
A Multi-Layered Flocking
System For Crowd Simulation

Simon van den Hurk

October 2009

Supervisor: Ian Watson

A disseration submitted in partial fulfilment of the requirements for the de-

gree of Bachelor or Science Honours in Computer Science, The University of

Auckland, 2009



2



Abstract

The field of crowd simulation attempts to model crowd movement of both people and

animals. Typical research in this field aims to develop systems which model the interaction

between multiple instances of the same type of character. This dissertation examines two

aspects of crowd simulation which are often not considered, the movement of crowds

containing characters of vastly different sizes and the ability to allow characters to move

underneath other characters when there is sufficient space to do so. To include these

traits in a crowd simulation model a new system is proposed: the multi-layered flocking

system. This system has a basis in the original Reynolds flocking model but includes

a series of layers to represent the simulation space. Characters in the simulation are

represented using one or more navigation objects which lie upon the layers in the system.

This dissertation examines the different representations of characters that are possible

using this system. It also examines different representations for the environment in which

these characters move. Finally it describes the various types of crowd movement that can

be created in the system with these character representations.
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1
Introduction

1.1 Introduction

The problem of simulating the movement of large numbers of characters in an environment

is relevant to both real time and rendering applications being created today. These crowds

of characters are used to breathe life into the large and often varied scenes created for

a variety of mediums such as games, movies and television. Furthermore the study of

crowd interaction can be applied to more serious applications such as the flow of people

in architecture design, the testing of transportation infrastructure and the training of

military personnel.

In this dissertation two aspects of crowd simulation are examined that are often ignored

and a system is proposed that further enables designers to create more complex crowd

interaction by removing these limitations.

The first aspect to be examined is the interaction between the characters of a crowd

when the size of the characters differs significantly. The majority of techniques described

in the field of crowd simulation concern the interaction between multiple instances of the

same type of character. They therefore do not consider the effect that character size will

have upon the overall movement of the crowd.

The second aspect that is to be considered is the increased level of crowd interaction

that can be created when characters in the crowd are able to navigate not only around

other characters, but also underneath other characters when there is sufficient space.
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2 Introduction

To demonstrate these aspects an example is given involving the simulation of an

African Savannah. Such a simulation would contain a range of animals from different

species that represented the wildlife. Many of these animals would be grouped into flocks

or herds of animals and as such would be ideally suited to be represented using a crowd

simulation model. These herds of animals vary in size considerably and as such interac-

tion between the animals does not only lie upon a single plane. Even amongst individuals

of the same herd the relative size can vary considerably, especially between older and

younger members of the herd. These variations in size cause typical crowd simulation

models to produce a resulting crowd movement that is contrary to what one might ex-

pect. For example the young of a particular species may stay close to its parent, hiding

underneath the parent when it feels threatened. With a typical crowd simulation model

the child is restricted to the bounds of the parent and the simulation would not allow the

child to move underneath its parent.

To allow these two aspects of crowd interaction to influence the navigation of the

characters in a crowd a new system is proposed: the multi-layered flocking system. This

system represents the characters and environment of a simulation by placing them upon a

series of layered cells. This approach is inspired by the representation given in the original

flocking paper by Reynolds[14].

The objectives of this dissertation therefore are:

• To define a navigation system that takes into account the size difference of characters

within a simulation.

• To allow the characters in this navigation system to navigate not only around but

also underneath other characters within a simulation.

• To examine the different representations that can be used for both characters and

the environment within this navigation system.

• To examine the types of behaviour possible within this navigation system and the

resulting movement which occurs when using these behaviours.

The remainder of this chapter provides an overview of the other literature in the field of

crowd simulation. In the following chapter the design of the multi-layered flocking system

is explained. The next chapter discusses the use of the multi-layered flocking system and

describes its capabilities. The final chapter contains a conclusion for this dissertation.
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1.2 Literature Review

The popularity of video games as an entertainment form has led to increased realism in

successive titles. This realism includes the simulation of crowds to represent different

aspects of the game. Recent games such as Supreme Commander [2] and the Total War

series[21] have included thousands of characters as military units while other games such

as Assassins Creed[23] have used smaller quantities of characters moving in groups in an

attempt to create a more lifelike representation of a crowded market.

In the movie industry the crowd simulation tool created by Massive Software[9] is

notable for producing the crowd animation in many popular movies such as The Lord of

the Rings. In the field of serious games and training simulators the commercially available

crowd simulation tool AI.Implant by Pregasis is available[4][13]. This tool represents the

agents of a crowd by populating each agent with its own ‘brain’ that allows it to sense

the environment, consider various strategies and them implement one of these strategies.

Character representation in real time simulations such as video games is most often

performed using a combination of a coordinate position to represent the centre of the

object and a radius to represent the bounds of the object. In a two dimensional simulation

the coordinate position is represented by two values that describe the position on the x

and y axis. In a three dimensional simulation an additional value is used to describe

the position along the z axis. The radius describes either a bounding circle or bounding

sphere if the simulation is two or three dimensional respectively.

1.2.1 Agents

The most widely known and popularized technique for large scale crowd movement is

the flocking concept proposed by Reynolds[14]. Reynolds’ paper presented a framework

to simulate the flocking behaviour of animals. The examples provided by Reynolds in-

volved bird-like flocking agents (referred to as boids) that moved through a 3-dimensional

environment. The framework is also applicable to two dimensions (as in the flocking

movement of sheep).

In Reynolds framework each agent is expressed using a simple point mass model, the

direction of which is calculated by using a combination of different steering behaviours.

Reynolds defines three different types of steering behaviours in order to simulate the

flocking motion. These behaviours are initially called Collision Avoidance, Velocity Match-

ing and Flock Centring though in Reynolds later works he refers to these same behaviours

under the names Separation, Alignment and Cohesion accordingly[15]. Each steering be-

haviour returns a force representing the desired acceleration of the agent in order to best

fulfil the behaviour. The three behaviours are defined as following:

• Separation - Separation provides a steering force such that the movement of the
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agent avoids colliding with other flocking agents. It does not take into account avoid-

ing collisions with obstacles which is handled separately. This steering behaviour is

calculated by summing the difference between the current agent in question and its

neighbours. This sum is then scaled by the inverse of the separation distance (1/r)

to provide a smooth force which increases as the agents get closer to each other.

• Alignment - Alignment is the steering behaviour that causes entities to attempt to

match their directional heading with those of its neighbours. It is calculated as the

average of the heading velocity of the neighbours.

• Cohesion - Cohesion is the third and final steering behaviour involved in creating

the flocking movement. This behaviour provides a steering force towards the aver-

age position of the neighbours. It is calculated as the sum of the position of the

neighbours divided by the number of neighbours. It is this behaviour that causes

flocking entities to attempt to herd together.

The final steering force that will be applied to the Reynolds agent is then calculated.

Reynolds provides two different combination methods and suggests a third method in his

later paper[15]. These methods combine the forces provided by the different behaviours

in an attempt to best produce a result that is desirable to all of the behaviours.

Each of the steering behaviours uses information about the surrounding entities. These

surrounding entities are known as an agent’s neighbours and the perception of these

neighbours with respect to the current entity is an important part of the framework.

Reynolds argues that an agent within a flock does not have complete knowledge of all

the entities within the flock. He then goes on to suggest that each agent only requires

knowledge of the agents that it perceives around it. In his original paper Reynolds uses a

simple sphere to define the perception field of an agent but in [15] he defines both a sphere

and a field of view. This creates a perception field shaped as a sphere with a cone section

removed from the back. This model of the agent’s perception attempts to represent the

natural field of vision of a bird.

Due to the fact that agents only require a local knowledge Reynolds suggests sorting

the boids into an arrangement of bins. Each agent lies within a bin and it’s bin is updated

as it moves throughout the simulation. This sorting of the agents allows the computational

complexity of the neighbour comparison to be reduced from O(n2) to O(binsize).

Reynolds further notes that both obstacle avoidance and scripted behaviour can be

represented using steering forces that can simply be added to the summation of the

flocking behaviours. Reynolds solution for obstacle avoidance is to poll what objects lie

directly in front of the agent and then generate a steering force that turns the agent

towards the nearest edge of the obstacle. Reynolds mentions that these obstacles could in
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fact be other behavioural characters and therefore scenes such as a flock of birds moving

around a larger animal such as an elephant are possible.

One of the major advantages to using this method is that the behaviour is completely

deterministic. This is a desirable attribute as the rendering during movies or the testing

of games would become increasingly difficult if the agent movement was different with

each instance of the application being rendered or run.

Reynolds mentions the major disadvantage of this flocking technique. He states that

it is difficult to create a combination of forces that produces the desired behaviour and

that fine tuning the behaviour can be a repetitive and time consuming activity.

Further work by Reynolds presents further steering behaviours that can be used within

his original framework[15]. By combining these behaviours it is possible to create groups

of agents that act as a flock, but also easily integrate with other behaviours that could

be used when the agents state is changed. Examples of these extra behaviours include:

Flee, Pursuit, Wander and Leader Following.

The concept of Leader Following is also addressed in the paper by Lebar Bajec et

al.[5]. The technique discussed involves the use of fuzzy logic in order to make a model

that defines flocking behaviour in such a way that it is easier for ethologists to comprehend.

The concept of using the boids model to simulate crowds is revisited by Lebar Bajec et

al.[6]. An in depth analysis of perception throughout this paper concludes that alignment

has the highest influence on flock formation, but reduces overall speed and also proposes

that the best solution to avoid collisions between agents is to adjust the weights of the three

behaviours such that separation and alignment are at 90% while the cohesion steering

behaviour is at 10%.

As the agents in Reynolds framework only require knowledge of their local neighbours

the flocking technique is easily scalable on multi-core hardware architecture. In Reynolds

most recent work he discusses the implementation of the original flocking behaviour on

the Playstation R©3 architecture, taking into account the demand for scalability across

the multi-core architecture[16]. Work by Pettré shows that in the long term a group of

Reynolds agents will tend to form into a single large flock[12]. Reynolds implementation

on the Playstation R©3 includes an additional steering behaviour to disperse crowds of

increased density in order to prevent a single flock from forming and to reduce the loads

inside a single bin.

Recent work by Lee et al. also builds on the use of local neighbourhood perception to

determine crowd movement[7]. Lee et al. uses aerial camcorder footage to record crowd

behaviour and then develop an appropriate model of behaviour.

Scutt suggests a method to create simple swarms as an alternate approach with the

aim of providing a believable swarms with minimal computational complexity[18]. Scutt’s

approach succeeds in reducing the required computational time to simulate the swarm, but
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does not guarantee the separation of the entities in the swarm. Scutt’s approach is aimed

at elements within a simulation that are not critical to the outcome of the simulation but

are instead added to ‘breathe life’ into the simulation.

Treuille proposes an alternative model for crowd movement that makes use of dynamic

potential fields instead of individual agent perception[22]. This framework combines the

search for a global path with the search for local avoidance into a single calculation.

This approach produces a crowd movement that naturally forms lanes of agents moving

behind each other. Work by Berg et al. also describes a technique that creates a similar

lane forming style crowd[1]. The paper by Treuille notes that the proposed framework

can be used in combination with other agent models such as the framework suggested

by Reynolds. The author also notes that this technique is unsuitable for agents that

require individual goals. This lack of specification for individual agents is addressed by

Sud et al.[20]. Sud et al. propose a framework using Voronoi diagrams and creates a

technique that allows for individual agent goals. The main drawback of this framework

is the increased computational requirements, the example simulation given only running

at 5 frames per second for 200 agents.

1.2.2 Environment Representation

The concepts mentioned so far deal primarily with the steering behaviour of agents, rather

than the representation of the environment in which these agents move.

Alternate methods of crowd simulation that have been proposed discuss the use of

Voronoi diagrams in order to divide up the space on which the crowd is to traverse.

Work by Pettré involved creating Voronoi diagrams around the static obstacles in the

environment and then mapping a connected graph of cylinders onto this space[12]. This

technique allows for movement of a crowd along corridors such that the agents do not tend

towards a single line. Kamphuis et al. presents a similar approach in which the corridors

of movement are created by a leading entities initial path finding, thus restricting group

members to group together to form crowd movement[3].

The more recent work by Pettré et al. continues to refine the use of navigation graphs

and cylinder movement spaces[11]. This work includes the concept of Levels of Simulation

in order to simulate a crowd of 35,000 pedestrians at 10-20 frames per second. This

involves updating agents that are closer to the camera more often in order to reduce the

computational load while maintaining the apparent detail of the crowd. Though unusable

for simulations and games this concept is highly applicable to movie renders involving

crowds where the position of agents off camera is irrelevant and those of agents in the

distance are unneeded at a high fidelity. Mäım et al. also discusses the use of Levels of

Simulation in order to produce a large scale crowd simulation that runs at a desirable

real-time frame rate[8]. Richmond et al. suggests a level of detail implementation that
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utilizes a computer’s GPU in order to achieve an increase number of agents within the

crowd[17].

Work by Nieuwenhuisen et al. states that while group splitting and reforming is a

desirable and natural behaviour for flocks of animals it may be an undesirable behaviour

for games or simulations where the crowd being represented move together in a unit[10].

Nieuwenhuisen et al. use a similar approach as Pettré et al. and Kamphuis et al. by

defining the environment as a combination of navigation graph and bounding cylinders.

Nieuwenhuisen et al. use these bounding cylinders to provide a corridor of acceptable

space in which the agents of a unified group may move.

Silver also proposes an alternative method for path finding that is designed to cause

entities in the crowd to choose paths which cooperate with the other agents around

them[19]. Silver achieves this by dividing the environment into a grid, with each entity

reserving a place in the grid. The entities then reserve the grids in future time steps as

they move throughout the simulation and when they re-plan their path, they take into

account the other cells that have already been reserved by other entities. Silver notes

that this approach could be modified to account for entities of different sizes, with larger

entities reserving a larger number of cells in the grid.

1.3 Summary

In this chapter the field of crowd simulation has been examined. The techniques in this

field produce crowd movement where either the crowd is treated as a whole, or the in-

dividuals in the crowd each have their own behaviour whose combined affect produces a

crowd simulation. Several of the approaches discuss the representation of the environ-

ment in order to best move the agents of a crowd around the environment in a realistic

fashion. This dissertation aims to examine two aspects which are often ignored in the

majority of crowd simulation techniques. The first is the different crowd movement that is

possible when a crowd contains characters of varying sizes and the second is the increase

in possible movement when the characters are able to traverse beneath other characters

that are significantly larger. In the next chapter the multi-layered flocking system is for-

mally introduced in an attempt to provide a technique to overcome these issues in crowd

simulation.
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2
Mutli-Layered Flocking System Design

2.1 Introduction

In this chapter a formal definition for the algorithms and data structures that compose

the multi-layered flocking system is given. As this system is based upon the flocking

algorithm proposed by Reynolds, a description of the different components of Reynolds

algorithm is given as an introduction to the multi-layered flocking system.

Reynolds flocking algorithm can be separated into four general components. The

first of these components is composed of the properties of the individual agents in the

simulation that represent the characters. These properties are used by the algorithm

to determine how each of the agent’s behaviours should act. The second component is

the representation of the simulation space. The examined technique is referred to as

dynamic spatial partitioning, in which a grid is used to divide up the simulation space

upon which these agents are located. The third is the selection of neighbours for a given

agent that will be used to influence the agent’s behaviour. These neighbours are chosen by

defining a neighbourhood in which to examine for potential neighbours. This component

represents the agents’ perception of the other characters within the simulation. The final

component is comprised of the behaviours that operate on these agents in order to produce

their navigation. Each of these behaviours defines a force that determines the direction

the agent should move in order to best produce the desired movement of the behaviour.

The multi-layered system represents an extension of a two dimensional implemen-

9



10 Mutli-Layered Flocking System Design

tation of Reynolds algorithm by taking each of these components and extending them,

either through modifications, additional constraints or a more generalized abstraction.

Specifically the system aims to produce a methodology to define the interaction between

characters of vastly different shape or size without the requirement of individually tailored

navigation systems. It is designed to allow for the efficient interaction between characters

of vastly different sizes and to allow for the definition of movement in which agents can

move underneath other agents in a realistic fashion.

2.2 Navigation Agents

Reynolds model uses the term boid to describe the data that encompasses a characters

position and movement. Each boid represents a single animal such as a bird or fish that

is to be simulated. Navigation behaviours provide forces to act upon each boid and the

resulting forces for this boid describe its movement. Each boid is comprised of a series of

attributes in order to simulate the locomotion of the boid around the simulation space.

The attributes that a boid contains are:

• Position: A vector representing the boids centre. It is around this point that the

visual model of the boid is drawn.

• Heading : A vector representing the boids direction of movement. The magnitude

of this vector represents the boids current speed. Note that in a 3-dimensional

simulation another vector would be required to determine the boids orientation.

• Mass : A scalar value representing the mass of the boid. This value is used to

calculate the boids acceleration.

• Steering Force: A vector representing the steering force that is to be applied to the

boid.

• Perception Radius : A scalar value representing the radius of the circle that is used

to detect neighbouring boids.

• Navigation Behaviours : A list of all the behaviours that are to act upon this boid.

• Cell : A reference to the cell that this boid currently resides in.

The simulation for each boid is performed using two update methods. The first is

the physical update which calculates an acceleration vector for the boid given the boids

steering force and mass. In a simple simulation this is typically done using Newton’s

second law of motion which is that the force is equal to the mass times the accelera-

tion (F = m ∗ a). Using the calculated acceleration value a new heading and position
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for the boid can be obtained. This update is equivalent to a standard world update in a

typical rendered animation or game simulation and can be performed with either a fixed

or varied time-step. The approximation of the simulation’s locomotion to that of the

real world is simulation specific. Any approximation can be used that employs the forces

calculated by the agent’s behaviours to determine the character’s locomotion.

The second update is the behavioural update. During this update each boid recal-

culates its neighbours and determines the forces that should act upon it for each of its

navigational behaviours. Note that these two updates do not have to be simultaneous.

A lower frequency update can be used for the behavioural update to match the needs of

the simulation. A level of detail model could also be used to improve the efficiency for

simulations where the appearance of the behaviour is only required at a high fidelity at

certain parts of the simulation, e.g. around the camera.

The multi-layered flocking system abstracts this concept to provide a system that is

able to represent more complex character navigation. In the place of boids each character

in the multi-layered system is represented by one or more navigation objects. Navigation

objects are one of two types: navigation agents and navigation obstacles. The navigation

agents act in a similar fashion to a Reynolds boid. Each navigation agent is located within

a single navigation cell in the same way that each boid was located within a cell. Each

navigation agent also contains the same attributes as a boid, with the addition of an extra

scalar value representing the bounding radius. This bounding radius is used to determine

the size of an object and will be used in the interaction between objects of different sizes.

A navigation obstacle will be used to represent objects in the simulation that are either

stationary or whose position is dependent on another navigation agent. For example a

rock that is to be avoided would be classified as a navigation obstacle. A walking human

could be represented by one navigation agent to describe its overall movement and two

navigation obstacles for each of the legs. The position of the navigation obstacles would be

determined by the visual representation of the character, and as such does not require all of

the attributes that a navigation agent is composed of. A navigation obstacle only requires

a position, reference to a cell and the scalar value representing the bounding radius. Using

these attributes a navigation obstacle is able to contribute to the navigation behaviours

of other objects, such as collision avoidance, even though the navigation obstacle itself

does not have any navigational behaviours.

2.3 Layered Navigation Cells

In Reynolds approach he suggests the use of a single grid that is placed over the simula-

tion space. Each boid in the simulation is associated with a single cell within this grid.

Reynolds names this proposed data structure dynamic spatial partitioning. The use of
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this data structure to specify the simulation space provides for an improved efficiency in

the identification of neighbouring boids with which to calculate the navigation forces.

A boid is determined to be within exactly one cell at any one point in time during

the simulation. A boid lies within a cell if its position lies within the boundaries of a cell.

See Figure 2.1 for an example of a single boid positioned upon a grid representing the

simulation space of the environment.

Figure 2.1: An example of a boid upon a grid of cells. The agent’s position is shown as the red point
and the perception radius of the agent is shown in yellow. Each blue square represents a
single cell within the grid that covers the simulation space.

In the multi-layered system cells are also used to divide the simulation up, though

unlike in Reynolds approach, the use of cells is compulsory and is used for more than

just increased efficiency. Characters in the scene are represented in the simulation by

one or more navigation objects. Each of these navigation objects lies within a particular

navigation cell and each cell is associated with a single layer. A navigation layer is

defined as a collection of cells that cover the entire simulation space. Navigation layers

may contain a reference to a parent navigation layer. The navigation objects that lie

within the cells of this parent layer, and any ancestor layer above that, will be used to

influence the movement of the agents in the child layer. Furthermore the interactions

between agents on different layers allows for new types of navigation interaction.

If a layer has a parent layer then all cells within that layer will have a parent cell

within the parent layer. In order for a layer to be a valid parent for another layer, the

cells within the parent layer must meet certain restrictions. The entire simulation space

covered by the parent cell must be completely covered by its child cells. Additionally the

area that each child cell covers must lie within only a single parent. In order to meet

this restriction it is often necessary for a cell within a layer to be a slightly different size

to the majority of cells in that layer. This is to ensure that the entire simulation space

is covered without breaking one of the two restrictions above. If the simulation space is
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made to wrap around the x or y axis then the cell that is of a different size must be larger

than the standard grid cell size. If this is not true then the agents within the simulation

may not detect neighbours correctly due to having a perception radius that spans across

more than one neighbouring cell. In Figure 2.2 an example is demonstrated in which a

parent layer requires a slightly larger row of cells in order to guarantee that all the child

cells are covered.

Figure 2.2: A demonstration of the mapping between the edges of parent and child cells upon two cell
layers. The top layer has been created with three child cells per parent cell along both the
x- and y-axis. The parent cells with green arrows map exactly to the layer below, with each
parent cell lying above nine child cells. The parent cells with red arrows are required to be
slightly larger in order to ensure that the six additional child cells on the far left of the x-axis
are included within a parent cell. These red parent cells therefore have fifteen child cells.

The restrictions on parent size ensure that the layers are built up from the highest

detail at the bottom to the lowest detail at the top. Thus the layers at the bottom will

contain a larger number of smaller sized cells, while the layers at the top will contain a

smaller number of larger sized cells.

The shape of the cells can be implementation specific, though a rectangular shape is

most likely due to the efficient detection of a point within an axis aligned grid. Further-

more the relationship between cells means that the corners of cells in parent layers always

share the corners of the cells in the child layers. As such a careful implementation can

make use of this property to reduce the memory requirements to store the layers of cells.

2.4 Neighbourhood Selection

In Reynolds boids framework the neighbours of a boid determine the influencing be-

havioural forces. The neighbours of a boid are determined by finding the nearby boids

within the simulation and then testing these boids against a perception function to de-

termine if they will influence the boid in question.
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Reynolds notes that a naive approach to determine the potential neighbours would

involve a O(N2) comparison between each boid in the flock. The comparison though can

be reduced using two possible techniques, one of which, dynamic spatial partitioning, is

used as the basis for the multi-layered cell representation. In order to more efficiently

obtain a list of the neighbours for a boid in Reynolds model, the simulation space is

partitioned into a grid as explained in the previous section.

The neighbourhood selection algorithm returns all the boids within the selected boids

cell and all those boids within the neighbouring cells. In a common 2D grid the neighbour-

ing cells would be those cells that are above, below, right, left and diagonal to the current

cell, giving a total of eight cells. Then each of the potential neighbours that lie within

these cells is checked to see whether it lies within the perception radius of the current

boid. In this implementation the boid considers a neighbour to be within its perception

if the neighbouring boid’s position is within the circle defined by the perception radius.

The approach must be modified for the multi-layered system in order to account

for the neighbouring navigation objects that are of a different size. Navigation objects

that are of a large size may be within the perception range of another navigation agent

without the centre of the navigation object being within the perception radius i.e. only

the edge of the large navigation object lies within the perception circle. Without taking

this into account there could be missed interactions between navigation objects resulting

in unwanted collisions or unusual navigation behaviour.

In order to avoid this problem the navigation agents in the simulation are given an

additional scalar value, the bounding radius. The original radius, the perception radius,

determines the distance at which an agent perceives its neighbours. The second, the

bounding radius, defines a circle describing the bounds of the agent itself. The perception

function for the agents is then changed such that an agent perceives a potential neighbour

if any part of the bounding circle of the neighbour lies within the perception radius.

Therefore a potential neighbour is considered to be within the perception distance if the

distance from the centre of the agent to the neighbour agent is less than the sum of the

agent’s perception radius and the neighbours bounding radius.

This specified perception function is by no means the only possible method. With

respect to the original boids, Reynolds suggests that the “field of sensitivity should real-

istically be exaggerated in the forward direction” in order to more accurately simulate a

birds perception [14]. The defined perception function above is an example of a more sim-

ple representation. It is quite conceivable that more complex perception functions could

be created that are tailored to specific character types, such as a particular animal’s field

of view, or also specific situations, such as weather effects like fog.

In the multi-layered flocking system the neighbourhood definition is extended to in-

clude some of those navigation objects that lie within the cell layers above the current
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agent’s layer. Since the navigation objects in the layers above are within cells that are of

equal or greater size there is potential that the navigation objects that are to be included

have a larger bounding radius. For this reason the neighbourhood is modified to include

the surrounding cells of each of the ancestors of the cell that the current agent lies within.

Thus the neighbourhood of an agent is defined as the cell of this agent, plus all of its

ancestors and the cells surrounding the current cell and each ancestor cell. A formal

listing of the algorithm that finds all navigation objects within an agent’s neighbourhood

is given in listing Algorithm 1: Neighbourhood Selection.

Input: NavigationCell cell, NavigationAgent agent, boolean includeNeighbours,

boolean includeParents

Output: List of NavigationObjects neighbours within cell, excluding agent,

including neighbouring cells if includeNeighbours is true, including

parent cells if includeParents is true.

neighbours ← ∅;
foreach NavigationObject navObj in cell do

if navObj 6= agent then
if DistanceTo(agent,navObj) < (agent.perceptionRadius +

navObj.boundingRadius) then
Add navObj to neighbours;

end

end

end

if includeNeighbours then

foreach NavigationCell nCell in neighbours do
neighbourObjs ← NeighbourhoodSelection(nCell, agent, false, false);

Add each NavigationObject in neighbourObjs to neighbours;

end

end

if includeParents then
parentObjs ← NeighbourhoodSelection(cell.parent, agent, true, true);

Add each NavigationObject in parentObjs to neighbours;

end

Algorithm 1: Neighbourhood Selection

A visual example of this algorithm is shown in Figure 2.3. In it is a demonstration of

a three layered navigation system and the resulting cells that are considered neighbours

when the neighbourhood algorithm is run on a cell in the bottom layer.

All of the objects within these cells are compared with the perception function of

the current agent to determine if they are valid neighbours, and then the navigation
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Figure 2.3: A visual example of the Neighbourhood Selection algorithm being run on a three layered
navigation system. The image is divided into four sections. On the top left and top right
are the first and second layers respectively. On the bottom right is the third cell layer. On
the bottom left is an isometric view of all three layers. The original cell that the agent is
positioned in is shown in red. Ancestor cells are shown in orange and the neighbouring
cells are shown in yellow. The remaining cells in blue are not examined.

behaviours use these neighbours to produce their recommended steering forces. Figure

2.4 displays an example of a navigation agent’s perception radius and the detection of

neighbouring navigation objects on two cell layers.

2.5 Navigation Behaviours

Reynolds specifies a number of different navigational behaviours that allow for character

movement [15]. Each steering behaviour uses the attributes of the boid and possibly

the other boids that are its neighbours to decide in which direction it should go. The

behaviour then provides a force that it determines will steer the boid in the right direction

to achieve the desired movement. The forces of all the steering behaviours of a boid are

taken and then a final steering force is calculated. The steering force of the boid is set
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Figure 2.4: An example of an agent’s perception in two layers. On the left is the agent’s perception
on the bottom cell layer, on the right is the perception on the top layer. The agent is
represented by a position in red, bounding radius in orange and a perception radius in
yellow. Other navigation objects in the simulation are shown in green if they are outside
the agent’s perception radius, blue if they are contained.

to this calculated value and then used during the physical update to determine a new

position.

The final steering force that will be applied to the boid is calculated in one of sev-

eral ways. The most simplistic form is the weighted average of each of the three forces

calculated by the navigation behaviours defined above. A slight variation of this is to nor-

malize the direction of each force returned by the steering behaviours and then multiply

each force by a weighted value. This method provides weighting parameters that can be

adjusted in order to modify the overall movement of a boid, allowing for a preference in

the separation behaviour in order to avoid collisions. Though this model is simple and

easy to compute, it leads to indecision when two of the steering behaviours produce op-

posite forces, resulting in a negated final steering direction. In order to address this issue

the more complex method of prioritized acceleration allocation can be employed. This

technique attempts to allocate the total amount of acceleration that the boid can provide.

It does this by considering the steering behaviours in order of their priority. Reynolds

implementation suggests giving the separation behaviour a higher priority in order to

cause navigation agents to prefer avoiding collisions over forming into flocking groups. In

[15] a third method is suggested for calculating the final steering force. Reynolds states

that one behaviour can be evaluated randomly for a given probability for each update of

the simulation, thereby spreading the computational load of calculations across multiple

updates of the simulation.

For the multi-layered flocking system the same approach can be used to determine

the final force. The different navigational behaviours can all be applied to the simulation,
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though modifications may need to be made to take into account the influence of the layers

of navigation objects. For example the separation behaviour is normally calculated as the

sum of the difference between the current agent in question and its neighbours. This sum

is then scaled by the inverse of the separation distance (1/r). In a multi-layered system

the difference between the current agent and the neighbours must take into account the

bounding radius of the objects and can additionally be multiplied by a factor representing

the difference in layer height. This additional weight can then make agents prefer to avoid

collisions with agents in layers above, which in turn may create a more natural steering

behaviour for the specific simulation. An example of this case is that of a small boat such

as a yacht avoiding a large ship such as a tanker in preference to other smaller boats. This

would occur because the tanker is represented by a navigation agent on a layer above the

yacht while the other smaller boats would be represented on the same layer as the yacht.

2.6 Cell and Agent Property Relations

The closely tied relationship between cells and the navigation objects within them place

certain restrictions and dependencies upon their attributes. Firstly the perception radius

of the agents in a particular layer must always be less than both the width and the

height of the cells in their layer. This ensures that agents on the border of a cell cannot

perceive objects that lie further than one cell away (as these cells are not included in the

neighbourhood selection algorithm).

The ratio between the bounding radius and the perception radius must also be con-

sidered. An agent requires that the difference between these two distances be sufficiently

large such that two agents moving directly towards each other do not intersect after a

single behavioural update. Since these attributes depend entirely on the simulation being

created, e.g. the maximum speed of the agents in each layer, they are implementation

specific. The most suitable approach would be to create the cells with a larger than ex-

pected size, allowing for a larger perception radius. This size can then be decreased in

order to increase the performance until a suitable minimum sized cell value is found that

allows for a perception radius that still avoids navigational errors like collisions.

2.7 Summary

In this chapter a formal description for the multi-layered flocking system was given. The

multi-layered flocking system represents each character in a crowd using one or more

navigation objects. These navigation objects are either navigation agents or navigation

obstacles. Navigation agents examine their neighbourhood to determine those navigation

objects that are close enough to influence the character they represent. The neighbours
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that are found are then used by one or more navigation behaviours to determine a force

to apply to the character in order to create the characters locomotion. The system uses

navigation cells to divide the simulation space into a series of layers. The neighbourhood

of a navigation agent depends on the cells in which it is contained and those cells that

surround it and lie above it. The next chapter examines the way that different charac-

ters can be represented using this system and then discusses the varying types of crowd

movement that can be created.
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3
System Capabilities and

Characterization

3.1 Introduction

This chapter examines the different type of movement that are possible when using the

multi-layered flocking system. It begins with a description of the different representations

that the characters in the system can use and the ways these different representations

affect the movement. It explains the use of properties in order to enhance the system and

includes some examples of useful properties that produce desirable behaviours. Follow-

ing this is a discussion of the representation of the environment and how this can affect

the resulting navigation of agents within the simulation. This chapter then continues

on to discuss the various behaviours that are applicable to the system, and the various

advantages and disadvantages of the individual behaviours. It covers the use of specific

behaviours in order to combine path-finding systems with the multi-layered system. It

then compares the multi-layered system with the original Reynolds model before conclud-

ing with a discussion about the advantages and disadvantages of using the multi-layered

flocking system.

21
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3.2 Types of Movement

This chapter begins by explaining some of the types of movement that are possible using

the multi-layered system. In order to do this a simple example involving two types of

characters is presented that will be used to explain some of the different representations

of characters that are possible in the multi-layered system. Consider a simple simulation

that is composed of two types of characters. The first group consists of standard human

sized characters; the second consists of giant humanoid characters that are significantly

larger.

3.2.1 Single Layer Character Representation

The simplest way to represent these two groups of characters is to simply represent each

individual character with a single navigation agent. All of these navigation agents then

reside on a single cell layer that represents the traversable area in the simulation. See

Figure 3.1 for a visual example of this representation.

Figure 3.1: An example of single layer character representation with a human and giant. Both the
human and giant characters are represented on a single cell layer, each using a single
navigation agent to represent their position and bounding radius.

Using this representation the characters can be given appropriate behaviours and

would traverse about the simulation without collision. The size of the cells in the cell

layer would need to be quite large as it needs to be big enough to meet the conditions

of the bounding radius of the giant characters. This will cause a somewhat inefficient

calculation of the neighbourhood for the characters in the simulation. This is due to the

fact that the required larger cell size could potentially hold a large number of the smaller

human characters and as such will cause the number of objects in a neighbourhood to

be large. This in turn will increase the number of comparisons required to determine the

force caused by each behaviour. To avoid this problem the simulation can be extended to

use another cell layer.
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3.2.2 Multi-Layered Character Representation

The addition of cell layers in the multi-layered system allows for an improved efficiency

while maintaining the simulation of the movement of the two groups of characters with

vastly different sizes. An additional cell layer needs to be added to accommodate the

giant characters. Both groups maintain their representation of a single navigation agent

at their position, but the giant characters have their navigation agents placed upon the

top cell layer. See Figure 3.2 for the visual example of this representation.

Figure 3.2: A human and giant character represented on two cell layers. The human character is
represented by a navigation agent on the bottom cell layer; the giant is represented by a
navigation agent on the top layer.

With this current definition the multi-layered system has divided the two groups of

characters. Now the characters representing the giants lie upon the top layer and are

unaware of the characters upon the bottom layer. The characters on the bottom layer

will consider both the other human characters and the giant character to be within its

neighbourhood and will avoid both. The cell size on the top layer will be the same as in

the previous example, but the cell size on the bottom layer can be a much higher fidelity

and will therefore reduce the number of comparisons to determine an agent’s neighbours.

This representation has a notable flaw, which is that the characters that lie on the lower

cell layer may be sufficiently small such that they can move beneath the larger characters.

With the current representation such movement is not possible, as the characters on the

lower level will treat the navigation agents that represent the giant characters with equal

avoidance to the other neighbours. In order to address this issue the concept of specialized

properties is introduced.
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3.3 Properties

Properties are attributes that particular navigation objects in the simulation have in order

to enhance their resulting movement. Properties are directly coupled with the behaviours

associated with an agent and as such are specific to the simulation being created. A

simple example of a property would be a species enumerator associated with each agent

in a simulation. Using this property two behaviours can easily be created by modifying

the cohesion and alignment behaviours to only conform if the neighbouring agents have

the same value for the species property. This additional property is easy to add to the

simulation and cleanly creates a navigation system in which particular species coordinate

their movement together.

3.3.1 AffectsBelow Property

This use of properties is essential to further define complex behaviours, especially con-

cerning the interaction between characters on different levels. As mentioned previously

the multi-layered system is able to represent characters of vastly different sizes and it

may be desirable to create movement where the smaller characters move underneath the

body of the larger characters. In order to create this type of movement an additional

property is used and the representation of larger characters is altered. This additional

property is an affectsBelow boolean value. By default this value is true, but when it is

false, the navigation object with this property is ignored by agents that lie on any cell

layer below the current navigation object. This therefore allows for agents on a parent

layer to interact with their neighbours on the same layer, but to not affect those agents

that lie in any child layer.

Next the representation of the giant characters on the top layer is modified to use this

new property. The character is now divided up into two parts, the legs and the main

body. The main body is represented by a navigation agent that lies on the top layer.

This main body has the affectsBelow property and the value of this property is set to

false. The legs of the character are represented by navigation obstacles that lie on the

child layer and their affectsBelow value is left to the default value of true. See Figure 3.3

for the visual example of this representation.

The movement of the giant characters will still be defined by the behaviours associated

with the navigation agent that represents the characters body. As the character’s body

moves throughout the simulation the position of the navigation obstacles that represent

the legs of the character are updated to match the animation of the character.

Now given this setup a new behaviour that modifies the existing separation behaviour

is created so that it takes into account the additional affectsBelow property. The sepa-

ration neighbourhood is defined as only those neighbouring navigation objects whose cell



3.3 Properties 25

Figure 3.3: A human and giant character represented on two cell layers. The human character is
represented by a navigation agent on the bottom cell layer; while the giant character is
represented using multiple navigation objects on both the top and bottom cell layers.

layer is equivalent in depth or whose affectsBelow property is true. Using this representa-

tion of the characters the resulting movement of the human characters will be such that

they will move past the agents on the parent layer by avoiding their legs but without

taking a preference for moving beneath the parent layer.

This property and behaviour setup can be further extended to use a scalar value to

represent the preference of a character to avoid the parent layer agents. If this scalar

value is small, the parent agent will provide a weak force such that agents will choose to

go around the parent agent, but could move between their legs if there is sufficient force

to cause them to do so. If this scalar value is large, the resulting force would cause the

agents on the child layer to avoid passing beneath the agents on the parent layer unless

absolutely necessary.

The movement of the legs that lie on the lower layer needs to depend on the position

of the body agent that lies on the upper layer. Furthermore it is important that the

position of the leg aligns with the visual representation of the object in the simulation to

ensure that the collision avoidance is consistent with the model being displayed. If the

model being represented lifts its legs high enough such that the agents on the child layer

could potentially pass underneath it then the navigation obstacle needs to be removed or

deactivated while the leg is in the air. The obstacle can then be re-added to the child

layer when the foot of the leg returns to the ground. It was found during a prototype

implementation of this property that the sudden return of the navigation obstacle to the

child layer caused child agents to clip through the feet of the parent agent. This can

be considered a desired property if the simulation is intended to show child agents being

crushed by the feet of the parent agents. If this is undesirable the navigation obstacle that
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represented the leg can be re-added a few seconds in advance of the foot being returned

to the child layer. This causes agents to begin moving out of the way in advance of the

foot being returned to the ground.

This concept of using two layers to represent a character to allow smaller characters

to move underneath them is not limited to only two layers. The same approach can be

extended indefinitely to allow for even more complex interactions. For example if the

simulation wanted to have a third layer of characters through which both the previously

defined layers moved underneath, then the third layer of characters would be defined by

a body represented by a navigation agent on the third layer and navigation obstacles

representing the legs on the second layer. Since the leg obstacles are within the neigh-

bourhood of both the first and second layer, all of these characters will avoid the obstacles

representing the legs and move underneath the agent.

3.4 Environment Representation

The representation of the static environment in the simulation should also be adjusted

to match the agents that are in the simulation. As can be seen by the characters in

the simulation there are a number of ways that objects can be represented and several

different choices are examined below.

Consider again the simulation that included the two groups, one representing human

sized characters, the other representing giant sized characters, and assuming they are

represented upon two cell layers with the giant sized characters being split into body and

legs over the two layers.

Obstacles in the environment that affect the agents on both layers should be repre-

sented by a navigation obstacle that lies on the top cell layer. Such a navigation obstacle

will be included in the neighbourhood of the navigation agents in both the bottom and

top cell layer and as such both these groups of agents will avoid it.

If on the other hand a piece of the environment only affected the children and was

crushed by the feet of the characters whose navigation agents lie on the top layer, then the

object can be represented by a navigation obstacle on the lower cell layer. The obstacle in

the environment can then be destroyed when a parent agent’s foot obstacle collided with

it. A further type of environment, where the child agents could move through it, but the

parent agents would be forced to go around can also be represented. Such an obstacle

in the environment could be a building, through which the smaller human characters can

enter and move about, but which the larger giant characters must navigate around. To

create this type of movement the object in the environment could be represented by a

series of navigation obstacles on the lower layer, and a single larger navigation obstacle

on the top layer that has the affectsBelow property set to false. This will cause the larger
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agents on the top layer to navigate around the structure, while smaller agents would be

able to move about the environment at the lower level. See Figure 3.4 for a visual example

of this representation involving a tree.

Figure 3.4: An example representation of a tree as part of the environment. The tree is represented
on two layers which ensures that the smaller human sized characters are able to navigate
close to the trunk while the larger giant sized characters are restricted to navigating around
the branches.

3.4.1 Example Properties

Two additional properties that are generally useful in a simulation are isActive and is-

Blocking.

The first, isBlocking is a boolean value that determines whether a navigation object

should be included in the multi-layered flocking system with respect to other character’s

neighbourhood. By disabling this value we are able to stop this object having any influ-

encing behaviour on other characters. This property can be used on any object in the

simulation that does not wish to influence the separation behaviour of other agents. One

example of using this property is to change the property to false for buildings that have

been destroyed in the simulation and as such are no longer an obstacle. Another example

is the representation of ethereal objects such as ghosts that could potentially be moved

through by other characters.

The isActive property serves a related purpose. It is used to enable or disable whether a

character should be influenced by the behaviours it uses. Often in a simulation a character

needs to be removed from the simulation, a common example being if the particular

character has died during a game. In this case the character should not be playing a part

in the influence of other characters movements and updating the characters behaviours is

equally unimportant. The character though may not be able to be completely removed
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from the simulation. The character from the previous example could be playing a death

animation sequence where the character remains in the simulation. By setting the isActive

property to false we can easily continue this animation while avoiding unnatural behaviour

of the character after its death. It may also make sense in this particular example to also

set the isBlocking property to false, as the dead character may no longer provide an

obstacle to the other characters in the simulation.

3.5 Cell Layer Hierarchy

Up until this point the simulations presented have followed the format of smaller agents

lying on a plane with larger and larger agents being placed in successively higher layers.

Though this representation of layers in these particular examples corresponds to an in-

creasing height value, this is not the only ordering that the layers are able to represent.

Furthermore it should be noted that the examples so far have also only contained cell

layers where each parent layer has a single child layer. By allowing more than one cell

layer to use the same cell layer as its parent, simulations are possible in which there are

smaller agents both below the larger agents and above them. Consider an extension to

the above example that contained two groups of characters: humans and giants. Now as-

sume that the simulation also required a flock of birds to be represented that would fly at

the head height of the giant characters. The characters that represent these birds would

be required to fly around the giant characters. To achieve this, the new bird characters

would lie upon a third cell layer. This third layer would treat the cell layer that the giant

characters lie upon as their parent layer. The simulation now contains two cell layers,

the human layer and the bird layer, both of which have the giant layer as its parent.

This representation ensures that the bird characters only need to consider each other and

the giant characters when navigating and waste no time checking for collisions with the

human characters in the simulation. Note that the child cells of both layers must match

up to the boundaries of the parent layer to conform to the conditions described in the

algorithms chapter.

3.6 Behaviours

So far this chapter has covered the different ways characters and the environment can

be represented in the multi-layered system. This next section discusses the different be-

haviours that could typically be used in the multi-layered system, first discussing common

movement behaviours and then examining the development of more complex behaviours

that allow for the integration of the multi-layered system with path-finding systems.



3.6 Behaviours 29

3.6.1 Standard Movement Behaviours

The multi-layered system uses the same force combination methods as the Reynolds

model. This allows the system to use any movement behaviour that can be defined

as a force upon the navigation agent at a point in time in the simulation.

Using the standard weighted combination or force priority techniques mentioned in

the algorithm chapter, steering behaviours can be developed that deal with the majority

of standard movements required in animations and games. Reynolds provides an overview

of these typical behaviours[15]. The steering behaviours that Reynolds covers include:

• Seek : Move towards a position.

• Arrive: Move towards and stop at a position.

• Pursuit : Follow another object.

• Separation: Move away from other nearby objects.

• Cohesion: Move towards the average position of nearby objects.

• Alignment : Face in the same direction as nearby objects.

• Wander : Move in a random direction.

• Path Following : Seek towards a series of points.

These behaviours can be easily adapted or extended to create movement that is more

suitable to the simulation being developed. For example the Path Following behaviour

can be modified to follow a lane on a road network, with the additional attributes that it

will change lanes and stop at lights when needed.

3.6.2 Multi-Layered Movement Behaviours

By utilizing the common movement behaviours that are applicable to the multi-layered

system, simulations can be made that involve a range of different movement types. Com-

bining several of the above common behaviours allows a designer to produce varied types

of movement within a simulation. The Separation, Cohesion and Alignment behaviours

can be used to create a standard crowd. By modifying the weighting or priority of these

behaviours a crowd can be made to appear slow and dense or fast and erratic. In 3.5 an

example is displayed that shows a crowd of characters moving through the legs of a larger

four-legged character. This simulation was created with the multi-layered flocking system

by combining the standard behaviours of a Reynolds model with a Wander behaviour

for the four-legged character. The same simulation could be modified to make the crowd
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flee the four-legged character, swarm beneath it, or use the four-legged character as pro-

tection from another larger character by simply adding slightly modified versions of the

Separation, Seek or Pursuit behaviours.

Figure 3.5: Example screenshots of a four-legged character moving through a crowd of smaller char-
acters. The image is broken into eight sections, each representing an increase in time step
in the simulation. The simulation is set up with two cell layers; the four-legged character
is represented by a navigation agent on the top layer and four navigation obstacles on the
bottom layer. The smaller characters are represented by a single navigation agent on the
bottom layer.

An additional behaviour can be made that acts as the opposite of the Separation

behaviour. Instead this behaviour can be used to cause characters to be drawn towards

another object in the simulation. Such a behaviour can be combined with the affectsBelow

property to create movement where child agents are attracted towards a parent agent,

giving the impression that the child is hiding beneath the parent for safety. This can be

applied to both navigation agents and navigation objects, thereby creating solid objects

that an agent is hiding beneath as well as moving objects such as larger creatures. This

behaviour is not limited to hiding beneath other agents and could also be used to attract

characters towards an area, whether static or moving. For example the attraction area

could represent the shade of an obstacle and objects would move towards the shade,
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updating their position with the movement of the sun.

3.6.3 Integration with Pathfinding Systems

Often in simulations, particularly in games in which the player controls many charac-

ters and performs tasks with them, the simulation requires more advanced pathfinding

techniques that allow the characters in the simulation to navigate the environment. The

multi-layered system restricts a character’s knowledge to that of its local neighbourhood

and as such would perform poorly in a simulation that requires complex pathfinding. De-

spite this, complex path-finding is easily added to the simulation by providing behaviours

that act as a bridge between more complex pathfinding models and the multi-layered

system. For example, consider the A* search algorithm typically used in games to find a

path from one point in the simulation to another. This search can be used with the char-

acters represented in the multi-layered system by creating a new behaviour that extends

the Path Following behaviour to perform an A* search. This behaviour can then follow

the computed path by returning a force towards the next waypoint in the path.

3.7 Comparison with Reynolds Navigation Model

Reynolds navigation model produces a resulting navigation that efficiently represents the

movement of a flock in either two or three dimensions. The two dimensional version of

Reynolds model can be easily recreated using the multi-layered flocking system and is

essentially a subset of the possible resulting movements possible using the multi-layered

system. In order to represent the Reynolds model a single cell layer would be used upon

which the agents would lie.

All the agents in the layer would be given the same three defining behaviours of the

navigation model: Cohesion, Separation and Alignment. With this setup the neighbour-

hood selection algorithm will return the same neighbours for each agent as they would in

the Reynolds model. Computationally the process would be identical with the exception

of a single additional check to determine if there is a parent layer, which would be absent.

The ability of the multi-layered system to represent Reynolds model is a beneficial prop-

erty as it allows scenes that do not require a complicated representation of movement to

be created using the same system as more complex movement, thus providing a unified

approach to all aspects of navigation in the simulation.
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3.8 Advantages of the Multi-Layered System

The multi-layered system restricts the knowledge that characters in the simulation have

about other characters in the simulation. By only providing the minimum amount of

required knowledge to each character the system is able to reduce the computational time

that each character requires to calculate its movement. This multi-layered system also

maintains the advantage of partitioning the space that represents the traversable space

in the simulation. Such a division allows the system to be more adaptable to the multi-

core architectures that are almost standard in gaming consoles and rendering processes.

The calculation of the characters behaviour is also highly parallelized due to the fact

that each characters movement is only dependent on its own behaviours and its local

neighbourhood.

Once the core architecture of the multi-layered system has been created the process

of developing characters is relatively straightforward. Each character need only be repre-

sented by one or more navigation objects and one or more behaviours. The positioning

and calculation of navigation obstacles for individual body parts such as legs could be au-

tomated by using the bounding volumes of the visual animations. Such automation would

allow the designers of the simulation to rapidly prototype different types of characters,

while quickly choosing the types of navigation that they wished the characters to follow.

Furthermore the flexibility of the multi-layered system reduces the restrictions upon the

designers, allowing them to create more interesting movement within their simulation.

3.9 Disadvantages of the Multi-Layered System

The multi-layered system allows for more complex navigation simulations to be devel-

oped but there are some disadvantages to using this approach. The problems associated

with the method proposed by Reynolds are inherited into the multi-layered system. The

main disadvantage is the fine tuning of varying forces to find a resulting movement that

is most applicable to the simulation. If a navigation agent contains a large number of

behaviours then the competition between forces may cause a resulting movement that

appears contradictory to what the designer is trying to achieve. It may also not be easy

to understand which particular behaviours are causing the undesirable motion. Reynolds

recommendation of a prioritized combination method to choose which behaviours to en-

force requires that the resulting forces of all the behaviours is scaled appropriately and

does not overwhelm the possible maximum force that the navigation agent can produce

in a single update.

Another issue that can potentially develop in the simulation relates to a specific prop-

erty: the isBlocking property defined previously. Navigation agents that have this prop-
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erty set to false will not naturally separate from other agents on the cell layer. This

therefore can lead to a large grouping of these characters in one cell on the cell layer.

Since the efficiency of the system depends on the number of characters in one cell be-

ing low, a large grouping of characters can lead to a large degradation in performance.

Reynolds notes this issue in his paper discussing and implementation of flocking on the

Playstation R©3 and recommends the use of an additional specific behaviour that ensures

that large groupings of characters do not occur by providing force away from cells that

are too full[16]. This method attempts to prevent overcrowding while allowing for crowds

to form up to a maximum extent.

The entire structure of the multi-layered system uses the assumption that in a situation

with a smaller object and a larger object, the smaller object is expected to navigate

around the larger object. This structure is what maintains the efficiency of the model in

the simulation. Though this structure is appropriate for the situations suggested above,

it is not true of every situation.

Consider for example an adult moving about the house with the knowledge that a

two year old child is playing in the living room. The parent would be represented on

a cell layer that is above the cell layer that the child is upon. When the parent moves

through the living room they will be careful to note the child’s position and avoid stepping

on the child. Consider also a situation with a simulation of fish and sharks where the

representation of fish and sharks is also represented in a similar fashion. The sharks,

being of significantly larger size would be placed on a cell layer that is above their prey.

With the multi-layered system the information about navigation objects flows from

the top down. Navigation objects on higher levels affect those on the same or lower

levels. In both the situations specified above the navigation agents on the top layer

require information about the navigation agents on a lower layer in order to navigate

correctly, thus the flow of information is from the bottom up. These two situations are

not naturally handled by the multi-layered system. In order to facilitate this, the system

can be modified to allow behaviours to have access to the cells in a layer below the layer

that the agent resides in. Doing so would avoid this problem but potentially allow for

large inefficiencies. This is because the agents could potentially search through a large

number of navigation objects upon the lower cell layer. Behaviours that require access

to a child layer require careful implementation to ensure that the complexity of these

behaviours is kept to a minimum.

3.10 Summary

In this chapter the possible representations of characters and the environment have been

explained. This chapter highlights the different representations, describing the resulting
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movement that will occur when each type is implemented. It also discusses the use of prop-

erties to further enhance the multi-layered system and define more complex behaviours.

The different behaviours that can be used within the system have been explained, in-

cluding the use of behaviours specifically designed to include more complex path-finding

systems. Finally the chapter has discussed the advantages of the system and some of the

possible disadvantages that could occur and suggests some ways to go about avoiding or

reducing these problems. In the next chapter the conclusion for this dissertation is given

and some future directions for further research are defined.



4
Conclusion

4.1 Conclusion

This aims of this dissertation were to define a system that allows designers to create

crowds that are able to contain members of varying sizes and that allows for characters

in those crowds to travel underneath larger characters. In this respect the multi-layered

flocking system is successful. The resulting movement produced by the system is able to

represent characters moving in groups of varying size, and these groups are able to move

through, around and underneath other characters in the simulation.

The system divides the simulation space into a series of navigation cells in a similar

approach to Reynolds flocking model. Several layers of these cells can be created, and

using these layers the simulation space can be abstracted to allow for different sized

characters to be placed within the simulation. In this dissertation the characters and

environment in a simulation are represented using one or more navigation objects. The

choice of navigation objects depends on the desired representation that the designer is

attempting to produce. The examination of the capabilities of the system has shown that

the representation is flexible enough to allow for varying types of characters and obstacles

to be created, including objects that allow for smaller characters to pass beneath them.

The behaviours that are applied to each of the characters provide the characters move-

ment. The characters in the simulation represented by this system are unique and each has

its own behaviours. Thus it is possible to use this system to create both group behaviour
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such as crowds and combine this with specific individual goals and desires. Furthermore

the system can use specific navigation behaviours to incorporate more complex navigation

techniques such as pathfinding.

4.2 Future Directions

The multi-layered flocking system in this dissertation is conceptually an abstraction from

the 2-dimensional version of Reynolds flocking method. It is theoretically possible to cre-

ate a similar multi-layered flocking system that uses the 3-dimensional version of Reynolds

flocking method as a basis. Such a model would use a 3-dimensional cell representation,

which would then be layered. This structure would provide a spatial partitioning that

determines the members of its neighbourhood as those within distance of an abstract

volume rather than the objects that lie upon an abstract plane as is done in this disser-

tation. Such an implementation may prove to be complex to understand for a designer,

but warrants investigation.

The prototype application built to test the multi-layered flocking system put forward

in this dissertation uses somewhat standard behaviours. Though additional behaviours

have been examined an in-depth study of the varying types of behaviours would provide

for a useful overview to present to designers who wish to use the system. Furthermore

the examination of integration of alternate techniques could also be performed in order to

determine the ease at which these alternate methods can be integrated within the system.
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Appendix

.1 Appendix A: Pseudocode

This section includes peudocode for the fundamental classes required to implement a

multi-layered flocking system. The pseudocode is written with an Object Oriented pro-

gramming language in mind. The pseduocode focuses on the key aspects of the system,

as described in chapter 2 and as such excludes common accessor and mutator methods. It

also excludes methods which would be implementation specific such as those involving the

data structure used for the NavigationCells. The classes covered are: NavigationObject,

NavigationAgent, NavigationObstacle, NavigationCell and NavigationCellLayer.

.1.1 Navigation Object Pseudocode

Pseudocode describing the implementation of the NavigationObject super class. This

class is extended by both NavigationAgent and NavigationObstacle.

class Navigat ionObject
{

//Enumerator f o r the d i f f e r e n t t ype s o f Nav iga t ionObjec t s
enum NavigationType
{

Obstacle ,
Agent ,

} ;

//Returns the NavigationType o f t h i s Nav iga t ionObjec t
virtual NavigationType GetNavigationType ( ) = 0 ;

/∗ . . .

Common acces sor /mutator methods f o r the v a r i a b l e s
used by a l l Nav iga t ionOb jec t s . These are :
− c e l l L ay e r
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− c e l l
− po s i t i o n
− boundingRadius

. . . ∗/
} ;

.1.2 Navigation Agent Pseudocode

Pseudocode describing the implementation of the NavigationAgent class. This class is a

subclass of NavigationObject.

class NavigationAgent : public Navigat ionObject
{

//The l a y e r t ha t t h i s agent i s l o c a t e d on
Navigat ionCe l lLayer ∗ c e l l L ay e r ;

//The c e l l t h a t t h i s o b s t a c l e i s in
Navigat ionCe l l ∗ c e l l ;

Vector2 po s i t i o n ; //The po s i t i o n o f t h i s agent
Vector2 v e l o c i t y ; //The v e l o c i t y o f t h i s agent
Vector2 a c c e l e r a t i o n ; //The a c c e l e r a t i o n o f t h i s agent
Vector2 heading ; //The heading o f t h i s agent

//The heading t h i s agent w i l l a t tempt to face each
// update o f the s imu la t i on
Vector2 des i redHeading ;

double percept ionRadius ; //The percep t i on rad ius o f t h i s agent
double boundingRadius ; //The bounding rad ius o f t h i s agent
double mass ; //The mass o f t h i s agent

// L i s t o f the behav iours which a f f e c t t h i s agent ’ s nav i ga t i on
vector<Navigat ionBehaviour∗> behaviours ;

// Ins tance o f the combinator t ha t w i l l combine each o f the
// agent ’ s behav iours in t o a f i n a l s t e e r i n g f o r c e .
BehaviourCombinator∗ behaviourCombinator ;

//Constructor
NavigationAgent ( /∗ . . . Agent Parameters . . . ∗/ )
{

/∗ . . . Assign parameters to in s tance v a r i a b l e s . . . ∗/
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//Update the r e f e r ence to the c e l l t h a t t h i s agent i s in
this−>ce l lLaye r−>UpdateCel lReference ( this ) ;

}

//Update the behav iours . This w i l l use the behav iour combinator
// to c a l c u l a t e a de s i r ed heading from a l l the f o r c e s re turned
//by the behav iours in the ‘ behav iours ’ v e c t o r .
void UpdateBehaviours ( f loat currentTime , f loat dt )
{

des i redHeading = behaviourCombinator−>
GetCombinedHeading ( behaviours , this , currentTime , dt ) ;

}

// Returns the NavigationType o f t h i s agent
virtual NavigationType GetNavigationType ( ) {

return NavigationType . Agent ;
}

/∗ . . .

Implementation o f common acces sor /mutator methods .

. . . ∗/
} ;

.1.3 Navigation Obstacle Pseudocode

Pseudocode describing the implementation of the NavigationObstacle class. This class is

a subclass of NavigationObject.

class Navigat ionObstac le : public Navigat ionObject
{

//The l a y e r t ha t t h i s agent i s l o c a t e d on
Navigat ionCe l lLayer ∗ c e l l L ay e r ;

//The c e l l t h a t t h i s o b s t a c l e i s in
Navigat ionCe l l ∗ c e l l ;

Vector2 po s i t i o n ; //The po s i t i o n o f t h i s o b s t a c l e
double boundingRadius ; //The bounding rad ius o f t h i s o b s t a c l e

//Returns the NavigationType o f t h i s agent
virtual NavigationType GetNavigationType ( )
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{
return NavigationType . Obstac le ;

}

//Constructor
Navigat ionObstac le ( /∗ . . . Obs tac l e Parameters . . . ∗/ )
{

/∗ . . . Assign parameters to in s tance v a r i a b l e s . . . ∗/

//Update the r e f e r ence to the c e l l t h a t t h i s agent i s in
this−>ce l lLaye r−>UpdateCel lReference ( this ) ;

}

/∗ . . .

Implementation o f common acces sor /mutator methods .

. . . ∗/
} ;

.1.4 Navigation Cell Pseudocode

Pseudocode describing the implementation of the NavigationCell class. This class contains

a list of all the NavigationObjects whose position lies within the cell. The GetNeighbours

method relates to the main neighbourhood selection algorithm described in the chapter

2.

class Navigat ionCe l l
{

//The parent c e l l which l i e s above t h i s c e l l
Navigat ionCe l l ∗ parentCe l l ;

//The l a y e r t h i s c e l l i s on
Navigat ionCe l lLayer ∗ c e l l L ay e r ;

//The ne ighbour ing c e l l s to t h i s c e l l
vector<Navigat ionCe l l∗> neighbours ;

//The bounds o f t h i s c e l l
Vector2∗ ce l lBounds [ 4 ] ;

// L i s t o f a l l the Nav iga t ionOb jec t s in t h i s c e l l
vector<Navigat ionObject∗> nav igat ionObjec t s ;
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//Constructor
Navigat ionCe l l ( Nav igat ionCe l lLayer ∗ ce l lLaye r , Vector2∗ ce l lBounds )
{

this−>c e l l L ay e r = c e l l Lay e r ;
this−>parentCe l l = ce l lLaye r−>Calcu lateParent ( this ) ;
this−>ce l lBounds = ce l lBounds ;

}

//Returns the ne ighbour ing Nav iga t ionOb jec t s in a c e l l .
//This method exc l ude s the Nav iga t ionObjec t ‘ agent ’ .
// I f inc ludeNe ighbours i s t rue then the ne ighbour ing c e l l s are
// a l s o checked f o r Nav iga t ionOb jec t s .
// I f inc ludeParen t s i s t rue then the parent c e l l i s a l s o
// checked f o r Nav iga t ionOb jec t s .
vector<Navigat ionObject∗> GetNeighbours ( NavigationAgent∗ agent ,

bool inc ludeNeighbours ,
bool i nc ludeParent s )

{
vector<Navigat ionObstac le∗> neighbours ;

//Get o b j e c t s in t h i s c e l l , e x c l ud ing ‘ agent ’ i f i t i s s p e c i f i e d
f o r each ( Navigat ionObject navObj in nav igat ionObjec t s )
{

i f ( navObj != agent )
{

i f ( DistanceTo ( agent , navObj )
< ( agent . percept ionRadius + navObj . boundingRadius ) ){

neighbours . add ( navObj ) ;
}

}
}

//Get o b j e c t s in ne ighbour ing c e l l s
i f ( inc ludeNe ighbours )
{

f o r each ( Nav igat ionCe l l nCe l l in ne ighbours )
ne ighbours . add ( nCel l . GetNeighbours ( agent , false , fa l se ) ) ;

}
}

//Get o b j e c t s in l a y e r s above
i f ( inc ludeParent s )
{

neighbours . add ( parentCe l l . getNeighbours ( agent , true , true ) ) ;
}



44 Appendix

//Return a l l the Nav iga t ionOb jec t s found
return neighbours ;

}

/∗ . . .

Implementation o f common acces sor /mutator methods .

. . . ∗/
} ;

.1.5 Navigation Cell Layer Pseudocode

Pseudocode describing the implementation of the NavigationCellLayer class. This class

contains a list of all the NavigationCells which make up this NavigationCellLayer. This

class provides methods to determine parent-child relationships between cells and updates

NavigationObjects to ensure that they referenced in the correct NavigationCell.

class Navigat ionCe l lLayer
{

//The parent nav i ga t i on layer , NULL i f t h e r e i s no parent
Navigat ionCe l lLayer ∗ parentLayer ;

//The c e l l s in t h i s nav i ga t i on layer , data s t r u c t u r e i s
// implementat ion s p e c i f i c , i . e . a g r i d o f c e l l s cou ld use
//a 2−dimensiona l array .
vector<Navigat ionCe l l∗> c e l l s

//Constructor
public Navigat ionCe l lLayer ( vector<Navigat ionCe l l∗> c e l l s )
{

this−>c e l l s = c e l l s ;
}

//Checks the nav i ga t i onOb j ec t ’ s p o s i t i o n and updates the r e f e r enc e s
// l i n k i n g the o b s t a c l e to the c e l l t h a t i t i s conta ined wi th in .
void UpdateCel lReference ( Navigat ionObject ∗ navObj )
{

//Get a po in t e r to the new c e l l g i ven the nav i ga t i onOb j ec t ’ s curren t
// po s i t i o n .
Navigat ionCe l l ∗ newCell = GetCel lAtPos i t ion ( navObj−>GetPos i t ion ( ) ) ;
Nav igat ionCe l l ∗ o l dCe l l = navObj−>GetCel l ( ) ;

i f ( o l dCe l l != NULL)
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{
o ldCe l l−>RemoveNavigationObject ( nav igat ionObject ) ;

}
navObj−>Se tCe l l ( newCell ) ;
newCell−>AddNavigationObject ( navObj ) ;

}

//Returns the c e l l t h a t con ta ins the p o s i t i o n de f ined by ‘ ob j ec tPos ’
Navigat ionCe l l ∗ GetCel lAtPos i t ion ( Vector2 objectPos )
{

/∗ . . .

Implementation S p e c i f i c accord ing to data s t r u c t u r e used f o r
‘ c e l l s ’ .

. . . ∗/
}

//Returns the Nav i ga t i onCe l l in t h i s l a y e r which would be the parent
// o f the Nav i ga t i onCe l l ‘ c h i l dC e l l ’
Navigat ionCe l l ∗ Calcu lateParent ( Nav igat ionCe l l ∗ c h i l dC e l l )
{

/∗ . . .

Implementation S p e c i f i c accord ing to data s t r u c t u r e used f o r
‘ c e l l s ’ .

. . . ∗/
}

/∗ . . .

Implementation o f common acces sor /mutator methods .

. . . ∗/
} ;


