
In Print: 3rd Annual International Conference on Computer Games, Multimedia and Allied Technology (CGAT 2010), Singapore.

A Multi-Layered Flocking System for Crowd Simulation
Simon van den Hurk
University of Auckland

Computer Science Department
Science Faculty

+64 21 044-5621
simon.vandenhurk+cgat@gmail.com

Ian Watson
University of Auckland

Computer Science Department
Science Faculty

+64 9 373-7599 ext. 88976
ian@cs.auckland.ac.nz

ABSTRACT
The field of crowd simulation attempts to model crowd
movement of both people and animals. Typical research in this
field aims to develop systems which model the interaction
between multiple instances of the same type of character. This
paper examines two aspects of crowd simulation which are often
not considered, the movement of crowds containing characters
of vastly different sizes and the ability to allow characters to
move underneath other characters when there is sufficient space
to do so. To include these traits in a crowd simulation model a
new system is proposed: the multi-layered flocking system. This
system has a basis in the original Reynolds flocking model but
further divides the simulation space using a series of layers.
Characters in the simulation are represented using one or more
navigation objects which lie upon the layers in the system.
These navigation objects represent parts of the character as it
moves throughout the simulation and can be either dynamic or
static. Different combinations of navigation objects allow for the
representation of characters of varied shapes and sizes as well as
different movement styles, all of which are able to navigate
using the same system. By creating a crowd which contains
different character representations a more interesting overall
motion can be obtained.

Keywords
Crowd Simulation, Multi-Agent Simulation, Flocking, Herd,
Boid, Motion.

1. INTRODUCTION
The problem of simulating the movement of large numbers of
characters in an environment is relevant to both real time and
rendering applications being created today. These crowds of
characters are used to breathe life into the large and often varied
scenes created for a variety of mediums such as games, movies
and television.

In this paper two aspects of crowd simulation are examined that
are often ignored and a system is proposed that further enables
designers to create more complex crowd interaction by
removing these limitations.

The first aspect to be examined is the interaction between the
characters of a crowd when the size of the characters differs

significantly. The majority of techniques described in the field
of crowd simulation concern the interaction between multiple
instances of the same type of character. They therefore do not
consider the effect that character size will have upon the overall
movement of the crowd.

The second aspect that is to be considered is the increased level
of crowd interaction that can be created when characters in the
crowd are able to navigate not only around other characters, but
also underneath other characters when there is sufficient space.

To allow these two aspects of crowd interaction to influence the
navigation of the characters in a crowd a new system is
proposed: the multi-layered flocking system. This system
represents the characters and environment of a simulation by
placing them upon a series of layered cells. This approach is
inspired by the representation given in the original flocking
paper by Reynolds[9].

The objectives of this paper therefore are:

• To define a navigation system that takes into account the
size difference of characters within a simulation.

• To allow the characters in this navigation system to
navigate not only around but also underneath other
characters within a simulation.

• To examine the different representations and behaviours
that can be used for both characters and the environment
within this navigation system.

The next section provides an overview of the other literature in
the field of crowd simulation. In the following section the design
of the multi-layered flocking system is explained. The next
section discusses the use of the multi-layered flocking system
and describes its capabilities. The final section contains a
conclusion for this paper.

2. LITERATURE REVIEW
The popularity of video games as an entertainment form has led
to increased realism in successive titles. This realism includes
the simulation of crowds to represent different aspects of the
game. Recent games such as Supreme Commander[1] have
included thousands of characters as military units while other
games such as Assassins Creed[16] have used smaller quantities
of characters moving in groups in an attempt to create a more
lifelike representation of a crowded market.

2.1 Agents
The most widely known and popularized technique for large
scale crowd movement is the flocking concept proposed by
Reynolds[9]. Reynolds' paper presented a framework to simulate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CGAT Conference 2010, April 6–7, 2010, Singapore.
Copyright 2010 CGAT

In Print: 3rd Annual International Conference on Computer Games, Multimedia and Allied Technology (CGAT 2010), Singapore.

the flocking behaviour of animals. The examples provided by
Reynolds involved bird-like flocking agents (referred to as
boids) that moved through a 3-dimensional environment. The
framework is also applicable to two dimensions (as in the
flocking movement of sheep).

In Reynolds framework each agent is expressed using a simple
point mass model, the direction of which is calculated by using a
combination of different steering behaviours.

Reynolds defines three different types of steering behaviours in
order to simulate the flocking motion. These behaviours are
initially called Collision Avoidance, Velocity Matching and
Flock Centring though in Reynolds later works he refers to these
same behaviours under the names Separation, Alignment and
Cohesion accordingly[10]. Each steering behaviour returns a
force representing the desired acceleration of the agent in order
to best fulfil the behaviour. The three behaviours are defined as
following:

• Separation - Separation provides a steering force such
that the movement of the agent avoids colliding with
other flocking agents.

• Alignment - Alignment is the steering behaviour that
causes entities to attempt to match their directional
heading with those of its neighbours.

• Cohesion - Cohesion provides a steering force towards
the average position of the neighbours in order to cause
the boids to herd together.

The final steering force that will be applied to the Reynolds
agent is then calculated. Reynolds provides two different
combination methods and suggests a third method in his later
paper[10]. These methods combine the forces provided by the
different behaviours in an attempt to best produce a result that is
desirable to all of the behaviours.

Each of the steering behaviours uses information about the
surrounding entities. These surrounding entities are known as an
agent's neighbours. The entities that are chosen as an agent’s
neighbours are dependent on the agents perception function. The
simplest perception function being a perception radius
describing a sphere centred on the agent.

Due to the fact that agents only require a local knowledge
Reynolds suggests sorting the boids into an arrangement of bins.
Each agent lies within a bin and its bin is updated as it moves
throughout the simulation. This sorting of the agents allows the
computational complexity of the neighbour comparison to be
reduced from �(�2) to �(�������) .

Reynolds notes that this technique has the advantage of being
deterministic but that it can be difficult to create a combination
of forces that produces the desired behaviour.

Further work by Reynolds presents further steering behaviours
that can be used within his original framework[10]. By
combining these behaviours it is possible to create groups of
agents that act as a flock, but also easily integrate with other
behaviours that could be used when the agent’s state is changed.
Examples of these extra behaviours include: Flee, Pursuit,
Wander and Leader Following, as well as behaviours to provide
obstacle avoidance and specific scripted actions.

Lebar Bajec et al. also revisits the concept of using the boids
model to simulate crowds and provides a deeper algorithmic
analysis of the model[3].

As the agents in Reynolds framework only require knowledge of
their local neighbours the flocking technique is easily scalable
on multi-core hardware architecture as demonstrated by
Reynolds[8]. Work by Pettré shows that in the long term a group
of Reynolds agents will tend to form into a single large flock[7].
Reynolds implementation on the Playstation® 3 includes an
additional steering behaviour to disperse crowds of increased
density in order to prevent a single flock from forming and to
reduce the loads inside a single bin.

Treuille proposes an alternative model for crowd movement that
makes use of dynamic potential fields instead of individual
agent perception[15]. This framework combines the search for a
global path with the search for local avoidance into a single
calculation. This approach produces a crowd movement that
naturally forms lanes of agents moving behind each other. Work
by Berg et al. also describes a technique that creates a similar
lane forming style crowd[17]. The lack of individual agent goals
in Treuille's approach is addressed by Sud et al. at the cost of
increased computational requirements[14].

Other related work includes a suggested method by Scutt that
can create simple swarms with minimal computational
complexity by not guaranteeing the separation of the entities in
the swarm[12].

2.2 Environment Representation
The concepts mentioned so far deal primarily with the steering
behaviour of agents, rather than the representation of the
environment in which these agents move.

Alternate methods of crowd simulation that have been proposed
discuss the use of Voronoi diagrams in order to divide up the
space on which the crowd is to traverse. Work by Pettré
involved creating Voronoi diagrams around the static obstacles
in the environment and then mapping a connected graph of
cylinders onto this space[7]. Kamphuis et al. presents a similar
approach in which the corridors of movement are created by a
leading entities initial path finding, thus restricting group
members to group together to form crowd movement[2].

The more recent work by Pettré et al. continues to refine the use
of navigation graphs and cylinder movement spaces[6]. This
work includes the concept of Levels of Simulation in order to
simulate a crowd of 35,000 pedestrians. This involves updating
agents that are closer to the camera more often in order to reduce
the computational load while maintaining the apparent detail of
the crowd. Maïm et al. also discusses the use of Levels of
Simulation in order to produce a large scale crowd simulation
that runs at a desirable real-time frame rate[4]. Richmond et al.
suggests a level of detail implementation that utilizes a
computer's GPU in order to achieve an increase number of
agents within the crowd[11].

Work by Nieuwenhuisen et al. uses a combination of navigation
graphs and bounding cylinders to keep groups of agents together
when moving past obstacles in the environment to provide a
more cohesive overall movement[5].

Silver also proposes an alternative method for path finding that
is designed to cause entities in the crowd to choose paths which

In Print: 3rd Annual International Conference on Computer Games, Multimedia and Allied Technology (CGAT 2010), Singapore.

cooperate with the other agents around them[13]. Silver
achieves this by dividing the environment into a grid, within
which each entity reserves places for future time steps.

3. SYSTEM DESIGN
3.1 Introduction
In this section a formal definition for the algorithm and data
structures that compose the multi-layered flocking system is
given. There are four main components to the system and each is
examined in turn. These four components are the navigation
agents, the layered navigation cells, the neighbourhood selection
and the navigation behaviours. Each component is an extension
of a two dimensional implementation of Reynolds algorithm.

3.2 Navigation Agents
Reynolds model uses the term boid to describe the data that
encompasses a characters position and movement. Each boid
represents a single animal such as a bird or fish that is to be
simulated. Navigation behaviours provide forces to act upon
each boid and the resulting forces for this boid describe its
movement. Each boid is comprised of a series of attributes in
order to simulate the locomotion of the boid around the
simulation space. The attributes that a boid contains are:

• Position: A vector representing the boids centre.

• Heading: A vector representing the boids direction of
movement. The magnitude of this vector represents the
boids current speed.

• Mass: A scalar value representing the mass of the boid.

• Steering Force: A vector representing the steering force
that is to be applied to the boid.

• Perception Radius: A scalar value representing the radius
of the circle that is used to detect neighbouring boids.

• Navigation Behaviours: A list of all the behaviours that
are to act upon this boid.

• Cell: A reference to the cell that this boid currently
resides in.

The simulation for each boid is performed using two update
methods. The first is the physical update which calculates an
acceleration vector for the boid given the boids steering force
and mass. In a simple simulation this is typically done using
Newton's second law of motion which is that the force is equal
to the mass times the acceleration(�=� �). Using the
calculated acceleration value a new heading and position for the
boid can be obtained. This update is equivalent to a standard
world update in a typical rendered animation or game simulation
and can be performed with either a fixed or varied time-step.

The second update is the behavioural update. During this update
each boid recalculates its neighbours and determines the forces
that should act upon it for each of its navigational behaviours.
Note that these two updates do not have to be simultaneous. A
lower frequency update can be used for the behavioural update
to match the needs of the simulation.

The multi-layered flocking system abstracts this concept to
provide a system that is able to represent more complex
character navigation. In the place of boids each character in the
multi-layered system is represented by one or more navigation

objects. Navigation objects are one of two types: navigation
agents and navigation obstacles. The navigation agents act in a
similar fashion to a Reynolds boid. Each navigation agent is
located within a single navigation cell in the same way that each
boid was located within a cell. Each navigation agent also
contains the same attributes as a boid, with the addition of an
extra scalar value representing the bounding radius. This
bounding radius is used to determine the size of an object and
will be used in the interaction between objects of different sizes.

A navigation obstacle will be used to represent objects in the
simulation that are either stationary or whose position is
dependent on another navigation agent. For example a rock that
is to be avoided would be classified as a navigation obstacle. A
walking human could be represented by one navigation agent to
describe its overall movement and two navigation obstacles for
each of the legs. Navigation obstacles do not require all of the
attributes that a navigation agent is composed of and instead
only requires a position, reference to a cell and the scalar value
representing the bounding radius. Using these attributes a
navigation obstacle is able to contribute to the navigation
behaviours of other objects, such as collision avoidance, even
though the navigation obstacle itself does not have any
navigational behaviours.

3.3 Layered Navigation Cells
In Reynolds approach a single grid is placed over the simulation
space with each boid in the simulation being associated with a
single cell.

In the multi-layered system cells are also used to divide the
simulation up, though unlike in Reynolds approach, the use of
cells is compulsory and is used for more than just increased
efficiency. Characters in the scene are represented in the
simulation by one or more navigation objects. Each of these
navigation objects lies within a particular navigation cell and
each cell is associated with a single layer. A navigation layer is
defined as a collection of cells that cover the entire simulation
space. Navigation layers may contain a reference to a parent
navigation layer. The navigation objects that lie within the cells
of this parent layer, and any ancestor layer above that, will be
used to influence the movement of the agents in the child layer.

If a layer has a parent layer then all cells within that layer will
have a parent cell within the parent layer. In order for a layer to
be a valid parent for another layer, the cells within the parent
layer must meet certain restrictions. The entire simulation space
covered by the parent cell must be completely covered by its
child cells. Additionally the area that each child cell covers must
lie within only a single parent. In order to meet this restriction it
is often necessary for a cell within a layer to be a slightly
different size to the majority of cells in that layer. This is to
ensure that the entire simulation space is covered without
breaking one of the two restrictions above. If the simulation
space is made to wrap around the x or y axis then the cell that is
of a different size must be larger than the standard grid cell size.
If this is not true then the agents within the simulation may not
detect neighbours correctly due to having a perception radius
that spans across more than one neighbouring cell. In Figure 1
an example is demonstrated in which a parent layer requires a
slightly larger row of cells.

In Print: 3rd Annual International Conference on Computer Games, Multimedia and Allied Technology (CGAT 2010), Singapore.

Figure 1. A demonstration of the mapping between the edges
of parent and child cells upon two cell layers. The top layer
has been created with three child cells per parent cell along
both the x- and y-axis. The parent cells with dashed arrows
map exactly to the layer below, while the parent cells with
solid arrows are required to be slightly larger in order to
ensure that all child cells are included within a parent cell.

The restrictions on parent size ensure that the layers are built up
from the highest detail at the bottom to the lowest detail at the
top. Thus the layers at the bottom will contain a larger number
of smaller sized cells, while the layers at the top will contain a
smaller number of larger sized cells.

The shape of the cells can be implementation specific, though a
rectangular shape is most likely due to the efficient detection of
a point within an axis aligned grid.

3.4 Neighbourhood Selection
In Reynolds boids framework the neighbours of a boid
determine the influencing behavioural forces. The neighbours of
a boid are determined by finding the nearby boids within the
simulation and then testing these boids against a perception
function to determine if they will influence the boid in question.

The neighbourhood selection algorithm returns all the boids
within the selected boids cell and all those boids within the
neighbouring cells. In a common 2D grid the neighbouring cells
would be those cells that are above, below, right, left and
diagonal to the current cell, giving a total of eight cells. Then
each of the potential neighbours that lie within these cells is
checked to see whether it lies within the perception radius of the
current boid. In this implementation the boid considers a
neighbour to be within its perception if the neighbouring boid's
position is within the circle defined by the perception radius.

The approach must be modified for the multi-layered system in
order to account for the neighbouring navigation objects that are
of a different size. Navigation objects that are of a large size
may be within the perception range of another navigation agent
without the centre of the navigation object being within the
perception radius i.e. only the edge of the large navigation object
lies within the perception circle. Without taking this into account
there could be missed interactions between navigation objects
resulting in unwanted collisions or unusual navigation
behaviour.

In order to avoid this problem the navigation agents in the
simulation are given an additional scalar value, the bounding
radius. The original radius, the perception radius, determines the
distance at which an agent perceives its neighbours. The second,
the bounding radius, defines a circle describing the bounds of
the agent itself. The perception function for the agents is then
changed such that an agent perceives a potential neighbour if

any part of the bounding circle of the neighbour lies within the
perception radius. Therefore a potential neighbour is considered
to be within the perception distance if the distance from the
centre of the agent to the neighbour agent is less than the sum of
the agent's perception radius and the neighbours bounding
radius.

In the multi-layered flocking system the neighbourhood
definition is extended to include some of those navigation
objects that lie within the cell layers above the current agent's
layer. Since the navigation objects in the layers above are within
cells that are of equal or greater size there is potential that the
navigation objects that are to be included have a larger bounding
radius. For this reason the neighbourhood is modified to include
the surrounding cells of each of the ancestors of the cell that the
current agent lies within. Thus the neighbourhood of an agent is
defined as the cell of this agent, plus all of its ancestors and the
cells surrounding the current cell and each ancestor cell. A
formal listing of the algorithm that finds all navigation objects
within an agent's neighbourhood is given in listing Algorithm 1:
Neighbourhood Selection.

Input: NavigationCell cell, NavigationAgent agent, Boolean
includeNeighbours, Boolean includeParents
Output: List of NavigationObjects neighbours within cell,
excluding agent, including neighbouring cells if
includeNeighbours is true, including parent cells if
includeParents is true

neighbours ← Ø;
foreach NavigationObject navObj in cell do
 if navObj ≠ agent then
 if DistanceTo(agent,navObj) <
(agent.perceptionRadius + navObj.boundingRadius) then
 Add navObj to neighbours;
 end
 end
end
if includeNeighbours then
 foreach NavigationCell nCell in neighbours
 neighbourObjs ← NeighbourSelect(nCell,agent,
 false,false);
 Add each NavigationObject in neighbourObjs to
neighbours;
 end
end
if includeParents then
 parentObjs ← NeighbourSelect(cell.parent,agent,
 includeNeighbours,true);
 Add each NavigationObject in parentObjs to neighbours;
end

Algorithm1. Neighbourhood Selection

All of the objects within these cells are compared with the
perception function of the current agent to determine if they are
valid neighbours, and then the navigation behaviours use these
neighbours to produce their recommended steering forces.
Figure 2 provides a visual example of the neighbourhood
selection algorithm being run.

In Print: 3rd Annual International Conference on Computer Games, Multimedia and Allied Technology (CGAT 2010), Singapore.

Figure 2. An isometric view of the Neighbourhood Selection
algorithm being run on a three layered navigation system.
The original cell that the agent is positioned in is shown in
black. Ancestor cells are shown with a black triangle and the
neighbouring cells are shown in grey. The remaining cells in
white are not examined.

3.5 Navigation Behaviours
Reynolds specifies a number of different navigational
behaviours that allow for character movement, of which
Separation, Alignment and Cohesion are used to create
flocking[10]. The forces provided by these different behaviours
can be combined in different ways to achieve a final movement
direction. One method is to assign weights to each behaviour,
with higher weights being assigned to more important
behaviours such as obstacle avoidance. A second method called
prioritized acceleration allocation can also be used. This
technique attempts to allocate the total amount of acceleration
that the boid can provide by considering the steering behaviours
in order of their priority. A third method is suggested where one
behaviour can be evaluated randomly for a given probability for
each update of the simulation, thereby spreading the
computational load of the behaviours across multiple updates of
the simulation.

For the multi-layered flocking system the same approach can be
used to determine the final force. The different navigational
behaviours can all be applied to the simulation, though
modifications may need to be made to take into account the
influence of the layers of navigation objects. For example the
separation behaviour is normally calculated as the sum of the
difference between the current agent in question and its
neighbours. This sum is then scaled by the inverse of the
separation distance (1�). In a multi-layered system the
difference between the current agent and the neighbours must
take into account the bounding radius of the objects and can
additionally be multiplied by a factor representing the difference
in layer height. This additional weight can then make agents
prefer to avoid collisions with agents in layers above, which in
turn may create a more natural steering behaviour for the
specific simulation.

3.6 Cell and Agent Property Relations
The closely tied relationship between cells and the navigation
objects within them place certain restrictions and dependencies
upon their attributes. Firstly the perception radius of the agents
in a particular layer must always be less than both the width and
the height of the cells in their layer. This ensures that agents on
the border of a cell cannot perceive objects that lie further than

one cell away (as these cells are not included in the
neighbourhood selection algorithm).

The ratio between the bounding radius and the perception radius
must also be considered. An agent requires that the difference
between these two distances be sufficiently large such that two
agents moving directly towards each other do not intersect after
a single behavioural update. Since these attributes depend
entirely on the simulation being created, e.g. the maximum
speed of the agents in each layer, they are implementation
specific.

4. SYSTEM CAPABILITIES
4.1 Introduction
This section examines the different type of movement that are
possible when using the multi-layered flocking system. It
describes the possible representations for agents and obstacles,
the use of properties and the behaviours which can be applied to
agents to provide different types of movement.

4.2 Types of Movement
In order to explain the types of movement that are possible a
simple example involving two types of characters is presented.
They will be used to show the different representations of
characters that are possible in the multi-layered system.
Consider a simple simulation that is composed of two types of
characters. The first group consists of standard human sized
characters; the second consists of giant humanoid characters that
are significantly larger.

4.2.1 Single Layer Character Representation
The simplest way to represent these two groups of characters is
to simply represent each individual character with a single
navigation agent. All of these navigation agents then reside on a
single cell layer that represents the traversable area in the
simulation.

Using this representation the characters can be given appropriate
behaviours and would traverse about the simulation without
collision. The size of the cells in the cell layer would need to be
quite large as it needs to be big enough to meet the conditions of
the bounding radius of the giant characters. A large cell size will
potentially hold a large number of the smaller human characters
and as such will cause the number of objects in a neighbourhood
to be large. This in turn will increase the number of comparisons
required to determine the force caused by each behaviour. To
avoid this problem the simulation can be extended to use another
cell layer.

4.2.2 Multi-Layered Character Representation
An additional cell layer needs to be added to accommodate the
giant characters. Both groups maintain their representation of a
single navigation agent at their position, but the giant characters
have their navigation agents placed upon the top cell layer.

With this current definition the multi-layered system has divided
the two groups of characters. Now the characters representing
the giants lie upon the top layer and are unaware of the
characters upon the bottom layer. The characters on the bottom
layer will consider both the other human characters and the giant
characters to be within its neighbourhood and will avoid both.
The cell size on the top layer will be the same as in the previous
example, but the cell size on the bottom layer can be a much

In Print: 3rd Annual International Conference on Computer Games, Multimedia and Allied Technology (CGAT 2010), Singapore.

higher fidelity and will therefore reduce the number of
comparisons to determine an agent's neighbours.

With this representation the characters that lie on the lower cell
layer are not able to move beneath the larger characters. The
characters on the lower level will treat the navigation agents that
represent the giant characters with equal avoidance to the other
neighbours. In order to address this issue the concept of
properties is introduced.

4.3 Properties
Properties are attributes that particular navigation objects in the
simulation have in order to enhance their resulting movement.
Properties are directly coupled with the behaviours associated
with an agent and as such are specific to the simulation being
created.

4.3.1 AffectsBelow Property
This use of properties is essential to further define complex
behaviours, especially concerning the interaction between
characters on different levels. As mentioned previously the
multi-layered system is able to represent characters of vastly
different sizes and it may be desirable to create movement where
the smaller characters move underneath the body of the larger
characters. In order to create this type of movement an
additional property is used, the affectsBelow boolean value. By
default this value is true, but when it is false, the navigation
object with this property is ignored by agents that lie on any cell
layer below the current navigation object. This therefore allows
for Navigation Objects on a parent layer to interact with their
neighbours on the same layer, but to not affect those agents that
lie in any child layer.

Next the representation of the giant characters on the top layer is
modified to use this new property. The character is now divided
up into two parts, the legs and the main body. The main body is
represented by a navigation agent that lies on the top layer. This
main body has the affectsBelow property set to false. The legs of
the character are represented by navigation obstacles that lie on
the child layer and their affectsBelow value is left to the default
value of true. See Figure 3 for the visual example of this
representation.

Figure 3. A human and giant character represented on two
cell layers. The human character is represented by a
navigation agent on the bottom cell layer; while the giant
character is represented using multiple navigation objects on
both the top and bottom cell layers.

As the character's body moves throughout the simulation the
position of the navigation obstacles that represent the legs of the
character are updated to match the animation of the character.

Now given this setup a new behaviour that modifies the existing
separation behaviour is created so that it takes into account the
additional affectsBelow property. The separation behaviour now
only uses those navigation objects whose cell layer is equivalent
in depth or whose affectsBelow property is true. Using this
representation of the human characters will move past the agents
on the parent layer by avoiding their legs but without taking a
preference for moving beneath the parent layer.

By extending this property to use a scalar value the agents on
lower levels can be made to prefer or avoid travelling
underneath the bodies of the agents on the parent.

The movement of the navigation obstacles that represent the legs
depends on the position of the body agent that lies on the upper
layer. The position of these obstacles needs to align with the
visual representation of the object in the simulation to ensure
that the collision avoidance is consistent with the model being
displayed. If the model being represented lifts its legs high
enough such that the agents on the child layer could potentially
pass underneath it then the navigation obstacle can be removed
or deactivated while the leg is in the air. It was found during a
prototype implementation of this property that the sudden return
of the navigation obstacle to the child layer caused child agents
to clip through the feet of the parent agent. This can be
considered a desired property if the simulation is intended to
show child agents being crushed by the feet of the parent agents.
If this is undesirable the navigation obstacle that represented the
leg can be re-added a few seconds in advance of the foot being
returned to the child layer. This causes agents to begin moving
out of the way in advance of the foot being returned to the
ground.

This concept of using two layers to represent a character to
allow smaller characters to move underneath them is not limited
to only two layers. The same approach can be extended
indefinitely to allow for even more complex interactions.

4.4 Environment Representation
The representation of the static environment in the simulation
should also be adjusted to match the agents that are in the
simulation. There are a number of ways that objects can be
represented and several different choices are examined below.

Continuing from the previous example, obstacles in the
environment that affect the agents on both layers should be
represented by a navigation obstacle that lies on the top cell
layer. Such a navigation obstacle will be included in the
neighbourhood of the navigation agents in both the bottom and
top cell layer and thus both these groups of agents will avoid it.

If on the other hand a piece of the environment only affected the
children and was crushed by the feet of the characters whose
navigation agents lie on the top layer, then the object can be
represented by a navigation obstacle on the lower cell layer. The
obstacle in the environment can then be destroyed when a parent
agent's foot obstacle collided with it.

A further type of environment, where the child agents could
move through it, but the parent agents would be forced to go
around can also be represented. Such an obstacle in the
environment could be a building, through which the smaller
human characters can move about, but which the larger giant
characters must navigate around. To create this type of
movement the object in the environment could be represented by

In Print: 3rd Annual International Conference on Computer Games, Multimedia and Allied Technology (CGAT 2010), Singapore.

a series of navigation obstacles on the lower layer, and a single
larger navigation obstacle on the top layer that has the
affectsBelow property set to false. See Figure 4Figure 5 for a
visual example of this representation involving a tree.

Figure 4. An example representation of a tree as part of the
environment. The tree is represented on two layers which
ensure that the smaller human sized characters are able to
navigate close to the trunk while the larger giant sized
characters are restricted to navigating around the branches.

4.4.1 Example Properties
Two additional properties that are generally useful in a
simulation are isActive and isBlocking.

The first, isBlocking is a boolean value that determines whether
a navigation object should be included in the multi-layered
flocking system with respect to other character's neighbourhood.
By disabling this value we are able to stop this object having any
influencing behaviour on other characters. It can be used to
represent buildings that have been destroyed or ethereal objects
such as ghosts.

The isActive property serves a related purpose. It is used to
enable or disable whether a character should be influenced by
the behaviours it uses. With this property a character can still
affect the movement of its neighbours without itself being
affected. This property can be used to represent characters that
have died but whose body still provides an obstacle that other
agents must avoid.

4.5 Cell Layer Hierarchy
Up until this point the simulations presented have followed the
format of smaller agents lying on a plane with larger and larger
agents being placed in successively higher layers. The
representation of layers in these examples corresponds to an
increasing height value, but this is not the only ordering that the
layers are able to represent. Furthermore it should be noted that
the examples so far have also only contained cell layers where
each parent layer has a single child layer. By sharing parent
layers, simulations are possible in which there are smaller agents
both below the larger agents and above them. A possible
example is that of a flock of birds that flies at the head height of
the giant characters while human sized characters move around
their feet. The simulation would contain two cell layers for the
humans and birds, both of which have the third layer with giant
characters as their parent. Note that the child cells of both layers
must match up to the boundaries of the parent layer to conform
to the conditions described in the algorithms section.

4.6 Behaviours
This next section discusses the different behaviours that could
typically be used in the multi-layered system, first discussing
common movement behaviours and then examining the

development of more complex behaviours that allow for the
integration of the multi-layered system with path-finding
systems.

4.6.1 Standard Movement Behaviours
The multi-layered system uses the same force combination
methods as the Reynolds model. This allows the system to use
any movement behaviour that can be defined as a force upon the
navigation agent at a point in time in the simulation.

Using the standard weighted combination or force priority
techniques mentioned in the algorithm section, steering
behaviours can be developed that deal with the majority of
standard movements required in animations and games.
Reynolds provides an overview of these typical behaviours[10].
The steering behaviours that Reynolds covers include: Seek,
Arrive, Pursuit, Wander and Path Following in addition to the
standard Separation, Cohesion and Alignment that create
flocking movement. Additional behaviours can easily be created
by adapting or extending any of these behaviours.

4.6.2 Multi-Layered Movement Behaviours
By utilizing the common movement behaviours that are
applicable to the multi-layered system, simulations can be made
that involve a range of different movement types. Combining
several of the above common behaviours allows a designer to
produce varied types of movement within a simulation. The
Separation, Cohesion and Alignment behaviours can be used to
create a standard crowd. In Figure 5 an example is displayed that
shows a crowd of characters moving through the legs of a larger
four-legged character. This simulation was created with the
multi-layered flocking system by combining the standard
behaviours of a Reynolds model with a Wander behaviour for
the four-legged character. The same simulation could be
modified to make the crowd flee the four-legged character,
swarm beneath it, or use the four-legged character as protection
from another larger character by simply adding slightly modified
versions of the Separation, Seek or Pursuit behaviours.

Figure 5. Example screenshots of a four-legged character
moving through a crowd of smaller characters. The
simulation is set up with two cell layers; the four-legged
character is represented by a navigation agent on the top
layer and four navigation obstacles on the bottom layer. The
smaller characters are represented by a single navigation
agent on the bottom layer.

An additional behaviour can be made that acts as the opposite of
the Separation behaviour. Instead this behaviour can be used to
cause characters to be drawn towards another object in the
simulation. Such a behaviour can be combined with the
affectsBelow property to create movement where child agents
are attracted towards a parent agent or navigation object, giving
the impression that the child is hiding beneath the parent or
environment for safety. This behaviour is not limited to hiding

In Print: 3rd Annual International Conference on Computer Games, Multimedia and Allied Technology (CGAT 2010), Singapore.

beneath other agents and could also be used to attract characters
towards an area, whether static or moving.

4.6.3 Integration with Pathfinding Systems
The multi-layered system restricts a character's knowledge to
that of its local neighbourhood and as such would perform
poorly in a simulation that requires complex pathfinding.
Despite this, complex path-finding is easily added to the
simulation by providing behaviours that act as a bridge between
more complex pathfinding models and the multi-layered system.
For example, a new behaviour that extends the Path Following
behaviour can be created that performs an A* search. This
behaviour can then follow the computed path by returning a
force towards the next waypoint in the path.

5. Conclusion
The multi-layered flocking system allows designers to create
crowds that are able to contain members of varying sizes and
that allows for characters in those crowds to travel not only
around but also underneath and above larger characters. The
resulting movement produced by the system is able to represent
characters moving in groups of varying size, and these groups
are able to move through, around and underneath other
characters in the simulation. By only providing the minimum
amount of required knowledge to each character the system is
able to reduce the computational requirements. The division of
the simulation space also leads itself well to multi-core
architectures.

There are some disadvantages and issues that need to be
considered when using the system. Firstly fine tuning the forces
to find a desired movement can be time consuming. Secondly
the entire structure of the multi-layered system uses the
assumption that in a situation with a smaller object and a larger
object, the smaller object is expected to navigate around the
larger object. This structure is what maintains the efficiency of
the model in the simulation. Though this structure is appropriate
for the situations suggested above, it is not true of every
situation. If an agent requires information in the layers below it a
careful implementation is required to ensure that the complexity
of these behaviours is kept to a minimum.

This system allows each character to define its own behaviours.
Thus it is possible to create both group behaviour such as
crowds and combine this with specific individual goals and
desires. Furthermore the system can use specific navigation
behaviours to incorporate more complex navigation techniques
such as pathfinding.

5.1 Future Directions
The multi-layered flocking system in this paper is an abstraction
from the 2-dimensional version of Reynolds flocking method. It
is theoretically possible to create a similar multi-layered
flocking system that uses the 3-dimensional version of Reynolds
flocking method as a basis. Such a model would use a 3-
dimensional cell representation, to provide spatial partitioning
using an abstract volume. Such an implementation may prove to
be complex to understand for a designer, but warrants
investigation.

An in-depth study of the varying types of behaviours which are
possible to create using this system would provide for a useful
overview to present to designers who wish to use the system.
This study could also include the ease at which alternate

techniques could be integrated within the system using
specialized behaviours.

6. REFERENCES
[1] Gas Powered Games. 2007. Supreme Commander,

THQ.
[2] Kamphuis, A. and Overmars, M.H.2004. Finding

paths for coherent groups using clearance. In
Proceedings of the 2004 ACM
SIGGRAPH/Eurographics symposium on Computer
animation, 19-28.

[3] Lebar Bajec, I., Zimic, N. and Mraz, M. 2007. The
computational beauty of flocking: boids revisited.
Mathematical and Computer Modelling of Dynamical
Systems, 13 (4). 331-347.

[4] Maïm, J., Yersin, B. and Thalmann, D. 2008. Real-
time crowds: architecture, variety, and motion
planning. SIGGRAPH Asia '08: ACM SIGGRAPH
ASIA 2008 courses, ACM, Singapore, 1-16.

[5] Nieuwenhuisen, D., Kamphuis, A. and Overmars,
M.H. 2007. High quality navigation in computer
games. Science of Computer Programming, 67 (1). 91-
104.

[6] Pettré, J., Grillon, H. and Thalmann, D. 2008. Crowds
of moving objects: navigation planning and
simulation. ACM SIGGRAPH 2008 classes, ACM,
Los Angeles, California.

[7] Pettré, J., Laumond, J. and Thalmann, D. 2005. A
navigation graph for real-time crowd animation on
multilayered and uneven terrain. In First International
Workshop on Crowd Simulation.

[8] Reynolds, C.W. 2006. Big fast crowds on ps3 In
Proceedings of the 2006 ACM SIGGRAPH
symposium on Videogames, 121.

[9] Reynolds, C.W. 1987. Flocks, herds and schools: A
distributed behavioral model Proceedings of the 14th
annual conference on Computer graphics and
interactive techniques, 25-34.

[10] Reynolds, C.W. 1999. Steering behaviors for
autonomous characters. Game Developers Conference.

[11] Richmond, P. and Romano, D. 2008. Agent Based
GPU, a Real-time 3D Simulation and Interactive
Visualisation Framework for Massive Agent Based
Modelling on the GPU. International Workshop on
Super Visualisation.

[12] Scutt, T. 2002. Simple Swarms as an Alternative to
Flocking. Game AI Programming Wisdom, Charles
River, 123-456.

[13] Silver, D. 2006. Cooperative Pathfinding Game AI
Programming Wisdom 3, Charles River.

[14] Sud, A., Andersen, E., Curtis, S., Lin, M. and
Manocha, D. 2008. Real-time path planning for virtual
agents in dynamic environments. ACM SIGGRAPH
2008 classes, 55.

[15] Treuille, A., Cooper, S. and Popović, Z. 2006.
Continuum crowds. ACM SIGGRAPH 2006 Papers,
1168.

[16] Ubisoft Montreal. 2007. Assassin's Creed. Ubisoft.
[17] van den Berg, J., Patil, S., Sewall, J., Manocha, D. and

Lin, M. 2008. Interactive navigation of multiple agents
in crowded environments. In Proceedings of ACM
Symposium on Interactive 3D Graphics and Games.

