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ABSTRACT 
The field of crowd simulation attempts to model crowd 
movement of both people and animals. Typical research in this 
field aims to develop systems which model the interaction 
between multiple instances of the same type of character. This 
paper examines two aspects of crowd simulation which are often 
not considered, the movement of crowds containing characters 
of vastly different sizes and the ability to allow characters to 
move underneath other characters when there is sufficient space 
to do so. To include these traits in a crowd simulation model a 
new system is proposed: the multi-layered flocking system. This 
system has a basis in the original Reynolds flocking model but 
further divides the simulation space using a series of layers. 
Characters in the simulation are represented using one or more 
navigation objects which lie upon the layers in the system. 
These navigation objects represent parts of the character as it 
moves throughout the simulation and can be either dynamic or 
static. Different combinations of navigation objects allow for the 
representation of characters of varied shapes and sizes as well as 
different movement styles, all of which are able to navigate 
using the same system. By creating a crowd which contains 
different character representations a more interesting overall 
motion can be obtained.   

Keywords 
Crowd Simulation, Multi-Agent Simulation, Flocking, Herd, 
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1. INTRODUCTION 
The problem of simulating the movement of large numbers of 
characters in an environment is relevant to both real time and 
rendering applications being created today. These crowds of 
characters are used to breathe life into the large and often varied 
scenes created for a variety of mediums such as games, movies 
and television. 

In this paper two aspects of crowd simulation are examined that 
are often ignored and a system is proposed that further enables 
designers to create more complex crowd interaction by 
removing these limitations. 

The first aspect to be examined is the interaction between the 
characters of a crowd when the size of the characters differs 

significantly. The majority of techniques described in the field 
of crowd simulation concern the interaction between multiple 
instances of the same type of character. They therefore do not 
consider the effect that character size will have upon the overall 
movement of the crowd. 

The second aspect that is to be considered is the increased level 
of crowd interaction that can be created when characters in the 
crowd are able to navigate not only around other characters, but 
also underneath other characters when there is sufficient space. 

To allow these two aspects of crowd interaction to influence the 
navigation of the characters in a crowd a new system is 
proposed: the multi-layered flocking system. This system 
represents the characters and environment of a simulation by 
placing them upon a series of layered cells. This approach is 
inspired by the representation given in the original flocking 
paper by Reynolds[9]. 

The objectives of this paper therefore are: 

• To define a navigation system that takes into account the 
size difference of characters within a simulation. 

• To allow the characters in this navigation system to 
navigate not only around but also underneath other 
characters within a simulation. 

• To examine the different representations and behaviours 
that can be used for both characters and the environment 
within this navigation system.  

The next section provides an overview of the other literature in 
the field of crowd simulation. In the following section the design 
of the multi-layered flocking system is explained. The next 
section discusses the use of the multi-layered flocking system 
and describes its capabilities. The final section contains a 
conclusion for this paper. 

2. LITERATURE REVIEW 
The popularity of video games as an entertainment form has led 
to increased realism in successive titles. This realism includes 
the simulation of crowds to represent different aspects of the 
game. Recent games such as Supreme Commander[1] have 
included thousands of characters as military units while other 
games such as Assassins Creed[16] have used smaller quantities 
of characters moving in groups in an attempt to create a more 
lifelike representation of a crowded market.  

2.1 Agents 
The most widely known and popularized technique for large 
scale crowd movement is the flocking concept proposed by 
Reynolds[9]. Reynolds' paper presented a framework to simulate 
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the flocking behaviour of animals. The examples provided by 
Reynolds involved bird-like flocking agents (referred to as 
boids) that moved through a 3-dimensional environment. The 
framework is also applicable to two dimensions (as in the 
flocking movement of sheep). 

In Reynolds framework each agent is expressed using a simple 
point mass model, the direction of which is calculated by using a 
combination of different steering behaviours.  

Reynolds defines three different types of steering behaviours in 
order to simulate the flocking motion. These behaviours are 
initially called Collision Avoidance, Velocity Matching and 
Flock Centring though in Reynolds later works he refers to these 
same behaviours under the names Separation, Alignment and 
Cohesion accordingly[10]. Each steering behaviour returns a 
force representing the desired acceleration of the agent in order 
to best fulfil the behaviour. The three behaviours are defined as 
following:  

• Separation - Separation provides a steering force such 
that the movement of the agent avoids colliding with 
other flocking agents. 

• Alignment - Alignment is the steering behaviour that 
causes entities to attempt to match their directional 
heading with those of its neighbours. 

• Cohesion - Cohesion provides a steering force towards 
the average position of the neighbours in order to cause 
the boids to herd together. 

The final steering force that will be applied to the Reynolds 
agent is then calculated. Reynolds provides two different 
combination methods and suggests a third method in his later 
paper[10]. These methods combine the forces provided by the 
different behaviours in an attempt to best produce a result that is 
desirable to all of the behaviours. 

Each of the steering behaviours uses information about the 
surrounding entities. These surrounding entities are known as an 
agent's neighbours. The entities that are chosen as an agent’s 
neighbours are dependent on the agents perception function. The 
simplest perception function being a perception radius 
describing a sphere centred on the agent.  

Due to the fact that agents only require a local knowledge 
Reynolds suggests sorting the boids into an arrangement of bins. 
Each agent lies within a bin and its bin is updated as it moves 
throughout the simulation. This sorting of the agents allows the 
computational complexity of the neighbour comparison to be 
reduced from �(�2) to �(�������) . 

Reynolds notes that this technique has the advantage of being 
deterministic but that it can be difficult to create a combination 
of forces that produces the desired behaviour. 

Further work by Reynolds presents further steering behaviours 
that can be used within his original framework[10]. By 
combining these behaviours it is possible to create groups of 
agents that act as a flock, but also easily integrate with other 
behaviours that could be used when the agent’s state is changed. 
Examples of these extra behaviours include: Flee, Pursuit, 
Wander and Leader Following, as well as behaviours to provide 
obstacle avoidance and specific scripted actions. 

Lebar Bajec et al. also revisits the concept of using the boids 
model to simulate crowds and provides a deeper algorithmic 
analysis of the model[3]. 

As the agents in Reynolds framework only require knowledge of 
their local neighbours the flocking technique is easily scalable 
on multi-core hardware architecture as demonstrated by 
Reynolds[8]. Work by Pettré shows that in the long term a group 
of Reynolds agents will tend to form into a single large flock[7]. 
Reynolds implementation on the Playstation® 3 includes an 
additional steering behaviour to disperse crowds of increased 
density in order to prevent a single flock from forming and to 
reduce the loads inside a single bin. 

Treuille proposes an alternative model for crowd movement that 
makes use of dynamic potential fields instead of individual 
agent perception[15]. This framework combines the search for a 
global path with the search for local avoidance into a single 
calculation. This approach produces a crowd movement that 
naturally forms lanes of agents moving behind each other. Work 
by Berg et al. also describes a technique that creates a similar 
lane forming style crowd[17]. The lack of individual agent goals 
in Treuille's approach is addressed by Sud et al. at the cost of 
increased computational requirements[14].  

Other related work includes a suggested method by Scutt that 
can create simple swarms with minimal computational 
complexity by not guaranteeing the separation of the entities in 
the swarm[12]. 

2.2 Environment Representation 
The concepts mentioned so far deal primarily with the steering 
behaviour of agents, rather than the representation of the 
environment in which these agents move. 

Alternate methods of crowd simulation that have been proposed 
discuss the use of Voronoi diagrams in order to divide up the 
space on which the crowd is to traverse. Work by Pettré 
involved creating Voronoi diagrams around the static obstacles 
in the environment and then mapping a connected graph of 
cylinders onto this space[7]. Kamphuis et al. presents a similar 
approach in which the corridors of movement are created by a 
leading entities initial path finding, thus restricting group 
members to group together to form crowd movement[2]. 

The more recent work by Pettré et al. continues to refine the use 
of navigation graphs and cylinder movement spaces[6]. This 
work includes the concept of Levels of Simulation in order to 
simulate a crowd of 35,000 pedestrians. This involves updating 
agents that are closer to the camera more often in order to reduce 
the computational load while maintaining the apparent detail of 
the crowd. Maïm et al. also discusses the use of Levels of 
Simulation in order to produce a large scale crowd simulation 
that runs at a desirable real-time frame rate[4]. Richmond et al. 
suggests a level of detail implementation that utilizes a 
computer's GPU in order to achieve an increase number of 
agents within the crowd[11]. 

Work by Nieuwenhuisen et al. uses a combination of navigation 
graphs and bounding cylinders to keep groups of agents together 
when moving past obstacles in the environment to provide a 
more cohesive overall movement[5].  

Silver also proposes an alternative method for path finding that 
is designed to cause entities in the crowd to choose paths which 
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cooperate with the other agents around them[13]. Silver 
achieves this by dividing the environment into a grid, within 
which each entity reserves places for future time steps.  

3. SYSTEM DESIGN 
3.1 Introduction 
In this section a formal definition for the algorithm and data 
structures that compose the multi-layered flocking system is 
given. There are four main components to the system and each is 
examined in turn. These four components are the navigation 
agents, the layered navigation cells, the neighbourhood selection 
and the navigation behaviours. Each component is an extension 
of a two dimensional implementation of Reynolds algorithm. 

3.2 Navigation Agents 
Reynolds model uses the term boid to describe the data that 
encompasses a characters position and movement. Each boid 
represents a single animal such as a bird or fish that is to be 
simulated. Navigation behaviours provide forces to act upon 
each boid and the resulting forces for this boid describe its 
movement. Each boid is comprised of a series of attributes in 
order to simulate the locomotion of the boid around the 
simulation space. The attributes that a boid contains are: 

• Position: A vector representing the boids centre. 

• Heading: A vector representing the boids direction of 
movement. The magnitude of this vector represents the 
boids current speed. 

• Mass: A scalar value representing the mass of the boid. 

• Steering Force: A vector representing the steering force 
that is to be applied to the boid. 

• Perception Radius: A scalar value representing the radius 
of the circle that is used to detect neighbouring boids. 

• Navigation Behaviours: A list of all the behaviours that 
are to act upon this boid. 

• Cell: A reference to the cell that this boid currently 
resides in.  

The simulation for each boid is performed using two update 
methods. The first is the physical update which calculates an 
acceleration vector for the boid given the boids steering force 
and mass. In a simple simulation this is typically done using 
Newton's second law of motion which is that the force is equal 
to the mass times the acceleration(�=� �). Using the 
calculated acceleration value a new heading and position for the 
boid can be obtained. This update is equivalent to a standard 
world update in a typical rendered animation or game simulation 
and can be performed with either a fixed or varied time-step.  

The second update is the behavioural update. During this update 
each boid recalculates its neighbours and determines the forces 
that should act upon it for each of its navigational behaviours. 
Note that these two updates do not have to be simultaneous. A 
lower frequency update can be used for the behavioural update 
to match the needs of the simulation. 

The multi-layered flocking system abstracts this concept to 
provide a system that is able to represent more complex 
character navigation. In the place of boids each character in the 
multi-layered system is represented by one or more navigation 

objects. Navigation objects are one of two types: navigation 
agents and navigation obstacles. The navigation agents act in a 
similar fashion to a Reynolds boid. Each navigation agent is 
located within a single navigation cell in the same way that each 
boid was located within a cell. Each navigation agent also 
contains the same attributes as a boid, with the addition of an 
extra scalar value representing the bounding radius. This 
bounding radius is used to determine the size of an object and 
will be used in the interaction between objects of different sizes. 

A navigation obstacle will be used to represent objects in the 
simulation that are either stationary or whose position is 
dependent on another navigation agent. For example a rock that 
is to be avoided would be classified as a navigation obstacle. A 
walking human could be represented by one navigation agent to 
describe its overall movement and two navigation obstacles for 
each of the legs. Navigation obstacles do not require all of the 
attributes that a navigation agent is composed of and instead 
only requires a position, reference to a cell and the scalar value 
representing the bounding radius. Using these attributes a 
navigation obstacle is able to contribute to the navigation 
behaviours of other objects, such as collision avoidance, even 
though the navigation obstacle itself does not have any 
navigational behaviours. 

3.3 Layered Navigation Cells 
In Reynolds approach a single grid is placed over the simulation 
space with each boid in the simulation being associated with a 
single cell.  

In the multi-layered system cells are also used to divide the 
simulation up, though unlike in Reynolds approach, the use of 
cells is compulsory and is used for more than just increased 
efficiency. Characters in the scene are represented in the 
simulation by one or more navigation objects. Each of these 
navigation objects lies within a particular navigation cell and 
each cell is associated with a single layer. A navigation layer is 
defined as a collection of cells that cover the entire simulation 
space. Navigation layers may contain a reference to a parent 
navigation layer. The navigation objects that lie within the cells 
of this parent layer, and any ancestor layer above that, will be 
used to influence the movement of the agents in the child layer. 

If a layer has a parent layer then all cells within that layer will 
have a parent cell within the parent layer. In order for a layer to 
be a valid parent for another layer, the cells within the parent 
layer must meet certain restrictions. The entire simulation space 
covered by the parent cell must be completely covered by its 
child cells. Additionally the area that each child cell covers must 
lie within only a single parent. In order to meet this restriction it 
is often necessary for a cell within a layer to be a slightly 
different size to the majority of cells in that layer. This is to 
ensure that the entire simulation space is covered without 
breaking one of the two restrictions above. If the simulation 
space is made to wrap around the x or y axis then the cell that is 
of a different size must be larger than the standard grid cell size. 
If this is not true then the agents within the simulation may not 
detect neighbours correctly due to having a perception radius 
that spans across more than one neighbouring cell. In Figure 1 
an example is demonstrated in which a parent layer requires a 
slightly larger row of cells.  
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Figure 1. A demonstration of the mapping between the edges 
of parent and child cells upon two cell layers. The top layer 
has been created with three child cells per parent cell along 
both the x- and y-axis. The parent cells with dashed arrows 
map exactly to the layer below, while the parent cells with 
solid arrows are required to be slightly larger in order to 
ensure that all child cells are included within a parent cell.  

The restrictions on parent size ensure that the layers are built up 
from the highest detail at the bottom to the lowest detail at the 
top. Thus the layers at the bottom will contain a larger number 
of smaller sized cells, while the layers at the top will contain a 
smaller number of larger sized cells.  

The shape of the cells can be implementation specific, though a 
rectangular shape is most likely due to the efficient detection of 
a point within an axis aligned grid.  

3.4 Neighbourhood Selection 
In Reynolds boids framework the neighbours of a boid 
determine the influencing behavioural forces. The neighbours of 
a boid are determined by finding the nearby boids within the 
simulation and then testing these boids against a perception 
function to determine if they will influence the boid in question.  

The neighbourhood selection algorithm returns all the boids 
within the selected boids cell and all those boids within the 
neighbouring cells. In a common 2D grid the neighbouring cells 
would be those cells that are above, below, right, left and 
diagonal to the current cell, giving a total of eight cells. Then 
each of the potential neighbours that lie within these cells is 
checked to see whether it lies within the perception radius of the 
current boid. In this implementation the boid considers a 
neighbour to be within its perception if the neighbouring boid's 
position is within the circle defined by the perception radius.  

The approach must be modified for the multi-layered system in 
order to account for the neighbouring navigation objects that are 
of a different size. Navigation objects that are of a large size 
may be within the perception range of another navigation agent 
without the centre of the navigation object being within the 
perception radius i.e. only the edge of the large navigation object 
lies within the perception circle. Without taking this into account 
there could be missed interactions between navigation objects 
resulting in unwanted collisions or unusual navigation 
behaviour.  

In order to avoid this problem the navigation agents in the 
simulation are given an additional scalar value, the bounding 
radius. The original radius, the perception radius, determines the 
distance at which an agent perceives its neighbours. The second, 
the bounding radius, defines a circle describing the bounds of 
the agent itself. The perception function for the agents is then 
changed such that an agent perceives a potential neighbour if 

any part of the bounding circle of the neighbour lies within the 
perception radius. Therefore a potential neighbour is considered 
to be within the perception distance if the distance from the 
centre of the agent to the neighbour agent is less than the sum of 
the agent's perception radius and the neighbours bounding 
radius.  

In the multi-layered flocking system the neighbourhood 
definition is extended to include some of those navigation 
objects that lie within the cell layers above the current agent's 
layer. Since the navigation objects in the layers above are within 
cells that are of equal or greater size there is potential that the 
navigation objects that are to be included have a larger bounding 
radius. For this reason the neighbourhood is modified to include 
the surrounding cells of each of the ancestors of the cell that the 
current agent lies within. Thus the neighbourhood of an agent is 
defined as the cell of this agent, plus all of its ancestors and the 
cells surrounding the current cell and each ancestor cell. A 
formal listing of the algorithm that finds all navigation objects 
within an agent's neighbourhood is given in listing Algorithm 1: 
Neighbourhood Selection. 

Input: NavigationCell cell, NavigationAgent agent, Boolean         
includeNeighbours, Boolean includeParents 
Output: List of NavigationObjects neighbours within cell, 
excluding agent, including neighbouring cells if 
includeNeighbours is true, including parent cells if 
includeParents is true 
 
neighbours ← Ø; 
foreach NavigationObject navObj in cell do 
     if navObj ≠ agent then 
          if DistanceTo(agent,navObj)  < 
(agent.perceptionRadius + navObj.boundingRadius) then 
               Add navObj to neighbours; 
          end 
     end 
end 
if includeNeighbours then 
     foreach NavigationCell nCell in neighbours 
          neighbourObjs ← NeighbourSelect(nCell,agent, 
                                        false,false); 
          Add each NavigationObject in neighbourObjs to 
neighbours; 
     end 
end 
if includeParents then 
     parentObjs ← NeighbourSelect(cell.parent,agent, 
                             includeNeighbours,true); 
     Add each NavigationObject in parentObjs to neighbours; 
end 

Algorithm1. Neighbourhood Selection 

All of the objects within these cells are compared with the 
perception function of the current agent to determine if they are 
valid neighbours, and then the navigation behaviours use these 
neighbours to produce their recommended steering forces. 
Figure 2 provides a visual example of the neighbourhood 
selection algorithm being run. 
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Figure 2. An isometric view of the Neighbourhood Selection 
algorithm being run on a three layered navigation system. 
The original cell that the agent is positioned in is shown in 
black. Ancestor cells are shown with a black triangle and the 
neighbouring cells are shown in grey. The remaining cells in 
white are not examined. 

3.5 Navigation Behaviours 
Reynolds specifies a number of different navigational 
behaviours that allow for character movement, of which 
Separation, Alignment and Cohesion are used to create 
flocking[10]. The forces provided by these different behaviours 
can be combined in different ways to achieve a final movement 
direction. One method is to assign weights to each behaviour, 
with higher weights being assigned to more important 
behaviours such as obstacle avoidance. A second method called 
prioritized acceleration allocation can also be used. This 
technique attempts to allocate the total amount of acceleration 
that the boid can provide by considering the steering behaviours 
in order of their priority. A third method is suggested where one 
behaviour can be evaluated randomly for a given probability for 
each update of the simulation, thereby spreading the 
computational load of the behaviours across multiple updates of 
the simulation. 

For the multi-layered flocking system the same approach can be 
used to determine the final force. The different navigational 
behaviours can all be applied to the simulation, though 
modifications may need to be made to take into account the 
influence of the layers of navigation objects. For example the 
separation behaviour is normally calculated as the sum of the 
difference between the current agent in question and its 
neighbours. This sum is then scaled by the inverse of the 
separation distance (1�). In a multi-layered system the 
difference between the current agent and the neighbours must 
take into account the bounding radius of the objects and can 
additionally be multiplied by a factor representing the difference 
in layer height. This additional weight can then make agents 
prefer to avoid collisions with agents in layers above, which in 
turn may create a more natural steering behaviour for the 
specific simulation. 

3.6 Cell and Agent Property Relations 
The closely tied relationship between cells and the navigation 
objects within them place certain restrictions and dependencies 
upon their attributes. Firstly the perception radius of the agents 
in a particular layer must always be less than both the width and 
the height of the cells in their layer. This ensures that agents on 
the border of a cell cannot perceive objects that lie further than 

one cell away (as these cells are not included in the 
neighbourhood selection algorithm).  

The ratio between the bounding radius and the perception radius 
must also be considered. An agent requires that the difference 
between these two distances be sufficiently large such that two 
agents moving directly towards each other do not intersect after 
a single behavioural update. Since these attributes depend 
entirely on the simulation being created, e.g. the maximum 
speed of the agents in each layer, they are implementation 
specific. 

4. SYSTEM CAPABILITIES 
4.1 Introduction 
This section examines the different type of movement that are 
possible when using the multi-layered flocking system. It 
describes the possible representations for agents and obstacles, 
the use of properties and the behaviours which can be applied to 
agents to provide different types of movement. 

4.2 Types of Movement 
In order to explain the types of movement that are possible a 
simple example involving two types of characters is presented. 
They will be used to show the different representations of 
characters that are possible in the multi-layered system. 
Consider a simple simulation that is composed of two types of 
characters. The first group consists of standard human sized 
characters; the second consists of giant humanoid characters that 
are significantly larger.  

4.2.1 Single Layer Character Representation 
The simplest way to represent these two groups of characters is 
to simply represent each individual character with a single 
navigation agent. All of these navigation agents then reside on a 
single cell layer that represents the traversable area in the 
simulation.  

Using this representation the characters can be given appropriate 
behaviours and would traverse about the simulation without 
collision. The size of the cells in the cell layer would need to be 
quite large as it needs to be big enough to meet the conditions of 
the bounding radius of the giant characters. A large cell size will 
potentially hold a large number of the smaller human characters 
and as such will cause the number of objects in a neighbourhood 
to be large. This in turn will increase the number of comparisons 
required to determine the force caused by each behaviour. To 
avoid this problem the simulation can be extended to use another 
cell layer. 

4.2.2 Multi-Layered Character Representation 
An additional cell layer needs to be added to accommodate the 
giant characters. Both groups maintain their representation of a 
single navigation agent at their position, but the giant characters 
have their navigation agents placed upon the top cell layer.  

With this current definition the multi-layered system has divided 
the two groups of characters. Now the characters representing 
the giants lie upon the top layer and are unaware of the 
characters upon the bottom layer. The characters on the bottom 
layer will consider both the other human characters and the giant 
characters to be within its neighbourhood and will avoid both. 
The cell size on the top layer will be the same as in the previous 
example, but the cell size on the bottom layer can be a much 
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higher fidelity and will therefore reduce the number of 
comparisons to determine an agent's neighbours. 

With this representation the characters that lie on the lower cell 
layer are not able to move beneath the larger characters. The 
characters on the lower level will treat the navigation agents that 
represent the giant characters with equal avoidance to the other 
neighbours. In order to address this issue the concept of 
properties is introduced.  

4.3 Properties 
Properties are attributes that particular navigation objects in the 
simulation have in order to enhance their resulting movement. 
Properties are directly coupled with the behaviours associated 
with an agent and as such are specific to the simulation being 
created.  

4.3.1 AffectsBelow Property 
This use of properties is essential to further define complex 
behaviours, especially concerning the interaction between 
characters on different levels. As mentioned previously the 
multi-layered system is able to represent characters of vastly 
different sizes and it may be desirable to create movement where 
the smaller characters move underneath the body of the larger 
characters. In order to create this type of movement an 
additional property is used, the affectsBelow boolean value. By 
default this value is true, but when it is false, the navigation 
object with this property is ignored by agents that lie on any cell 
layer below the current navigation object. This therefore allows 
for Navigation Objects on a parent layer to interact with their 
neighbours on the same layer, but to not affect those agents that 
lie in any child layer.  

Next the representation of the giant characters on the top layer is 
modified to use this new property. The character is now divided 
up into two parts, the legs and the main body. The main body is 
represented by a navigation agent that lies on the top layer. This 
main body has the affectsBelow property set to false. The legs of 
the character are represented by navigation obstacles that lie on 
the child layer and their affectsBelow value is left to the default 
value of true. See Figure 3 for the visual example of this 
representation.  

 

Figure 3. A human and giant character represented on two 
cell layers. The human character is represented by a 
navigation agent on the bottom cell layer; while the giant 
character is represented using multiple navigation objects on 
both the top and bottom cell layers. 

As the character's body moves throughout the simulation the 
position of the navigation obstacles that represent the legs of the 
character are updated to match the animation of the character.  

Now given this setup a new behaviour that modifies the existing 
separation behaviour is created so that it takes into account the 
additional affectsBelow property. The separation behaviour now 
only uses those navigation objects whose cell layer is equivalent 
in depth or whose affectsBelow property is true. Using this 
representation of the human characters will move past the agents 
on the parent layer by avoiding their legs but without taking a 
preference for moving beneath the parent layer.  

By extending this property to use a scalar value the agents on 
lower levels can be made to prefer or avoid travelling 
underneath the bodies of the agents on the parent. 

The movement of the navigation obstacles that represent the legs 
depends on the position of the body agent that lies on the upper 
layer. The position of these obstacles needs to align with the 
visual representation of the object in the simulation to ensure 
that the collision avoidance is consistent with the model being 
displayed. If the model being represented lifts its legs high 
enough such that the agents on the child layer could potentially 
pass underneath it then the navigation obstacle can be removed 
or deactivated while the leg is in the air. It was found during a 
prototype implementation of this property that the sudden return 
of the navigation obstacle to the child layer caused child agents 
to clip through the feet of the parent agent. This can be 
considered a desired property if the simulation is intended to 
show child agents being crushed by the feet of the parent agents. 
If this is undesirable the navigation obstacle that represented the 
leg can be re-added a few seconds in advance of the foot being 
returned to the child layer. This causes agents to begin moving 
out of the way in advance of the foot being returned to the 
ground.  

This concept of using two layers to represent a character to 
allow smaller characters to move underneath them is not limited 
to only two layers. The same approach can be extended 
indefinitely to allow for even more complex interactions. 

4.4 Environment Representation 
The representation of the static environment in the simulation 
should also be adjusted to match the agents that are in the 
simulation. There are a number of ways that objects can be 
represented and several different choices are examined below. 

Continuing from the previous example, obstacles in the 
environment that affect the agents on both layers should be 
represented by a navigation obstacle that lies on the top cell 
layer. Such a navigation obstacle will be included in the 
neighbourhood of the navigation agents in both the bottom and 
top cell layer and thus both these groups of agents will avoid it. 

If on the other hand a piece of the environment only affected the 
children and was crushed by the feet of the characters whose 
navigation agents lie on the top layer, then the object can be 
represented by a navigation obstacle on the lower cell layer. The 
obstacle in the environment can then be destroyed when a parent 
agent's foot obstacle collided with it. 

A further type of environment, where the child agents could 
move through it, but the parent agents would be forced to go 
around can also be represented. Such an obstacle in the 
environment could be a building, through which the smaller 
human characters can move about, but which the larger giant 
characters must navigate around. To create this type of 
movement the object in the environment could be represented by 
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a series of navigation obstacles on the lower layer, and a single 
larger navigation obstacle on the top layer that has the 
affectsBelow property set to false. See Figure 4Figure 5 for a 
visual example of this representation involving a tree. 

 

Figure 4. An example representation of a tree as part of the 
environment. The tree is represented on two layers which 
ensure that the smaller human sized characters are able to 
navigate close to the trunk while the larger giant sized 
characters are restricted to navigating around the branches. 

4.4.1 Example Properties 
Two additional properties that are generally useful in a 
simulation are isActive and isBlocking. 

The first, isBlocking is a boolean value that determines whether 
a navigation object should be included in the multi-layered 
flocking system with respect to other character's neighbourhood. 
By disabling this value we are able to stop this object having any 
influencing behaviour on other characters. It can be used to 
represent buildings that have been destroyed or ethereal objects 
such as ghosts. 

The isActive property serves a related purpose. It is used to 
enable or disable whether a character should be influenced by 
the behaviours it uses. With this property a character can still 
affect the movement of its neighbours without itself being 
affected. This property can be used to represent characters that 
have died but whose body still provides an obstacle that other 
agents must avoid.  

4.5 Cell Layer Hierarchy 
Up until this point the simulations presented have followed the 
format of smaller agents lying on a plane with larger and larger 
agents being placed in successively higher layers. The 
representation of layers in these examples corresponds to an 
increasing height value, but this is not the only ordering that the 
layers are able to represent. Furthermore it should be noted that 
the examples so far have also only contained cell layers where 
each parent layer has a single child layer. By sharing parent 
layers, simulations are possible in which there are smaller agents 
both below the larger agents and above them. A possible 
example is that of a flock of birds that flies at the head height of 
the giant characters while human sized characters move around 
their feet. The simulation would contain two cell layers for the 
humans and birds, both of which have the third layer with giant 
characters as their parent. Note that the child cells of both layers 
must match up to the boundaries of the parent layer to conform 
to the conditions described in the algorithms section. 

4.6 Behaviours 
This next section discusses the different behaviours that could 
typically be used in the multi-layered system, first discussing 
common movement behaviours and then examining the 

development of more complex behaviours that allow for the 
integration of the multi-layered system with path-finding 
systems. 

4.6.1 Standard Movement Behaviours 
The multi-layered system uses the same force combination 
methods as the Reynolds model. This allows the system to use 
any movement behaviour that can be defined as a force upon the 
navigation agent at a point in time in the simulation. 

Using the standard weighted combination or force priority 
techniques mentioned in the algorithm section, steering 
behaviours can be developed that deal with the majority of 
standard movements required in animations and games. 
Reynolds provides an overview of these typical behaviours[10]. 
The steering behaviours that Reynolds covers include: Seek, 
Arrive, Pursuit, Wander and Path Following in addition to the 
standard Separation, Cohesion and Alignment that create 
flocking movement. Additional behaviours can easily be created 
by adapting or extending any of these behaviours. 

4.6.2 Multi-Layered Movement Behaviours 
By utilizing the common movement behaviours that are 
applicable to the multi-layered system, simulations can be made 
that involve a range of different movement types. Combining 
several of the above common behaviours allows a designer to 
produce varied types of movement within a simulation. The 
Separation, Cohesion and Alignment behaviours can be used to 
create a standard crowd. In Figure 5 an example is displayed that 
shows a crowd of characters moving through the legs of a larger 
four-legged character. This simulation was created with the 
multi-layered flocking system by combining the standard 
behaviours of a Reynolds model with a Wander behaviour for 
the four-legged character. The same simulation could be 
modified to make the crowd flee the four-legged character, 
swarm beneath it, or use the four-legged character as protection 
from another larger character by simply adding slightly modified 
versions of the Separation, Seek or Pursuit behaviours.  

 

Figure 5. Example screenshots of a four-legged character 
moving through a crowd of smaller characters. The 
simulation is set up with two cell layers; the four-legged 
character is represented by a navigation agent on the top 
layer and four navigation obstacles on the bottom layer.  The 
smaller characters are represented by a single navigation 
agent on the bottom layer. 

An additional behaviour can be made that acts as the opposite of 
the Separation behaviour. Instead this behaviour can be used to 
cause characters to be drawn towards another object in the 
simulation. Such a behaviour can be combined with the 
affectsBelow property to create movement where child agents 
are attracted towards a parent agent or navigation object, giving 
the impression that the child is hiding beneath the parent or 
environment for safety. This behaviour is not limited to hiding 
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beneath other agents and could also be used to attract characters 
towards an area, whether static or moving.  

4.6.3 Integration with Pathfinding Systems 
The multi-layered system restricts a character's knowledge to 
that of its local neighbourhood and as such would perform 
poorly in a simulation that requires complex pathfinding. 
Despite this, complex path-finding is easily added to the 
simulation by providing behaviours that act as a bridge between 
more complex pathfinding models and the multi-layered system. 
For example, a new behaviour that extends the Path Following 
behaviour can be created that performs an A* search. This 
behaviour can then follow the computed path by returning a 
force towards the next waypoint in the path. 

5. Conclusion 
The multi-layered flocking system allows designers to create 
crowds that are able to contain members of varying sizes and 
that allows for characters in those crowds to travel not only 
around but also underneath and above larger characters. The 
resulting movement produced by the system is able to represent 
characters moving in groups of varying size, and these groups 
are able to move through, around and underneath other 
characters in the simulation. By only providing the minimum 
amount of required knowledge to each character the system is 
able to reduce the computational requirements. The division of 
the simulation space also leads itself well to multi-core 
architectures.  

There are some disadvantages and issues that need to be 
considered when using the system. Firstly fine tuning the forces 
to find a desired movement can be time consuming. Secondly 
the entire structure of the multi-layered system uses the 
assumption that in a situation with a smaller object and a larger 
object, the smaller object is expected to navigate around the 
larger object. This structure is what maintains the efficiency of 
the model in the simulation. Though this structure is appropriate 
for the situations suggested above, it is not true of every 
situation. If an agent requires information in the layers below it a 
careful implementation is required to ensure that the complexity 
of these behaviours is kept to a minimum. 

This system allows each character to define its own behaviours. 
Thus it is possible to create both group behaviour such as 
crowds and combine this with specific individual goals and 
desires. Furthermore the system can use specific navigation 
behaviours to incorporate more complex navigation techniques 
such as pathfinding. 

5.1 Future Directions 
The multi-layered flocking system in this paper is an abstraction 
from the 2-dimensional version of Reynolds flocking method. It 
is theoretically possible to create a similar multi-layered 
flocking system that uses the 3-dimensional version of Reynolds 
flocking method as a basis. Such a model would use a 3-
dimensional cell representation, to provide spatial partitioning 
using an abstract volume. Such an implementation may prove to 
be complex to understand for a designer, but warrants 
investigation. 

An in-depth study of the varying types of behaviours which are 
possible to create using this system would provide for a useful 
overview to present to designers who wish to use the system. 
This study could also include the ease at which alternate 

techniques could be integrated within the system using 
specialized behaviours.  
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