and
implementation of the module for Tactical Unit Selection is described in detail
in the next section. Underlying the decomposition into the modules described
here is the analysis of tasks that are relevant to micromanagement in RTS games
as displayed in Figure 1.

4.1 Unit Pathfinding
Unit navigation and movement is a core component of any RTS game and also
extends to other areas such as autonomous robotic navigation. This module is
described in detail in [22] and is concerned with controlling a single agent unit.

States

Attribute Description
Agent Unit IM Map with 7x7 fields containing the damage po-

tential of adjacent allied units.
Enemy Unit IM Map with 7x7 fields containing the damage po-

tential of adjacent enemy units.
Accessibility IM Map with 7x7 fields containing true/false values

about the accessibility.
Unit Type Type of a unit.
Last Unit Action The last movement action taken.
Target Position Target position within the local 7x7 map.

Table 1. Navigation Case-Base Summary

Actions The case solutions are concrete game actions. There currently are four



Move actions for the four different cardinal directions, i.e. one for every 90◦.

Reward Signal The compound reward Ra
ss′

that is computed after finishing an
action is based on damage taken during the action ∆hunit, the time the action
took ta and the change in distance to the chosen target location ∆dtarget.

Ra
ss′

= ∆hunit − ta +∆dtarget.

4.2 Squad-Level Coordination

Squad-level modules define and learn how to perform actions that coordinate
groups of units while re-using the pathfinding component on the lowest level of
the architecture.

Unit Formations Tactical formations are an important component in RTS
games, which often resemble a form of military simulator and are heavily in-
spired by real-life combat strategy and tactics. The Formation module creates
formations that are a variant of dynamic formations [18] and learn through
CBR/RL the best unit-slot associations, i.e. which slot in the formation a cer-
tain unit is assigned to.

States

Category Attribute Type
Index Unit # Agent Integer

Type Enum
Health IntegerUnit

Position Integer
Opponent Attacking Damage towards the

Formation Center from each of the 8
(Inter)Cardinal Directions

Integer

Table 2. Formation State Case Description

Actions Actions are an assignment of the controlled units to certain slots in the
formation. This means that the available actions are basically a permutation of
all available units over all available formation slots.

Reward Signal The two main criteria for an effective formation-forming ac-
tion were decided to be the speed with which the action is executed tform and,
weighted slightly higher, the potential damage that units in the formation can
deliver at any one point in time davg.

rform = 1.5 ∗ davg − tform.

Unit Attack The goal of using attacking units in the most efficient way is to
focus on a specific opponent unit in order to eliminate it and, as a result, also
eliminate the potential damage it can do to agent units. As part of this Attack
component, it also was decided to simplify the module by giving all agent units
assigned to a single Attack action the same target. More complex attacking
behaviour can then be created by queuing several Attack action after another.



States

Category Attribute Type
Index Units Opponent Integer

Type Enum
Health IntegerTarget Unit

Average Distance to Attackers Integer
Agent Combined Attacking Unit Damage Integer

Table 3. Attack State Case Description

Actions The potential case solutions/actions for attack cases are the attack
targets. This means that there is one solution for each attack target/enemy
unit.

Reward Signal The reward signal is composed of components for the time it
takes to finish the attack action tatt, the damage done to the target dam as well
as the damage removed if the target is eliminated damelim.

ratt = dam+ damelim − tatt.
Unit Retreat While also a selectable action like Attack and Formation, Re-
treat does not use CBR/RL and thus doesn’t have its own module in 2. The
Retreat action is designed to avoid potential sources of damage. The Retreat
action takes into account a larger area of the immediate surroundings of a unit
when compared to these other actions, a 15x15 plot, compared to 7x7 used for
pathfinding. In a two-step process that also takes into account the influence of
neighbouring plots, the action selects the area with the lowest amount of enemy
influence/damage potential.

5 Tactical Unit Selection
The Tactical Unit Selection component is structured in a way similar to that
of lower-level components, based on a hybrid CBR/RL integration. Given the
decomposition of the problem as described in Figure 1, the task of the Tactical
Unit Selection component is to find an ideal distribution of units among the
three different modules on the level below, i.e. Formation, Attack and Retreat .

One major simplification that was introduced in order to avoid increasing
the number of possible solutions exponentially and making learning infeasible
with the current model is that all units assigned to Attack or Formation actions
will perform the same action. This means that any unit assigned to an attack
will attack the same target. Any unit assigned to a formation, will be part of
the same formation.

5.1 Tactical Decision Making Model
The model used for the Tactical Unit Selection module, similar to those for For-
mation and Attack components, describes the problem in terms of an MDP. As
this problem integrates the three lower-level modules, the model also combines
elements of these modules.
States Tactical Unit Selection states (or cases) are basically a combination of
Attack and Formation states. However, some of the attributes that those state
models use are part of both Attack and Formation, while others contain the
same information but in less detail.



The resulting composition of the case description of a Tactical Unit Selection
state can be seen in Table 4.

Category Attribute Type
Units Agent Integer

Index
Units Opponent Integer

Type Enum
Health Integer

Damage Integer
Quadrant Integer

Unit Agent

Cooldown Boolean
Type Enum

Health Integer
Damage Integer

Quadrant Integer
Unit Opponent

AverageDistance Integer

Table 4. Tactical State Case Description

Opponent units have two attributes containing different information (direc-
tion versus distance, relative to agent units) that indicate their position: Quad-
rant and AverageDistance. Agent units also have the Quadrant attribute to
indicate their position relative to each other. The Boolean Cooldown value indi-
cates if a unit’s weapon is currently in cooldown or if it can be used. Type only
distinguishes among Melee, Ranged and Air instead of specific unit types.

Given this composition, the dimensionality of the case description is consid-
erably higher than for previous modules. For example, in a scenario with na = 4
agent units and no = 5 opponent units, case descriptions have 2+4∗5+5∗5 = 47
attributes.
Actions Tactical Unit Selection case solutions are distributions of the avail-
able agent units among the three available actions, i.e. triples (na, nf , nr) that
indicate how many units are assigned to each action type. The overall number
of solutions for n units distributed among the three categories is thus

(
3+n−1
n

)
.

Given five agent units, the possible distributions for (Attack ,Formation,Retreat)
can be (5,0,0), (4,1,0) ... (0,0,5). For n = 5 units the number of solutions is there-
fore

(
3+n−1
n

)
= 21. This definition leads to a requirement for limiting the number

of controlled units, if the number of learning episodes is to remain reasonable.
The maximum number of agent and opponent units used in the evaluation sce-
narios was set to ten. By allowing a maximum of ten agent units in a game state,
a single case can have at most

(
12
10

)
= 66 possible solutions.

Reward The reward signal contains a negative component ttac for the time it
takes for a Tactical Unit Selection action to complete, a negative component
damopp for the damage that agent units received while performing the last ac-
tion and two positive components, damag for the damage done by agent units as
well as damelim for the summed-up damage potential of all opponent units elim-
inated during the last action. Additionally, a third negative component damloss

is added: this represents the damage potential lost when an agent unit is elimi-
nated.

rtac = damag + damelim − damopp − damloss − ttac.

Overall, the agent should attempt to choose solutions which eliminate op-
posing units quickly, while sustaining no (or only very little) damage to its own
units.



5.2 CBR/RL Algorithm
Figure 3 shows a graphical representation of the steps and components involved
in assigning actions to the available units. The algorithm chooses, from top to
bottom, a Tactical Unit Selection unit distribution and, based on this distri-
bution, an attack target, a formation unit-to-slot assignment as well as retreat
destinations. Using the unit destinations computed through the lower-level com-
ponents, the Navigation component then manages the unit movement. There
can be several Navigation actions until a unit reaches the destination assigned
to it by one of the higher-level modules. There is always at most one action for
Attack , Formation and Retreat , or zero, if no unit is assigned to a specific action
category. The overall Tactical Unit Selection action is finished once all modules
on lower levels indicate they are finished with their tasks.

StarCraft
Game 

Environment

BWAPI

AI Agent

Environment
Information

Tactical Case Solution

Tactical Solution: Unit Distribution

Tactical Case Description

Unit Move
Command

Tactical CBR/
RL

Module

Hierarchical Agent Overview ‐
Action Selection Phase

Tactical  
Case‐Base
(Level One)

MySQL 
Database

MySQL 
Database

Attack 
Case‐Base 
(Level Two)

Pathfinding 
Case‐Base

(Level Three)

MySQL 
Database

Formation 
Case‐Base 
(Level Two)

Formation Solution
 Case‐Base (Level Two)

MySQL 
Database

Formation 
CBR/RL
Module

Attack CBR/RL
Module

Retreat 
Module

Pathfinding CBR/RL
Module

Fo
rm

a
ti
o
n
 S
o
lu
ti
o
n
:

U
n
it
 D
es
ti
n
a
ti
o
n

Environment
Information

Environment
Information

Environment
Information

FormationState Description

Formation Solution Description

Formation Case Solution

Unit Attack Command
(If in Target Range)

R
et
re
a
t 
So
lu
ti
o
n
:

U
n
it
 D
es
ti
n
a
ti
o
n

U
n
it
 D
es
ti
n
a
ti
o
n

Attack State 
Description

Attack Case
Solution

Pathfinding State
Description

Environment
Information

Pathfinding Case
 Solution

Note: Logical flow is top‐down, from left to right.

Fig. 3. Action Selection using Hierarchical CBR/RL for Unit Micromanagement

6 Experimental Setup and Evaluation
Depending on the choice of parameters, large numbers of episodes can be re-
quired for finding optimal policies. Since this can easily become prohibitive if
complex scenarios are used, a first step is an analysis of the case-base behaviour
in a subset of the test scenarios, to find an appropriate threshold ψ that deter-
mines how similar a retrieved case in the CBR component has to be. Using a



low ψ would mean that fewer cases are required to cover the entire case-space.
However, this might lead to the retrieval of non-matching cases for a given situ-
ation and thus to sub-optimal performance due to a bad solution. Therefore, the
selected ψ should lead to an optimal trade-off between performance and learn-
ing time. A number of representative micromanagement combat situations were
created for the evaluation, each one with the aim to win the overall scenario
against the built-in AI while retaining as much of the agent’s own force as pos-
sible. Unit numbers and types vary between scenarios, as does the layout of the
environment. Unit types are limited to standard non-flying units. The chosen

Parameter Values
Scenario A(3vs5), B(6vs6), C(5vs5), D(4vs9) ,

E(10vs10)
Number of Games 100 - 100,000

Algorithm One-Step Q-learning
Case-Base Similarity Threshold ψ A, B 30% − 95%

Case-Base Similarity Threshold ψ C, D, E 80%
RL Learning Rate α 0.1

RL Discount Factor γ 0.8
RL Exploration Rate ε 0.8 - 0

Table 5. Tactical Decision Making Evaluation Parameters

algorithmic parameters for the CBR and RL components are listed in Table 5.
The parameters are similar to those used successfully for evaluation and training
of the Navigation, Attack and Formation modules. Starting positions are always
a random spread opposite each other and the map-size is 2048x2048 pixels, the
smallest possible StarCraft map size. Every experiment was run five times and
the results were averaged.

6.1 Results

The first two scenarios were, as stated above, run with a number of different
similarity thresholds ψ. Table 6 shows the results for Scenario A. Table 7 shows
the results for Scenario B. The reward is normalized to a value between 0% and
100%. 0% is achieved in a game in which agent units are eliminated without
doing any damage. 100% is a perfect game in which all opponents are eliminated
without the agent units sustaining any damage. This allows to compare results
of scenarios with different absolute values for maximum and minimum rewards.

ψ # Episodes # Cases # Solutions # Actions Max. %
Reward

95% 100,000 2,376.4 18,853.0 47.32 92.48%
90% 60,000 1,265.2 9,976.4 45.27 87.33%
85% 20,000 366.8 2,570.2 41.15 82.93%
80% 8,000 192.0 1,299.6 41.06 81.82%
70% 1,500 52.6 293.4 35.43 70.16%
60% 800 39.2 224.6 30.96 60.73%
50% 500 29.2 156.2 23.7 52.79%
40% 300 17.6 95.8 11.49 33.35%
30% 100 13 69 10.36 25.47%

Table 6. Tactical Decision Making Evaluation Scenario A



ψ # Episodes # Cases # Solutions # Actions Max. %
Reward

95% 160,000 1570.4 31,201.6 7.10 78.15%
90% 75,000 699.8 12,339.0 6.92 75.13%
85% 30,000 324 5,324.20 6.96 73.01%
80% 15,000 259.8 3755.8 6.99 69.97%
70% 7,500 159.4 2092.6 7.45 63.09%
60% 5,000 95 1,309.2 8.72 57.99%
50% 3,000 63.2 801.4 9 55.19%
40% 2,000 47.2 631.4 9.5 45.53%
30% 1,500 38 517 10.18 43.44%

Table 7. Tactical Decision Making Evaluation Scenario B

As results in both the tables show, similarity thresholds between 80% and
95% lead to results that are roughly within a 10% interval in terms of overall
performance. However, the number of cases and, more importantly, the number
of overall solutions increases significantly among the different thresholds. There-
fore, it was decided to use a threshold of ψ = 80% for the subsequent evaluation
scenarios. Given the results from the case-base analysis, the number of training
episodes was set based on the number of agent units.The number of training
episodes is set to 15,000 for Scenario C, 10,000 for Scenario D and 50,000 for
Scenario E. These comparably high amount of training episodes was chosen to
ensure an optimal or near-optimal policy.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

%
 R

e
w

a
rd

% Episodes

Scenario A

Scenario B

Scenario C

Scenario D

Scenario E

Fig. 4. Performance Results for all Scenarios

The results in Figure 4 show that the hierarchical RL/CBR agent achieves
a notable increase in average reward obtained for all five scenarios over the
duration of their respective training runs. In terms of reward development, there
is a difference between Scenarios B and D which use melee units only, and
the other three scenarios. Scenarios B and D show an almost linear reward
development over the time their respective experiments run. Scenarios A,C and
E, which all use both melee and ranged units, show reward development curves
that are more similar to those encountered in previous evaluations.



7 Discussion

Scenarios A and B have about ten Tactical Unit Selection actions (i.e. Attack ,
Formation or Retreat) in an average episode for the lowest, worst-performing
setting of ψ = 30% where there is only a single case for each agent-opponent unit
number combination. For higher thresholds, which allow for a more optimized
performance, the number of actions diverges significantly. For Scenario A, the
number of Tactical Unit Selection actions exceeds 40 for ψ >= 80%. The reason
for this is the learned hit-and-run strategy that performs best for the units in this
particular scenario and which requires extensive use of Retreat actions. Lower
similarity thresholds mean there is not enough distinction between inherently
different cases, which in turn does not allow the agent to learn and effectively
execute this hit-and-run strategy. The melee-unit-focused Scenario B teaches
the agent a fundamentally different strategy, indicated by the average number of
Tactical Unit Selection actions. For ψ >= 70%, the average number of actions
per game is below nine. This is due to the main strategy in this scenario, which is
based on focusing attacks (covered by the Attack action) combined with minimal
regrouping or retreating through Formation or Retreat actions. There is no use
for extensive Retreat patterns since opponent- and agent unit types are identical,
which means hit-and-run style attacks are useless.

The fact that agent and opponent use identical melee units in Scenario B also
explains the difference in overall maximum rewards achieved. While the hit-and-
run strategy allows the agent to achieve perfect or near-perfect rewards of more
than 90% for Scenario A, the average reward in Scenario B reaches a maximum
value of just below 80%. This is because attacking melee units with other melee
units will always lead to suffering a certain amount of damage. The low number
of actions required for optimal performance in Scenario B also means that it
is easier to achieve good results in terms of average reward by using random
untried solutions.

In all scenarios, the AI agent manages to obtain a significant improvement
in the average reward. For all army compositions in the different scenarios, the
agent finds optimal or near-optimal policies. Due to the unit types involved,
Scenario A is the only scenario where the army composition theoretically allows
a ‘perfect game’, i.e. eliminating all enemy units without sustaining damage.
The agent manages to obtain more than 80% average reward in this scenario. In
Scenarios C and E, which both contain melee units that are harder to manage
and are basically guaranteed to sustain damage when they attack, the agent
manages to obtain above 75% of the maximum possible reward. Even in Scenario
D, which only uses melee units, the agent reaches nearly 70% of the possible
reward, pointing to effective use of focus-fire and manoeuvring.

When comparing the reward development of the different scenarios as de-
picted in Figure 4, there is a difference between Scenarios B and D which use
only melee units and the other three scenarios. This directly reflects the ideal
behaviours in those scenarios and how these behaviours are reflected in action-
selection policies. Optimal behaviour in a given scenario depends both on the
layout of the scenario and on the agent and opponent army compositions.



8 Conclusion and Future Work
Overall, the results show that the hierarchical CBR/RL agent successfully learns
the micromanagement tasks it was built to solve. The agent learns near-optimal
policies in all evaluated scenarios which cover a range of in-game situations. The
agent successfully re-uses the lower-level modules created for the squad-level
tasks and the knowledge stored while training these modules.

One major restricting condition which was introduced to avoid a combinato-
rial explosion of possible solutions is limiting Attack and Formation to a single
action for all units assigned to the appropriate category on the highest level.
The evaluation of the hierarchical architecture showed that for the tested sce-
narios, the implementation achieved good to very good results on all occasions.
However, it could already be observed that the performance suffered slightly
for bigger scenarios when compared to the excellent results in scenarios with
fewer units. One way to overcome this limitation would be to introduce another
level above the currently highest level. The additional level would then simply
perform a pre-allocation of all available units among several lower-level modules.

An important aspect which could be part of future work is the comparison of
the approach presented here to other bot architectures. While this comparison
will require additional logic to also address the strategic layer such a test could
provide valuable insights into the power of adaptive online ML in relation to
other ML, static and search-based approaches.

Currently there is a separate training phase for each of the lower-level mod-
ules. Creating modules which can be trained concurrently would be one way to
accelerate the learning process. Other possible ways of improving performance
would be through speeding up the individual CBR/RL components by employing
better algorithmic techniques such as improved case-retrieval.

In summary, the key contribution of this paper is an integrated hierarchical
CBR/RL agent which learns how to solve both reactive and tactical RTS game
tasks. The creation of the individual hybrid CBR/RL modules for tasks in RTS
game micromanagement is based on thorough analyses of TD RL algorithms,
CBR behaviour and the relevant problem domain tasks. The resulting agent
architecture acquires the required knowledge through online learning in the game
environment and is able to re-use the knowledge to successfully solve tactical RTS
game scenarios.

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological
variations, and system approaches. AI communications 7(1), 39–59 (1994)

2. Aha, D., Molineaux, M., Ponsen, M.: Learning to win: Case-based plan selection
in a real-time strategy game. Case-Based Reasoning Research and Development
pp. 5–20 (2005)

3. Auslander, B., Lee-Urban, S., Hogg, C., Muñoz-Avila, H.: Recognizing the Enemy:
Combining Reinforcement Learning with Strategy Selection using Case-Based Rea-
soning. In: Proceedings of the 9th European Conference on Advances in Case-Based
Reasoning (ECCBR-08). Springer (2008)



4. Baumgarten, R., Colton, S., Morris, M.: Combining ai methods for learning bots
in a real-time strategy game. Int. Journal of Computer Games Technology (2008)

5. Bridge, D.: The virtue of reward: Performance, reinforcement and discovery in
case-based reasoning. Case-Based Reasoning Research and Development (2005)

6. Chung, M., Buro, M., Schaeffer, J.: Monte carlo planning in rts games. In: Proceed-
ings of the IEEE Symposium on Computational Intelligence and Games (2005)

7. Churchill, D., Saffidine, A., Buro, M.: Fast heuristic search for rts game combat
scenarios. In: Proceedings of the Eight Artificial Intelligence and Interactive Digital
Entertainment International Conference (AIIDE 2012) (2012)

8. Jaidee, U., Muñoz-Avila, H., Aha, D.: Integrated learning for goal-driven auton-
omy. In: Proceedings of the Twenty-Second International Conference on Artificial
Intelligence (IJCAI-11) (2011)

9. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. Machine Learning:
ECML 2006 pp. 282–293 (2006)

10. MacAlpine, P., Depinet, M., Stone, P.: Ut austin villa 2014: Robocup 3d simulation
league champion via overlapping layered learning. In: Proc. of the Twenty-Ninth
AAAI Conf. on Artificial Intelligence (AAAI) (2015)

11. Molineaux, M., Aha, D., Moore, P.: Learning continuous action models in a real-
time strategy environment. In: Proceedings of the Twenty-First Annual Conference
of the Florida Artificial Intelligence Research Society. pp. 257–262 (2008)

12. Muñoz-Avila, H., Aha, D., Jaidee, U., Klenk, M., Molineaux, M.: Applying goal
driven autonomy to a team shooter game. In: Proceedings of the Florida Artificial
Intelligence Research Society Conference. pp. 465–470 (2010)

13. Ontañón, S., Synnaeve, G., Uriarte, A., Richoux, F., Churchill, D., Preuss, M.: A
survey of real-time strategy game ai research and competition in starcraft. IEEE
Transactions on Computational Intelligence and AI in Games (2013)

14. Shannon, C.E.: Programming a computer for playing chess. Springer (1950)
15. Smyth, B., Cunningham, P.: Déjà vu: A hierarchical case-based reasoning system

for software design. In: ECAI. vol. 92, pp. 587–589 (1992)
16. Stone, P.: Layered Learning in Multiagent Systems: A Winning Approach to

Robotic Soccer. MIT Press (1998)
17. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction (1998)
18. Van Der Heijden, M., Bakkes, S., Spronck, P.: Dynamic formations in real-time

strategy games. In: IEEE Symposium On Computational Intelligence and Games,
2008. pp. 47–54. IEEE (2008)

19. Watkins, C.: Learning from Delayed Rewards. Phd thesis, University of Cambridge,
England (1989)

20. Weber, B.: Integrating Learning in a Multi-Scale Agent. Phd thesis, University of
California, Santa Cruz (2012)

21. Wender, S., Watson, I.: Applying reinforcement learning to small scale combat in
the real-time strategy game starcraft:broodwar. In: IEEE Symposium on Compu-
tational Intelligence and Games (CIG) (2012)

22. Wender, S., Watson, I.: Combining case-based reasoning and reinforcement learn-
ing for unit navigation in real-time strategy game ai. In: Case-Based Reasoning
Research and Development, pp. 511–525. Springer (2014)

23. Wender, S., Watson, I.: Integrating case-based reasoning with reinforcement learn-
ing for real-time strategy game micromanagement. In: PRICAI 2014: Trends in
Artificial Intelligence, pp. 64–76. Springer (2014)

24. Whiteson, S., Stone, P.: Concurrent layered learning. In: Proceedings of the second
international joint conference on Autonomous agents and multiagent systems. pp.
193–200. ACM (2003)


