
OASIS: An Open AI Standard Interface Specification to Support Reasoning,
Representation and Learning in Computer Games

Clemens N. Berndt, Ian Watson & Hans Guesgen
University of Auckland

Dept. of Computer Science
New Zealand

clemens.berndt@gmail.com, {ian, hans}@cs.auckland.ac.nz

Abstract
Representing knowledge in computer games in such a

way that reasoning about the knowledge and learning new
knowledge, whilst integrating easily with the game is a
complex task. Once the task is achieved for one game, it has
to be tackled again from scratch for another game, since
there are no standards for interfacing an AI engine with a
computer game. In this paper, we propose an Open AI
Standard Interface Specification (OASIS) that is aimed at
helping the integration of AI and computer games.

1. Introduction
Simulations with larger numbers of human participants

have been shown to be useful in studying and creating
human-level AI for complex and dynamic environments
[Jones, et al. 1999]. The premises of interactive computer
games as a comparable platform for AI research have been
discussed and explored in several papers [Laird, & Duchi,
2000; Laird & van Lent, 2001]. A specific example would
be Flight Gears, a game similar to Microsoft's Flight
Simulator, that has been used for research into agents for
piloting autonomous aircraft [Summers, et al. 2002].

If interactive computer games represent a great research
opportunity why is it that we still see so comparatively little
research being conducted with commercial grade games?
Why is most AI research confined to games of the FPS
genre and the mostly less complex open-source games? We
believe that the single most important reason for this
phenomenon is the absence of an open standard interface
specification for AI in interactive computer games.
2. Standard Interfaces

Standard interfaces allow a piece of software to expose
functionality through a common communication model that
is shared amongst different implementations with equivalent
or related functionality. The advantage of a common
communication model is that other software may request
similar services from different programs without being
aware of a vendor specific implementation. The usefulness
of standard interfaces has been widely acknowledged and
found widespread application in many computing
disciplines and especially within the software engineering

community.
Successful examples of open standard interfaces in the

industry are plentiful. They include TCP/IP, DOTNET CLI,
XML Web Services, CORBA, SQL, ODBC, OpenGL,
DirectX, the Java VM specifications and many others. We
suggest that applying the same principle to AI in computer
games would significantly reduce the effort involved in
interfacing AI tools with different games. In the absence of
a common communication model for interacting with the
virtual worlds of computer games, AI researchers have to
concern themselves with implementation specifics of every
game they would like to interface with. This usually entails
a significant amount of work especially with closed source
commercial games that do not expose a proprietary mod
interface.

Fig. 1 Non-Standard Game AI Interfaces

Games in the FPS segment have been a leader in
implementing proprietary mod interfaces to encourage third
parties to develop mods (i.e. modification or extensions) to
their games. These interfaces significantly reduce the effort
required to build custom extensions to the original game
engine. As a result of this FPS games have been used as a
platform for AI research [Laird, 2000; Khoo & Zubek,
2002; Gordon & Logan, 2004]. Application of similar
interfaces to real time strategy games has been suggested by
some researchers [van Lent, et al. 2004]. Others have
suggested game engine interfaces for supporting particular

areas of AI research such as machine learning [Aha &
Molineaux, 2004].
However, proprietary mod interfaces, whilst having the
potential to significantly reduce effort when working with a
particular game, do not provide AI developers with the
benefits associated with an open framework of standard
interfaces. An AI mod created for one game will still have
to be fitted with an additional interface module to be able to
support another game (Fig. 1). This makes it difficult for AI
researchers to validate their work across different computer
games.

Rather than implementing non-standard interfaces for
each and every computer game in the market, we believe it
would be useful to create a set of open standard interface
specification that are applicable to computer games of all
genres. In addition an open standard interface specification
for game AI would also have the potential of commercial
success as it could provide a means of both reducing AI
development costs by acting a guideline and boosting game
popularity through third party add-ons while allowing
intellectual property to be protected.
In brief, we are pursuing the following goals:
Simplicity: The interface specification should be simple, yet
powerful and flexible enough to cover the various aspects of
AI associated with computer games.
Extensibility: Modularity should be a core requirement, so
that further functionality can easily be added to the
framework as necessary.
Encapsulation: The interface specification should consist of
layers that provide access to the game engine with an
increasing degree of abstraction.
Cohesion: There should be a clear separation of function
and logic. Each component of the framework should either
play a functional (e.g. symbol mapping) or a logical role
(e.g. plan generation), but not both.

3. Related Work
Researchers active in different areas of AI have long

realised the importance of developing and employing
standards that alleviate some of the difficulties of
interfacing their research work with its area of application.
Even though work in this area has led to advances in
providing standardised tools for AI researchers and
developers little work has been done in the area of standard
interfaces. One of the main reasons for this is probably the
heterogeneous nature of AI research. Computer games,
however, represent a comparatively homogenous area of
application and thus may see a more profound impact from
standard interface specifications.

Past standardisation efforts in the area of AI can be
roughly grouped into two categories:

1. work on standard communication formats and,
2. the development of standard AI architectures.

The development of standard communication formats is
occupied primarily with the standardisation of expressive

representational formats that enable AI systems and tools to
flexibly interchange information. Work in this category
encompasses standards such as KIF [Genesereth & Fikes,
1992] and PPDL [McDermott, et al., 1998]. We will refer to
efforts in this category as information centric standards.
Although information centric standards play a crucial part in
the communication model of a standard interface
specification they by themselves are not a replacement for
such a framework. In addition, most of the information
centric standardisation work in the past, whilst being well
suited for most areas of AI, does not meet the performance
requirements of computer games.

The second category of work comprises the creation of
architecture standards for AI tools. Successful examples of
such standard architectures are SOAR [Tambe, et al., 1995]
and more recently TIELT, the Testbed for Integrating and
Evaluating Learning Techniques [Aha, & Molineaux,
2004]. Architecture standards are similar to standard
interface specifications in the sense that they involve similar
issues and principles and both represent service centric
standards. As such architectures like TIELT signify a
cornerstone in reducing the burden on AI researchers to
evaluate their AI methods against multiple areas of
application through the interface provided by the TIELT
architecture.

However, standard architectures cannot achieve the
same degree of flexibility and interoperability as an open
standard interface specification. The ultimate difference
between something like TIELT and a standard interface
specification is that a standard architecture functions as
middle-ware. As such it is not directly part of the
application providing the actual service, but acts as
translation layer. Therefore it in turn must interface with
each and every game engine that it is capable of supporting,
just like an AI engine had to previously be interfaced with
every game that it should be used with. This solution in its
very nature only pushes the responsibilities of creating the
actual interface to a different component – the underlying
issue, however, remains unsolved.

The need for both researchers and developers to address
the discussed issues with the present state of game AI and
their current solutions has been indicated by the recent
emergence of the game developer community’s own efforts.
These efforts, organised by the IDGA AI Special Interest
Group through the game developer conference round table
attempt to make some progress on AI interface standards for
computer games. The IDGA AI SIG has established a
committee with members from both industry and academia
to accelerate this process. However, at the time of writing
these efforts were still at a conceptual level and had not yet
resulted in any experimental results.

4. OASIS Architecture Design

Game Engine

Task Management

Domain Access

Object Abstraction

Object Access

Domain Abstraction

Logic Centric Layers

Function Centric Layers

OASIS Architecture

Knowledge Persistency Architecture

Artificial Intelligence Engine
4.1 OASIS Concepts and Overview

Standard interfaces become powerful only when
they are widely implemented by industry and other non-
commercial projects. OpenGL and DirectX would be
conceptually interesting, but fairly useless standard interface
frameworks, if video card developers had not implemented
them in practically all 3D acceleration hardware on the
market. The OSI networking model on the other hand is an
example of an academic conceptual pipe-dream. Viewed
purely from an interface point of view, the OSI networking
model is an incredibly flexible design that was in its original
specification already capable of delivering much of the
functionality that is nowadays being patched on to the
TCP/IP networking model. However, the OSI networking
model remains a teaching tool because it is too complicated
to be practicable. Firstly, the process of arriving at some
consensus was overly time-consuming because it involved a
very large international task force with members from both
academia and industry and attempted to address too many
issues at once. Secondly, when the standard was finally
released, it was prohibitively expensive for hardware
manufacturers to build OSI compliant devices, especially in
the low budget market segments. In comparison the TCP/IP
model was developed by a much smaller group of people, is
much simpler, and although failing to address several
problems, it is the most dominant networking standard
today [Forouzan, 2000].

Fig. 2 OSASIS Architecture

This is especially useful when some higher layer
functionality is either unnecessary due to simplicity of the
game or because resource constraints imposed by
computationally intensive games would not permit the use
of layers with greater performance penalties without
seriously impacting playability. Such implementation
flexibility reduces both financial and time pressure on
developers to comply with all specifications of the OASIS
framework. Since modularity is a core feature of OASIS,
compliance can be developed incrementally. This is not
only good software engineering practice, but would allow
game developers to provide patches after a game’s release
to add further OASIS compliance.

As a prototype design for the OASIS framework we
have conceived a simple five layer architecture comprising: Despite the shortcomings of TCP/IP, there is an easy

explanation for its success; TCP/IP is simple, yet modular
and extensible. The focus of TCP/IP is on necessity and
efficiency rather than abundance of features. This is what
makes it a successful standard interface. Thus we believe a
standard interface for AI in games should be modular,
extensible and simple while still fulfilling all core
requirements. An Open AI Standard Interface Specification
(OASIS) should feature a layered model that offers different
levels of encapsulation at various layers, allowing
interfacing AI modules to choose a mix between
performance and ease of implementation adequate for the
task at hand. Thus the lower layers of OASIS should
provide access to the raw information exposed by the game
engine, leaving the onus of processing to the AI module,
while higher layers should offer knowledge level [Newell,
1982] services and information, freeing the AI developer
from re-implementing common AI engine functionality.

1. an object access layer for direct manipulation of
the game engine,

2. an object abstraction layer to hide runtime details
from higher layers,

3. a domain access layer to expose the game domain
in a form accessible to reasoning tools,

4. a task management layer providing goal arbitration
and planning services, and

5. a domain abstraction layer that hides the
complexity of the underlying game engine domain
from more generic AI tools.

The bottom two layers of the architecture (i.e., 1 & 2)
are function centric; that is, they are concerned mainly with
the runtime specifics of single objects implemented in the
game engine. In contrast the top three layers of the OASIS
architecture (i.e., 3, 4 & 5) would be knowledge centric and
hence would be concerned with manipulation of the domain
at the knowledge level and are not directly interacting with
single run-time objects. Note, that different from middle-
ware architectures such as TIELT or SOAR, the OASIS
framework is actually a set of specifications rather then a
piece of software. The actual implementation details of the
OASIS architecture should not matter as long as the
interface specifications are complied with. This design
makes the AI engine of a game a separate and readily
interchangeable component.

We suggest there be a small number of layers in the
OASIS framework. Each layer ought to be highly cohesive;
that is, every layer, by itself, should have as few
responsibilities as possible besides its core functionality and
be completely independent of layers above it, thus allowing
layer based compliance with the OASIS framework. This
permits game developers to implement the OASIS
specifications only up to a certain layer.

The following sections discuss the suggested

functionality and responsibilities for each of the OASIS
layers and their respective components depicted in Figure 2.
All of this represents our initial ideas on how the OASIS
architecture design could be structured and what features it
might need to posses and should be considered neither final
nor complete.

Another function of this layer is compiling the object
metadata retrieved from the lower layer into logical
relations between objects that are directly usable for
example by an execution monitor to verify the progress of a
plan and recognise its failure or success. These object
semantics should also cover any object assemblies created
by the user. This might necessitate the specification of
metadata for object assemblies by the user if the metadata of
the assemblies’ components is insufficient to automatically
derive the semantics of the assembly.

4.2 Object Access Layer
The access layer directly exposes objects defined in the

game engine that may be manipulated by an interfacing AI
engine. Objects exposed by the object access layer include
everything from the tangible parts of the game environment
such as an infantry unit to more abstract components such as
the game state. For every object, the access layer specifies
properties, operations and events that may be used to
interact with the corresponding object in the game engine.

Lastly, the object abstraction layer is responsible for
object orchestration. This means that it verifies the validity
of execution of operations for both objects and assemblies
and informs higher layers of invalid requests. It also deals
with any runtime concurrency issues and processes events
received from the object abstraction layer into a semantic
format that may be used by higher layers for reasoning. This
should effectively insulate the function centric from the
logic centric layers of the OASIS framework.

At the object access layer speed should be the main
concern. Here the metadata should define information not
observable from the signature of the object’s operations and
events such as preconditions, post conditions, extended
effects and duration in terms of low-level descriptors. While
this is computationally efficient processing is required
before the information provided at this layer can be used to
establish the semantics of the objects. In order to not impair
performance each object would be a lightweight wrapper
around its counterpart in the game engine, simply passing
on the received messages with little or no intermediate
processing (Fig. 2).

The protocol suit required for communication with this
layer would probably need to be more diverse than that of
the object access layer. There are two main issues that need
to be addressed. Firstly, fast access to the functions of the
object access layer to allow for manipulating objects and
assemblies. Secondly, capabilities for creating and
programming of object assemblies. Although the focus of
protocols at this layer should be to provide more abstraction,
speed and lightweight remain a core requirement.

4.3 Object Abstraction Layer 4.4 Domain Access Layer
The object abstraction layer provides framing of the

resources provided by the object access layer into more
readily usable structures. The function of the object
abstraction layer is three fold, it manages all aspects of
object assemblies, it orchestrates objects and assemblies to
perform tasks and it compiles metadata from the data access
layer into object semantics that define the logical relations
between both objects in the game world exposed by the
object access layer and object assemblies derived from those
objects.

The domain access layer provides a high-level
abstraction of the game engine. This includes task execution
management and domain description services. Task
execution management is concerned with the execution of
the logical steps of a plan specified in some expressive
standard high level format. The task execution manager
functions much like an execution monitor for planners. It
translates the high level logical steps of a plan into an
instruction format understood by the object abstraction
layer, negotiates conflicts, monitors the execution results
and informs higher layers of irresolvable conflicts and
illegal instructions. The steps it executes may either
manipulate objects within the domain (e.g. move tank X
behind group of trees Y) or the domain description itself by
creating or manipulating object assemblies in the object
abstraction layer (e.g. add average unit life time property to
infantry type assembly). Concurrency issues between
competing plans executed in parallel need to be also
managed at this layer. In order to reduce overhead this
should occur as transparent as possible only making the AI
engine aware of conflicts that are irresolvable.

Object assemblies are essentially groupings of game
objects with additional properties and functions that allow
viewing and manipulating the underlying objects as a single
unit. These groupings should be allowed to be very flexible
for example it should be possible for an interfacing AI
engine to define all objects of a specific type as an object
assembly. Object assemblies themselves should in turn
permit aggregation thus providing for recursive hierarchies
of object assemblies. After creating a new assembly, the
interfacing AI engine might then specify additional
properties and operations that are not defined by the
underlying objects thus making the game engine
programmable without requiring access to the source code,
which often represents a problem with commercial games.
Since the behaviour and execution steps of user created
properties and operations need to be explicitly specified
some kind of high-level programming language must be part
of this layer’s protocol suite.

The domain description component of this layer
addresses two separate issues. First, it describes the
semantics and mechanics of the domain created by the game
engine in a standard high level knowledge representation.
Second, it is directly usable by planners and other AI
reasoning tools. The domain description provided should

include both native game objects and user created object
assemblies. The other task of the domain description is to
communicate to any interfacing AI engine the current state
of the objects defined in the game world and any changes
thereof.

The protocols used to communicate with this layer are
fairly high level in terms of the information content they
portrait. Optimally, the domain access layer should be able
to support different formats for specifying plans to the task
execution manager, so that AI engines using different types
of AI tools may directly interface with this layer. In terms of
protocols the domain description component is probably the
most complex to address in this layer since it should allow a
variety of AI tools to be able to directly interface with it.
The domain description needs to be probably communicated
in a variety of standards such as the planning domain
description language developed for the 1998/2000
international planning competitions [McDermott, et al.
1998]. One of the major challenges posed by the protocol
suite at this layer is to minimize the number of standards
that have to be supported by default without limiting the
nature of the AI tools interfacing to this layer. This could
potentially be achieved by providing support for certain
popular standards, while making the protocol suit pluggable
and allowing third parties to create their own plug-ins to
communicate with this layer. However, the feasibility of
such an approach would need to be studied.

4.4 Task Management Layer
The domain abstraction layer, unlike all of the other

layers, would not primarily serve the purpose of hiding the
complexity of the lower layers from the layers above, but
rather the provision of services that form an extension to the
functionality of the domain access layer. Therefore some
functions of the domain abstraction layer will not require
the services provided at this layer. Thus in some cases this
layer would be transparent to the top layer and simply pass
through requests to the domain access layer without any
further processing. Overall this layer should provide
planning related services such as, plan generation, heuristic
definition and goal management.

The plan generation capability of this layer is probably
the single most important service offered here. It provides
planning capabilities to the top layer as well as AI engines
that do not posses the required planning capabilities to
interact directly with the domain access layer. The plan
generation component of the task management layer outputs
a plan that is optimised using any heuristics given by the
user and achieves the specified goals. This output plan is fed
to the task execution management component in the layer
below for processing and execution. The plan generation
should be implemented very modular allowing third parties
to create pluggable extensions to this functionality to adjoin
different planning architectures to the OASIS framework
that might not have been part of it originally. This would
have two effects. First, this would enable AI researchers to
verify, test and benchmark new planning architectures using
OASIS. Second, it would provide an easy way to

complement the set of the OASIS planners should there be
shortcomings for certain kind of domains without needing to
release a new version of the OASIS specifications.

Heuristic definition and goal management complement
this planning capability. They allow AI engines to specify
goals to be achieved and heuristics to be honoured by the
planning component. The AI engine should be able to
specify these in terms of symbols from the domain
description provided by the domain access layer. The user
should be permitted to prioritise goals and mark them as
either hard goals that must be attained or soft goals that may
be compromised. A planner in this layer should be allowed
to re-shuffle the order of soft goals as long it does not
increase the overall risk of failure. Any heuristics supplied
by the AI engine are then applied to create a plan that will
satisfy all hard goals and as many soft goals as possible.

Communication at this layer should use high level
protocols describing both heuristics and goals in terms of
the symbols found in the domain description at the layer
below so that the planner does not need to support any
additional mapping capabilities and may operate pretty
much on the raw input provided. Excluding mapping and
transformation capabilities from the task management layer
will most definitely have a positive impact on performance.

4.5 Domain Abstraction Layer
The domain abstraction layer represents the top of the

OASIS layer hierarchy and hence provides the greatest
degree of abstraction from the implementation details of the
game engine and the lower layers of the OASIS framework.
High level functions such as domain model adaptation
services, the domain ontology and task management
services will be rooted at this layer. The main aim of this
layer is to provide a knowledge level access point for AI
reasoning tools that are either very limited in their low level
capabilities or highly generic in their application. The
interfaces provided by the domain abstraction layer and its
components are not primarily geared towards speed, but
much more towards interoperability and high level problem
representation and resolution.

The domain model adaptation service provided here
plays an important role in bridging the gap to generic
reasoning tools and agents that are designed to handle
certain tasks within a particular problem domain such as
choosing what unit to add next to a production queue. Such
problem description is very generic and will occur in
slightly different variants in many games, especially in the
real time strategy genre. Domain model adaptation will
allow symbols of the domain defined by the game engine to
be mapped to semantically equivalent symbols of the
agent’s domain model. In this way the agent can continue to
reason in the confines of his own generic view of the world
and is at the same time able to communicate with the game
engine using expressions built from its own set of domain
symbols. In order to facilitate this translation the domain
model adaptation module would have rely on the ontology
services provided by this layer and might in certain cases

require the interfacing AI engine to explicitly specify certain
mappings. The domain model adaptation component is
probably going to be by far the most complex and least
understood component in the entire OASIS architecture.
This is because domain model adaptation is still mainly a
research topic although there are a few successful practical
applications [Guarino et al. 1997].

The purpose of the ontology component of this layer is
to provide a semantically correct and complete ontology of
the symbols found in the domain description of the
underlying game. Although fairly straight forward this could
prove time intensive for developers to implement because it
almost certainly requires human input to create a useful and
comprehensive ontology for the game being built. Creating
a standardised ontology for similar games and genres will
be a key to successful implementation of this feature.

The second major service is task management. This
involves facilitating the specification of very high-level
tasks in terms of the elements contained in the ontology
exposed at this layer and their completion using the
functions provided by lower layers. Such task might in
terms of logic resemble assertions like “(capture red flag
OR kill all enemy units) AND minimize casualties)”. The
task management component would have to take such a task
description and transform it into a set of goals and heuristics
that may then be passed on to the task management layer. In
order to extract goals, heuristics, priorities, etc. from the
high-level task description, the interfacing AI engine would
be required to flag the description’s components. The task
management component should also be responsible for
tracking task progress and inform the AI engine of
completion or failure. Concurrency issues of any kind and
nature arising from competing tasks being executed in
parallel should be handled by the lower layers.

5. Conclusion
Obviously there is still much uncertainty about the

exact details of the OASIS framework and there are many
issues that this paper has left unsolved. In the future it
would probably be valuable to survey, document and
analyse in detail the requirements of both game developers
and AI researchers to form the basis of a formal
requirements analysis. This would provide a better
understanding of the problems being addressed and support
a better set of design specifications for the OASIS
framework. In the immediate future we will take advantage
of the modularity and extensibility requirement of OASIS
and implement a vertical prototype as a proof of concept.
During this process we will also explore the usefulness and
feasibility of some of the proposals made by the Artificial
Intelligence Interface Standards Committee (AIISC) of the
IDGA AI SIG. Potentially, a small number of diversified
vertical prototypes might help us gain a more accurate
understanding of the requirements for the framework that
could form the stepping stone for further work in this area.
We would also seek input and comments from other
researchers and developers working in this area.

References
Aha, D. and Molineaux, M. 2004, Integrating Learning in

Interactive Gaming Simulators, Challenges in Game
Artificial Intelligence – Papers from the AAAI
Workshop Technical Report WS-04-04

Forouzan, B. 2000, Data Communications and Networking
2nd Edition, McGraw-Hill

Gordon, E. and Logan, B. 2004, Game Over: You have been
beaten by a GRUE, Challenges in Game Artificial
Intelligence – Papers from the AAAI Workshop
Technical Report WS-04-04

Guarino N., et al. 1997, Logical Modelling of Product
Knowledge: Towards a Well-Founded Semantics for
STEP, In Proceedings of European Conference on
Product Data Technology

International Game Developers Association – Special
Interest Group on AI (IDGA – AI SIG),
http://www.igda.org/ai/

Jones, R., et al. 1999, Automated Intelligent Pilots for
Combat Flight Simulation, AI Magazine

Khoo, A. and Zubek R. 2002, Applying Inexpensive AI
Techniques to Computer Games, In Proceedings of
IEEE Intelligent Systems

Laird J. 2000, It knows what you’re going to do: Adding
anticipation to a quakebot, Artificial Intelligence and
Interactive Entertainment – Papers from the AAAI
Workshop Technical Report SS-00-02

Laird, J. and Duchi, J. 2000, Creating Human-like Synthetic
Characters with Multiple Skill Levels: A Case Study
using the Soar Quakebot, In Proceedings of AAAI Fall
Symposium: Simulating Human Agents

Laird, J. and van Lent, M. 2001, Human Level AI’s Killer
Application: Interactive Computer Games, AI
Magazine Volume 2 – MIT Press

McDermott, D., et al. 1998, PDDL - The Planning Domain
Definition Language, Yale Center for Computational
Vision and Control - Technical Report CVC TR-98-
003/DCS TR-1165

Newell, A. 1982, The Knowledge Level. Artificial
Intelligence, 18 (1)

Summers, P., et al. 2002, Determination of Planetary
Meteorology from Aerobot Flight Sensors, In
Proceedings of 7th ESA Workshop on Advanced Space
Technologies for Robotics and Automation

Tambe, M., et al. 1995, Intelligent Agents for Interactive
Simulation Environments, AI Magazine

van Lent, M., et al. 2004, A Tactical and Strategic AI
Interface for Real-Time Strategy Games, Challenges in
Game Artificial Intelligence – Papers from the AAAI
Workshop Technical Report WS-04-04

Genesereth, M. and Fikes, R. 1992, Knowledge Interchange
Format, Version 3.0 Reference Manual, Technical
Report Logic-92-1 – Computer Science Department
Stanford University

	Abstract
	1. Introduction
	2. Standard Interfaces
	3. Related Work
	4. OASIS Architecture Design
	4.1 OASIS Concepts and Overview
	4.2 Object Access Layer
	4.3 Object Abstraction Layer
	4.4 Domain Access Layer
	4.4 Task Management Layer
	4.5 Domain Abstraction Layer

	5. Conclusion
	References

