
Data Mining and Machine Learning

with Computer Game Logs

Stefan Wender

UPI: swen011, ID: 4685895

CompSci 780 Project Report

University of Auckland

Supervisor: Prof. Dr. Ian Watson

Department of Computer Science

University of Auckland, New Zealand

October 2007

Abstract

This report describes the process of analysing a set of server logs which were recorded during

games of the team based first-person shooter Team Fortress Classes (TFC). The aim of

the analysis is the discovery of patterns in the data set through the application of machine

learning algorithms. These patterns could then be used to improve the playing experience

for human players or to create artifical players which show the behavior that is given in the

patterns and thus appear more human-like.

The report looks at the historical background of machine learning for classic games such as

chess and checkers. It then surveys the evolution of computer game AI from its early roots

in arcade games in the 1970s to the multi-million dollar productions of the last decade. In

the next chapter there is an introduction into computer game genres, goals and limitations of

machine learning in those genres as well as an explanation for the principle of online/offline

learning to give a better understanding of machine learning in computer games.

Then a short introduction to the game from which the data comes is given to facilitate

an understanding of certain aspects of the data set. Afterwards the course of action to

prepare the data for the actual analysis is described. This consists of the extraction of

the information from HTML files and the cleaning of this information. The database in

which this information is stored is described. Then the actual analysis consisting of two

main experiments is elaborated. Each of these experiments is subdiveded into the definition

of the test data set on which the analysis will be performed, a preliminary analysis which

specifies the statistical characteristics of the data set on which the experiment is based and

the application of the machine learning algorithms as well as the discussion of the results.

After the evaluation a discussion of the outcome and the description of possible future work

follows. At the end the conclusion sums up the achievements and results of the project.

ii

Contents

List of Tables v

List of Figures vi

1 Introduction 1

2 Historical Background 2

2.1 Machine Learning in Games . 2

2.2 The Evolution of Computer Game AI . 5

2.3 Log Evaluation in Computer Game Research 7

3 Aims, Areas of Application and Limitations of Machine Learning in Computer

Games 8

3.1 Aims of Computer Game AI Learning . 8

3.2 Possible Areas of Application and Limitations 8

4 The Data 10

4.1 Team Fortess Classic (TFC) . 10

4.1.1 The Game . 10

4.1.2 Gameplay . 10

4.1.3 Classes . 11

4.1.4 AI in Team Fortress Classic . 13

4.2 Generating the Data Set . 14

4.2.1 Original Log Files . 14

4.2.2 The Blarghalizer . 14

4.2.3 Downloading Log Files . 14

4.2.4 Extracting Data from the HTML Files 15

4.2.5 The Database . 16

4.2.6 Data in the Database . 17

4.2.7 Basic Data Cleaning . 18

4.2.8 Statistical Characteristics of the Test Data 19

iii

Data Mining and Machine Learning with Computer Game Logs Abstract

4.2.9 Problems with the Size of the Data Set 20

5 Data Analysis 21

5.1 Game Result Prediction Based on Team Composition 22

5.1.1 Average Class Usage per Map . 22

5.1.2 Results . 26

5.2 Predicting Game Outcome Based On Class Performance 27

5.2.1 Kill Distribution . 27

5.2.2 Flag Activities . 29

5.2.3 Problems with this Approach . 30

5.2.4 Classes and Attributes Contributing to their Performance 31

5.2.5 Performance Calculation . 31

5.2.6 Implementing Performance Evaluation According to Kills 32

5.2.7 Implementing Performance Evaluation Based on Flag Activities 33

5.2.8 Results . 33

6 Discussion and Future Work 36

7 Conclusion 38

A Basic Statistics for the Ten Most Popular Maps 39

B PHP Script to Extract Player Information 41

Bibliography 42

iv

List of Tables

4.1 Data Set Statistics . 20

5.1 Number of data points for the ten most popular maps 21

5.2 Correctly classified instances based on team compositions 25

5.3 Mean absolut error for classification based on team compositions 25

5.4 Correctly classified instances based on kills performance 33

5.5 Mean absolut error based on kills performance 34

5.6 Correctly classified instances based on flag activities performance 34

5.7 Mean absolut error based on flag activities performance 34

5.8 Weighting of the performance attributes . 35

5.9 Correctly classified instances based on weighted performance 35

5.10 Mean absolut error based on weighted performance 35

v

List of Figures

3.1 AI roles in different game genres (Laird and van Lent, 2001) 9

4.1 The different classes in TFC: From top left: Demoman, Engineer, HWGuy,

Medic and Pyro From bottom left: Scout, Sniper, Soldier and Spy 11

4.2 Top of the main page for a game description 15

4.3 Database Structure . 17

5.1 Playtime for Medic, Scout and Soldier . 22

5.2 Playtime for Demoman, HWGuy and Engineer 22

5.3 Playtime for Spy, Sniper and Pyro . 23

5.4 Distribution of Playtime per Class for the ten most popular maps 23

5.5 Playtime on shutdown2 . 24

5.6 Playtime on siege2 . 24

5.7 Playtime on ss nyx ectfc . 24

5.8 Playtime on schtop . 24

5.9 C4 Decision Tree for Win/Loss Classification 26

5.10 Distribution of Kills per Class for the ten most popular maps 28

5.11 Average Number of Kills by Number of Players in a Team 29

5.12 Average Flag Activities on the ten most popular maps 29

5.13 Average kills and flag activities for the ten most popular maps 32

A.1 Average Kills and Flag Activities on shutdown2 39

A.2 Average Kills and Flag Activities on schtop 39

A.3 Average Kills and Flag Activities on fry baked 39

A.4 Average Kills and Flag Activities on openfire lowgrens 39

A.5 Average Kills and Flag Activities on siege . 40

A.6 Average Kills and Flag Activities on hellion 40

A.7 Average Kills and Flag Activities on ss nyx ectfc 40

A.8 Average Kills and Flag Activities on monkey l 40

A.9 Average Kills and Flag Activities on mortality l 40

A.10 Average Kills and Flag Activities on 2mesa3 40

vi

1 Introduction

Computer games are certainly a market of the future and thus also very interesting for

research. Technical advances in the hardware market for personal computers are largely

driven by the demand of gamers which require ever more graphics power and CPU power

(Shao, 2007). Large multinational corporations like Vivendi Universal rely on the success of

their gaming division to boost their billion-dollar balance (Times, 2007). And while computer

graphics mature more and more towards photo-realism, computer gamers look again for

something which distinguishes great games from the mass. Artificial intelligence is supposed

to be this next big advancement in computer games. While there has been a significant

improvement in the level of intelligence of computer controlled agents, there is still a big gap

between the research that is done in this area and techniques which are used in commercial

products. This becomes very obvious in the area of AI learning. This subject is one of

the most important in computer game AI since learning AI allows not only for actions and

events that are predefined by the programmer, but also for actions that are devised by the

learning algorithms of the agent. This leads to more adaptable and thus more realistic game

play. Significant progress has been made in the area of computer game AI learning in the

last decade. But most of the techniques that are used in commercial products are still not

genuine learning algorithms, but just algorithms devised to make human players believe that

the computer is in fact able to adapt.

One way to apply machine learning to create more realistic gameplay is through the evaluation

of games played by human players. The information gained through these games can be used

to create computer players that imitate humans and anticipate their behavior. The biggest

problem is the acquisition of enough realistic data to extract this behavior. To be able to

predict a broad set of behaviors a huge amount of data has to be available that shows realistic

games, i.e. not games played in a supervised enviroment. Such a data set hardly ever exists

in adequate size and condition, especially in a rather recently discovered research area such

as computer games. Therefore we were quite lucky to obtain the large and comprehensive

data set on TFC games which is used in this project.

1

2 Historical Background

This chapter gives a brief overview of the background of machine learning in games. Its

first part is a short summary of the developement of AI in classical (board) games which is

mostly based on surveys by Fuernkranz and Schaeffer (Schaeffer, 2000)(Fuernkranz, 2001)

and summarizes the research done for some of the most influential ’classic’ games for AI

research. The second part is about the evolution of artificial intelligence in computer games,

mostly in commercial games. It is mainly based on (Tozour, 2002) and also briefly touches

on the differences between academic research and commercial applications.

2.1 Machine Learning in Games

One of the first to pursue the application of machine learning to game AI was Arthur L.

Samuel who in 1947 came up with the idea of creating an a program that could play check-

ers. The two main papers describing his research, which lasted over the next three decades,

are landmark papers for AI in general and for learning AI in particular, since they introduce

several techniques and ideas for AI learning which are still in use today in one way or another

(Samuel, 1959) (Samuel, 1967). His program was based on the principle of learning the game

without previously defined moves. This is in contrast to what became the common approach

not only for checkers but also for chess and most other classical games where the computer

programs have a certain amount of predefined game states which they search for a solution.

In the late 1970s Samuels program was defeated by a checkers program which was developed

at the Duke University (Truscott, 1978). This victory led to the assumption that the new

program could match just about any human player. The assumption was indirectly proven

wrong with the development one of the most advanced checkers programs of the early 90s,

Chinook, at the University of Alberta. Chinook is based on the very common principles of an

opening book, an endgame database, previous knowledge and extensive search through pos-

sible moves (Schaeffer et al., 1992). Its evaluation function is not based on learning but has

been tuned manually. Chinook won the ’world man-machine championship’ in 1994 against

the world champion checkers player Marion Tinsley and did not lose any game in the next

years before retiring in 1997. In 2007 the developers stated that they computed the weak

solution for checkers and Chinook thus cannot lose anymore (Schaeffer, 2007).

2

Data Mining and Machine Learning with Computer Game Logs Section 2.1

The history of computer AI playing checkers shows that even though Samuel started with a

machine learning approach, research soon switched to optimizing brute force searching pro-

grams which went on to become more effective and eventually unbeatable for human players.

Despite this, there are also approaches that use machine learning algorithms to play checkers.

Chellapilla and Fogel for example created a checkers program in the late 1990s, which did not

use expert domain knowledge but learned playing the game through co-evolution (Chellapilla

and Fogel, 1999).

One of the most researched areas in computer AI is the game of chess. Among the first

papers to be published on the topic of computer chess was a paper by Shannon (Shannon,

1950) which split algorithms applied to this problem into two types A and B. While both

types are basically based on searching for possible moves, Type A algorithms do this by

brute-force while Type B includes selective search much like human chess players tend to

think. Subsequently Type A algorithms gained popularity due to being easier to implement

and to debug. Brute-force programs have managed to beat human grand masters for quite

some time now, most well known is the series of duels between then world champion Gary

Kasparov and chess programs made by IBMs Deep Blue team (ChipTest, Deep Thought and

the famous Deep Blue) (Campbell et al., 2002).

But similar to checkers, considerable research has been done in the area of machine learning

for chess. Probably the area most thoroughly studied is the induction of chess, i.e. the classi-

fication into won/not won from a given endgame. Quinlan (Quinlan, 1983) for example used

the decision tree learning algorithm ID3 to acquire recognition rules. Muggleton (Muggleton,

1990) applied DUCE, a machine learning algorithm that suggests high-level concepts to the

user. The suggestions are based on recognized patterns in the rule database and the tech-

nique reduces the complexity of the rule base and generates concepts that are meaningful for

domain-experts. Another machine learning technique which gained particular interest during

the late 1980s is explanation-based learning (Mitchell et al., 1986). This approach was based

on the assumption, that the domain theory can be utilized to find an explanation for a cer-

tain example which then can be generalized. During the mid-90s a related approach called

case-based reasoning (CBR) (Kolodner, 1992) was developed and applied to computer chess.

Case-based reasoning is a technique which is quite similar to explanation-based learning and

in principle ’Learning by Analogy’ (Campbell et al., 2002). In order to solve a problem a

CBR system looks for previously encountered similar problems in its case base. It then tries

to adjust the solution to these known problems to fit the current one. The problem-solution

pair it acquires in this way is then used to extend the existing case base. MAPLE (Spohrer,

1985) is an early system that is based on CBR and learns whenever it makes a fatal mistake,

i.e. when it reaches a point where all moves lead to a loss. CASTLE (Krulwich, 1993) is

a modular (threat detection module and counterplanning module) system that also learns

3

Data Mining and Machine Learning with Computer Game Logs Section 2.1

through mistakes. Whenever one of its components fails, it performs a self-diagnosis to find

out which module failed and then uses explanation-based learning to extend its case base by

the missing case. Both CASTLE and MAPLE rely heavily on case-based planning (Ham-

mond, 1989) which itself is based on explanation-based learning.

Another possibility to apply machine learning to computer chess programs is the design of

the evaluation function, i.e. the method that evaluates how good a certain move or a certain

sequence of moves is. The tuning of this function has actually become the most promising

direction for the application of machine learning to computer chess (Campbell et al., 2002).

Tunstall-Pedoe (Tunstall-Pedoe, 1991) used a genetic algorithm (GA) to optimize the evalu-

ation function. The fitness of a certain parameter was determined by comparing the result

of the function with the moves of a grandmaster. Van Tiggelen came to the conclusion that

genetic algorithms are too inefficient for usage in a middle-game application and therefore

used an artificial neural network (ANN or NN) instead (van Tiggelen H. J. and van den

Herik, 1991). According to the authors this resulted in a more efficient and at the same

time more accurate program. Schmidt was not satisfied with the results he got when he

used a neural network and used temporal difference learning (TD learning) instead (Schmidt,

1994). The idea of temporal difference learning had already been developed by Samuel for

his checkers player (Samuel, 1959) but not really been in use again until Tesauro achieved

amazing results with this in his backgammon program (Tesauro, 1992). In chess it is quite

hard to evaluate effects of decisions made in the middle-game since the game is only decided

at the end. TD learning addresses this problem by trying to minimize the differences between

successive position evaluations. This means for example that if the program discovers after

a series of evaluations that the assumed outcome is wrong, a previous assumption must have

been wrong and the weights of the function have to be changed accordingly.

While checkers and chess have received tremendous attention and research, there are lots of

other games for which computer players have been researched using plenty of different tech-

niques. The aforementioned Tesauro created a backgammon player TD-Gammon (Tesauro,

1992) capable of beating human players. TD-Gammon is based on neural networks which

are trained using TD learning. Bill is an Othello program written by Kai-Fu Lee and Sanjoy

Mahajan that was among the best during the early 1990s. Besides using deep search and

extensive domain knowledge it uses Bayesian learning in its evaluation function (Lee and

Mahajan, 1990). The game of poker offers several attributes that make it very interesting for

AI research: it offers incomplete knowledge due to the hidden cards, it is played by several

agents and it uses concepts such as agent modeling and deception. Therefore a lot of inter-

esting research in the area of machine learning for poker has been produced. Loki, a program

developed at the University of Alberta, uses explicit learning by observing its opponents and

constructing models of these opponents. It then adapts to the play of these opponents (Scha-

4

Data Mining and Machine Learning with Computer Game Logs Section 2.2

effer and et al., 1999). Korb et al. produced a poker program that is based on Bayesian

networks (Korb and et al., 1999). The poker program of Dahl (2001) uses reinforcement

learning (Russell and Norvig, 2003) to play the poker variation Texas Hold’em. Rubin and

Watson (2007) use case-based reasoning for their poker program CASPER which plays Texas

Hold’em evenly against strong, adaptive competition. Other games that are popular with

AI researchers include Go (Mueller, 2000), which has an even larger search space than chess,

Scrabble (Sheppard, 2002) and Nine-Men-Morris (Gasser, 1996).

2.2 The Evolution of Computer Game AI

Since the mid 1970s, computer games have been developed that allow a single player to

compete with the program itself. Seminal games like Pac-Man, Space Invaders or Donkey

Kong used, mostly due to restrictions of available resources, very simple techniques such as

finite-state machines, decision trees and production rule systems together with some random

decision-making to add less predictable behavior. But while processing power increased in the

following decade and games grew ever more complex and better-looking, the AI techniques

remained by and large the same. Only in the 1990s more complex techniques were used.

One reason for this was the success of strategy games such as MicroProse’s Civilization or

Blizzard’s WarCraft II , since these games require AI as part of the central playing experience.

Besides that strategy games require a range of different AI techniques for unit-level AI as

well as for overall strategic and tactical AI. First Person Shooters (FPS) are another game

genre which led to the introduction of more complex AI into commercial games. While

there have been games which belong to this genre since the early 1990s, they mostly tried

to challenge the player by the sheer number of opponents or the amount of firepower he was

facing. Significant progress was made in Valve’s Half-Life which was praised for its tactical

AI and EpicGames’ Unreal: Tournament which included bots that showed tactical behavior

and scalability. One computer games genre which is practically based on AI is that of sim

games/artificial life (A-Life) games.

Maxis’ SimCity was one of the first games in this genre. Especially noteworthy for the

complexity of its agents is The Sims which uses fuzzy state machines and A-Life technologies.

The games of the Creatures series are basically A-Life simulators which make use of a whole

range of AI techniques to simulate the evolution of the ’Norns’ that populate the game. More

recently Lionhead Studio’s Black&White games are built around a complex reinforcement

learning approach that allows the player to train a ’creature’. These games show one of the

most advanced game AIs to date.

While these games do use advanced AI techniques, the most common technique still remains

the simpler and thus easier to create and debug rule-based systems. This gap between

5

Data Mining and Machine Learning with Computer Game Logs Section 2.2

academic research and the computer gaming industry has not gone unnoticed. Laird states

in his paper (Laird and van Lent, 2001) that while there is significant room for academic

research in computer games, the computer games industry tends to go into its own direction.

He then concludes that it is up to academic researchers to close this gap by using computer

games as test beds to develop AI methodologies which then can be used in commercial games.

According to Nareyek, the academic community has so far failed to achieve this (Nareyek,

2004) (Nareyek, 2007). He states that apart from the usage of a few common techniques,

in particulary the A* algorithm for path finding, usually no academic research is used in

commercial products. He also claims that common academic research goes into a direction

that is all but uninteresting to the computer games industry.

On the other hand there have been quite a few attempts to bridge this gap between academia

and the industry. Champandard (2003) uses the open-source framework FEAR (Flexible

Embodied Animat Rchitecture) together with the commercial First Person Shooter Quake

2 to evaluate several AI techniques proposed by the academic community. He succeeds at

implementing these various techniques for different tasks of a non-player character (NPC),

a so-called bot. Gold (2005) does research using a commercial game engine as test bed

to develop a prototype game. He reaches the conclusion that it is indeed possible to mix

commercial game development and research. Miikkulainen et al. (2006) argue that the AI

techniques which are usually applied in modern games are in fact not appropriate at all for

the purposes they are used for. On the other hand machine learning techniques which are not

used at all in commercial products such as neuroevolution (neural networks in combination

with genetic algorithms) are particularly well suited for computer games.

6

Data Mining and Machine Learning with Computer Game Logs Section 2.3

2.3 Log Evaluation in Computer Game Research

Data mining is used in many commercial applications and research about data mining tech-

niques is quite common. Despite this the usage of data mining techniques to search for

patterns in computer game logs is very rare. This is amazing since it allows for a number of

possible benefits even for commercial games as mentioned in (Kennerly, 2007). The benefits

that can be gained through the discovery of patterns in computer game usage data include

the discovery of possible game improvements which in turn can result in increased player

satisfaction. Patterns can also show ways to generate more challenging computer players by

generating AI that behaves more like humans. This is for example the motivation behind the

RoboCup Coach Competition (Kuhlmann et al., 2006). For this competition coach programs

are created which control their own football team and create a model of the opposing team

through extracting behavior patterns from performance logs of the opponents. The extracted

information can then be used against the opponent. The success of a coach program in this

competition is determined by its ability to extract such patterns from the performance logs

of the opposing team. In (Tveit and Tveit, 2002) the authors suggest to adapt the concept

of web usage mining to the new domain of mining game data logs. The proposed concept is

mainly aimed at mining data from Massivly Multiplyer Online Games (MMOGs) but could

be adapted to accommodate for other types of games as well. The University of Alberta has

a project which tries to make use of logs from the FPS game Counter-Strike which is based

on Half-Life. Their aim is to create better AI using these logs. The recordings were generated

by their own program during the observation of matches of very good human players against

other human players (CSAI, 2007).

7

3 Aims, Areas of Application and Limitations

of Machine Learning in Computer Games

This chapter gives a short overview over the basic aims and limitations of computer AI

learning.

3.1 Aims of Computer Game AI Learning

This subsection is concerned with the aims of computer game AI learning, i.e. which benefits

result from applying machine learning techniques to computer games in the first place. It is

largely based on (Spronck, 2005). Adaptive AI makes the game ’self-corrective’, allowing it

to rectify mistakes that were made during programming. This can be both offline, i.e. during

the creation of the game or online while playing the game. This can not only solve mistakes

which have been made involuntarily by the creators, but can also be used to cope with so

called ’exploits’. Exploits are not actual mistakes in the program but merely unforeseen

behavior by the player which leads to a significant advantage. If the AI is adaptive it can

develop a new behavior to counter the strategy of the player. This can only happen online.

Another positive aspect of using machine learning AI is the possibility to generate programs

with automatically scaled degrees of difficulty. The AI can adjust itself to the capabilities of

the player, thus enhancing the overall playing experience. The playing experience is of course

also greatly improved through adaptive AI because the player perceives non-static behavior

as much more realistic.

3.2 Possible Areas of Application and Limitations

This subsection is concerned with the types of games that learning AI can be used for. The

subchapter also describes constraints that limit the usage of learning AI.

Laird and van Lent describe in their landmark paper about the usage of computer games as

AI research application area (Laird and van Lent, 2001) different genres of computer games

in which adaptive AI can be used (Figure 3.2). They also describe the roles which AI can

play in these different types of games as well as characterizing limitations to the usage of AI

in computer games. Kirby (Kirby, 2003) also addresses these limitations but considers them

8

Data Mining and Machine Learning with Computer Game Logs Section 3.2

Figure 3.1: AI roles in different game genres (Laird and van Lent, 2001)

regarding machine learning algorithms. He describes four basic criteria, mostly regarding

resource demands by the learning AI, which have to be fulfilled to make the application of

machine learning algorithms to a particular area useful.

1. The AI must be able to read the input to be learned through usage of a reasonable

amount of resources.

2. The AI must be able to store learned knowledge through usage of a reasonable amount

of resources.

3. The AI must be able to use the learned knowledge through usage of a reasonable amount

of resources.

4. The application of machine learning at this particular point results in an improvement

for the game playing experience.

Kirby then goes on to describe certain methods to assure these conditions are met. To assure

that the amount of resources used to read the input is reasonable, an appropriate knowledge

representation has to be chosen, possibly through preprocessing input signals. To gain the

correct knowledge from a certain input, certain problems have to be taken into account, such

as associations between past and present inputs or differences in the level of difficulty of input

data (Kirby, 2003).

9

4 The Data

This chapter covers topics related to the data which is used in the experiments. These topics

include a description of Team Fortress Classic, the game from which the log files are recorded

with explanations what the attributes of the data set actually mean. It furthermore contains

a description of how the data was extracted from the web files it was stored in as well as a

depiction of the database it was moved into.

4.1 Team Fortess Classic (TFC)

This section contains a short description of the game, its classes and weapons as well as

important game mechanics and is mostly based on (Half-Life, 2007) and (Wikipedia, 2007).

4.1.1 The Game

TFC is a team-based online multiplayer first-person shooter in which teams of players compete

in different scenarios against other teams. It was first developed as a standalone game but

later converted to be released as a modification (mod) of the game Half-Life. A mod is an

extension to an already existing game which uses the underlying architecture of that game.

The mod can also use parts of other resources from that game such as textures, sounds or

scripts but can also be a completely new game.

4.1.2 Gameplay

TFC offers a range of different scenarios in which teams can compete against each other. The

data that is used for the experiments only comes from Capture-The-Flag (CTF) scenarios.

In these scenarios the players are split into two equal teams. Both teams have a base in

which a flag is stored at a certain place. The aim for both teams is to capture the flag of the

opposing team and return it to their own flag. This can be done by picking it up through

simply running over the place where the enemy flag is displayed and dropping it of at your

own flag through simply running across that location. A capture is awarded with 10 points

and is on most maps the only way of gaining points in the game. If the flag carrier is killed

while on the way to his own flag, he drops the flag. The flag can then be picked up by one of

the killed player’s team members who can then try to capture it or the flag can automatically

10

Data Mining and Machine Learning with Computer Game Logs Section 4.1

be returned to its original base by an enemy through just walking across it. If a player is

killed they are resurrected (’respawn’) in their own base after a very short while, usually a

few seconds.

Since the enemy flag can only be captured by a team if their own flag is at their base, it

is important for a team to not only focus on taking the opposing team’s flag but also on

defending their own flag. Therefore an effective mix of attacking and defending classes has

to be used by the teams. Every game lasts for a predefined amount of time. The team which

scores the most points during that time wins the game.

4.1.3 Classes

At the beginning of every game each player has to pick a class, i.e. the type of his avatar.

A change of class later in the game is possible but has the same effect as being killed, i.e. a

short waiting time before being resurrected in the base. TFC offers nine different classes with

different equipment, weapons, armor, speed, and special abilities. These differences account

for the fact that no class is stronger than all the other classes but every class has its areas of

application. The best team is thus defined by a multifaceted combination of classes.

Figure 4.1: The different classes in TFC: From top left: Demoman, Engineer, HWGuy, Medic
and Pyro From bottom left: Scout, Sniper, Soldier and Spy

11

Data Mining and Machine Learning with Computer Game Logs Section 4.1

Demoman

The Demoman has average speed, health and armor and is best at close quarters combat.

He has special explosive weapons which can deal a great amount of damage over a short

period of time and thus are valuable for attacking as well as for defending. On a few maps

a Demoman is required to access certain areas of the map through opening the entrance by

explosives. The Demoman’s main weakness is against long range weapons.

Engineer

The Engineer is able to build a sentry gun, a stationary gun tower which usually forms the

backbone of the defense of a team. He can upgrade the gun twice and thus improve firepower

and speed. The Engineer is also able to build ammunition dispensers as well as teleporters

which allow team members to be teleported from a defined entry to a defined exit. Apart

from that the Engineer is mainly used as a supporter.

Heavy Weapons Guy

The Heavy Weapons Guy (HWGuy or HWG) is extremely well armed and has the best armor

and health in the game. His drawback is that he is very slow and thus not very flexible. His

main machine gun takes a short time to become active but is very efficient once it starts

firing.

Medic

The Medic is able to heal team members’ hit points as well as infections and is also able to

infect enemy players. The Medic is the second fastest class in the game, very mobile and

serves well as offense. He is also able to do conc jumps, i.e. use his own grenades to propel

him through the air enabling very long jumps.

Pyro

The Pyro is by design a class with medium speed, armor and health which uses its weapons

to set enemy players on fire. This causes damage over time and distracts since the flames are

visible on the inflamed player’s screen. Since the Pyro is seen as one of the weakest classes

in the game it is hardly ever used, especially in more competitive games or league games.

12

Data Mining and Machine Learning with Computer Game Logs Section 4.1

Scout

Scouts are the fastest class in the game and thus the foremost class that is used for capturing

the flag. They have few hit points and weak armament and thus usually prefer running away

to fighting. Scouts, just as Medics, possess the ability to use their grenades to conc jump.

Sniper

Snipers employ a long range rifle as their primary weapon. This rifle can only be used when

they are standing completely still and will show a red laser dot while aiming. This dot can of

course give away the Sniper’s position but the rifle also does extremely high damage. Another

downside of the rifle is that it takes a few seconds to aim. The Sniper moves very slow and

is thus not very useful for capturing flags or changing the position quickly.

Soldier

The Soldier has not special skills but combines high mobility, good armor and good health

with excellent armament. Its most powerful weapons are the rocket launcher and the nail

grenade which can be used to deal damage to a large area.

Spy

The Spy possesses the unique ability to disguise himself as a member of the enemy team. This

allows him to get behind the enemy lines and steal the flag or gather intelligence. However

if he attacks or picks up the enemy flag he is uncovered. Scouts and Spys also possess the

ability to uncover enemy Spys by simply touching them. The Spy has only average speed,

low health and his main attack weapon is his knife which allows him to nearly instantly kill

an enemy player.

4.1.4 AI in Team Fortress Classic

As it is one of the possible applications described in 1 to produce better AI for the computer

players in TFC, the existing bots in TFC are of interest. While Half-Life was originally not

designed to contain separate bots, dedicated players soon created a development kit which

allowed programmers to plug custom computer players into the main application and into

modifications. This development kit was used to create a number of bots of varying quality

for TFC. Due to the complex nature of TFC gameplay, i.e. bots had to be able to act

in a team and pursue predefined goals apart from the usual ”‘defeat all enemy players”’,

the development of these bots proved to be harder than the development of bots for simple

Deathmatch modifications. One of the most sophisticated bots is FoxBot (FoxBot, 2007).

13

Data Mining and Machine Learning with Computer Game Logs Section 4.2

This bot uses predefined waypoints to find its way around the maps and follows certain goals

according to the current state of the game and its class.

4.2 Generating the Data Set

This section describes the origin of the data and how the data set is retrieved from its original

online source. It also describes how the data is stored and the basic cleaning that is done to

ensure a consistent data set.

4.2.1 Original Log Files

TFC is an online game which runs on a server to which the players of both teams connect.

This server offers the possibility to record a game and store a certain set of information about

the game in a log file. Valve defines a log standard which has to be adhered to by all mod

developers (Valve, 2007).

4.2.2 The Blarghalizer

The Blarghalizer (blarghalizer.org, 2007) is a website which provides the service of analyzing

the log files of TFC matches. It offers a form through which people can upload a TFC

log file. After uploading the log file, scripts on the website parse the log file, analyze the

data contained in it, process the information and generate a number of HTML files that

display the information. Figure 4.2.2 shows the central HTML page of a TFC match on

www.blarghalizer.org. The website also offers the option of downloading all HTML files which

belong to one log file in one compressed file.

Since its launch in early 2006 information about more than 10000 TFC games has been

uploaded and stored on this webpage.

4.2.3 Downloading Log Files

Since the webpage unfortunately deletes the original log files after it extracted all necessary

information to generate the HTML files, the only data sources are these HTML files. Because

they contain a lot of information more than once and generally store the information in a way

that is not easily machine-readable, the data has to be extracted before it can be anaylized

for patterns. The first step is downloading these files. Since the HTML files of the more than

ten thousand log files which form the test base have a size of approximately ten gigabytes,

the compressed files are downloaded which are only 10% of that size. This is done by using a

PHP script to subsequently open all pages which contained the links to the games, extracting

all names from the HTML source code and storing these names in a MySQL database.

14

Data Mining and Machine Learning with Computer Game Logs Section 4.2

Figure 4.2: Top of the main page for a game description

The entries are then used to feed an XML-based download manager which downloads the

compressed files for the single games.

4.2.4 Extracting Data from the HTML Files

After downloading all compressed files the actual test data is extracted from the source code

of the HTML files. This was done by using a number of PHP scripts which utilized regular

expressions and string analyzing methods to extract the desired information from the source

code of the HTML files. The information is then stored in a MySQL database. Part of such

a PHP script can be seen in Appendix B. Basically one script is used to extract information

from one type of HTML file. The different types of HTML files which are analyzed are listed

below.

• Main game page

• Class listings for both the red and the blue team

• Buildables for both the red and the blue team (Sentry Guns, Armor Dispensers etc.)

• Flag activities

• Pages for the single players

15

Data Mining and Machine Learning with Computer Game Logs Section 4.2

4.2.5 The Database

The choice of MySQL as the preferred method of storing the data does not seem the obvious

first choice since only very few machine learning techniques can directly operate on relational

databases. Instead the more common option would be a simple text file or a CSV file which

can be fed directly into a multitude of machine learning algorithms. Since it is stored in

a database the data therefore has to be extracted to generate the data sets which can be

analysed by common machine learning algorithms.

The reasons for this kind of storage are several advantages of a relational database over a

simple text file for this specific task.

1. A relational database offers compression and allows a better usage of disk space by

getting rid of redundancies in the data, especially if the data is normalized as in this

case.

2. It is easier to extract different sets of data for different tasks from a relational database.

3. A relational database allows faster access and thus faster retrieval and changes of the

stored data.

4. Since working on such a big amount of data always carries the risk of an error half way

through a routine, it is a huge advantage if the database accounts for safe transactions.

16

Data Mining and Machine Learning with Computer Game Logs Section 4.2

Figure 4.3: Database Structure

The structure of the database that is used to store the information from the TFC log files

can be seen in figure 4.3.

4.2.6 Data in the Database

This section shortly explains the data which is extracted from the HTML files. Since not all

of this data is used in every part of the analysis, the sections describing the different methods

of analysis mention separately which part of the data set is used in the particular section.

Game

The information on a game consists of the name of this game, the map on which it was

played, the starting time as well as its duration.

Player

The information on single players is stored in the three tables player, player extended and

player classes. In player the player’s name, the team for which he played as well as a reference

to the game in which he played is stored. player extended contains information on the time

he was in the game, the minimum time and maximum time as well as the aggregate time

17

Data Mining and Machine Learning with Computer Game Logs Section 4.2

he was alive, the number of times he was resurrected (’respawned’), the number of times he

carried the flag and the amount of time he carried it, aggregate as well as minimum and

maximum. The table also contains information on how often he was infected or infected

someone himself and the number of times he was hit by a concussion grenade or hit someone

with it. player classes contains the information on what classes a player picked, when he

picked the class (relative to the starting time of the game) and for how long he played that

class. This table cross-references the classes table where the names for the nine different

classes are stored together with a unique id.

Buildables

The set of tables containing information about the structures an Engineer can build con-

sists of buildable dispenser for armor dispensers, buildable sentrygun for sentry guns, build-

able tentrance for entrances of teleporters and buildable texit for exits of teleporters. These

tables contain a cross-reference to the entry of the player that built them, the number of times

they were repaired, the time they were built as well as the duration they were operational,

the way in which they were disposed of and, if they were destroyed, a cross-reference to the

entry of the player who did it as well as the weapon with which it was done. In addition for

sentry guns it is stored which level of upgrade they reached and the number of eliminated

players for each level.

Kills

The kills table contains for each kill the player who did it, the victim, the cause of death,

the time when it took place, if the victim was under concussion and whether it was carrying

the flag when it was killed.

Flag Activities

The table flag actions contains information which relates to the flags. It contains a cross-

reference to the player who performed the action, the time when the action took place as

well as the kind of action that took place. Possible actions are Initial Touch, Touch (pick up

a flag that a teammate dropped), Captureand Coast-To-Coast capture.

4.2.7 Basic Data Cleaning

This section describes the basic actions which were taken to verify that the data set only

contains valid entries. Throughout the analysis it was verfied that all data contained only

belongs to games which are comparable to each other and entries which did not meet this

criterium were deleted.

18

Data Mining and Machine Learning with Computer Game Logs Section 4.2

Game Deletion

In order to work on a valid data set the database is cleared of games which do not meet

some standards which are set to acquire meaningful results. Games that have a duration of

less than 25 minutes are deleted to be able to compare the games with more or less equal

preferences among each other. Furthermore games with more players in one team than in the

other team are deleted, since these games obviously are biased towards one team or another.

Some recordings were faulty and did not record data for one or more players. Since this

biases the data for the whole game, those games were deleted as well.

Kill Deletion

A surprisingly large number of kills was identified to have taken place at time 0:00:00, i.e.

just when the game starts. Another surprising characteristic of this behavior was the fact

that just about all of these kills were suicides, i.e. the players killed themselves. Furthermore

their classes were recorded incorrectly, i.e. the weapon they killed themselves with belongs

to a class that is different to the one that is recorded for them at that time.

The explanation for this behavior is that the game only starts after a short period described

as ”‘pre-game”’. In this time the players, especially more advanced players which have gone

through the initial phase very often, play around with classes they usually wouldn’t take and

quite often get themselves killed. Since kills don’t affect the score in a game and the game

has not started yet, this has no affect on the outcome of a game.

To remove the effect of these ”‘fun”’-kills, all kills which happen in the first three seconds,

i.e. every kill that happened before game start and in the first three seconds, are removed

from the database. This effectively removes about 48000 kills or approximately one percent

of all recorded kills from the database.

4.2.8 Statistical Characteristics of the Test Data

The original data set consisted of information from 10663 game logs. Through the cleaning

process described in section 4.2.7, i.e. limiting the data to games which are longer than

25 minutes and have an equal number of players in each team as well as only complete

recordings for each player the number of game logs making up the data set is culled down

to 6099. This constitutes effectively the pruning of 42% of the available games but is a step

that has to be taken in order to gain valid results. The resulting data set has the follwing

statistical characteristic (Table 4.1).

19

Data Mining and Machine Learning with Computer Game Logs Section 4.2

Number of recorded games: 6099
Number of recorded players: 90524
Average players per team: 7.36
Number of recorded kills: 4,352,279
Average kills (including own team) per player per game: 48.01
Number of recorded class choices: 157,767
Average number of different classes per player: 1.74
Number of recorded flag captures: 84,469
Included Coast-To-Coast-Captures: 15,087 (17,86% of all Captures)
Average number of captures per game: 13.73
Number of Touches: 597,821
Average number of Touches per Capture: 7.08
Average recorded game time: 29 Minutes 17 Seconds

Table 4.1: Data Set Statistics

4.2.9 Problems with the Size of the Data Set

The size of the data set seems sufficient to be able to find valid patterns. Even after cleaning

the data set from invalid data more than 6000 games remain. This should still be enough to

retrieve representative patterns. However the maps the games were played on pose a serious

problem.

On the one hand there are more than 2000 games which have an (unknown) as their map

meaning they could have been played on any map and thus cannot be used in any analysis

which takes maps into account. On the other hand, the remaining 4000 games were played

on 162 different maps. While there are some preferred maps as stated in section 5.1, the

distribution is not as much focussed as would have been desirable. Even the ten most played

maps have only between 130 and 200 games each 5.1. This would leave only this many

instances which can be compared to each other. One could now argue that the map is only

important in very few occasions and usualy can be ignored. However the analysis in section

5.1.1 shows that this is not true. Therefore the actual data set which an analysis is performed

on is only a very small subset of the actual test data.

20

5 Data Analysis

This chapter covers two approaches to using machine learning algorithms on the data set

in order to find patterns. This is done by applying classification algorithms which try to

predict the outcome of a game based on previously learned hypotheses.

For each apprach first the anticipated pattern is described more closely as well as the subset

of the data in which this pattern is supposed to exist. Then the statistical analysis which is

the reason for this assumption is shown. Afterwards different machine learning algorithms

are used to detect the existence or absence of the pattern in the data set. The results of the

machine learning algorithms are discussed subsequently.

A limitation that applies to both approaches is the size of the data sets to which the

algorithms are applied. Since the expected outcome should be win or loss, draws are ignored.

This reduces the data set which are used for training and test purposes by about 6% on

average. Another limitation is the dependancy of patterns on the map 5.1.1. This reduces

the size of the data set which can be used to train an algorithm even for the most played

maps to only 5% of the whole data set. The resulting number of data points for the ten

most popular maps can be seen in table 5.1.

Map Number of games played on this map
shutdown2 160

schtop 154
fry baked 127

openfire lowgrens 116
hellion 105
siege 103

ss nyx ectfc 96
monkey l 92

mortality l 90
2mesa3 87

Table 5.1: Number of data points for the ten most popular maps

21

Data Mining and Machine Learning with Computer Game Logs Section 5.1

5.1 Game Result Prediction Based on Team Composition

Since TFC is a team-based game where the strategy relies heavily on which classes make up

a team this section is concerned with effects of the team composition. One assumption is

that the usual composition of a team is based on the map the game is played on. This is

due to the different structures of the maps where the different classes can use their strengths

better on one map than on the other. A Sniper for instance usually only performs well on

maps with good hiding places and vast open spaces. On the other hand on a map with lots of

enclosed spaces a Soldier would outperform a Sniper easily. This should lead to the average

team composition being different from map to map.

5.1.1 Average Class Usage per Map

To validate this assumption the average proportion of the total game time for each class is

computed for the ten maps that were played the most in the data set. The usage of these

maps guarantees that enough samples exist to draw valid conclusions. Since a lot of games

have been played on these maps this also means that they are fairly balanced and give a good

overview of average playing style. Furthermore this automatically excludes avoids so-called

funmaps. Funmaps are maps that are not played in a normal competition mode but reward

and facilitate usually non-normal behavior. One example of a funmap would be a map which

is simply made up of two walls on each side of the map with a large open space in between.

This structure makes any other class than a Sniper all but useless.

Figure 5.1: Playtime for Medic, Scout and
Soldier

Figure 5.2: Playtime for Demoman,
HWGuy and Engineer

Figure 5.1 to Figure 5.3 show the percentage of time for which each of the different classes

is played on the different maps onb average. Figure 5.4 shows the distribution of the play

time among all classes per map. The average already shows that in general the different

classes are played for different amounts of time; the classes of Pyro and Sniper for instance

are hardly ever played at all. Certain classes like Soldier and HWGuy are played for about

22

Data Mining and Machine Learning with Computer Game Logs Section 5.1

Figure 5.3: Playtime for Spy, Sniper and
Pyro

the same amount of time, i.e. their average, regardless of the map. Others like Medic and

Engineer show variations in play time which can be up to 50% between two maps. A third

kind to which the classes of Demoman and Spy belong shows huge variations in play time of

several 100% between maps. These graphs show that there is a connection between the map

which is played and the average team composition. This leads to the conclusion that if there

is a preferred team composition for a certain map, this is probably because this composition

leads to better results. Therefore it should be possible to extract rules which show what class

combination exactly leads to the best result on a certain map.

Figure 5.4: Distribution of Playtime per Class for the ten most popular maps

23

Data Mining and Machine Learning with Computer Game Logs Section 5.1

To be able to apply machine learning algorithms successfully to the data set to learn the

most successful class combination for a map, the team composition obviously has to differ

between the winning team and the losing team. The diagrams in Figure 5.5 to Figure 5.8

show the differences in playtime per class for the four maps that were played the most.

Figure 5.5: Playtime on shutdown2 Figure 5.6: Playtime on siege2

Figure 5.7: Playtime on ss nyx ectfc Figure 5.8: Playtime on schtop

The diagrams show a startling absence of differences in team composition between the

winning teams and the losing teams. Visible differences for the classes Sniper and Pyro bear

only minor significance because of the negligible overall amount of time those two classes are

played on average. Differences for the five classes with the highest amount of time played on

average (Demoman, Engineer, HWGuy, Medic and Soldier) are never more than one percent

of the overall amount of time per game. The only classes which show slightly promising

tendencies in their amount of usage are Scout and Spy. The observed behavior leads to

the assumption that applying machine learning algorithms might not lead to the desired

identification of winning teams through team composition. This in turn would mean that it

is not possible to specify the ideal team composition through machine learning.

24

Data Mining and Machine Learning with Computer Game Logs Section 5.1

Result for Classification According to Class Compositions

J48 Naive Bayes Nearest-Neighbour Neural Network
shutdown2 59.94% 52.51% 59.54% 62.15%

schtop 65.53% 53.60% 64.47% 61.67%
fry baked 63.36% 55.25% 60.82% 64.24%

openfire lowgrens 67.18% 57.25% 62.34% 65.11%
siege 63.15% 51.63% 60.66% 60.2%

hellion 57.59% 62.18% 55.04% 61.11%
ss nyx ectfc 53.29% 47.10% 50.46% 55.21%

monkey l 69.11% 53.56% 66.67% 68.89%
mortality l 60.14% 51.31% 65.40% 60.18%

2mesa3 50.89% 58.22% 53.33% 50.67%

Table 5.2: Correctly classified instances based on team compositions

J48 Naive Bayes Nearest-Neighbour Neural Network
shutdown2 0.43 0.47 0.40 0.39

schtop 0.40 0.47 0.36 0.40
fry baked 0.38 0.44 0.39 0.37

openfire lowgrens 0.37 0.43 0.38 0.36
siege 0.38 0.48 0.39 0.41

hellion 0.45 0.40 0.45 0.39
ss nyx ectfc 0.48 0.52 0.50 0.44

monkey l 0.33 0.47 0.33 0.33
mortality l 0.41 0.49 0.35 0.40

2mesa3 0.49 0.42 0.47 0.50

Table 5.3: Mean absolut error for classification based on team compositions

The following tests with machine learning algorithms confirmed this assumption. Regard-

less of the applied algorithm and map it was not possible to achieve a correct classification

above 67% for an input set for any map. The average was actually a lot lower with the data

sets for some maps being classified correctly in only about 50% of all cases, i.e. a random

pick would have the same result.

Figure 5.9 shows an example decision tree from Weka which was generated for data on the

map schtop. The algorithm which was applied is J48 which created unpruned C4.5 decision

trees. As the figure shows, the only three classes that are used for classification are Scout,

Soldier and Pyro. Pyro is a class which is hardly ever played, has an average of less than

1% playtime on that map and therfore has a huge variance in playtime. This means that

the class is determined according to just two of the nine attributes (classes) while the other

25

Data Mining and Machine Learning with Computer Game Logs Section 5.1

Figure 5.9: C4 Decision Tree for Win/Loss Classification

seven classes are ignored. Also the differences in these two classes are remarkably small on

average.

5.1.2 Results

The reasons for this behavior lie in the used data set. The initial culling reduces the data set

to data from games which took longer than 25 minutes and have an even number of players.

The average time played is 29 minutes and 17 seconds and thus even higher. If we take into

account the fact that the number of games above 31 minutes is less than 1% of all games,

we can assume that the desired duration of most games is 30 minutes. This duration is the

standard duration for games played in official TFC leagues (TFLeague, 2007). Since almost

every league game is played with an equal number of players on both teams while games

which are played by random players often have dissimilar numbers of players for both sides

because players can leave and join at will, this further increases the amount of official league

games in the data set. This is actually a good thing in the first place since these games tend

to be played by organized teams which consist of advanced players. Since one of the possible

uses for the application of machine learning algorithms to game logs was the creation of more

able and more realistic computer agents, the evaluation of games from advanced players

is desirable. Since the teams show all more or less the same behavior according to their

composition depending on the map, we can assume that they are all more or less on the same

skill level. The conclusion that this skill level is high comes from the observation that even

though the data set is quite big and thus would have to have several games of teams which

have even better class combinations than the average team, this is not the case. All teams

seem to be making essentially the same decisions when it comes to class selection.

The downside of this data is that advanced players often adapt to the most successful style

26

Data Mining and Machine Learning with Computer Game Logs Section 5.2

of playing. The distinction between one team of advanced players and another team of

advanced players is far more difficult than the distinction between an advanced team and

a mediocre team. This becomes obvious in the experiment described above. The upside

though is, that since we are apparently dealing with advanced players which all make the

same choices when it comes to class selection for a certain map, their choices are probably the

most successful strategy right now. Since one aim of these experiments was to find the most

successful combination of classes, this aim has still been achieved even though not through

the successful application of machine learning algorithms.

5.2 Predicting Game Outcome Based On Class Performance

This chapter evaluates the effects of variations of the performance of certain classes on the

outcome of a game. The definition of a player’s performance is obviously quite subjective

and even with a complete visual recording of a players performance in a game the opinions

about it would differ. The available data is far from being a complete representation of the

player’s actions and only covers key data of his performance. On the one hand this is an

advantage since it already reduces possible input data for machine learning algorithms. On

the other hand the performance has to be determined through very limited data. Based

on the given data the definition of performance for the different classes is therefore defined

according to their primary purpose in the game. This purpose is drawn from statistics across

the data set. The characteristics according to which the purpose of a certain class can be

defined are limited by the given attributes in the data set. The main attributes are kills and

flag activities. The performance for a player is defined by the difference between the players

performance data and the average performance data of the winning team on a certain map.

5.2.1 Kill Distribution

Figure 5.10 shows the average distribution of kills according to classes. The diagram contains

both the values for winning as well as for losing teams.

It is also important to notice that several of the classes have damage-over-time weapons (e.g.

Flamethrower and Incendary Gun for the Pyro or Infection for the Medic) and throwable

explosives like Grenades can explode after a class change and would thus be counted as a

kill for the wrong class. An exemplary test for the class specific weapons of Pyro and Medic

showed that this error accounts for less than 1% of the kills of a class and thus is negligibly

small.

It would be a problem though if this error would be evenly spread across the other classes

since classes with few kills would receive disproportional many wrongly assigned kills in re-

lation to their own kills. But since a class only gets assigned a kill if it is picked during

27

Data Mining and Machine Learning with Computer Game Logs Section 5.2

Figure 5.10: Distribution of Kills per Class for the ten most popular maps

the game right before receiving a kill which was initiated by the previously chosen class, the

amount of wrongly associated kills a class receives is proportional to the time a class is played.

Through the ratio between time played and kills, both in relation to the accumulated values,

it is possible to define the average expected performance of a class in relation to kills.

The classes are split into three different major categories according to their expected perfor-

mance in relation to the number of their kills.

1. Main fighting classes

These are classes which are responsible for a disproportional large amount of kills. Their

performance is therefore outlined very well by the number of kills they achieve. Classes

of this category are HWGuy , Soldier , Sniper and Demoman as well as Engineer to a

lesser degree.

2. Semi-fighting classes

These are classes which account for a reasonable amount of kills compared to their play

time, but their strengths lie elsewhere. Therefore their performance can only be graded

to a certain degree by looking at their kills. Classes of this category are Medic , Spy

and Pyro .

3. Supporting classes

These classes are responsible for no significant proportion of the overall kills. Their main

28

Data Mining and Machine Learning with Computer Game Logs Section 5.2

purpose obviously lies elsewhere and their performance can therefore not be evaluated

by looking at kills. The only class in this category is Scout.

A kill always means a temporary weakening of the enemies’ defense or offense. Therefore it

should be possible to deduct parts of the outcome of a game from the number and distribution

of kills for the two teams. Since the kills don’t influence the score directly, the absolute

numbers instead of the relative percentages can be used in the process. To achieve comparable

results this has to be done in relation to the number of players in one team since more players

usually means more kills as can be seen in Figure 5.11.

Figure 5.11: Average Number of Kills by
Number of Players in a Team

Figure 5.12: Average Flag Activities on
the ten most popular maps

5.2.2 Flag Activities

Figure 5.12 shows the average distribution of flag activities (Initial Touches, Touches and

Captures) among the different classes. As with kills, this diagram shows interesting statistics

for some classes.

While there are slight differences between the three recorded flag activities for one class,

the general tendency is always the same for all three different actions, i.e. if a class has

10% of all Captures it is has also about 10% of all Touches as well as about 10% of all

Initial Touches. From here on the flag activities will therefore be described separately unless

mentioned otherwise.

The classes can be split into two categories according to their expected performance in relation

to flag activities.

1. Main flag classes

These classes account for a disproportional big amount of flag activities, therefore their

performance can be rated based on this amount of flag activities. The classes that

29

Data Mining and Machine Learning with Computer Game Logs Section 5.2

belong into this category sorted by the markedness of their relation to flag activities

are Scout, Medic and Spy.

2. Minor flag classes

All other classes fall into this category. Most of these classes have only a few flag

activities which depend less on the class and more on the individual game situation,

i.e. picking up a flag that was dropped by a team member. HWGuy and Sniper have

nearly no flag activities at all, probably due to their slow movement speed.

Certain maps favor certain classes regarding flag activities. For instance the map

openfire lowgrens shows an unusually high percentage of class actions for the minor flag

classes Soldier, HWGuy and Demoman. This is due to the fact that this map has large

open ranges where the speed advantage of the main flag classes does not come into play as

often as on other maps. Instead classes with higher hitpoints have a better chance. Since

the Captures determine the outcome of a game, the absolute numbers can not be used in

this evaluation. They are directly linked to the attribute they should predict. However the

distribution should show if the classes for which it is on average easier to capture a flag have

performed well in a match compared to the other classes on the team.

5.2.3 Problems with this Approach

This evaluation of the players’ performances according to the criteria described has a number

of problems beside the fact that it is a very strong simplification of the term ”‘performance”’.

It is basically only applicable to classes whose main purpose lies in one of the evaluated areas.

Classes which also have more versatile possibilities like the Medic which heals and disinfects

team members are not evaluated objectively. The class which suffers most from this is

probably Spy . While Spies have on average a decent number of kills and flag activities,

their abilities reach far beyond that. One of the primary tasks of a Spy is, as the name

suggests, the gathering of information in enemy territory. If a Spy would focus all his effort

on gathering information instead of capturing flags and killing enemies this might help the

team more than an average Spy but would be penalized by this performance evaluation. For

that reason only the performance of classes for which the main purpose lies in one or more

areas for which data is available will be used to determine the outcome of a game. Another

problem is that this evaluation does not do justice to more sophisticated player behavior. It

does not indicate if a player spent the whole game playing poorly or if he was standing in

the base defending the flag and thus helping the team on a grander scale. But since this is

true for both teams such performances should balance each other out.

30

Data Mining and Machine Learning with Computer Game Logs Section 5.2

5.2.4 Classes and Attributes Contributing to their Performance

Demoman Performance is based solely on the kills.

Engineer Performance is based solely on the kills. This is not absolutely accurate since the

Engineer is usually defined by the built machines. Since these are not part of the evaluation,

it can only be evaluated by the effectivenes of these machines, particularly the sentry gun.

HWGuy Performance is based solely on the kills.

Medic Performance is based on kills and on flag activities. Even though Medics have other

abilities they play a major part in flag activities and also have a reasonable amount of kills

and therefore can be evaluated based on this data.

Pyro Not evaluated. Pyros only make up a very small percentage of the overall classes;

therefore they would be too heavily influenced by single performances.

Scout Performance is based solely on the flag activities. Scouts are the primary class for

capturing flags and are the only class that has nearly no kills whatsoever.

Sniper Performance is based solely on the kills. Even though there are only very few

Snipers, nearly every single one of them has no flag captures whatsoever. Therefore it is safe

to assume that Snipers only ever influence the game through kills.

Soldier Performance is based solely on the kills.

Spy Not evaluated. Despite Spies having decent kills and flag activities, the benefits of

two main purposes of Spies, gathering intelligence and destroying sentry guns, cannot be

evaluated effectively.

5.2.5 Performance Calculation

To implement the approach described above, several defaults have to be specified. The base

values according to which the performance of a class on a certain map is evaluated are the

average values of all winning teams on that map. The averages of those values accross the

ten most popular maps for kills and flag activities can be seen in Figure 5.13. The values for

the single maps can be seen in appendix A The attribute according to which the performance

of a class is calculated is the percentage of the total playtime of a game this class is played.

This percentage determines the expected values for kills and flag activities. However a team

31

Data Mining and Machine Learning with Computer Game Logs Section 5.2

Figure 5.13: Average kills and flag activities for the ten most popular maps

usually never plays each class for exactly the same amount of time as the average distribution

in figure 5.13 specifies. Therefore the expected values have to be adjusted according to the

playtime in the actual game.

5.2.6 Implementing Performance Evaluation According to Kills

The algorithm which is used to calculate the performance values according to kills consists

of a series of separate steps.

1. Generate a diagram using the average percentage of kills and the average percentage

of playtime for the map of the current instance. These values are computed according

to the data from all winning teams that played on this map. This step results in the

expected kills/playtime ratio.

2. Read the playtime distribution per classes for both teams for the game that should be

evaluated from the database.

3. Calculate the expected kill distribution according to the playtime distribution. This

happens by simple multiplication with the previously computed average kills/playtime

ratio.

32

Data Mining and Machine Learning with Computer Game Logs Section 5.2

4. Normalize the resulting distribution to 100%. This is necessary since the distribution

will not be exactly 100% if the playtime distribution is not precisely like the average

distribution.

5. Multiply the result with the expected (average) number of kills for this map for this

number of players. The result is a diagram which contains for each class the number of

kills it is expected to achieve in this game.

6. Divide the actual kills each class achieved through the expected number. The en-

suing number (converges towards 0 for actual kills converging towards 0) denotes the

performance of this class in this game with respect to kills.

5.2.7 Implementing Performance Evaluation Based on Flag Activities

This process follows closely the procedure described above in section 5.2.6. Since the flag

activities directly influence the score (on most maps the score is determined only through

Captures) the absolute values for those attributes cannot be used. Therefore only the relative

percentages for the flag activities are applied which means that step 5 from the procedure is

omitted.

5.2.8 Results

This section describes the results of the application of different machine learning algorithms

to classify the outcome of a game. The algorithms that were applied are J48 (pruned C4.5

decison trees), a Naive Bayes classifier, an instance-based learner using a nearest neighbour

classifier and a 2-layer neural network that uses backpropagation to train. The algorithms

were executed as well as evaluated in the Weka Explorer environment. The experiment was

conducted using 10-fold cross validation. Since both kills and flag activities depend to a

certain degree on the map which they are played on (see appendix A) the data sets which

are evaluated are the games played on the four most popular maps.

Result Classification According to Kill Performance

shutdown2 schtop fry baked openfire lowgrens
J48 70.25% 66.71% 71.15% 70.67%

Naive Bayes 59.31% 53.34% 62.56% 51.22%
Nearest-Neighbour 74.63% 69.66% 66.18% 64.28%

Neural Network 76.50% 71.53% 69.10% 69.71%

Table 5.4: Correctly classified instances based on kills performance

33

Data Mining and Machine Learning with Computer Game Logs Section 5.2

shutdown2 schtop fry baked openfire lowgrens
J48 0.32 0.35 0.29 0.31

Naive Bayes 0.40 0.46 0.37 0.48
Nearest-Neighbour 0.25 0.30 0.34 0.36

Neural Network 0.25 0.30 0.3 0.32

Table 5.5: Mean absolut error based on kills performance

On the one hand the results shows an obvious improvement to the classification based on

team composition. Even though the maximum of 76.5% correctly classified instances for the

multilayered perceptron is still far from the desired values, this shows promise in regard to

future performance evaluation in combination with flag activities evaluation.

On the other hand an experiment conducted using only the information about which team

has a bigger number of absolute kills achieved already about 66% correctly classified results.

Therefore it is questionable if the addition of class-wise performance really achieved such a

big improvement.

Result Classification According to Flag Activity Performance

shutdown2 schtop fry baked openfire lowgrens
J48 58.94% 69.47% 60.14% 66.07%

Naive Bayes 51.06% 49.49% 48.87% 56.39%
Nearest-Neighbour 54.69% 58.88% 60.11% 58.01%

Neural Network 57.44% 54.53% 62.58% 60.56%

Table 5.6: Correctly classified instances based on flag activities performance

shutdown2 schtop fry baked openfire lowgrens
J48 0.43 0.38 0.42 0.35

Naive Bayes 0.49 0.51 0.50 0.44
Nearest-Neighbour 0.45 0.41 0.40 0.42

Neural Network 0.45 0.48 0.41 0.43

Table 5.7: Mean absolut error based on flag activities performance

The results from applying the machine learning algorithm performance only based on flag

activities are rather disappointing. No algorithm achieves a better result than 66% correctly

classified instances regardless of the map with the average being far lower. Despite this it is

still possible the classification will improve in combination with the kill performance as an

effect of the combined information.

34

Data Mining and Machine Learning with Computer Game Logs Section 5.2

Result Classification According to Weighted Performance

As described in section 5.2.4 the performance of the different classes is defined differently in

regards to kills and flag activities. Therefore those two types of performance have different

weights depending on the respective class (Table 5.8). Instead of improving the result from

Demoman Engineer HWGuy Medic Pyro Scout Sniper Soldier Spy
Kills 1 1 1 0.5 0 0 1 1 0
Flags 0 0 0 1 0 1 0 0 0

Table 5.8: Weighting of the performance attributes

the simple kills based classification the weighted combination with flag activities results in less

instances being correctly classified than even for the simple flag activities based classification.

On average the neural network performs best with the C4.5 decision trees being a close second.

The nearest-neighbour comes third and the Naive Bayes classifier is by far the worst method

of classification.

shutdown2 schtop fry baked openfire lowgrens
J48 58.19% 63.09% 59.58% 62.87%

Naive Bayes 49.69% 51.22% 51.39% 49.97%
Nearest-Neighbour 58.56% 66.71% 54.53% 59.04%

Neural Network 60.13% 64.97% 53.59% 60.10%

Table 5.9: Correctly classified instances based on weighted performance

shutdown2 schtop fry baked openfire lowgrens
J48 0.45 0.39 0.41 0.39

Naive Bayes 0.49 0.48 0.48 0.50
Nearest-Neighbour 0.41 0.33 0.45 0.41

Neural Network 0.41 0.39 0.46 0.42

Table 5.10: Mean absolut error based on weighted performance

35

6 Discussion and Future Work

The analysis in chapter 5 does not produce the expected patterns. Instead the algorithms

are shown to produce very unsatisfying results in regards to classification. This could be due

to the fact that there simnply are no patterns in this data. On the other hand it would also

be quite possible that the patterns are just not as obvious as previously assumed. One indi-

cation for this is that the data set consists mostly of games by expert players, an assumption

that is made due to the results of the first experiment. This assumption has of course to

be validated. In order to do this, a sufficiently big data set of games between amateurs and

expert players would be required to perform a validating experiment.

Also while the original concept of classifying game results class performance didn’t produce

convincing results immediately, the approach still remains promising. The performance met-

ric obviously has to be refined to achieve better results. The evaluation based on kills already

showed interesting results even though this can to a certain degree be attributed to the fact

that the number of kills showed a direct relation to the game outcome. Though the evaluation

based on flag activities did not result in improved correct classification it is still assumed that

the performance of certain classes like the Scout can be evaluated through it. One way to

do this would be through indirect usage of the absolute values for expected flag activities,

i.e. using the absolute values to compute a relative performance measure. Furthermore the

performance of Engineers can be based on data from the structures they build.

Possible future work also includes the extension of the data set since the website where the

data set was recorded is still running and more than 1000 games have been added since the

download of the data set for this project. This new data could either be used to extend

the exisiting data set or to create a test set which is then applied to check if the retrieved

hypotheses still work on the new data.

An interesting possible patterns that could be evaluated in the future is if flag activities in

general and captures in specific can be related to kills, i.e. the fighting is heavier if a flag

is taken. This would also include determining if a series of deaths for the defending team

would automatically indicate a capture. It would also be interesting to look for patterns in

the timeline of a game, i.e. if it is the same as in many team sports where players tend to

make more mistakes towards the end of a game and how this affects attributes such as kills

and captures.

36

Data Mining and Machine Learning with Computer Game Logs Section 6.0

Both experiements in this project have been based on the map the games were played on.

As stated in 5 this limits the training set size even for the most played map to less than 5%

of the whole data set. It would thus be very interesting to see what the search on the whole

data set produces for patterns which are independent from the map.

37

7 Conclusion

This report described the process of obtaining, cleaning and analysing a set of game logs

from the game Team Fortress Classic . The retrieval of the files from the web as well as the

extraction of information from these files through PHP scripts was elaborated as well as the

cleaning of the data set of redundant or faulty data.

Following this the actual analysis was performed. Machine learning algorithms were applied

to determine the existence or absence of patterns in the data set through classification.

Two kinds of patterns were researched. First for patterns that indicated a relation between

the team composition and the outcome of a game. The application of machine learning

algorithms to search for these patterns did not yield results. The percentage of correctly

classified instances was never above 70% regardless of the applied algorithm. The search for

the second kind of patterns, a relation between the performance of the different classes and

the outcome of a game was disappointing as well. The performance based on kills produced

an acceptable classifcation of up to 76% correctly classified instances but the performance

based on flag activities and on a weighted combination of both was very bad.

Despite this the project resulted in some interesting observations on the nature of the data

set. The first experiment was based on the finding that classes have different amounts of

playtime throughout the games. The playtime as well as many other attributes were also

shown to vary between different maps. The first experiment resulted in the conclusion that

the data set consists of games that were played by advanced players. The second experiement

was based on the discovery that the different classes have different tasks in the game which is

shown very clearly in the data set. This enabled the definition of performance as a measure.

Summarized the project resulted in several interesting discoveries in the data set and paved

the way for future work on this data set.

38

A Basic Statistics for the Ten Most Popular

Maps

Figure A.1: Average Kills and Flag Activ-
ities on shutdown2

Figure A.2: Average Kills and Flag Activ-
ities on schtop

Figure A.3: Average Kills and Flag Activ-
ities on fry baked

Figure A.4: Average Kills and Flag Activ-
ities on openfire lowgrens

39

Data Mining and Machine Learning with Computer Game Logs Appendix A

Figure A.5: Average Kills and Flag Activ-
ities on siege

Figure A.6: Average Kills and Flag Activ-
ities on hellion

Figure A.7: Average Kills and Flag Activ-
ities on ss nyx ectfc

Figure A.8: Average Kills and Flag Activ-
ities on monkey l

Figure A.9: Average Kills and Flag Activ-
ities on mortality l

Figure A.10: Average Kills and Flag Ac-
tivities on 2mesa3

40

B PHP Script to Extract Player Information

This script is an extract from the complete script which was used to gain information from

a HTML page that conatins data for a single player.

41

Bibliography

blarghalizer.org (2007). The blarghalizer - tfc server log parser. URL: http://www.

blarghalyzer.org/ParsedLogs.php [last checked: 17/09/2007].

Campbell, M., Jr., A. H., and Hsu, F.-H. (2002). Deep blue. Artificial Intelligence, 134 no.

12:5783.

Champandard, A. (2003). AI Game Development: Synthetic Creatures with Learning and

Reactive Behavior. New Riders Games.

Chellapilla, K. and Fogel, D. (1999). Evolving neural networks to play checkers without

relying on expert knowledge. IEEE Trans. Neural Networks, 10(6):1382–1391.

CSAI (2007). The university of alberta counter-strike ai project. URL: http://ircl.cs.

ualberta.ca/games/cs/ [last checked: 26/09/2007].

Dahl, F. A. (2001). A reinforcement learning algorithm applied to simplified two-player texas

hold’em poker. In Proceedings of the 12th European Conference on Machine Learning.

Springer-Verlag.

FoxBot (2007). Foxbot for tfc. URL: http://foxbot.planetfortress.gamespy.com/down.

htm?forum/news.php [last checked: 17/09/2007].

Fuernkranz, J. (2001). Machine learning in games: A survey, page 1159. Nova Biomedical.

Gasser, R. (1996). Solving Nine Mens Morris, page 101113. Cambridge University Press,

Cambridge, MA.

Gold, A. (2005). Academic ai and video games: A case study of incorporating innovative aca-

demic research into a video game prototype. In Proceedings of the IEEE 2005 Symposium

on Computational Intelligence and Games. IEEE.

Half-Life, P. (2007). Team fortress classic overview. URL: http://planethalflife.

gamespy.com/View.php?view=TFCGameInfo.Detail&id=11&game=6 [last checked:

17/10/2007].

42

http://www.blarghalyzer.org/ParsedLogs.php
http://www.blarghalyzer.org/ParsedLogs.php
http://ircl.cs.ualberta.ca/games/cs/
http://ircl.cs.ualberta.ca/games/cs/
http://foxbot.planetfortress.gamespy.com/down.htm?forum/news.php
http://foxbot.planetfortress.gamespy.com/down.htm?forum/news.php
http://planethalflife.gamespy.com/View.php?view=TFCGameInfo.Detail&id=11&game=6
http://planethalflife.gamespy.com/View.php?view=TFCGameInfo.Detail&id=11&game=6

Data Mining and Machine Learning with Computer Game Logs References

Hammond, K. (1989). Case-based Planning: Viewing Planning as a Memory Task. Academic

Press, Boston, MA.

Kennerly, D. E. (2007). Better game design through data mining. URL: http://www.

gamasutra.com/features/20030815/kennerly_01.shtml [last checked: 26/09/2007].

Kirby, N. (2003). Getting around the Limits of Machine Learning, pages 603–611. Charles

River Media, Hingham, MA.

Kolodner, J. (1992). Case-Based Reasoning. Morgan Kaufmann.

Korb, K. B. and et al., A. N. (1999). Bayesian poker. In UAI’99 - Proceedings of the 15th

International Conference on Uncertainty in Artificial Intelligence, pages 343–350.

Krulwich, B. L. (1993). Flexible Learning in a Multi-Component Planning System. PhD

thesis, The institute for the Learning Sciences, Northwestern University, Evanston, IL.

Kuhlmann, G., Knox, W. B., and Stone, P. (2006). Know thine enemy: A champion robocup

coach agent. In Proceedings of the Twenty-First National Conference on Artificial Intelli-

gence, page 14631468.

Laird, J. and van Lent, M. (2001). Human-level ai’s killer application: Interactive computer

games. AI Magazine, Summer 2001:1171–1178.

Lee, K.-F. and Mahajan, S. (1990). The development of a world class othello program.

Artificial Intelligence, 43(1):21–36.

Miikkulainen, R., Bryant, B., Cornelius, R., Karpov, I., Stanley, K., and Yong, C. H. (2006).

Computational intelligence in games. IEEE Computational Intelligence Society, Piscat-

away, NJ.

Mitchell, T., Keller, R., and Kedar-Cabelli, S. (1986). Explanation-based generalization: A

unifying view. Machine Learning, 1(1):47–80.

Mueller, M. (2000). Generalized thermography: A new approach to evaluation in computer

Go, page 203219. Universiteit Maastricht, Maastricht.

Muggleton, S. (1990). Inductive Acquisition of Expert Knowledge. Turing Institute Press,

Addison Wesley.

Nareyek, A. (2004). Computer gamesboon or bane for ai research? Knstliche Intelligenz,

18(1):4344.

Nareyek, A. (2007). Game ai is dead. long live game ai! Intelligent Systems, 22(1):9–11.

43

http://www.gamasutra.com/features/20030815/kennerly_01.shtml
http://www.gamasutra.com/features/20030815/kennerly_01.shtml

Data Mining and Machine Learning with Computer Game Logs References

Quinlan, J. R. (1983). Learning efficient classification procedures, pages 463–482. Tioga, Palo

Alto.

Rubin, J. and Watson, I. (2007). Investigating the effectiveness of applying case-based rea-

soning to the game of texas hold’em. In Proc. of the 20th. Florida Artificial Intelligence

Research Society Conference (FLAIRS). AAAI Press.

Russell, S. and Norvig, P. (2003). Artificial Intelligence: A Modern Approach. Prentice-Hall.

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM

Journal of Research and Development, 3(3):211229.

Samuel, A. L. (1967). Some studies in machine learning using the game of checkers.ii - recent

progress. IBM Journal of Research and Development, 11(6):601617.

Schaeffer, J. (2000). The games computer (and people) play. Academic Press, 50:189–266.

Schaeffer, J. (2007). Checkmate for checkers. URL: http://www.nature.com/news/2007/

070716/full/070716-13.html [last checked: 09/09/2007].

Schaeffer, J., Culberson, J., Treloar, N., Knight, B., Lu, P., and Szafron, D. (1992). A world

championship caliber checkers program. Artificial Intelligence, 53 no. 2-3:273290.

Schaeffer, J. and et al., D. (1999). Learning to play strong poker. In Proceedings of the

ICML-99 Workshop on Machine Learning in Game Playing.

Schmidt, M. (1994). Temporal-difference learning and chess. Technical report, University of

Aarhus, Aarhus, Denmark.

Shannon, C. E. (1950). Programming a computer for playing chess. Philosophical Magazine,

41:265–275.

Shao, J. (2007). Report highlight for dataquest insight: Gaming pc market dynamics and

outlook.

Sheppard, B. (2002). World-championship-caliber scrabble. Artificial Intelligence,

134:241275.

Spohrer, J. (1985). Learning plans through experience: A first pass in the chess domain.

In Intelligent Robots and Computer Vision, Volume 579 of Proceedings of the SPIE - The

International Society of Optical Engineering, pages 518–527.

Spronck, P. (2005). Adaptive Game AI. PhD thesis, Maastricht University, the Netherlands.

44

http://www.nature.com/news/2007/070716/full/070716-13.html
http://www.nature.com/news/2007/070716/full/070716-13.html

Data Mining and Machine Learning with Computer Game Logs References

Tesauro, G. (1992). Temporal difference learning of backgammon strategy. In Proceedings of

the 9th International Conference on Machine Learning 8, pages 451–457.

TFLeague (2007). Tfleague - rules. URL: http://www.tfleague.com/rules.php [last

checked: 17/09/2007].

Times (2007). Online games revenues hit $1bn. URL: http://business.timesonline.co.

uk/tol/business/industry_sectors/technology/article1544234.ece [last checked:

14/09/2007].

Tozour, P. (2002). The Evolution of Game AI, pages 3–15. Charles River Media, Hingham,

MA.

Truscott, T. (1978). The duke checkers program.

Tunstall-Pedoe, W. (1991). Genetic algorithms optimizing evaluation functions. ICCA Jour-

nal, 14(3):119–128.

Tveit, A. and Tveit, G. B. (2002). Game usage mining: Information gathering for knowledge

discovery in massive multiplayer games. In Proceedings of the International Conference on

Internet Computing, Session on Web Mining, pages 636–642. CSREA Press.

Valve (2007). Hl log standard. URL: http://developer.valvesoftware.com/wiki/HL_

Log_Standard [last checked: 17/09/2007].

van Tiggelen H. J., A. and van den Herik (1991). ALEXS: An optimization approach for the

endgame KNNKP(h), pages 161–177. Ellis Horwood, Chichester.

Wikipedia (2007). Team fortress classic. URL: http://en.wikipedia.org/wiki/Team_

Fortress_Classic [last checked: 17/09/2007].

45

http://www.tfleague.com/rules.php
http://business.timesonline.co.uk/tol/business/industry_sectors/technology/article1544234.ece
http://business.timesonline.co.uk/tol/business/industry_sectors/technology/article1544234.ece
http://developer.valvesoftware.com/wiki/HL_Log_Standard
http://developer.valvesoftware.com/wiki/HL_Log_Standard
http://en.wikipedia.org/wiki/Team_Fortress_Classic
http://en.wikipedia.org/wiki/Team_Fortress_Classic

	List of Tables
	List of Figures
	Introduction
	Historical Background
	Machine Learning in Games
	The Evolution of Computer Game AI
	Log Evaluation in Computer Game Research

	Aims, Areas of Application and Limitations of Machine Learning in Computer Games
	Aims of Computer Game AI Learning
	Possible Areas of Application and Limitations

	The Data
	Team Fortess Classic (TFC)
	The Game
	Gameplay
	Classes
	AI in Team Fortress Classic

	Generating the Data Set
	Original Log Files
	The Blarghalizer
	Downloading Log Files
	Extracting Data from the HTML Files
	The Database
	Data in the Database
	Basic Data Cleaning
	Statistical Characteristics of the Test Data
	Problems with the Size of the Data Set

	Data Analysis
	Game Result Prediction Based on Team Composition
	Average Class Usage per Map
	Results

	Predicting Game Outcome Based On Class Performance
	Kill Distribution
	Flag Activities
	Problems with this Approach
	Classes and Attributes Contributing to their Performance
	Performance Calculation
	Implementing Performance Evaluation According to Kills
	Implementing Performance Evaluation Based on Flag Activities
	Results

	Discussion and Future Work
	Conclusion
	Basic Statistics for the Ten Most Popular Maps
	PHP Script to Extract Player Information
	Bibliography

