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Abstract. Given a set of data, recorded by observing the decisions of
an expert player, we present a case-based framework that allows the
successful generalisation of those decisions in the game of no limit Texas
Hold’em. The transition from a limit betting structure to a no limit
betting structure offers challenging problems that are not faced in the
limit domain. In particular, we address the problems of determining a
suitable action abstraction and the resulting state translation that
is required to map real-value bet amounts into a discrete set of abstract
actions. We also detail the similarity metrics used in order to identify
similar scenarios, without which no generalisation of playing decisions
would be possible. We show that we were able to successfully generalise
no limit betting decisions from recorded data via our agent, SartreNL,
which achieved a 2nd place finish at the 2010 Annual Computer Poker
Competition.

1 Introduction

In 2008 the Second Man-Machine Poker Competition was won by a computer
poker robot named Polaris [1]. Polaris challenged a group of professional hu-
man players to the game of limit Texas Hold’em, beating its competitors by
a statistically significant margin. The success of Polaris can (at least in part)
be attributed to the increasing popularity of Texas Hold’em poker as a research
domain and advances in game theoretic equilibrium finding algorithms [2, 3]. Po-
laris’s victory occurred in the game of limit Texas Hold’em, where the amount
able to be wagered is restricted by pre-determined bet sizes. Today, the most
popular variation of the game is no limit Texas Hold’em, where players’ bet
sizes are no longer restricted. This allows a player to wager any amount they
wish (up to the total amount of chips they possess). This simple rule change has
a profound effect on the nature of the game, as well as on the development of
computerised agents that wish to handle the no limit betting structure. While
the Polaris system was able to beat world-class human opposition in the game of
limit Hold’em, nothing like Polaris’s victory has been achieved in the more com-
plicated domain of no limit Hold’em. In fact, it is only relatively recently that



many researchers have shifted their attention to the more complicated domain
of no limit Texas Hold’em [4-6].

Our previous research has focused on the techniques of expert imitation to
achieve strong performance in the domain of limit Texas Hold’em [7]. In this
current work, we apply the same principles of expert imitation and decision gen-
eralisation to the more complicated domain of no limit Texas Hold’em. As men-
tioned above, while the transition from restricted betting to a no limit betting
structure ostensibly is a simple rule change, the result is a profound impact on
the nature of the game, as well as on the construction of computerised agents. For
automated no limit poker agents, a non-trivial translation phase is now required
to map quantitative bet amounts into discrete betting categories. Furthermore,
our approach requires the construction of metrics to determine similarity be-
tween complicated no limit betting sequences (without which no generalisation
would be able to take place). Our approach allows the successful imitation of
any designated expert player (artificial or human), given a large enough set of
training data. We describe the discrete betting categories used by our system,
the translation process that maps real values into appropriate categories and
the metrics required that allow successful generalisation of an expert player’s
decisions based on a set of hand histories.

Despite the extra complications introduced by the no limit Hold’em domain,
we show that our approach is still able to achieve successful performance. In par-
ticular, we present results from the 2010 Annual Computer Poker Competition
(ACPC), where our entry to the competition, SartreNL, achieved a 2nd place
finish in the no limit equilibrium run-off event [8].

In Section 2 we describe the game of no limit Texas Hold’em. Section 3
provides the necessary background for the current work. Section 4 provides an
overview of our approach. Sections 5 and 6 focus on how no limit betting is dis-
cretised and on the non-trivial translation phase that maps quantitative betting
values into their discretised categories. Section 7 introduces the metrics required
in order to generalise an expert player’s observed decisions and Section 8 lists
results obtained from the 2010 ACPC followed by a discussion of these results.
Finally, a conclusion is provided in Section 9.

2 No Limit Texas Hold’em

Here we briefly describe the game of Texas Hold’em, highlighting some of the
common terms which are used throughout this work. We focus on 2-player no
limit Hold’em, as our system has been specialised for this domain. When a game
consists only of two players, it is described as a heads-up match.

The game of heads-up, no limit Texas Hold’em is played in 4 stages — preflop,
flop, turn and river. During the preflop both players are dealt two hole cards,
which only they can see. Before any betting takes place, two forced bets are
contributed to the pot, i.e. the small blind and the big blind. The big blind
is typically double that of the small blind. The possible betting actions common
to all variations of poker are described as follows:



— Fold: When a player contributes no further chips to the pot and abandons
their hand and any right to contest the chips that have been added to the
pot.

— Check/Call: When a player commits the minimum amount of chips possible
in order to stay in the hand and continue to contest the pot. A check re-
quires a commitment of zero further chips, whereas a call requires an amount
greater than zero.

— Bet/Raise: When a player commits greater than the minimum amount of
chips necessary to stay in the hand. When the player could have checked,
but decides to invest further chips in the pot, this is known as a bet. When
the player could have called a bet, but decides to invest further chips in the
pot, this is known as a raise.

In a limit game all bets are in increments of a certain amount. However, in a
no limit game a player may bet any amount up to the total value of chips that
they possess. In a standard game of heads-up, no-limit poker both players’ chip
stacks would fluctuate between hands, e.g. a win from a previous hand would
ensure that one player had a larger chip stack to play with on the next hand. In
order to reduce the variance that this structure imposes, a variation known as
Doyle’s Game is played where the starting stacks of both players are reset to
a specified amount at the beginning of every hand.

Once the betting is complete, as long as no player has folded, play continues
on to the next stage. Each further stage involves the drawing of community
cards from the shuffled deck of cards as follows: flop — 3 community cards, turn
— 1 community card, river — 1 community card.

During each stage, players combine their hole cards with the public commu-
nity cards to form their best 5 card poker hand. Each stage involves a further
round of betting. A showdown occurs after the river where the remaining play-
ers reveal their hole cards and the player with the best hand wins all the chips in
the pot. If both players’ hands are of equal value, the pot is split between them.

3 Background

Our previous work has focused on expert imitation via a case-based approach
within the domain of limit Texas Hold’em [7]. Expert decisions recorded from a
set of training data are encoded into cases. Playing decisions are then made at
runtime by searching the case-base.

While we employ a similar framework for our current work, the transition
to a no limit domain results in unique challenges that are not encountered in a
limit poker environment. First, there is the issue of establishing a set of abstract
betting actions that all real actions will be mapped into during game play. This
is referred to as action abstraction and it allows the vast, quantitative domain
of no limit Hold’em to be approximated by a much smaller abstract state space.
Second, given an established set of abstract actions, a translation process is
required that determines how best to map real actions into their appropriate



abstract counterparts, as well as a reverse translation that maps abstract
actions back into appropriate real-world betting decisions.

Both action abstraction and state translation are issues that are also
required to be addressed in the construction of no limit e-Nash equilibrium strate-
gies via algorithmic game theory. A pair of strategies are said to be an e-Nash
equilibrium if either player cannot gain more than ¢ by deviating their strat-
egy. An early attempt to construct a no limit Hold’em agent via game theoretic
methods is described by Andersson [9]. Andersson extended the procedures used
to construct e-Nash equilibrium-based limit poker agents [10] to the no limit do-
main. Betting amounts were discretised based on the amount of chips currently
in the pot. Four abstract actions were created: half the pot, the full amount
in the pot, 2 x the pot and all-in (all the player’s remaining chips). All bet
amounts were required to be mapped into one of the above four abstract ac-
tions. Andersson notes that simply assigning a bet amount into the abstract
action with the closest absolute distance can result in strategies that are able
to be exploited. Instead Andersson advocates a probabilistic mapping based on
the inverse absolute distance between abstract actions. Due to processor and
memory limitations, [9] was only able to produce a game theoretic strategy for
very small starting chip stacks.

Another no limit poker agent produced via game theoretic algorithms is Tar-
tanian [6]. Tartanian was able to build models for much larger starting chip
stacks than the work presented by [9]. Gilpin et. al. [6] advocate a translation
process that uses a relative distance to perform the mapping, rather than an
absolute distance. Using relative distance, a bet amount that falls between two
abstract actions is mapped into the appropriate action by considering their cor-
responding ratios.

State translation in extensive form games has been formalised by Schni-
zlein et. al. [4]. Schnizlein et. al. define the concepts of hard translation and
soft translation. Hard translation refers to the deterministic mapping of bet
amounts into their appropriate categories. Soft translation refers to the prob-
abilistic mapping of these values. Schnizlein et. al. investigate both hard and
soft translation in the domains of Texas Hold’em poker and Leduc Hold’em —
a much smaller; specialised poker domain useful for experimental analysis. In
both domains [4] show that the use of hard translation produces strategies that
are more easily exploitable than soft translation.

While our current work is required to deal with many of the same issues and
challenges faced by e-Nash Equilibrium strategies, the focus of our approach is
more to do with expert imitation and investigating the generalisation of playing
decisions from game traces.

We are now in a position to present the main components that make up
our system. The resulting no limit poker agent is referred to as SartreNL. We
begin with an overview of the representation used to record game scenarios by
processing a collection of training data. The exact action abstraction used by
SartreNL and the details of how and where state translation occurs are described,
along with the metrics that allow decision generalisation to take place.



4 Overview

Table 1. The case representation used by SartreNL. The four features capture impor-
tant game state information. A solution is made up of an action and outcome tuple.

Feature Type Example

1. Hand Strength Bucket|Integer 1-50

2. Betting Sequence String pdc-cqe-c, cc-, de-qe-ci, ...
3. Stack Commitment Integer 1,2,3,4

No-Salient, Flush-Possible,

4. Board Texture Class |Straight-Possible, Flush-Highly-Possible,
Action n-tuple (0.0, 1.0, 0.0, 0.0, ...), ...
Outcome n-tuple (-00, 36.0, -00, -00, ...), ...

Given a set of (artificial or real-world) training data, SartreNL is able to
generalise the decisions recorded within the data by constructing and storing a
collection of cases. Each case attempts to capture important game state infor-
mation that is likely to have an impact on the final betting decision. Table 1
depicts a collection of attribute-value pairs that, when taken together, captures
a particular game scenario. SartreNL uses four attribute-value pairs to describe
the current state of a match. Three of the four attributes (hand strength, betting
sequence, board texture) are the same as those used by the limit variation of
Sartre [7]. The stack commitment attribute was introduced especially for the no
limit variation of the game. All attributes were selected by the authors, given
their importance in determining a final betting decision.

Each case also records a solution. A solution is made up of two n-tuples,
one which specifies action probabilities and another which specifies the average
outcome of taking the observed action in the past. The entries within each tuple
correspond to a particular betting decision. The entries within the action tuple
must sum to one.

During game play values are assigned to each attribute and the previously
stored collection of cases are searched for attributes with similar values. The case
with the highest global similarity is assumed to be most similar to the current
situation. Once a similar case has been retrieved a betting decision is made by
re-using the tuples within that case’s solution.

Each attribute-value pair is described in more detail below:



4.1 Hand Strength Bucket

To evaluate the strength of a player’s hand the expected hand strength squared
metric is used E[HS?]. The E[HS?] metric computes the probability of winning
at showdown against a random hand. This is given by rolling out all possible
combinations of community cards and determining the proportion of the time
the player’s hand wins against the set of all possible opponent holdings. The
hand strength value for each community card roll-out is then squared and the
final E[HS?] is given by averaging these values.

Given the large variety of values that can be produced by the E[HS?| met-
ric, bucketing takes place where similar values are mapped into a discrete set
of buckets that contain hands of similar strength. SartreNL uses a total of 50
buckets for each post-flop betting round.

4.2 Betting Sequence

The betting sequence attribute is given by a string of characters where each
character is either an observed game action or round delimiter. Round delimiters
are represented by hyphens and indicate the transition to the next round of
betting. As any quantitative betting value can be observed in the real game, a
discrete set of abstract actions are chosen to represent real betting actions. This
is known as action abstraction and is described in more detail in Section 5. The
action abstraction used by SartreNL is given in Table 2.

Betting sequences consist of every abstract action that was observed up until
the current decision point in the game. This includes a player’s own previous
actions and actions for all previous rounds of play. By including actions that
belong to previous rounds, similarity assessment is made more difficult, but
this allows a more informed context about the game environment at the time a
playing decision was made.

4.3 Stack Commitment

In the no limit variation of Texas Hold’em players can wager any amount up to
their total stack size. The proportion of chips committed by a player, compared
to the player’s stack size, is therefore of much greater importance, compared to
limit Hold’em. The betting sequence maps bet amounts into discrete categories
based on their proportion of the pot size. This results in information that is lost
about the total amount of chips a player has contributed to the pot, relative to
the size of their starting stack. Once a player has contributed a large proportion
of their stack to a pot, it becomes more important for that player to remain in
the hand, rather than fold, i.e. they have become pot committed.

The stack commitment feature maps this value into one of N categories,
where N is a specified granularity:

0= b [ = el [P = 2 T
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Hence, for a granularity of N = 4, a stack commitment of 1 means the player
has committed less than 25% of their initial stack, a stack commitment of 2
means that player has contributed somewhere between 25% up to 50% of their
total stack, and so forth.

4.4 Board Texture

The board texture attribute highlights important information about the public
community cards that all players share to make their best five card hand. For
instance, on the last round of betting if four of the five community cards were all
the same suit, the chances that a player’s opponent has a flush is high as they only
require one card of that suit within their personal hole cards. The board texture
attribute maps a collection of community cards to one of nine categories. The
categories were selected by the authors and are believed to distinguish between
the salient aspects of the public community cards. The board texture categories
are listed in Table 4.

5 Action Abstraction

Recall that abstraction is a concept used by game theoretic poker agents that
derive e-Nash equilibrium strategies for the game of Texas Hold’em. As the actual
Hold’em game tree is much too large to represent and solve explicitly, it becomes
necessary to impose certain abstractions that help restrict the size of the original
game. For Texas Hold’em, there are two main types of abstraction:

1. Chance abstraction — which reduces the number of chance events that are
required to be dealt with. This is typically achieved by grouping strategically
similar hands into a restricted set of buckets.

2. Action abstraction — which restricts the number of actions a player is
allowed to perform.

Action abstractions can typically be avoided by poker agents that specialise
in limit poker, where there are only 3 actions to choose from: fold (f), check/call
(¢) or bet/raise (r). However in no limit, where a raise can take on any value,
some sort of action abstraction is required. This is achieved by restricting the
available bet/raise options to a discrete set of categories based on fractions of
the current pot size. For example, a typical abstraction such as: fcpa, restricts
the allowed actions to: f — fold, ¢ — call, p — bet the size of the pot a — all-
in (i.e. the player bets all their remaining chips). Given this abstraction, all
actions are interpreted by assigning the actual actions into one of their abstract
counterparts.

While SartreNL does not attempt to derive an e-Nash equilibrium solution
for no limit Hold’em, it is still required to define an action abstraction in order
to restrict the number of actions allowed in the game and hence reduce the
state space. SartreNL uses the following action abstraction: feghipdvta. Table 2
provides an explanation of the symbols used.



Table 2. The action abstraction used by SartreNL

fold

call

quarter pot

half pot

three quarter pot
pot

double pot

five times pot
ten times pot

all in

Qe AR™ IR 0

6 Translation

Given that all bets need to be mapped into one of the actions listed in Table 2, a
translation process is required to define the appropriate mapping. For SartreNL,
this translation phase needs to occur in 3 places:

1. During case base construction — where hand history logs from previously
played hands are encoded into cases.

2. During actual game play - where betting actions observed during a hand
are required to be mapped into appropriate abstract actions. Equivalent to
the translation process required of e-Nash equilibrium agents that solve an
abstract extensive form game [9, 6, 4]

3. A final reverse translation phase is required to map a chosen abstract action
into a real value to be used during game play.

Recall, Schnizlein et. al. [4] formalise two types of translation: hard transla-
tion and soft translation.

— Hard Translation: is a many to one mapping that maps an unabstracted
betting value into an abstract action based on a chosen distance metric.
Given a unique unabstracted betting value, hard translation will always map
this value into the same abstract action. A disadvantage of hard translation
is that an opponent can exploit this mapping simply by selecting particular
betting values.

— Soft Translation: is a probabilistic state translation that uses normalised
weights as similarity measures to map an unabstracted betting value into
an abstract action. The use of a probabilistic mapping ensures that soft
translation cannot be exploited like hard translation can.

SartreNL uses both hard and soft translation. The type of translation that
takes place differs depending on where translation occurs within the system. The
exact details of the translation used within the different areas of the system are
now presented.

Define A = {q, h,4,p,d,v,t,a} to be the set of abstract betting actions. Note
that the actions f and c are omitted as these require no mapping.



1. During case-base construction SartreNL uses the hard translation function
Ty : R — A, as follows:

a ife>?t
— b c
T (b) { ¢ otherwise 1)

where b € R is the proportion of the total pot that has been bet in the actual
game and a,c € A are abstract actions that map to actual pot proportions
in the real game and a <= b < ¢. The fact that hard translation has the
capability to be exploited is not a concern during case-base construction.
Hard translation is used during this stage to ensure that re-training the
system with the same hand history data will result in the same case-base.

2. During actual game play SartreNL is required to map opponent betting ac-
tions (as well as its own actions) to abstract categories. Observant opponents
have the capability to exploit deterministic mappings during game play,
hence SartreNL uses a soft translation function for this stage, Ts : R — A,
given by the following probabilistic equations:

P(a) = i: (2)
b_a
Pl)={— (3)

where once again, b € R is the proportion of the total pot that has been bet
in the actual game and a,c € A are abstract actions that map to actual pot
proportions in the real game and a <= b < ¢. Note that when b = a, P(a) =1
and P(¢) = 0 and when b = ¢, P(a) = 0 and P(c¢) = 1. Hence, a betting
action that maps directly to an abstract action in A does not need to be
probabilistically selected. On the other hand, when b # a and b # ¢, abstract
actions are chosen probabilistically.

3. The final place that translation is required is when SartreNL has determined
an appropriate abstract action to play. A reverse mapping is then required
to map the abstract action into an appropriate real betting value, given the
current game conditions. SartreNL uses the following function to perform
reverse translation, T, : A — R:

T.(a) =a' £ Ad (4)

where a € A and o/ € R is the real value corresponding to abstract action a
and Aa’ is some random proportion of the bet amount that is used to ensure
SartreNL does not always map abstract actions to their exact real world
counterparts. For example, when @’ = 100 and A = 0.3, SartreNL could bet
any amount between 70 - 130 chips.



7 Similarity

In order to generalise no limit betting decisions, it is first required to locate
similar scenarios for which solutions have been recorded in the past. Given a
target case, t, that describes the immediate game environment, a source case,
s € S, where S is the entire collection of previously recorded cases and a set
of features, F', global similarity is computed by summing each feature’s local
similarity contribution, simy, and dividing by the total number of features:

Clts) =Y mﬁff[“ (5)
fEF

We now present the local similarity metrics (simy) required in order to gen-
eralise betting decisions from a collection of data.

7.1 Hand Strength Bucket

The following metric is used to determine similarity between two hand strength
buckets (f1, f2).

sim(f1, fo) = max{l — k- LTJH,O} (6)

Here, T refers to the total number of buckets that have been defined, where
fi,f2 € [1,T] and k is a scalar parameter used to adjust the rate at which
similarity should decrease. SartreNL uses values of T'= 50 and k = 2.

7.2 Stack Commitment

The stack commitment metric uses an exponentially decreasing function.

sim(f1, f2) = el ~11=F2D) (7)

where, f1,fo € [1,N] and N refers to the granularity used for the stack
commitment attribute. This function was chosen as small differences between two
stack commitment attributes (fi, f2) should result in large drops in similarity.
SartreNL uses a granularity of N = 4.

7.3 Betting Sequence

SartreNL uses the following bet discretisation: fcghipdvta. Within this represen-
tation there are some non-identical bet sizes that are reasonably similar to each
other. For example, a bet of half the pot (h) is quite close to a bet of three quar-
ters of the pot (7). The betting sequence similarity metric we derived compares
bet sizes against each other that occur at the same location within two betting
sequences.



Let S and Sy be two betting sequences made up of actions a € AU {f, ¢},
where the notation Sy ;,Sa ; refers to the i character in the betting sequences
S1 and Ss, respectively.

For two betting sequences to be considered similar they first need to satisfy
the following conditions:

L. |S1] = |5
2. Both S1; = cand 51 ; = a whenever Sy ; =cand Sz ; =a

i.e. each sequence contains the same number of elements and any calls (c)
or all-in bets (a) that occur within sequence S; must also occur at the same
location in sequence Sy!.

Any two betting sequences that do not satisfy the initial two conditions
above are assigned a similarity value of 0. On the other hand, if the two betting
sequences do satisfy the above conditions their bet sizes can then be compared
against each other and a similarity value assigned.

Exactly how dissimilar two individual bets are to each other can be quantified
by how far away from each other they occur within the bet discretisation string,
displayed in Table 3.

Table 3. Bet Discretisation String

[al#[{[p]a]o]4

As h and ¢ are neighbours in the discretisation string they can be considered
to occur at a distance of 1 away from each other, §(h,i) = 1, as opposed to say
0(gq,t) = 6, which are at opposite ends on the discretisation string.

For two betting sequences S1, Se overall similarity is determined by (8):

1—05118(81 4, 8.0 )e if 81| = [S2],

. Sii=c= Sy; = c,
sim(S1, Ss) = S —am G —a 8)
] T [V
0 otherwise

where « is some constant rate of decay. SartreNL uses a rate of decay where
a = 0.05.

Betting Sequence Similarity Example Here we offer a concrete example of
how similarity is computed for two non-identical betting sequences.

Consider two betting sequences, S1 = thpc and Sy = dgpc.

Here, |S1| = 4 and |S3| = 4 and wherever there exists a check/call (¢) in S,
there exists a corresponding ¢ in Ss.

L A betting sequence consists of one or more betting rounds, the above conditions
must be satisfied for all betting rounds within the betting sequence.



As both conditions are satisfied we can evaluate the top half of Equation (8):

sim(S1,S82) =1 —[6(i,d)a + d(h, @) + 6(p, p)a + (¢, ¢)
=1-2-a+1l-a+0-a+0-q]
=1-3a

Using a rate of decay of a = 0.05, gives a final similarity of: 1 —0.15 = 0.85.

7.4 Board Texture

To determine similarity between board texture categories a similarity matrix
was derived. Rows and columns in Figure 1 represent the different categories
defined in Table 4. Diagonal entries refer to two sets of community cards that
map to the same category, in which case similarity is always 1. Non-diagonal
entries refer to similarity values between two dissimilar categories. These values
were hand picked by the authors. The matrix given in Figure 1 is symmetric.

A B C D E F G H 1
A/1 0 0 0 0 0 0 0 0
B0 1 08 07 0 0 0 0 0
cl0 08 1 07 0O 0 0 0 0
D0 07 07 1 0 0 0 0 0
E]l0 O 0 0 1 08 07 0 06
Fl10 0 0 0 08 1 07 0 05
G|10 O 0 0 07 07 1 08 038
H|l0 0 0 0 0 0 08 1 038
1 0 0 0 0 06 05 08 08 1

Fig. 1. Board texture similarity matrix.

Table 4. Board Texture Key
A |No salient
B |Flush possible
C'|Straight possible
D |Flush possible, straight possible
E |Straight highly possible
F |Flush possible, straight highly possible
G |Flush highly possible
H |Flush highly possible, straight possible
I |Flush highly possible, straight highly possible




8 Results

A version of the system described above was submitted to the 2010 Annual Com-
puter Poker Competition [8]. Our entry to the competition was trained on data
from the best no limit agent of the 2009 competition. The ACPC is the premier
computer poker event and has been held each year at either AAAI or IJCAI
conferences since 2006. The ACPC involves separate competitions for different
varieties of Texas Holdem, such as limit and no-limit competitions, as well as
heads-up and multiple-opponent competitions. Entrance into the competition is
open to anyone and the agents submitted typically represent the current state
of the art in computer poker.

Table 5. Crosstable of all matches. Results are from the perspective of the row player.
Values are in milli big blinds per hand. Confidence intervals are omitted due to space
considerations. This table is replicated from the 2010 ACPC (§]

M@ B | @ | 6) |6 | () | ()
(1) cdtw.iro
(2) cdtw.tbr
(3) Hyperborean.iro (4181 775 200 248 122
(4) Hyperborean.tbr 3562 | 83 795 272 364 220
(5) PokerBotSLO  |7557 (6977
(6) SartreNL 2289 2241 193 42 —13
(7) Tartaniand.iro |5534 108
(8) Tartaniand.tbr 8669 159 13 80

Table 6. Bankroll instant run-off results. This table is replicated from the 2010
ACPC [8]

Round 0| Round 1| Round 2| Round 3
(1st) Hyperborean.iro| 1351 +44 | 408 +£27 | 224+31| 200 =+ 39
(2nd) SartreNL 581 + 34 12 +23
(3rd) Tartaniand.iro 1338 + 33
(4th) PokerBotSLO 1620 + 187
(5th) cdtw.iro

Table 5 presents a cross-table of results between competitors at the 2010
heads-up no limit competition. A green cell indicates a win for the row player
and a red cell indicates a loss for that player. Cells with a lighter background
represent matches that were not statistically significant. The figures presented
in Table 5 are in milli big blinds per hand (mb/h), a milli big blind is 0.001 times



the big blind value. Therefore, mb/h are calculated by dividing the total number
of big blinds won by the number of hands played, followed by multiplying the
result by 1000. A result of 41000 mb/h means that a player won, on average,
one big blind per hand.

In the no limit competition, the Doyle’s Game rule variation was used
where both player’s begin each hand with 200 big blinds. All matches played
were duplicate matches. In a heads-up duplicate match N hands are played
between two agents after which the agents memories are wiped and the NV hands
played again, but in the reverse direction, i.e. the cards that were initially given
to player A are instead given to player B and vice-versa. This way both players
get to play both sets of N cards and this reduces the variance that is involved in
simply playing a set of N hands in one direction only. Many duplicate matches
are played in order to achieve a significant result. In the 2010 heads-up, no limit
competition each competitor played 200 duplicate matches (each consisting of
N = 3000 hands) against every other competitor.

Table 6 presents the final results of the instant run-off competition. The
instant run-off competition uses a recursive winner determination algorithm that
repeatedly removes the agents that performed the worst against a current pool
of players. In the 2010 competition SartreNL was ranked in second place.

Table 5 indicates that SartreNL suffers a statistically significant loss against
only one competitor i.e. Hyperborean. Where a competitor’s name ends with .iro
or .tbr this indicates the competitor was specifically submitted to a particular
division (i.e. instant run-off or total bankroll). In general, SartreNL does not
achieve as large a bankroll as some of the other competitors and this is mostly
due to its performance against the competitor c4tw. It is clear that c4tw is the
weakest competitor, having lost all of its matches, however SartreNL does not
achieve as great a profit as some of the other competitors do against this oppo-
nent. Moreover, the amounts won against this opponent (the first two columns
in Table 5) are by far larger than any other values in the table. This means that
matches involving c4tw have a much greater impact on the final total bankrolls.
This results in SartreNL achieving only a slight overall profit i.e. 581 + 34. Ta-
ble 6 shows that when c4tw is removed from the pool of players via the instant
run-off winner determination procedure, SartreNL actually performs a lot better
overall.

9 Conclusion

Given a set of data, recorded by observing an expert player, the framework pre-
sented in this paper allows the successful generalisation of those decisions. Our
results support the idea that generalising decisions via expert imitation has the
ability to produce strong, sophisticated strategies in complex, imperfect infor-
mation environments. Moreover, our results show that these strategies can lead
to successful performance compared with alternative approaches. In previous re-
search we have shown this to be the case in the domain of limit Hold’em [7].
This work extrapolates our approach to the domain of no limit Hold’em. The



transition to a more complicated no limit betting structure required issues to
be addressed that were not a concern within the limit domain. In particular, a
suitable action abstraction was required in order to reduce the large no limit
state space. Given a chosen abstraction, state translation needs to take place at
various locations within the system. The formulas required for both hard and
soft translation were explained, as were the local similarity metrics that allow
the identification of similar scenarios so that decision generalisation can take
place. The SartreNL system produced by the framework achieved a second place
finish at the 2010 ACPC no limit, instant run-off competition.
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