777 Interim Report: Sheep herding game

Alex Henriques*
Department of Computer Science
University of Auckland, Auckland, New Zealand

Abstract

The behaviour of sheep in a flock as they react to a dog is an inter-
esting problem to understand and simulate. Various 2D Flash games
simulate dog-sheep repulsion with simple response movements. Oth-
ers model dog-sheep repulsion and flocking with spring forces. In this
project we implement a 3D sheep herding game, aiming to simulate
flocking and herding behaviour more realistically than currently avail-
able games. We also aim for our game to be enjoyable, and perhaps

to teach players something about sheep herding.

1 Introduction and Motivation

The behaviour of sheep in a flock as they react to a dog — indeed the behaviour
of any herd animal as it reacts to a predator is an interesting problem
to simulate. Does the sheep run, and if so in what direction? Does the
sheep ignore the dog, confront the dog, or even attack the dog? How can
the dog’s behaviour and demeanour influence which action the sheep takes?
How strong is the tendency and desire for each sheep to be close to other
sheep? Do sheep tend to congregate in one flock, or multiple flocks as long
as there are sufficient numbers? Would a sheep trying to get back to its flock

charge right by a dog, or would it remain isolated in fear?

*e-mail: ahen045Qec.auckland.ac.nz

These are the problems we intend to investigate during this project. We
will hopefully be able to make a fun game based on the sheep behaviour we

discover. Everything discussed herein is my own work on the project.

2 Previous Work

Sheep herding is not exactly a popular game genre, but we have found some
examples.

SheepGame is a simple 2 dimensional Flash game [3]. It moves the sheep
directly away from the cursor by a small increment each timestep if the sheep
is within a certain distance of the cursor. Three game modes are available:
herding the sheep into a pen, splitting the flock into two separate pens, and
guiding the sheep through an obstacle course.

The PCman’s Arcade Sheep Herding Game is again a 2 dimensional Flash
game [4]. In this game though instead of reacting to the cursor, sheep react
to dogs. One or more dogs are attached to the cursor with a spring force.
So when the user moves the mouse, the attached dogs are dragged along
and oscillate back and forth around the cursor. It is not pure Hooke’s law
however, as the dogs seem to have a maximum speed. Dogs also have a
slight repulsive force with respect to each other, to stop more than one dog
bunching up in the same position. With a stationary cursor, four dogs reach
jittery equilibrium about 5 metres away from each other. Sheep react to
the dogs with a repulsive spring force, though again with a reasonably low
maximum speed. Sheep also have a flocking tendency, so when no dogs are
around the sheep tend to gather in a lump, with repulsive forces to prevent
too much sheep-sheep collision. The object of the game is to herd sheep into
a circular area on the game board.

Little shepherd is yet another 2 dimensional Flash game [1]. It is similar to
SheepGame, but with some additional features. For example, in some levels
there are obstacles to avoid such as water and cars on the road. Sheep tend to
keep moving in the same direction even when the cursor is not around, which
can be quite frustrating as they walk into hazards by themselves. There is

no flocking tendency.

Doug Kavendek’s flocking demo shows an interesting flocking algorithm
for “boids” (bird-like objects) as they fly around obstacles to objectives [2].
We derived the basis of our flocking algorithms from here (see section 3.3),
while adding significant improvements and tuning to adapt the method to
sheep flocking.

3 Implementation

3.1 Terrain

The basic terrain engine that comes with Ogre automatically creates terrain

based on three things.

e A heightmap. This is a greyscale bitmap. Each pixel represents a
terrain vertex and its height, with 0 ground level and 255 the highest
point. The bigger the bitmap, and the smaller terrain area it defines,

the more detailed the terrain.

e A terrain texture. This is a coloured texture, mottled green for grass, or
brown for dirt, etc. It is stretched over the whole terrain. As the texture
size is generally much smaller than the whole terrain, the ground will
look quite blurry with just a terrain texture applied. So the terrain

texture is generally used for broad colour details of the terrain.

o A detail texture. This is generally stretched over only a small portion of
the overall terrain, and tiled over the rest. If the tiling factor is set too
low, the ground remains blurry; too high, and the repeating pattern is
very visible. Generally quite a high factor is applied, to give the ground
good detail. We looked in some real world games, and the repeating
pattern is quite visible in the distance, though perhaps not so obvious

as to be noticed when you don’t know what you’re looking for.

There are also more advanced terrain techniques supported by Ogre ter-

rain plugins, for example texture splatting, which uses alpha maps to blend

multiple detail textures over the terrain. We have not tried this yet but may

investigate it later.

3.2 Grass

To create grass in Ogre, we follow this process (derived from the Ogre grass

demo):

1. Create the grass mesh.

2. Create a static geometry that fits the desired terrain, and add to it as

many instances of the grass mesh as desired.
3. Set the static geometry region dimensions and rendering distance.

4. Create a shader function for smooth fade in/out.

In step 1, the grass mesh we create is a simple mesh consisting of three
planes at 60 degree angles to each other. A grass texture with alpha values
is applied to each plane.

In step 2, we generate the grass positions in a grid like fashion, with
random positional offsets. To get the correct y position for each grass, we cast
a collision ray to the terrain under its (x, z) coordinate. After this step, the
entire terrain is covered with grass. This can look good, but there are severe
frame rate implications. The number of grasses rendered is proportional to
the square of the far clip plane. With a distant clip plane, there can be tens
of thousands of grasses to render, slowing things to a crawl. To solve this
we would like to only render grass reasonably close to the camera, which is
where the next step comes in.

Step 3 requires some background information. In Ogre, each region of a
static geometry is sent as one rendering batch. Larger batches are generally
more efficient to render, however this has to be balanced against the ability
to cull. If an entire region is far away from the camera, it can be culled,
i.e. not sent for rendering. Regions are culled by setting the static geometry

rendering distance, so when the distance from the camera to the region is

greater than the rendering distance, the region is culled. We found that a
good rendering distance seemed to be the region size (length). So, when the
camera is at the edge of one region, the adjacent region is visible, but the
next region over is only visible when the camera crosses over into the adjacent
region. After this step, only nearby regions of grass are rendered, solving the
frame rate problems. However, these large square regions of grass are quite

unseemly as they suddenly pop into view when we get near, and pop out of

view when we leave (see Figure 2). This is where the next step comes in.
The motivation behind step 4 is that rather than have large square regions

of grass suddenly pop into place as we wander around, we would like to see

only and all the grass in a set circular region around the camera. A simple

way to do this is to add a line the grass’s vertex shader program,

colour.w = oPosition.z < 60 7?7 1 : 0;

where colour.w is the vertex’s alpha transparency, oPosition is the
object position, and 60 is the radius of the clipping distance. This gets us
what we wanted: we only see the grass in a 60 metre radius around the
camera. But, it is still quite unsightly when every individual grass suddenly
pops into view at the 60 metre edge. Instead a gradual fading into view
would be better. We tried

colour.w = saturate (1.0 - (oPosition.z / 100));

where saturate clamps to the [0...1] interval. This worked better, but
not brilliantly — at 50 metres when the grass is still large enough to be quite
visible, it had an alpha of 0.5 and looked slightly deformed. We tried increas-
ing the radius above 100, but a smooth alpha function from the camera to
the maximum radius seemed wrong. After some experimentation, currently

the best function seems to be something like,

colour.w = saturate (2.0 * (1.0 - (oPosition.z / 100)));

This results in an alpha of 1.0 up to 50 metres, which smoothly drops to
0.0 at 100 metres. Further tweaking is probably necessary to get the best

looking results.

3.2.1 Wind effects

We did some experimenting with wind effects, i.e. swaying grass. The simple
vertex shader Ogre example for swaying grass assumed each grass had a base
y position of 0. But in our program grass y height is not constant — it depends
on the terrain height. We need to investigate how to pass each grass’s base

y height into the vertex shader program.

3.2.2 Grass density

There are different “styles” of grass one can use. Sparse grass meshes, mixed
perhaps with bushes and flowers, tend to add some visual plausibility to the
environment. Grasses in this case are perhaps taken as being of a different,
taller growing breed than the surrounding ground. Another style is to cover
the ground completely with grass, such that the grass meshes are taken as
being the actual grass all over the ground. We tried this style (see Figure 1)
and rendering speed was fine. But memory usage and CPU time to create
the meshes was unacceptably high. With terrain 1km by 1km, one grass
every square metre results in a million grasses. Clearly current games with
full grass cover use a different method — we intend to investigate which.
One idea that might allow denser grass is to create only 9 regions of grass.
As the player crosses a region border, the regions behind him are moved in
front, keeping the player in the centre region. For each region change, this
involves modifying the position of three regions, then updating the y value
of each grass mesh in those positions. Suppose grass visibility and region
length is 100m, with one grass mesh per square metre. That makes 10000

meshes per region, or 90000 overall. Filling 1.5km by 1.5km of terrain at

the same density would give 2.25 million meshes, so it is a big improvement.
However because the 90000 meshes move as the player does, they cannot be
as optimized as static geometry and rendering speed takes a big hit.
Another option is to use 9 regions as above, but when the player crosses
regions, create three new static geometries of grasses in the correct position.
This would speed up rendering time while still requiring only 90000 grass
meshes at any one time. We have not yet tested this, but building the static

geometries would probably introduce notable lag at each region cross.

3.3 Sheep behaviour

There are three main steps determining a sheep’s behaviour (call her Dolly).

This discussion is based on the implementation as of the time of writing.

1. Calculate the individual influences acting on Dolly. These include the
dog, flocking attraction, close proximity repulsion from other sheep,

goals (e.g. green grass), anti-goals (e.g. an evil forest), etc.

2. Combine the individual influences into an overall force f. The simplest

method is to calculate a weighted sum of all individual influences.

3. Update Dolly’s current velocity using f.

Most of step 1 is reasonably straightforward, though some influences are
more difficult to calculate than others. The dog’s influence is a force linearly
decaying to 0 beyond a certain distance. The flocking attraction was initially
a force capped beyond e.g. 50m, and decaying to 0 at 10m. These values
can be also dependent on flock size. Close proximity repulsion has been
implemented in naive O(n?) fashion, which does not harm performance much
with only around 100 sheep. For better scaling, some form of spatial hashing
or binning would be necessary. Goal calculation can vary, but is generally a
constant force acting toward the goal.

The most difficult influence to get right so far is the flocking attraction. If
influence decays to 0 at a certain radius r, sheep tend to quite unrealistically

form a ring of radius r facing inwards. If on the other hand influence decays

to 0 at the flock centre, sheep all try to go to the centre, resulting in a
maximally dense flock with lots of jittery repulsion behaviour. One solution

is to always keep sheep moving, so they are never able to make patterns

around a particular point. A better solution, and the current implementation,
is to leave Dolly satisfied if a certain number of other sheep are nearby. For
example, if 30% of the sheep are within 30 metres of Dolly, she feels no
flocking attraction. If fewer than 30% of the sheep are nearby, she is attracted
to the centre of the flock. This results in much more natural behaviour,

and depending on the % of sheep specified, can allow stable separation into

multiple subflocks. Again we use the simple O(n?) method with negligible
performance impact.

Step 2 is simple. The main difficulty here is tweaking weights such that
for example Dolly does not run right through the dog toward a small patch
of green grass (even if she’s hungry).

Step 3 is more difficult. The method described in Boids calculates the
angle 6 between v and f, and turns Dolly by some portion of each timestep,
keeping speed constant [2]. This produces a nice effect of more rapid turn-
ing when 6 is large. Our sheep have variable speed however, so we require
something more complex.

To simplify things, if we turn Dolly as above (by a fraction of 6 each
timestep), we just need to reconcile ||f|| with ||v]|. The first difficulty here
is that ||v|| is dependent on Dolly’s maximum speed, which the AT module
should not be basing its calculation of f on. One solution might be to ensure
0 < ||f]] <1, with ||f] signaling the “urgency” with which the force is applied.
0.0 would mean no urgency and decelerate the sheep to 0.0 speed, while 1.0
would accelerate the sheep to maximum speed. We implemented this, and
found it worked well.

The main difficulty now is tuning parameters to produce plausible results.
For example flocking attraction—if to within too small a distance—can bunch
up the flock. Combined with large repulsion radii, this can also result in

some jittery, hyperactive sheep.

4 Results

Figures 1- 2 show some of the results so far.

5 Conclusion

In this project so far we have implemented a basic sheep-herding game. The
player controls a dog and runs around in first or third person, while sheep
react in real time. Sheep react to the dog with a repulsive force, and a
flocking tendency attracts sheep to each other.

The terrain is generated by a heightmap, a terrain texture and a detail
texture. There is also grass which fades in and out in a set radius around

the camera.

6 Goals for rest of project

We have several goals for the rest of the project.

e Create a few different, unique levels with their own terrain, obstacles

and objectives.

e Improve look of grass, and experiment with better grass fade in/out

techniques.
e Add some trees.
e Improve sheep behaviour, e.g. flocking and response to the dog.
e Implement “special powers” for the dog: e.g. barking and biting.

e Add our own textured and animated sheep and dog models.

References

[1] FreeOnlineGames.com. Little shepherd, 2006. [Online; accessed 13-
September-2006].

Sd4 Juaun)

ro |
|
=1
2|
— |

Figure 1: A dense, nearly full-coverage grass style.

10

WMOpUAL JFPUSY THO0 Il

Figure 2: In (a), a region of grass has been culled. In (b), the user steps
forward, and the region of grass pops into view.

[2] Doug Kavendek. Boid flocking, 2006. [Online; accessed 13-September-
2006].

[3] David Lewis. SheepGame, 2006. [Online; accessed 13-September-2006].

[4] Time Tripper. The PCman’s Arcade Sheep Herding Game, 2006. [Online;
accessed 13-September-2006].

12

Learning Objectives

3D modeling

Skeleton animation

e Texturing

e Modeling

e Exporting into Ogre compatible format (integration with Ogre)

Al

Intelligent agents

Perform decisions based on environment info
Attractive and Repulsive forces

Genetic algorithms for population generation
Character motion

Flocking algorithms

Ogre Libraries

e Terrain generation
o Grass
0 Height maps

e Camera

e Environment effects
0 Animated skybox
0 Weather

Main References

Makino Kohji and Matsuo Yoshiki. Control of shape and internal movement of a
homogeneous autonomous mobile robot herd employing simple virtual interactive forces.
In SICE 2003 Annual Conference, volume 3, pages 2912-2915, 2003.

Jyh-Ming Lien, O.B. Bayazit, R.T. Sowell, S. Rodriguez, and N.M Amato. Shepherding
behaviors. In Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE
International Conference, volume 4, pages 4159-4164, 2004.

Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral model. In
SIGGRAPH ’87: Proceedings of the 14th annual conference on Computer graphics and
interactive techniques, pages 25-34, New York, NY, USA, 1987. ACM Press.

	777InterimReport.pdf
	Learning Objectives.pdf

