

NEUROEVOLUTION FOR MICROMANAGEMENT IN

REAL-TIME STRATEGY GAMES

By

Shunjie Zhen

Supervised by Dr. Ian Watson

The University of Auckland

Auckland, New Zealand

A thesis submitted in fullfillment of the requirements for the degree of

Master of Science in Computer Science

Department of Computer Science

The University of Auckland, February 2014

 ii

 iii

ABSTRACT

Real-Time Strategy (RTS) games have become an attractive domain for Artificial Intelligence research in
recent years, due to their dynamic, multi-agent and multi-objective environments. Micromanagement, a
core component of many RTS games, involves the control of multiple agents to accomplish goals that
require fast, real time assessment and reaction. This thesis explores the novel application and evaluation
of a Neuroevolution technique for evolving micromanagement agents in the RTS game StarCraft: Brood
War. Its overall aim is to contribute to the development of an AI capable of executing expert human
strategy in a complex real-time domain.

The NeuroEvolution of Augmenting Topologies (NEAT) algorithm, both in its standard form and its real-
time variant (rtNEAT) were successfully adapted to the micromanagement task. Several problem models
and network designs were considered, resulting in two implemented agent models. Subsequent
evaluations were performed on the two models and on the two NEAT algorithm variants, against
traditional, non-adaptive AI. Overall results suggest that NEAT is successful at generating dynamic AI
capable of defeating standard deterministic AI. Analysis of each algorithm and agent models identified
further differences in task performance and learning rate. The behaviours of these models and algorithms
as well as the effectiveness of NEAT were then thoroughly elaborated

 iv

 v

ACKNOWLEDGEMENTS

Firstly, I would like to thank Dr. Ian Watson in taking on this project for supervision and for valuable advice
throughout.

Secondly, thanks to Glen Robertson for his extensive background research and knowledgeble insights into
SC: BW AI. Also thanks to Stefan Wender for helpful discussions and knowledge of micromanagement.

Thirdly, thanks to Kevin for injecting some noise to an otherwise quiet and lonely office.

Lastly, thanks to my family and friends for support and keeping me sane throughout the year.

 vi

 vii

CONTENTS

Chapter 1 Introduction ... 1

1.1. Motivations .. 1
1.2. Objectives and Contributions .. 3
1.3. Organization ... 4

Chapter 2 Background and Related Work ... 6
2.1. Game AI ... 6

2.1.1. Chess AI ... 6
2.1.2. Checkers AI and Machine Learning ... 8
2.1.3. Interactive Computer Games .. 10
2.1.4. Commercial Game AI .. 11
2.1.5. Test-Beds for AI Research .. 13
2.1.6. Real-time Strategy Games ... 15
2.1.7. Summary of Game AI .. 16

2.2. Related Work .. 17
2.2.1. Macromanagement Techniques .. 17
2.2.2. Micromanagement Techniques .. 19
2.2.3. Reinforcement Learning, Neuroevolution and NEAT .. 23
2.2.4. Summary of Related Work ... 25

Chapter 3 NeuroEvolution of Augmenting Topologies .. 27
3.1. Genetic Algorithms and Artificial Neural Networks ... 27
3.2. Topology and Weight Evolving Artificial Neural Networks ... 30
3.3. Genetic Encoding and Operations in NEAT ... 33
3.4. Speciation and Fitness Sharing .. 36
3.5. The Generational NEAT Process ... 38
3.6. Real-Time NEAT ... 40
3.7. Summary of NEAT ... 42

Chapter 4 StarCraft Test-Bed ... 43
4.1. StarCraft Environment ... 44
4.2. Gameplay ... 46
4.3. Races and Units .. 49
4.4. Multi-scale AI and Macromanagement ... 50
4.5. Micromanagement .. 51
4.6. Complexity Attributes of Micromanagement ... 53
4.7. BWAPI ... 54

 viii

Chapter 5 Design and Implementation .. 57
5.1. Network Mapping .. 57
5.2. Neural Network Design... 60

5.2.1. Initial Model .. 60
5.2.2. Alternative Models .. 62
5.2.3. Directional Granularity Model ... 64

5.3. Fitness Function .. 65
5.4. NEAT Parameters ... 66
5.5. Agent Implementation .. 67

5.5.1. Agent Architecture ... 67
5.5.2. Main Event Processes .. 68
5.5.3. Unit Percepts and Actions .. 70
5.5.4. Fitness Evaluation .. 73

5.6. Summary of Design and Implementation ... 74

Chapter 6 Evaluation ... 76
6.1. Initial Model Experiments ... 76

6.1.1. Unit Set-Up ... 77
6.1.2. Scenario Set-Up .. 77
6.1.3. Technical Setup ... 78
6.1.4. Evolutionary Process Experiment ... 79
6.1.5. Generational Convergence Experiment ... 84
6.1.6. Unit Behaviour and Network Complexity Observations .. 86

6.2. Directional Granularity Experiments ... 87
6.2.1. Evolutionary Process Experiment 2 ... 87
6.2.2. Generational Convergence Experiment 2 ... 91
6.2.3. Unit Behaviour and Comparing Models .. 93

Chapter 7 Discussion and Conclusion... 96
7.1. Overall Results .. 96
7.2. Limitations and Future Work ... 98
7.3. Conclusion ... 99

References .. 102

Appendix A: Nominated Best Student Paper at AI 2013 .. 109

Abbreviations ... 110

 ix

Chapter 1
INTRODUCTION

This thesis details research on developing and evaluating Artificial Intelligence (AI) agents for
Micromanagement in Real-Time Strategy (RTS) games. More specifically, the NeuroEvolution of
Augmenting Topologies (NEAT) method is used to evolve neural networks as controllers for dynamic
learning agents. The RTS game StarCraft: Broodwar (SC: BW) is the chosen test-bed for this work, due to
its popularity in present AI research, and a large body of available existing work and support tools. This
chapter discusses the motivations behind this research, introduces its main objectives and contributions,
and describes the organization of the thesis chapters.

1.1. MOTIVATIONS

More than a decade ago, Laird and van Lent (2001) predicted that interactive computer games (or video
games) would emerge as an ideal platform for AI research. Laird argued that the increasingly complex and
realistic environments of computer games were highly suitable as test-beds to develop human-level AI.
Many of these games require intelligent decision making at an expert level, and provide a platform on
which to emulate and evaluate this ability (Weber, 2012). Testing AI techniques on these simulated
environments also circumvents many of the costs and limitations associated with testing in the real-world
(Buro, 2004).

Since then, AI research using video games have become hugely popular, partly driven by the
enormous growth in the video game industry and the advancement of video game hardware and software
technologies. On the other hand, the contribution of AI research to commercial game development has
become lacking in recent times (Yildirim & Stene, 2008). This is in part due to the divide between AI
research and game development interests; the former pushing the boundary of AI problem solving, and
the latter in delivering cost effective entertainment software. The result of which is a high dependency on
scripted, deterministic and non-adaptive AI techniques in commercial games, which limits its realism,
replayability and challenge (Olesen, Yannakakis, & Hallam, 2008). There is continued motivation to explore

Chapter 1 Introduction

 2

machine learning approaches for generating dynamic, human-like AI players, to extend the replay value
of games (Yannakakis & Hallam, 2007).

Real Time Strategy games are a genre of video games that provide unique challenges to AI
research (Buro & Furtak, 2004). A call for research in 2004, initiated by Michael Buro, noted the
characteristics of RTS games as having real-time, stochastic environments with multiple objectives and
enormous action and state spaces (Buro, 2004). It was argued that tackling these characteristics would
require advancements in many AI domains, such as adversarial planning under uncertainty, learning,
opponent modelling and spatial and temporal reasoning. Since then, RTS games have emerged as popular
and successful test-beds for AI research (Buro & Churchill, 2012). Despite significant research effort, RTS
games continue to be an open research problem, where the most sophisticated AI are unable to defeat
expert level human players.

An example of the genre is StarCraft: Brood War, an RTS game developed by Blizzard
Entertainment in 20021. Due to its deep strategy base, highly balanced gameplay and community support,
it has enjoyed enormous popularity over the years. Especially popular in South Korea, it attracts
professional level tournament play, with prize money totalling millions of dollars every year (Churchill &
Buro, 2011). Because of its popularity, it has been well studied by scholars and has become a popular test-
bed for AI research. The release of the BroodWar API (BWAPI) 2 open source framework has enabled the
development of complex AI agents for SC: BW, and facilitates the competitive evaluation between different
AI approaches and human players.

StarCraft AI is a multi-scale problem, with research primarily divided between two hierarchical
scopes (Weber, 2012). The first is the strategic level, or macromanagement, which is concerned with high
level decision making such as resource planning and opponent modelling. The other is the tactical level,
also known as micromanagement, concerning quick and reactive individual unit combat and short term
squad objectives. Micromanagement has been successfully modelled as a reinforcement learning task, due
to a small enough state and action space for exploratory learning, and a definable immediate reward
function (Shantia, Begue, & Wiering, 2011; Wender & Watson, 2012). Evolutionary learning approaches
have the same potential to tackle this problem, by searching over a space of solutions guided by a fitness
function heuristic.

The NeuroEvolution of Augmenting Topologies (NEAT) framework, developed by Ken Stanley, is
a Neuroevolution method used in evolving artificial neural networks (Stanley & Miikkulainen, 2002b). It has
been proven to be more effective than other Neuroevolution techniques and reinforcement learning
methods on standardized tasks with continuous and high dimensional state spaces (Stanley, 2004).

1 StarCraft: Brood War. Blizzard Entertainment. http://us.blizzard.com/en-us/games/sc
2 The Brood War Application Programming Interface. https://code.google.com/p/bwapi/

Chapter 1 Introduction

 3

Furthermore, neural networks are highly effective at approximating complex non-linear functions, as which
micromanagement in SC: BW can be aptly modelled. There has only been one instance of applying NEAT
to the task of micromanagement in literature (Gabriel, Negru, & Zaharie, 2012), which specifically focused
on the real-time variant of the algorithm. This leaves much room to study, improve and evaluate further,
the use of NEAT for SC: BW micromanagement.

In summary, the primary focus of this thesis is the exploration of the NEAT framework as an
approach to the micromanagement task in the RTS game StarCraft: Broodwar. The work is situated in the
domain of RTS game AI, which is motivated by having unique and challenging characteristics for AI
research. This is further motivated by the appropriateness of RTS games as test-beds for AI research, and
in particular the growing body of work and available tools surrounding SC: BW. The NEAT algorithm is
hypothesized to be appropriate for tackling the micromanagement task, due to previous work
demonstrating NEATs advantage over reinforcement learning approaches, and the appropriateness of
modelling micromanagement as a reinforcement learning problem. In the next section, objectives of the
research are discussed in more detail, along with a summary of contributions.

1.2. OBJECTIVES AND CONTRIBUTIONS

The overall goal of the research is to contribute to the development of a complete AI system capable of
learning and executing human expert level strategy in RTS games. Such a system is necessarily multi-
scaled, and requires solving multiple open problems in AI research. Instead of tackling the problem as a
whole, the focus of the thesis is on micromanagement, a crucial level of abstraction in the RTS domain
which handles the fast combat component of the overall game. In particular, SC: BW is the chosen testing
platform, and NEAT is the chosen approach to the problem. There are three main objectives to this project.

The first is the design and implementation of a NEAT based agent into the SC: BW game
environment. This involves gaining an understanding of the NEAT framework and the SC: BW game,
designing a model of the game appropriate for the NEAT algorithm, and using tools such as BWAPI and
open source implementations of NEAT to implement and apply the agent. Accomplishing this objective
lays the foundation for analysing the performance of the agent and allows further improvements and
extensions.

 Once the agent is implemented, the second objective is the evaluation of its performance. The
default SC: BW AI serves as a baseline of performance to demonstrate the effectiveness of this approach
against the existing technique in the commercial game. Such an evaluation must be designed to cover a

Chapter 1 Introduction

 4

range of game variations and allow for statistically significant results. The measure of interest in these
evaluations is the win rate and evolutionary learning rate of the AI agent over time.

 The third objective is to explore different agent designs and NEAT framework settings. For example,
there are two main variants of the NEAT algorithms (classic and real-time NEAT), and their properties in
relation to micromanagement is worthy of exploration. There are also many possible ways to model an
agent in micromanagement, which affects the design, performance and learning rate of the neural
networks. The goal is essentially to expand the understanding of the NEAT framework applied to
micromanagement, and identify areas of improvements and possible extensions.

 The contributions of this thesis are inherently tied to the above objectives. Initially, these objectives
were accomplished with the focus of evaluations on comparing the performance between generational
and real-time NEAT. This work and its findings were considered of enough novelty and interest to merit
publication (Zhen & Watson, 2013, see Appendix A). This thesis discusses these findings in more detail and
also attempts to explore extensions.

 Besides the successful accomplishment of these objectives, the thesis also details significant
background on game AI and AI research. This serves to motivate the areas of research surrounding this
work, and to provide important context for this work to be situated. In the next section, the organization
of the thesis is summarized.

1.3. ORGANIZATION

Due to the specialized topics discussed in this thesis, a significant portion of it is dedicated to explaining
the background and related topic areas. In Chapter 2, more detail is provided on the history of game AI
research, along with an extended literature review on work within RTS and SC: BW game AI. A number of
techniques in the field are covered, especially those most closely related to what is proposed in this thesis,
in the area of reinforcement learning and Neuroevolution.

 Chapter 3 and Chapter 4 are dedicated to discussing two key topics in this thesis: the NEAT
algorithm framework, and StarCraft as an AI test-bed. First, an overview of the theory of the NEAT
algorithm is discussed, along with a practical exploration of how it works. Next, the attributes of StarCraft
as a test-bed are examined further, as well as the game environment and the micromanagement task,
including many key terms and concepts used later on.

Chapter 1 Introduction

 5

 Chapter 5 covers the actual design and implementation of the AI agent for micromanagement in
SC: BW. A number of modules and agent designs are explored, as well as NEAT specific parameters such
as the neural network and fitness function designs. The implementation of the agent using an open source
version of NEAT and the BWAPI framework is described in detail.

 Chapter 6 discusses a number of experiments used to evaluate the viability of the agent modules
and designs, as well as the NEAT algorithm variants. The measure is the win rate of agents in playing
micromanagement games against the default SC: BW AI. Results are analysed and discussed along with
unit behaviour observations.

 Chapter 7 serves as an overall discussion on the results of the evaluations and the limitations of
the approach. The results are discussed in relation to the original research objectives, and future work is
outlined. This chapter also provides concluding remarks and highlights the contributions, successes and
limitations of this thesis work.

Chapter 2
BACKGROUND AND RELATED WORK

This chapter provides a selective overview of game AI research, beginning with classic game AI and ending
with the Real-Time Strategy game genre. The purpose of this is to establish a solid grounding of the
research motivations and to illustrate the relevance of this work on a breadth first view of the field. Next,
various related work topics are reviewed including StarCraft AI research in general, micromanagement
approaches and applications of the NEAT algorithm in games. This provides a depth first view of the closely
related work to the thesis.

2.1. GAME AI

Schaeffer (2001) described games as ideal domains for the exploration of artificial intelligence. Games
contained constrained and well defined rules; a contrast to the dynamic nature and unbounded scope of
real world problems. The types of games Schaeffer reviewed were primarily ‘classic’ games, such as board
games and card games. Games that were played in physical forms throughout history, long predating
computers and interactive computer games. With the advent of digital computers and the birth of AI
research, these games began to challenge and inspire AI advances.

2.1.1. CHESS AI

One of the early goals of AI research was to develop a program capable of defeating world champion
chess players. The game of chess has been held to rigorous intellectual analysis for hundreds of years and
is often considered the ultimate one-on-one intellectual sport. Newell, Shaw, and Simon (1958) described
the act of creating a successful chess machine as to have “penetrated to the core of human intellectual
endeavour”. Indeed in the early days of AI, it was unclear whether chess programs would ever be capable
of defeating top chess masters.

Chapter 2 Background and Related Work

 7

In 1950, Claude Shannon published a seminal paper on the foundations of a chess playing program
(Shannon, 1950). Shannon modelled chess playing as a tree of possible future moves, and the value of the
resulting chess board for each of these moves. The basic approach was the Minimax procedure (choosing
the move which minimizes the possible loss in the future by searching over future moves) using an
evaluation function of chess positions (Marsland & Björnsson, 1997). The deeper the search and the more
accurate the evaluation function, the better the program would be at making the best move. In 1953,
Turing published details about an algorithm with a similar approach to playing a full game of chess (A.
Turing, 1988). Lacking a powerful enough computer to execute the algorithm, Turing played a game with
a human player using pen and paper to simulate the program. The program was not successful even
against a weak player, but nevertheless demonstrated the possibility of machine automated chess playing.

Almost a half century later, IBM’s famous chess program, Deep Blue, controversially defeated Gary
Kasparov, the then world chess champion (Schaeffer, 2001). This accomplishment was the result of
numerous scientific and engineering advances since Shannon’s and Turing’s work. A better understanding
of the chess problem domain allowed more accurate evaluation functions (determination of the quality of
a chess board), and knowledge engineering strategies such as the storing of opening moves and pre-
analysed end game positions (Levy, 1988). Major algorithmic developments allowed faster and more
efficient search, such as alpha-beta pruning which prematurely terminates tree search paths based on
bound estimates on already searched paths (Richards & Hart, 1961). Enormous hardware improvements
allowed ever faster and deeper searches of the game tree, allowing more accurate evaluation moves and
enabling chess programs to satisfy real match time constraints (Thompson, 1982).

Although an admirable achievement, many viewed the narrow focus on chess playing leading to
Deep Blue as limiting to AI research (Schaeffer, 2001). Schaeffer argued that chess was like a ball and chain
shackle, stifling on the creativity of AI research, and that the success of Deep Blue finally allowed the field
to move on to more interesting problems. This point was exemplified in an article by Thompson (1982),
where the success of chess playing programs was equated to simply faster chess search engines. Because
faster search speed allowed a program to search deeper and make better decisions, the milestones in
chess program development became milestones in high-performance computing. Laird and Van Lent
(2001) have argued that this kind of specialization of problems and solutions ultimately fails to address the
true goals of AI research, which is to develop human level AI.

Chapter 2 Background and Related Work

 8

2.1.2. CHECKERS AI AND MACHINE LEARNING

Chess was not the only classical game of focus in AI research. Schaeffer (2001) discussed games where
computer programs are now undefeated against human players (Checkers, Othello and Scrabble) and
games in which programs are highly competitive against world champions (backgammon and chess). AI
research on checkers began around the same time as chess, and both games share many commonalities.
Both are board games with perfect information and deterministic states, but the space-action complexity
of checkers (5 × 10ଶ଴) is only about the square root of that of chess (10ସ଴ − 10ହ଴) (Schaeffer et al., 2007).

One of the first examples of a checkers playing program was created by Arthur Samuel (Samuel,
1959). Samuel’s approach was innovative because the emphasis was on the ability to learn to play well,
rather than focusing on optimized playing from the start. The actual playing strategy was similar to chess
programs; by using a Minimax procedure and an evaluation function to search moves ahead. However,
various techniques were also introduced for the program to improve its playing with experience, which
were the earliest examples of machine learning in AI history.

One technique termed ‘rote learning’ was where the program cached results of Minimax
evaluations and board positions, such that future searches could be extended by using previously cached
results (Samuel, 1959). This would later inspire transposition tables, a common construct in game AI such
as chess playing programs, to reduce redundant searches (Slate, 1987). The program also performed
“learning by generalization”, where the parameters of the value function polynomial (or evaluation
function) was constantly updated through playing games against versions of itself. This allowed the
program to improve its estimation of board positions, and therefore learn to play better checkers. The
constant on-move updating of the evaluation function would later inspire Temporal Difference learning
and its famous application to Backgammon (Tesauro, 1994)

In 1963, Samuel’s program won an exhibition match against Robert Nealey, a self-proclaimed
checkers master. From this, the program was hyped to have ‘solved’ the checkers game for AI. In reality, it
was not until 1994 with ‘Chinook’ that a program officially claimed a world championship title, and would
continue undefeated until its retirement (Schaeffer, 2001). By then, AI for checkers had evolved to mirror
that of chess, emphasizing fast game tree search and utilising a database of opening and end game
positions. In 2007, the Chinook team announced results for the weak solution of checkers (the perfect
move is known from the start of the game, ensuring either a win or a draw), and that the best result
possible from any human player against Chinook is a draw (Schaeffer et al., 2007).

Samuel’s machine learning approach was a noteworthy alternative to the later heuristic search
based strategies which dominated chess and checkers. It was an important precursor to machine learning

Chapter 2 Background and Related Work

 9

today, which is now able to solve important real world problems using flexible and autonomous learning
programs, sometimes without expert defined knowledge. The work of David Fogel on a self-evolving
checkers program also had this goal in mind (Chellapilla & Fogel, 2001). Fogel’s program, named
Blondie24, played checkers using a Minimax algorithm like many others. However, the evaluation function
was approximated by a neural network and evolved through an evolutionary algorithm. The neural network
took in as input, a vector representing the checkers board position and output a value used in the Minimax
procedure as an estimate of the desirability of that board. The training process started with a population
of randomly weighted neural networks, which played checkers with each other, and eliminating the worst
performing and breeding the best performing. The criteria for good performance was simply determined
from points accrued in winning games against other networks, with no feedback for actions within
individual games, and no expert knowledge injected to guide evolution. Through this process, the program
was able to evolve to an expert level player, which was confirmed through playing against hundreds of
real human opponents online.

Although Fogel’s program became highly skilled, it was not in the same class as the top checkers
playing programs which employed the classic search based approaches. Along the same line of machine
learning approaches is Tesauro’s TD-Gammon program, which was comparatively more successful against
its competition (Tesauro, 1994). Instead of an evolutionary approach, TD-Gammon used Temporal
Difference reinforcement learning to train a neural network as an evaluator of board positions. By playing
against itself millions of times, TD-Gammon reached an expert playing level, which was competitive with
the world’s best human players and better than all previous programs.

There are obvious parallels between the approaches of TD-Gammon and Fogel’s Blondie24, and
the difference in achievements may be due to the differences in the underlying game. Checkers is a perfect
information game with deterministic states and actions space, which is why it was possible to compute its
eventual solution. Backgammon on the other hand has a stochastic gameplay element, namely in in the
rolling of a dice to determine movement of pieces. Although balanced in the long run, this level of
randomness in the short run may add enough complexity to allow machine learning techniques like
reinforcement learning and evolutionary algorithms to be more feasible.

 Other classic games with more challenging attributes include such games as Poker and Go
(Karakovskiy & Togelius, 2012). Poker is a card game that features incomplete information and non-
determinism, which requires techniques such as expert imitation (Rubin & Watson, 2012), opponent
modelling and statistical models (Norris & Watson, 2013) to play well. Go is a board game with a high
branching factor in its game states, making it much more difficult for search based solutions when
compared to chess or checkers. Both of these games are currently open areas of research, with yearly
competitions dedicated to the latest breakthrough techniques in their respective game domains. The trend

Chapter 2 Background and Related Work

 10

of AI research is seemingly and intuitively to tackle problem domains with more and more challenging
attributes, which better approximate complex problems in the real world.

 While there are numerous challenges to AI research posed by classic games such as poker and
Go, many have argued for a focus on interactive computer games as a medium for AI research (Buro,
2004; Karakovskiy & Togelius, 2012; Laird & van Lent, 2001). Laird argued that classical games, such as
chess and checkers, only emphasized specific human capabilities such as search and decision making, and
have therefore motivated very specific and specialized AI solutions. This is not to say that the focus on
classic games have not produced good results. Schaeffer concluded in his paper by acknowledging the
success of classic game AI and its contributions to various areas of computing, particularly for search based
applications and high performance computing (Schaeffer, 2001).

However, in order to bridge the gap between constrained game environments and real world
problems, it necessarily requires more realistic, complex and challenging games. Interactive computer
games pose challenges that are both unique to the domain and present them in higher dimensions than
classic games (Laird & van Lent, 2001). For example, while the game of poker poses the challenge of
incomplete information, opponent deception and non-determinism, certain genres of interactive
computer games require capabilities such as visual pattern recognition, spatial navigation and reasoning,
prediction of environmental dynamics, short-term memory, quick reactions, limited information and multi-
dimensional states and actions, all at once occurring in real-time (Buro & Furtak, 2004). In the next section,
the era of the Interactive Computer game is introduced, and its implications for AI research discussed.

2.1.3. INTERACTIVE COMPUTER GAMES

Interactive computer games, or video games, are games that “use the computer to create virtual worlds
and characters for people to dynamically interact with” (Laird & van Lent, 2001). They differ from classical
board and card games in the complexity of its virtual environments and the scope of its required human
capabilities. Video games, as a form of entertainment, have become hugely successful and pervasive in
popular culture, with an industry posting $144.3 billion revenue in the US alone in 2009 (Siwek, 2010). The
major trend for the video game industry is its ever increasing realism in game environments, with the aim
of providing an increasingly immersive experience for players.

 Realism in video games is affected by two main aspects. The first is the realism of graphical
rendering, which has complimented great advances in the computer graphics field, to deliver ever more
realistic rendering of virtual environments and characters. The second is the realism of the behaviour of
virtual characters, which is achieved through AI techniques. While improvements in computer graphics are

Chapter 2 Background and Related Work

 11

able to scale with yearly improvements in hardware speed (faster computing allows faster and more
complex rendering), AI is less straight forward. Realistic AI behaviour cannot simply be achieved through
faster hardware, but requires better techniques in approximating human capabilities.

 More realistic AI is argued to improve gameplay experiences (Laird & van Lent, 2001). Gamers are
driven towards online multiplayer games because the AI often lack the same level of challenge that makes
for an interesting and enjoyable competitor. Popular games such as World of Warcraft3 combine computer
controlled characters and environments with large scale human player interactions. Others such as League
of Legends4 and Dota 25, are strictly human player-to-player focused, thus facilitating cooperative and
competitive team gameplay with minimal AI involvement. Such games tend to enjoy long term popularity,
as human players offer continuously varied and unpredictable challenge. Human level AI in games without
multiplayer aspects would afford more dynamic and engaging interactions with human players, enhancing
the game experience and prolonging its replayability (Laird & van Lent, 2001).

AI in video games is equally important to AI researchers for a number of reasons. Firstly, the
increasing realism in computer games make them attractive test-beds for AI techniques (Laird & van Lent,
2001). Creating expert level AI to play video games requires tackling many more dimensions of human
intellect than classical game AI, making it a greater and more realistic challenge (Weber, Mateas, & Jhala,
2011). Secondly, by abstracting away issues in real world environments, researchers can focus on testing
the actual AI (Buro & Furtak, 2004). Computer game software and hardware is cheap when compared to
building home-grown simulations or physical robots to test in the real world, and more and more often
they come with high customization support. In the following sections, examples of commercial games are
discussed, including those used in research as test beds.

2.1.4. COMMERCIAL GAME AI

Many game AI innovations occurred during the ‘golden age of arcade video games’6 (late 1970s and early
1980s) in order to support the rise of games based around AI opponents. These were largely simple, static
and logic based techniques used in creative ways. For example in the classic game Pac-Man, individual
enemy ‘ghosts’ had different movement patterns to give the illusion of separate personalities (Mateas,

3 World of Warcraft. Blizzard Entertainment Inc. us.battle.net/wow/en/
4 League of Legends. Riot Games. http://beta.na.leagueoflegends.com/
5 Dota 2. Valve Corporation. www.dota2.com/
6 Timeline of Video Games. The History of Computing Project. www.thocp.net/software/games/games.htm

Chapter 2 Background and Related Work

 12

2003). Due to hardware limitations and the genre defining 2D designs of this era, much of the AI in these
games was about following scripted movement patterns.

By the 1990’s, advancements in hardware had prompted the rise of new game genres with novel
interactions and AI opponents. Genres such as First Person Shooters (FPS) introduced fast action gameplay
in a 3D environment, and Real-Time Strategy Games increased the number and complexity of computer
characters (or units) within the game environment. This motivated the adoption of techniques, such as
Finite State Machines, to more efficiently model and control complex agent behaviour, and better search
algorithms such as A*, for agent path finding (Nareyek, 2004). These techniques allowed agents to exhibit
more complex behaviour, but was still static in nature and did not promote the generation of novel or
adaptive behaviour.

 One of the first instances of machine learning AI in a commercial game was Creatures, a game
published in 1996 (Zielke et al., 2009). The objective of the game was to nurture artificial creatures called
Norns through an artificial life cycle. Norns had neural network controllers as brains, which were modified
throughout the game by feedback from players. The architecture of the networks were also mutated and
reorganized via genetic breeding game mechanics. The setting and design of the game made it extremely
appropriate for the adaptation of machine learning techniques. Another example is Black and White, a
game published in 2001 by Lion Head Studios (Yildirim & Stene, 2008). The game fell into the genre of
‘god games’ where the player is given great control over a simulated environment of artificial life. A key
mechanic of the game is the control of a mythical creature which exists within the game environment.
Implemented using reinforcement learning approaches, the creature exhibits learning behaviour towards
feedback from player interactions.

 Other examples of machine learning in games include applications in the driving game genre. For
example, in the commercial driving game ‘Colin McRae 2.0’ published in 2001, a neural network approach
is used to generate AI driving opponents of varying skill7. The training was done before publishing, so no
new learning occurred as the game is played. The driving game ‘Forza Motorsport’ was shipped in 2005
with ‘Drivatar’, a technology created by Microsoft Research for the basis of all AI opponents in the game8.
Drivatar continuously receives information about the players driving style and strategy, and incorporates
this into a probabilistic model, used to control various AI opponents. Besides uses in creating AI opponents,
machine learning techniques have also been applied to multiplayer game match making. Microsoft’s large
scale Xbox live online multiplayer service uses a Bayesian Inference technique to classify and track player
skill levels, in order to provide skill balanced matches between players of varying skills (Herbrich, Minka, &
Graepel, 2006).

7 Interview with Jeff Hannan. AI Junkie. www.ai-junkie.com/misc/hannan/hannan.html
8 Drivatar. Microsoft Research. http://research.microsoft.com/en-us/projects/drivatar/

Chapter 2 Background and Related Work

 13

 Although there have been a few successful applications of machine learning techniques in
commercial games, the majority of past and current games do not employ such techniques. A number of
papers in literature have discussed the divide between commercial and academic AI, citing numerous
problems of using academic techniques in commercial practise despite its great potential (Herik, 2005;
Nareyek, 2004; Robertson & Watson, in press; Yildirim & Stene, 2008). Simple and static techniques such
as scripting, rule based systems, finite state machines and decision trees are pervasive in commercial games
because they are proven to work, easy to understand and implement and provide predictable results. In
contrast, machine learning techniques in academia are often too complicated or inefficient to implement,
especially in the context of time and resource constraints of commercial game development. Behaviour
generated from machine learning techniques may also be difficult to test and debug (for example neural
networks are complex to analyse), and games that are released with mechanisms for generating new
behaviour cannot guarantee consistent nor desirable AI behaviour for all players.

 Commercial games are popular test-beds for academic AI research, despite the low adoption of
the results in the industry. This is partly because the goal of most researchers using commercial games as
test-beds is not aiming to improve game AI, but to explore or improve techniques in approximating human
intellectual capabilities. That is not to say that no research in the area directly addresses commercial game
AI challenges (e.g. Bakkes et al., 2009; Olesen et al., 2008; Spronck, Ponsen et al., 2006). Rather that the
complementary relationship between the video game industry and AI research is currently one sided in
contribution, to the favour of AI research. In the next section, I discuss such examples of commercial games
that have been heavily used in AI research.

2.1.5. TEST-BEDS FOR AI RESEARCH

Numerous commercial games have been used for AI research in literature, many of which have inspired
competitive events where different techniques can be comparatively evaluated. Competitions based on
simple, arcade style games include Ms. Pac-Man (Lucas, 2007), Cellz (Lucas, 2004) and X-pilot (Parker &
Parker, 2007). Even these simplified games inspire the use of machine learning techniques such as
evolutionary algorithms and neural networks. More complicated genres of games such as FPS, racing, RTS
and platforming have also been used.

The Mario AI benchmark is a popular game benchmark for AI techniques, based on the commercial
platforming game Super Mario Bros (Karakovskiy & Togelius, 2012). Platforming games are ones which
the player navigates a character progressively through an environment with numerous platforms. In Super
Mario Bros, the environment is two-dimensional, and the character can perform left and right walking,

Chapter 2 Background and Related Work

 14

running and jumping actions. Other mechanisms add to the state and action complexity, such as collecting
power-ups which changes the character’s state, enemy characters which must be avoided or killed, and
optional extra point objectives which represents a problem with multi-objective optimization.

In 2010, the competition was split into four separate areas and emphasized different types of AI
techniques (Karakovskiy & Togelius, 2012). The first was the ‘Gameplay Track’, with the objective of an AI
to clear as many levels as possible. The levels were predetermined and therefore encouraged techniques
with offline optimization. The second was the ‘Learning Track’ which involved presenting unseen levels to
agents during a training phase of 10,000 plays, and scoring on performance on the 10,001st play.
Submissions involved learning and non-learning agents, with learning agents being clear winners even
though non-learning agents performed well on the Gameplay Track. The other two tracks were ‘Level
Generation’ (Shaker et al., 2011) and ‘Turing Test’ (Togelius, Yannakakis, Karakovskiy, & Shaker, 2012),
which tested procedural content generation and human behaviour imitation. These tests used more
subjective quality measures and demonstrated the unique human capabilities that interactive computer
games can be suitable test-beds for.

Another popular test-bed game is the Unreal Tournament series of games (Hoang et al., 2005). It
falls under the FPS genre of games, which is centred on projectile weapon based combat in a first person
view. In a normal game, the player controls a single character in a three dimensional environment, that is
able to navigate the level and interact with objects or other players, such as shooting them with a gun. The
primary objective is to eliminate opposing enemies and/or to capture and hold strategic assets.
Commercial AI for this genre of games have traditionally employed a finite state machine in an event
driven reactionary paradigm.

The work of Hoang et al., (2005) first explored hierarchical (HTN) planning techniques to model
and accomplish higher level ‘grand strategies’, while still retaining reactionary control for individual bots to
deal with the highly dynamic and real time environment. The main idea is to decompose a game mode
objective into goals of varying hierarchy, with the lowest being individual bot actions determined by a finite
state machine or static rules. In Smith, Lee-Urban, & Muñoz-Avila (2007), the strategy of a bot team is not
static, but learnt online using reinforcement learning. A variation of Q-Learning is applied to a simple state
formulation which models the locations of strategic assets and the action of sending various bots to those
locations. Again the individual bot actions are fixed and represented with static techniques, and so these
techniques are more concerned with high level strategy, rather than individual bot actions. This abstraction
seems to ignore the unique feature of the FPS genre, primarily the first person perspective shooting
gameplay, and the proposed techniques may be more direct and suitable if applied to the RTS genre.

Perhaps more interesting is the use of Unreal Tournament in the ‘BotPrize’ series of competitions
(Hingston, 2009). The competition is a version of the Turing test first posed by Alan Turing (A. M. Turing,

Chapter 2 Background and Related Work

 15

1950). The idea is that bots and humans play a series of games in UT, and each player is judged to be
human or not. The bot with the highest ‘human-ness’ rating wins the competition for the year, and a rating
higher than 50% indicated the test was passed. Starting in 2008, the test was not beaten until 2012, when
two winners emerged. One winner was ‘MirrorBot’, a largely rule based approach (Polceanu, 2013). Using
graph based navigation and rule based target selection as default behaviour, and a frame recording and
playback technique for mirroring human player actions, MirrorBot received a humanness rating of 52.2%.
The other winner employed a more sophisticated technique, including a replaying of human actions from
a database of human played games, and a default controller evolved through Neuroevolution (Schrum,
Karpov, & Miikkulainen, 2012). Neuroevolution selected for good performance under behavioural
constraints (such as range and movement decreasing aim accuracy), resulting in good performance with
believable human-like flawed behaviour.

The ability to generate AI opponents which perform human-like behaviour would be a valuable
tool for commercial games. However, the most successful techniques thus far in Turing-like tests only aim
to imitate human behaviour, and fool human judges by giving an appearance of human intelligence
(mainly by emphasizing human flaws rather than strengths). The judging standard is also subjective to the
perception of the human judges and have high margins of error (for example in 2012, the human judges
on average did not pass the test themselves9). A better test-bed is one which emphasizes and requires the
strengths of human intellectual capabilities, and which is judged in a competitive setting that can objectively
determine a winner without subjective bias. In the next section the RTS game genre is discussed, which is
an example of such a test-bed, as it requires numerous human intellectual capabilities, exhibits balanced
gameplay, and has fair and competitive outcomes.

2.1.6. REAL-TIME STRATEGY GAMES

Real-Time Strategy games are a genre of video games which can be viewed as simplified military
simulations (Buro, 2003). Players control units and structures on a two-dimensional terrain in real-time,
and aim to secure resources, build additional units and structures, and eliminate opponents. Buro noted
in 2003 that RTS games offered a larger variety of problems for the AI community to tackle, than other
game genres studied thus far. Such non-trivial problems include: adversarial planning under uncertainty,
learning and opponent modelling and spatial and temporal reasoning.

Buro also saw the importance of competitive evaluation for driving innovation in the AI community,
which is evident in research on chess and checkers. RTS games were a natural fit to extend this

9 Botprize 2012. http://botprize.org/result.html

Chapter 2 Background and Related Work

 16

competitiveness, by allowing AI bots to play against each other in annual competitions. One barrier to RTS
research at the time was the lack of tools and infrastructure to easily experiment AI techniques on RTS
games. Commercial game companies were not inclined to open source or interface their game code to
easily allow AI modules to be integrated. This and other technical issues motivated the ORTS project, the
creation of an open source RTS game as a flexible framework for AI research (Buro & Furtak, 2004). A
direct result was the first RTS game AI tournament in 2006, where researchers from all around the world
competed within the ORTS framework (Buro, Bergsma, & Deutscher, 2006).

Instigated by the release of the BWAPI interface, the RTS research community shifted from using
ORTS to SC: BW (Churchill, Saffidine, & Buro, 2012). This shift was partly due to the popularity of SC: BW
as a commercial game, which draws more mainstream attention to RTS research. More importantly though,
it was enabling AI techniques to compete against human players available from a large and active player
base. Apart from validation of results against human experts, this also enabled research and techniques
which mimicked or learnt from a large record of human replays (Cho, Kim, & Cho, 2013; Hsieh & Sun,
2008; Weber & Ontañón, 2010).

The first SC: BW tournament occurred as part of the 2010 Conference on Artificial Intelligence and
Interactive Digital Entertainment10, and continues annually today. The competition was split into four
separate tournaments, with tasks in increasing complexity. The first two tournaments were dedicated to
micromanagement battles and did not involve building units or resource gathering. The other two
tournaments were focused on the full scope of the SC: BW game, and the highest complexity tournament
played a full game. Since then, all tournaments (including subsequent tournaments in CIG11 and the
SSCAI12) only have the category of full SC: BW games. This poses a challenge for AI research which targets
particular sub problems of the SC problem domain, such as micromanagement. In order to be evaluated
as part of these tournaments, these techniques must be incorporated with other modules which form an
all-encompassing AI capable of playing a full SC game. However, the success of the AI technique in review
is then dependent on the performance of the other modules.

2.1.7. SUMMARY OF GAME AI

In the above sections, I provided a comprehensive overview of many areas of game AI research. Starting
from a historical perspective on the use of classical games in AI research, I discussed work with chess and

10 AIIDE StarCraft competition hosted by Expressive Intelligence Studio. http://eis.ucsc.edu/StarCraftAICompetition
11 Computational Intelligence and Games. http://ls11-www.cs.uni-dortmund.de/rts-competition/starcraft-cig2013
12 Student StarCraft AI Tournament. http://www.sscaitournament.com/

Chapter 2 Background and Related Work

 17

checkers AI. These games spurred advances in search based techniques and also motivated the founding
of machine learning strategies. More recently, the focus of AI research has shifted to interactive computer
games, due to more realistic and challenging problem attributes. I discussed historical advances in
commercial game AI and their usage as test-beds for AI research. There is currently a divide between
commercial game AI techniques and AI research, with the former relying on deterministic approaches and
the latter focused on developing dynamic and emergent systems.

 I discussed numerous commercial games used as test beds for AI research, and some of the
existing approaches. In particular, the RTS genre is examined in more detail, including the current popular
use of SC: BW. In the next section, the focus will shift to more closely related work. First, examples of
published AI techniques used to play SC is examined, briefly for macromanagement, and in more detail
for micromanagement. Next, I discuss related work on reinforcement learning and NEAT, and how they
are related in applications that are similar to the micromanagement task.

2.2. RELATED WORK

There is a large body of existing work which uses SC: BW as a test-bed. With the best approaches still
being unable to defeat human experts in annual tournaments, this work is expected to grow in the future.
In this section, some of these approaches are addressed in both macromanagement and
micromanagement areas. Part of this review is based on a comprehensive survey paper addressing AI
research in RTS games (Robertson & Watson, in press). Related work in reinforcement learning and the
NEAT framework is also discussed, particularly in instances where these techniques are applied to SC: BW,
or similar game areas. Related work examined in this section involve discussions about SC: BW gameplay,
which is explained in full detail in Chapter 4.

2.2.1. MACROMANAGEMENT TECHNIQUES

Ben G Weber, (2012b) described macromanagement as working “towards long-term goals, such as
building a strong economy and developing strategies to counter opponents.” In Robertson & Watson (in
press), many techniques applied to macromanagement in RTS games are discussed. Since
macromanagement is not the focus of this thesis, only techniques that are specifically applied to SC: BW
are highlighted here.

Chapter 2 Background and Related Work

 18

 Weber, Mawhorter, Mateas, and Jhala (2010) advocated the use of reactive planning as a technique
for authoring multi-scale game AI. It is an extension of classical planning, which formalizes a model of the
problem domain, defining operators with pre and post conditions, and builds plans to solve the problem
via heuristic search over the operators. The problem with classical planning for RTS games is that the
dynamic and stochastic states require constant re-planning, which is compounded by multi-scale goals
requiring multi-level plans and synchronization between them. Reactive planning solves these problems
by supporting incremental decomposition and execution of tasks in real-time, allowing coordination
between multiple goals and reacting to changes across scales. The technique is applied to a SC: BW bot
called EISBot which was able to achieve a win rate over 60% against the default SC: BW AI (Weber,
Mawhorter, et al., 2010).

 The EISBot was further extended to improve its strategic decision making. One approach was
applying Goal Driven Autonomy (GDA) for strategy selection and execution (Weber, Mateas, & Jhala,
2010). GDA is a conceptual model for enabling autonomous agents to respond to unanticipated failures
in plan execution. Agents following this model are able to detect failures in their plans, reason about their
goals and generate new plans in response. The EISBot was modified to include lists of expectations for
every strategy, which must remain true during the execution of those strategies. If any of these are violated,
the discrepancy is detected and the agent selects a new strategy to pursue with a new list of expectations.

The strategies it selects from are enabled via a form of Case Based Planning (CBP) (Weber, Mateas,
& Jhala, 2010). Strategies are generated based on a library of human expert replays, which reduces the
amount of knowledge engineering required to build the agent. The approach actually differed from an
earlier attempt which required defining a goal ontology and annotating the expert replays to be used in a
case based planner (Weber & Ontañón, 2010). Instead the case retrieval process is decoupled from the
planning process, and cases are indexed, compared and retrieved via a trace algorithm, which is then used
to generate new goal states for a planner to solve. The complete EISBot was evaluated against human
players on the ICCUP tournament ladder13, as well as against other StarCraft bots in the AIIDE 2010
competition; achieving an amateur player ranking of D against humans, and a win rate of 78% against
other bots (Weber et al., 2011).

Techniques that combine and extend case-based approaches are also common. Cadena and
Garrido (2011) combine Case-Based Reasoning with Fuzzy Set theory to play a full game of SC: BW. Fuzzy
state descriptions of the game state enabled reasoning over an abstracted and simplified state space. This
allowed the bot to achieve approximately 60% win rates against the default AI, using a case base of only
one case and when player starting positions were randomized. Palma et al, (2011) advocated the

13 International Cyber Cup. www.iccup.com

Chapter 2 Background and Related Work

 19

combination of CBP with Behaviour Trees (BT). BTs are a common technique in the game industry used to
define agent behaviour as a hierarchy of actions and decisions. When combined with CBP, they serve as a
simple way to inject expert knowledge into the CBP process. This was done in order to correct reactivity
problems when extracting plans from expert traces, such as invalidated plans not being abandoned unless
a low level action fails, or abandoning viable plans when a single low level actions fail (Palma et al., 2011).
Although viable in theory, the technique was evaluated only in specific combat scenarios against the default
AI, and was not applied to play a full game of SC: BW at the strategic level.

Approaches which focus on specific tasks in the strategic level have also been attempted. For
example, Churchill and Buro (2011) applied heuristic search and a simulation of SC to optimize early game
‘build orders’ (optimized selection of unit and building creation order to balance resource gathering and
spending for specific goals). When compared to professional build orders in replays, the technique was
able to establish shorter or equivalent time plans to reach specific build orders. Cho et al., (2013) applied
data mining and machine learning techniques to large corpuses of expert replays, in order to predict
opponent strategies and adapt build orders. Evaluations were performed involving further replay analysis,
and the results identified hybrid ensemble classifier approaches for accurate strategy prediction. This work
is similar to previous work which analysed replays to build a case based model that is then able to predict
player strategies (Hsieh & Sun, 2008). Another approach to strategy prediction is by building probabilistic
models without prior knowledge (Dereszynski, Hostetler, & Fern, 2011; Synnaeve & Bessiere, 2011).

2.2.2. MICROMANAGEMENT TECHNIQUES

In Churchill et al (2012), micromanagement is described as a core skill of successful human RTS experts,
which often makes the decisive difference in both professional human games and AI competitions. It is a
common misconception within the SC: BW game community that AI bots are able to achieve superior
micromanagement, on the virtue of being able to perform actions much faster than humans in real time14
(AI with upwards of thousands of actions per second versus hundreds of actions per minute by humans).
In reality, micromanagement in RTS games is a computationally difficult task, where the game tree grows
exponentially large with respect to unit numbers. Formal analysis on graph based attrition games, which
are movement abstracted versions of RTS micromanagement, have been classified as PSPACE-hard and
EXPTIME to compute winning strategies (Furtak & Buro, 2010).

 The real-time constraints of RTS games compound the computational difficulty further, where
decisions must be made during millisecond time frames. This essentially makes it impossible to compute

14 Community Q/A with Dave Churchill. http://day9.tv/d/DaveChurchill/great-question/

Chapter 2 Background and Related Work

 20

optimal moves for all but the smallest unit numbers, and requires the use of approximate solutions
(Churchill et al., 2012). In the video game industry, this is commonly accomplished via scripted behaviour
based on some simple heuristic (e.g. target units based on distance, unit attributes or just simply at random)
that is quick to compute but can be easily exploited. Properly designed scripted behaviour can achieve
good results, as evidenced by the top three finishing bots of the 2012 StarCraft AI Competition which all
use a variety of scripted behaviour for micromanagement (Churchill & Buro, 2013).

 Another approach to approximating optimal solutions is via heuristic guided search. In general,
the aim behind search based approaches is to reduce the amount of knowledge engineering in scripted
approaches. It also enables emergent behaviour, where the AI is able to adapt to situations that authors
never knew about and take advantage of scripted strategies, by searching ahead to see many possible
future outcomes. Kovarsky and Buro (2005) introduced evaluation functions and compared different
heuristic search algorithms to small-scale abstract combat games with real-time constraints. Experiments
identified the strength of non-deterministic search methods against traditional Minimax algorithms, such
as the Randomized Alpha-Beta Search, which addresses simultaneous move dependencies. Sailer, Buro,
and Lanctot (2007) searches for the Nash equilibrium among a set of strategies in an abstracted RTS game.
The Nash optimal strategy is found by simulating the sets of strategies against opponent strategies, thus
guaranteeing wins against scripted strategies as long as a viable counter strategy exists in its search tree.

Further improvements to search approaches have been identified in Churchill et al., (2012) and
Churchill and Buro (2013), which proposes new evaluation functions and search algorithms to deal with
durative moves (moves with effects extending multiple time frames such as a weapon cool-down) and
larger unit numbers under real-time constraints. Numerous comparative evaluations have also been
conducted under simulations of the SC: BW game, validating the strength of the proposed methods
against scripted behaviour and alternative search based approaches. In general, search based approaches
have employed simulated evaluations for two reasons: full micromanagement in SC: BW is too complex
for certain proposed approaches, and some technical limitations to the BWAPI framework reduce the full
theoretical search speed of certain techniques. While simulations are becoming better approximates, and
search approaches have shown effectiveness against scripted approaches, it is up to future work for these
techniques to be implemented and tested against other bots in the full SC:BW game (Churchill & Buro,
2013).

Other approaches to micromanagement in SC: BW include Monte Carlo Planning and Bayesian
Modelling approaches. Monte Carlo planning is based on the idea of a stochastic sampling of the solution
space through numerous simulations. This was applied to SC:BW micromanagement in Wang, Nguyen,
Thawonmas, & Rinaldo (2012), where a set of expert defined plans were evaluated through a Monte Carlo
algorithm on a pre-defined simulation. Results showed that the trained AI was able to perform better than
the default AI under specifically designed micromanagement scenarios where the enemy has a numerical

Chapter 2 Background and Related Work

 21

advantage. However, its performance was worse than a human expert. Synnaeve & Bessière (2011b)
modelled unit micromanagement as a combination of a simple finite state machine, and a Bayesian model.
The model is centred on a probability equation that maps unit inputs to probability of movement
directions, which can be solved given data about the distributions of this mapping (such as through
reinforcement learning or mining expert replays). By combining simple attack or retreat FSM actions, with
the probability distribution of movement directions (either choosing the highest probability direction, or
sampled), the AI achieved great results against the default SC: BW AI and against a popular heuristic guided
script.

Approaches inspired by the robotics field have also been applied to micromanagement. Artificial
Potential Fields are a technique used to assist robotic manoeuvring, by modelling the topological
environment with attractive and repelling fields (Hagelbäck & Johansson, 2009). This was applied to model
StarCraft micromanagement, where unit actions are decided by attractive and repulsive forces defined by
static and dynamic potential fields (Rathe & Svendsen, 2012). The parameters of a potential field, which
defines its attractive and repulsive forces towards different kinds of fields, essentially define a unit’s
behaviour (e.g. a lower health enemy unit presents high attraction for all close by units to attack). To avoid
a difficult and time consuming process of manually defining these parameters, work has been done to
fine-tune them using an evolutionary algorithm (Sandberg & Togelius, 2011), and a multi-objective genetic
algorithm (Rathe & Svendsen, 2012). Such approaches do not seem to have been evaluated against other
AI techniques for comparative results. Potential Flows, an extension to Potential Fields which avoids local
minimas, have been applied to the specific task of controlling scout units (Nguyen, 2013). In this task,
Potential Flows guide a scouting unit to efficiently avoid obstacles and enemy units, while optimally
discovering enemy structures. The measure of success is the number of enemy structures discovered and
time of survival, and the work claimed effectiveness under these measures compared to an existing
scouting technique and against average human players.

Most relevant to the approach taken in this thesis for SC: BW micromanagement are techniques
applying reinforcement learning and Neuroevolution. Shantia et al., (2011) combined reinforcement
learning with neural networks to train and control sets of units in SC: BW micromanagement combat. The
work was novel in abstracting game environment data using ‘vision grids’, and to agent learning using the
popular online Sarsa reinforcement learning algorithm, with neural-networks to efficiently approximate the
state-action value function. The technique was trained and evaluated against the default StarCraft AI in
same unit, 3 versus 3 and 6 versus 6 agent combat, with the results of the 3 versus 3 learning bootstrapping
the 6 versus 6 evaluations. The results showed a significant winning advantage over the standard StarCraft
AI, but required thousands of training rounds before converging to a competitive win rate. The evaluation
scenarios are also limited in the type and number of units used, with only one type of range unit presented
in relatively small scale combat.

Chapter 2 Background and Related Work

 22

In Wender & Watson (2012), a comparative evaluation of reinforcement learning techniques
applied to StarCraft was presented. More specifically, four variants of popular reinforcement techniques
were applied to a specific combat scenario, involving a range unit with high mobility against numerous
short ranged enemy units. The idea behind the scenario was to specifically induce the learning of a
micromanagement technique called ‘kiting’, where the range unit must constantly cycle between attacking
and running away in order to win against greater enemy numbers. The results identified comparatively
stronger and weaker techniques within the ones evaluated, and showed a high win rate against the default
StarCraft AI, within a thousand training rounds. However, the results were evaluated against a very specific
combat scenario, and the author acknowledges the solution developed is only the first part of a larger RL
based StarCraft agent.

In Gabriel et al., (2012) the real time variant of NEAT was used to develop a micromanagement
agent in StarCraft. Each unit is controlled by its own neural-network, which specifies whether the unit
should attack or retreat, and in which direction it should move. The basic architecture is then evolved in
real time by the rtNEAT algorithm over generations of 12 versus 12 agent combat. The evaluation involved
four different combat scenarios with variations of range and melee unit matchups; first against the default
StarCraft AI, and then against two other SC: BW AI systems. The results showed a significant win advantage
against the default AI in all unit match up variations, and a weaker advantage against the other AI systems,
within 300 training rounds. The authors also claimed the rtNEAT algorithm allowed significant real-time
improvement over the course of a single training round, which suggested fast adaptive-ness in game
strategy.

One limitation of the evaluation is the use of a custom SC: BW map which replenishes unit numbers
throughout a single training round, with up to 100 unit reserves. This is an unrealistic depiction of real SC
combat as units do not replenish immediately after a unit is killed off. This also skews the training results
since a single generation is actually multiple 12 versus 12 rounds with 100 unit replacements. The claim of
real-time improvement is weakened by the fact that the real-time fitness increase occurs over unit fighting
time (0.02 fitness over 3000 game ticks), which is only a sub portion of a full SC: BW match and does not
occur continuously. However, the work showcased the potential of applying NEAT based algorithms to SC:
BW micro-management, which this thesis further explores.

Chapter 2 Background and Related Work

 23

2.2.3. REINFORCEMENT LEARNING, NEUROEVOLUTION AND NEAT

Reinforcement Learning (RL) is a machine learning method that models agents taking actions in an
environment to maximize a defined reward (Sutton & Barto, 1998). It differs from standard supervised
learning methods in that examples of correct and incorrect actions are not explicitly specified. Instead, the
agent actively searches the solution space for an optimized policy by trying actions and receiving an
immediate reward. Often, for more challenging cases, the agent must balance exploration and exploitation
strategies and deal with problems of delayed reward. When a complete and accurate model of the
problem exists, the optimal policy can be solved via Dynamic Programming methods. For problems with
large state spaces and where an accurate model is not possible, statistical sampling methods such as Monte
Carlo and Temporal Difference learning are effective (Sutton & Barto, 1998). These conventional
reinforcement learning methods are based on approximating the optimal value functions, which give the
expected optimal reward for each action in each state of the problem space.

In practice, conventional RL methods do not scale well for problems with large state-space and
partial observability (Gomez & Miikkulainen, 2003). An alternative approach is Neuroevolution (NE), which
combines the ability of neural networks in approximating non-linear functions, with the training strategy
of evolutionary algorithms (Yao, 1999). NE searches through the space of neural networks according to
the principles of natural selection. Instead of adapting a single agent, NE involves populations of candidate
solutions, and a process of selecting and reproducing these solutions based on a quantitative fitness
measure. It has been effectively applied in learning behaviour policies for reinforcement learning problems,
and can find solutions faster than classic reinforcement learning methods on standard benchmarks (Gomez
& Miikkulainen, 2003; Stanley, 2004).

Traditionally, NE worked on a pre-defined neural network topology, and the evolution searches
over the space of connection weights between the network nodes. A class of NE algorithms, Topology and
Weight Evolving Artificial Neural Networks (TWEANNs), attempts to also evolve the topology of the
network, by adding or deleting network structure such as nodes and edge connections (Yao, 1999). By
searching through the space of network topologies, it is possible to improve on training speed and the
accuracy of solutions more so than searching weights alone. Furthermore, it reduces the uncertainty and
effort of deciding on the network topology, for example in deciding the number of hidden nodes for any
particular NE problem via trial-and-error processes (Stanley & Miikkulainen, 2002b).

However, TWEANNs techniques face numerous challenges (Stanley, 2004). Firstly, cross-over of
network structure in evolution is non-trivial, and the result may be redundant or infeasible structures.
Secondly, the adding of new network structure may impair the immediate fitness of the network, but should
be retained to allow room for new solutions to converge. Thirdly, the setup of the initial population affects

Chapter 2 Background and Related Work

 24

the evolution process: random topologies may yield infeasible or complicated starting topologies, resulting
in highly complex and inefficient solutions. Stanley & Miikkulainen (2002a) developed the NEAT algorithm
to tackle these issues. NEAT uses historical marking of genes and a compatibility operator to track topology
evolution and gene crossover. The compatibility operator is used to define species in the population of
networks, preventing incompatible genomes from crossing over, and together with fitness sharing, helps
to protect new innovations from being removed prematurely. NEAT also follows the principle of
complexification, where the starting typology is minimal, and the evolutionary search is expanded gradually
in order to reach solutions with minimal structure and time taken. The workings of NEAT are further
discussed in Chapter 3.

The classic NEAT algorithm was also expanded to a real-time variant (rtNEAT), where evolution
occurs over a real time scenario (Stanley, 2005). The main difference in the new variant is that instead of
evolution over an entire population at a given point in time, new neural networks are created and
introduced to the population in gradual and continuous real-time. When applied to a game scenario,
agents in the game show a gradual behaviour change, instead of an abrupt change to all agents that may
break gameplay immersion. The rtNEAT algorithm was demonstrated in a game called NERO, where
agents are evolved and adapted in real time to tackle changing objectives (Stanley, Bryant, & Miikkulainen,
2005). Players could train squads of units, each controlled by a neural network evolved through rtNEAT,
and battle other player trained squads.

Regular NEAT has been successfully applied to RTS games (Jang, Yoon, & Cho, 2009), where neural
networks are evolved to become controllers for AI characters. Multiple network controllers are combined
in an ensemble process in order to choose the right action for an agent to take. In Olesen et al., (2008)
both NEAT and rtNEAT were used to automatically balance the challenge of the AI in an RTS game called
‘Globulation 2’. A challenge rating metric was generated by analysing aspects of the game that affected
player performance. The fitness function, which guided the evolution of the behaviour of the AI, was based
on the closeness of the AI challenge rating and the human player’s rating. In this way, the AI was
continuously evolved to play at the same challenge level as the human player, thus creating a better player
experience where the AI was not too challenging and not too easy.

Stanley (2005) listed several challenges posed to traditional RL techniques when applied to real-
time video games. For example, video games have large state and action spaces, which is a known
challenge for RL learning. This is compounded in real-time games, where the value of every possible action
for every agent and on every game tick, must be checked and updated for an accurate approximation of
the value function. In contrast, NE and NEAT work well in high dimensional states, and evolved agents do
not check the value of all actions, but only a single output per game tick. Another example is that traditional
RL techniques do not support the diversification of solutions, while NEAT specifically supports
diversification through speciation. This is important for agents in game environments to display

Chapter 2 Background and Related Work

 25

heterogeneous behaviour to realistically simulate populations and make gameplay more interesting. Other
examples on the list include agents having consistent individual behaviour (violated by RL when randomly
sampling new actions in exploitation, while in NEAT individuals have consistent actions throughout its
lifetime) and fast adaptation versus sophisticated behaviour trade-off (NEAT is flexible in generating simple
solutions quickly that can grow more complicated later, while RL must change its representational model
to allow the same).

2.2.4. SUMMARY OF RELATED WORK

In the previous sections, work closely related to the thesis objectives were discussed. This began in section
2.2.1 where related AI research tackling the macromanagement layer of the SC: BW game domain was
examined. The large action and state space complexity of macromanagement motivates the use of
planning techniques to divide goals of varying hierarchy. The challenge here is synchronization between
hierarchical goals and to be able to react to failed plans. New plans can be generated by building cases
from expert human game plays, querying probabilistic models, or injecting expert knowledge. Approaches
which look at specific parts of macromanagement include: build order optimization through heuristic
search, opponent modelling and strategic prediction via data mining human player replays. Although
macromanagement is not the focus of this thesis, many of the techniques here are related to
micromanagement techniques.

 In section 2.2.2 I discussed the importance of micromanagement in RTS games, and its
computational complexity attributes. Existing approaches include numerous heuristic search based
techniques, which often work on an abstracted version of SC: BW. Although micromanagement has a
smaller state and action complexity space, it is still large enough to make heuristic search difficult in the
non-abstracted game. Other approaches include Monte Carlo planning and Bayesian modelling, which
are statistical techniques for approximating the right action, when given enough example data. Techniques
inspired by the robotics field have also been applied to specific unit control in micromanagement, such as
potential flows for controlling scouting units. The approaches to micromanagement that are most related
to this thesis are RL and NE ones, of which only three examples could be found in the literature, and all
were discussed. In general, the common goal of AI research in this area is to develop techniques that can
approximate the optimal actions and generalize over many scenarios in a very large state and action space.
Many of the benchmarks used to evaluate the approaches are scripted unit behaviours based on simple
heuristics that are known to be effective.

Chapter 2 Background and Related Work

 26

I began a discussion of RL and NE in section 2.2.3, highlighting their similarities and differences. In
particular, I discussed the NEAT method and its advantages over traditional RL. This was followed by
examining examples of NEAT specifically applied to video games, and concluded with the advantages of
the rtNEAT algorithm over traditional RL for real-time video games in general. In the next chapter, I discuss
the primary framework used in this thesis, the NeuroEvolution of Augmenting Topologies.

Chapter 3
NEUROEVOLUTION OF AUGMENTING TOPOLOGIES

In section 2.2.3 I discussed related work that motivated the use of NE algorithms for reinforcement learning
problems, and the successful application of the NEAT framework for game scenarios. In this chapter I
discuss the workings of the NeuroEvolution of Augmenting Topologies (NEAT) framework. First, I review
some fundamentals in evolutionary computation and neural networks that are necessary components of
Neuroevolution. Next I analyse the challenges with topology evolving Neuroevolution and begin to discuss
different aspects of NEAT that address these problems. This chapter is adapted from the PhD thesis work
of Kenneth O. Stanley (Stanley, 2004), and examines both the theoretical motivations and the practical
algorithms of NEAT.

3.1. GENETIC ALGORITHMS AND ARTIFICIAL NEURAL NETWORKS

NEAT is influenced by Genetic Algorithms (GA), a class of search algorithms inspired by biological evolution
(Stanley, 2004). GA’s search through a parameter space (binary, discrete, real or other encoding scheme)
for parameters that optimize some performance goal. The search procedure is based on biological natural
selection where a population of solutions, each representing a point in the search space, are continuously
evaluated. A fitness heuristic is used to guide this evaluation, which defines solutions that are more suitable
than others in reaching the performance goal. High fitness solutions are then selected for reproduction, a
process that generates new solutions containing random changes, but which are still similar to its parent
solutions. By replacing low fitness solutions with the offspring of high fitness solutions, the population
begins to converge towards optimal parameters (Figure 1). GA’s are particularly useful when applied to
sparse domain knowledge problems, since it assumes no a priori of the problem domain or solution space,
as long as there exists a fitness function that can differentiate low and high performing solutions.

Chapter 3 NeuroEvolution of Augmenting Topologies

 28

Figure 1: A Summary of the Genetic Algorithm Process.

To facilitate reproduction, the parameters are usually encoded as a string called the genotype,
which allows efficient genetic operations to be applied, such as mutations on parts of the string or
exchanging parts between strings (crossover operation) (Figure 2). A genotype encoding typically goes
through a genesis procedure into a phenotype, a format that can be evaluated for fitness. In NEAT, the
GA model is applied to an encoding of ANN weight and topologies, and searches for the optimal network
for a given task (Stanley, 2004). NEAT differs from standard GAs in that the dimensions of the parameter
space can be modified during search (adding and subtracting nodes in the network), while GAs typically
operate on a search space with a fixed number of dimensions (a fixed number of parameters in encoding).
This gives the advantage of being able to generate smaller or larger solutions than fixed sized dimensional
search, and is crucial for optimizing search speed (section 3.2).

ANNs are the phenotypes at the core of NEAT’s evolutionary optimization. They are computational
processing structures inspired by the biological nervous systems of animals, such as the brain. The basic

1 0 1 0 0 1 0 1

↓

1 0 1 0 1 0 0 1

(a)

1 0 1 0 0 1 0 1
1 1 0 1 0 0 0 1

↓

1 0 1 0 0 0 0 1
1 1 0 1 0 1 0 1

(b)

Figure 2: Examples of genetic operators on a binary string encoding. Bit string mutation (a) and string crossover to form two new offspring (b).

Chapter 3 NeuroEvolution of Augmenting Topologies

 29

structure consists of a network of nodes, with an input layer which models sensors that receive data from
the external world, and an output layer which contains information resulting from processing the input
data through the network. Between these two layers are hidden nodes that expand the variability of the
processing potential of the network. Nodes are connected via adjustable weighted connections, and
exchange data when they are activated. In theory, ANNs are able to approximate any continuous function
(Hornik, Stinchcombe, & White, 1989), with some specific architectures proven to have the same power as
a Universal Turing Machine (Siegelmann & Sontag, 1991).

Figure 3 is an example of a feed forward ANN, where the input layer sets off a forward passing
activation over weighted connections ending at the output layer. In NEAT the structure of hidden nodes
are evolved over time, which means they will not necessarily be in strict layers or be fully connected. It is
also possible to evolve recurrent networks, which contain feedback connections that are useful for certain
problems.

Figure 3: A simple feed forward Artificial Neural Network with one hidden layer.

 A node in an ANN computes a weighted sum of its inputs and passes it through an activation
function, which outputs a value between 0 and 1 onto other nodes. That is, for every node 𝑖 , its output
𝑦௜ for a given input vector 𝑥 of 𝑛 + 1 size is:

𝑦௜ = 𝑎 ቌ෍𝑤௝௜𝑥௝

௡

௝ୀ଴
ቍ (1)

Chapter 3 NeuroEvolution of Augmenting Topologies

 30

where 𝑤௝௜ is the weight of the connection from node 𝑗 to 𝑖 and 𝑎 is the activation function. Typically, the
input 𝑗଴ is a bias with the value of +1, and weight 𝑤଴ denotes the bias weight, leaving 𝑛 actual inputs to
each node. The activation function is usually a non-linear sigmoid function such as the logistic function:

 𝑎(𝑥) = 1
1 + 𝑒ି௫

(2)

which outputs a smooth S shaped curve bounded between 0 and 1. It has advantages over linear and
binary functions, such as having a smooth and continuous derivative for making learning via gradient
descent methods easier, and can tackle problems that are not linearly separable (e.g. the Xor function).

NEAT does not train ANN with gradient descent methods like back-propagation, but instead uses
Neuroevolution, a process similar to GAs described previously. This has the benefit of not requiring output
targets (similar to reinforcement learning), and is better at avoiding local minimas (because evolution
simultaneous evaluates multiple solution points at once) (Stanley, 2004). In the next section, I describe a
class of Neuroevolution that NEAT belongs to, called Topology and Weight Evolving ANNs.

3.2. TOPOLOGY AND WEIGHT EVOLVING ARTIFICIAL NEURAL NETWORKS

Topology and Weight Evolving Artificial Neural Networks (TWEANNs) are a class of Neuroevolution
methods which evolve both the connection weights and the topology of the ANNs (Yao, 1999). This has a
number of advantages over fixed-topology Neuroevolution. First, it reduces uncertainty and human effort
in specifying network topologies manually, which is often done via trial and error processes. Secondly,
topology evolution can increase the efficiency of solutions by keeping networks as small as possible.
Thirdly, it has the potential to improve the training speed and accuracy of solutions; by finding the solution
in a network with the smallest number of connections, or by finding complicated topologies to allow for a
more accurate solution.

Chapter 3 NeuroEvolution of Augmenting Topologies

 31

Figure 4: Deciding how to combine ANN topology during crossover to ensure viable offspring was a challenge for TWEANNs. This process is
partial to the design of the genotype encoding scheme.

Figure 5: A simple example of the Competing Conventions problem. Two ANNs with the same functional structure but different genotype
representation (permutation on the order of hidden nodes). Crossing [𝑨, 𝑩, 𝑪] with [𝑪, 𝑩, 𝑨] can result in[𝑪,𝑩, 𝑪], a solution that has lost a third
of the information from both parents. The higher the number of hidden nodes, the higher the number of possible competing conventions, since
with 𝒏 hidden nodes there are 𝒏! permutations.

However, TWEAANs face a number of unique challenges compared to fixed-topology
Neuroevolution. One of these is the challenge of encoding topology along with weights in a genotype that
allows for comparisons and crossovers. Stanley (2004) described a number of existing TWEANN encoding
techniques prior to NEAT, labelled between direct (the topology is explicitly specified in genotype
encoding) or indirect (the genotype only contains information about how to derive the topology, such as
rules during the translation to a phenotype) methods. In either case, many of them required an explicit
bounding size of topology growth, which puts a restriction on the space of possible solutions and brings
back an element of human responsibility for deciding this bound. The existing encoding schemes also
failed to support the evaluation of topology substructures during crossover, which results in many non-
viable offspring topologies (Figure 4). This problem is compounded by the ‘Competing Conventions’
problem, where cross overs between solutions that are the same but expressed differently in a genotype,
are very likely to produce less viable offspring (Figure 1). Attempted solutions to this problem either require
computationally expensive topology analysis before crossover, constraints on topologies, or by removing

Chapter 3 NeuroEvolution of Augmenting Topologies

 32

crossovers entirely. NEAT addresses this problem with a direct encoding scheme based on historical
markers (section 3.3)

 A second challenge occurs when considering the result of topology crossover or mutation in
TWEANNs. Often the addition of a structural component (such as a new node, or a new connection
between nodes) introduces a nonlinearity to the existing network solution. It is unlikely that a new random
addition comes already optimized and immediately expresses a useful function within an ANN. If fitness
evaluation is allowed to run unchanged, these new additions will likely be removed from the population
before they have enough time to optimize. The act of protecting solutions that are temporarily
disadvantaged from new structures is known as the principle of Protection of Innovation (Stanley, 2004).
NEAT accomplishes this by adapting two concepts from GAs known as speciation and fitness sharing
(Section 3.4).

 A third challenge arises when considering the need to evolve minimally complex topologies.
TWEANN techniques prior to NEAT often started with an initial population of random topologies, so as to
ensure diverse solutions. However, this often produces infeasible networks and variable starting topology
sizes. The latter problem is especially dire, since it cannot guarantee that the search occurs over minimally
complex topologies. Such a property was proven to be desirable by Stanley (2004), as it ensures that search
time is reduced when searching and optimizing the lowest number of dimensions. Another problem with
randomized topology sizes is that there are drastic differences between different dimensional spaces,
where the increase of a single connection can radically improve or worsen the fitness landscape being
searched. Through these observations, Stanley formulated the principle of Topology Innovation for
TWEANNs, which states that a population should start with a minimal structure and grow incrementally, to
improve the likelihood of finding a global optimum. NEAT directly follows this principle, by starting with a
population of minimally structured ANNs and adds structures after optimizing the current dimension of
weights.

 The next sections begin to review the NEAT method in detail. Each component was designed to
address the three principle problems discussed above. First, the genotype encoding was designed to allow
efficient and suitable match-ups of topologies for crossover. Incidentally, such an encoding is also useful
in defining similarity for speciation and fitness sharing. These are useful for the protection of new
innovations. Next, the full NEAT process is summarized, and a real-time variant of NEAT is introduced.

Chapter 3 NeuroEvolution of Augmenting Topologies

 33

3.3. GENETIC ENCODING AND OPERATIONS IN NEAT

NEAT employs a direct encoding, where the topology of a network is explicitly specified in its genotype.
Each genome (an individual network’s genotype) consists of node genes and connection genes. Node
genes contain information about individual nodes of a network, such as whether they are input, output or
hidden nodes. Connection genes specify the connections between nodes, and contains the weight of a
connection, its input and output node identifiers, an activation flag, and a number known as the innovation
number (Figure 6).

Connection weight mutations in NEAT occur with a fixed probability for each connection, and
mutate by adding a floating point number from a distribution of positive and negative values. Structural
mutations also occur via fixed probabilities, but differ between the types of mutations. There are two types
of structural mutations: new connection and new node mutations. For a new connection mutation, a new
connection gene is added that connects two previously unconnected nodes in the genome. In a new node
mutation, an existing connection is split into two, and a new node is added between these two connections
(Figure 7).

Figure 6: An example of an encoded genome directly mapping to a network phenotype in NEAT. Each node gene specifies a node and its type.
Each connection gene specifies a weighted connection between two nodes, and can be disabled such that it is not expressed in the phenotype.
Taken from Stanley, (2004).

Chapter 3 NeuroEvolution of Augmenting Topologies

 34

Figure 7: Example of NEAT structural mutations. The blocks represent the connection genes ordered by their innovation numbers. Adding a
connection introduces a new connection gene. Adding a node disables an existing connection gene, and adds a new node and two connection
genes. New connection genes are given unique chronological innovation numbers. B is the result of a first mutation on A and incurs a gene with
innovation number 7, while C is a separate result from a second mutation on A, incurring genes 8 and 9. Adapted from Stanley, (2004).

Structural innovations are added to a network when mutations are introduced to a genotype. The
genome length is unbounded so as to avoid arbitrary bounding decisions and to support incremental
growth from minimally complex structures. Each new innovation in a population is assigned a unique
innovation number, such that there is a total ordering on the chronological inception of all innovations
(Figure 7). This number serves as a historical marker for genes and can be used to determine similarity
between any two genomes in the population. Since the initial population in NEAT start with the same
minimally complex structure, genes with the same historical origin represent the same structure. This is
done with very little computation, as it only requires the increment of a global innovation counter. With an
efficient measure of similarity between networks, NEAT avoids the Competing Conventions problem, and
ensures that offspring from topology crossover preserves the overlapping historical innovations of both
parents.

Chapter 3 NeuroEvolution of Augmenting Topologies

 35

Figure 8: An example of crossover reproduction in NEAT using historical markers. Without analysing the topology of Parent1 or Parent2, the
structural similarities and differences can be efficiently found by comparing the innovation number of genes. An offspring is produced by taking
the overlapping parts of both parents (genes 1 to 5) and inheriting the disjoint and excess genes from the more fit parent, or inheriting random
genes if fitness is equal (genes 6-10). The weights of the overlapping parts are either randomly chosen or averaged between the two parents.
Taken from Stanley, (2004).

 Figure 8 depicts an example of crossover reproduction in NEAT. By using the innovation numbers,
structural similarity can be efficiently compared between any two networks. When comparing two parent
genomes, genes which appear in one genome and not the other are known as disjoint genes. Genes which
appear in one parent later in evolution than any genes in the other parent are known as excess genes.
Overlapping genes between parents are always present in a resulting offspring, while disjoint and excess
genes are inherited based on the fitness of each parent. Disabled genes can also be re-enabled in an
offspring, which allows old connections to be expressed in a network once again.

Chapter 3 NeuroEvolution of Augmenting Topologies

 36

This measure of similarity between two genomes is also useful for enabling speciation and fitness
sharing. As described previously, these two concepts are important to ensure the principle of Protection
of Innovation. In the next section I describe what these are and how they are implemented in NEAT.

3.4. SPECIATION AND FITNESS SHARING

Speciation is a technique in GAs used to optimize functions with multiple optimas. For these problems, the
population as a whole is used to make decisions, where each solution should represent a viable optima
that is different from other solutions (optimizing for different parameters). The idea behind speciation in
this context is to force the convergence of solutions to be diverse throughout the population. This can also
be useful for preventing premature convergence in single solution problems, where the entire population
could get stuck converging towards a local optima. In TWEANNs, speciation is useful for allowing different
topologies to develop simultaneously. In NEAT it is essential for the protection of new innovations and to
prevent crossovers for incompatible structures (Stanley, 2004).

 Fitness sharing is a method for maintaining species in GA population. It is inspired by biological
populations, where species adapted to a certain niche are forced to share the payoff for that niche. NEAT
uses a form of explicit fitness sharing, where similar individuals share their payoffs (i.e. networks with similar
topologies share their evaluated fitness). This encourages solutions to diversify for fitness that does not
have to be shared, while protecting new innovations by sharing fitness from parent species.

 Central to these concepts is the idea of similarity between genomes. In NEAT this is measured
using the historical markings of each genome in the population. More specifically, the distance between
two genomes is modelled as a function of the differences in connection weights and genes. Let 𝐷 be such
a distance between any two genomes in a population. It is defined as a linear combination of the number
of excess genes 𝐸𝐺, disjoint genes 𝐷𝐺 and the average weight difference of matching genes 𝑊ഥ :

 𝐷 = 𝑐ଵ𝐸𝐺𝑁 + 𝑐ଶ𝐷𝐺
𝑁 + 𝑐ଷ ×𝑊ഥ

(3)

where 𝑐ଵ , 𝑐ଶ , and 𝑐ଷ are adjustible weighting coefficients, and 𝑁 is the number of genes in the larger
genome which normalizes those parameters for genome size.

Chapter 3 NeuroEvolution of Augmenting Topologies

 37

 The initial population in NEAT begin with a single species. Each species in the population has a
member of the species chosen as a representative. Newly reproduced genomes are compared to each
species’ representative using the distance metric defined above, and when the distance is less than a
compatibility threshold (𝐷௧), it is placed into the species being compared to. If the distance is higher than
the threshold for all existing species, a new species is generated with the new genome. In NEAT, 𝐷௧ is
dynamically adjusted in order to match a target number of species (i.e. lowered to increase the number of
species and raised to decrease it).

 Fitness sharing within species takes place after raw fitness is evaluated for each genome. The
adjusted fitness 𝐹′௜ of an individual 𝑖 in the population is divided amongst the population based on the
distance metric 𝐷:

 𝐹′௜ =
𝐹௜

∑ 𝑠ℎ(𝐷(𝑖, 𝑗))௡
௝ୀଵ

(4)

where 𝐹௜ is the individual’s raw fitness, 𝑛 is the size of the population, 𝐷(𝑖, 𝑗) is the distance between 𝑖 and
another individual 𝑗 in the population, and 𝑠ℎ is the sharing function. The sharing function returns 0 when
𝐷(𝑖, 𝑗) is above the threshold 𝐷௧ and 1 otherwise, such that ∑ 𝑠ℎ(𝐷(𝑖, 𝑗))௡

௝ୀଵ returns the number of

individuals in the population in the same species as 𝑖.

 Fitness sharing directly affects the reproduction process, where the number of offspring produced
from each species in the population is in proportion to the adjusted fitness of its members. The number
of offspring 𝑁௦ produced by a species 𝑠 during reproduction is defined by:

 𝑁௦ =
𝐹ത௦

𝐹ത௧௢௧௔௟
|𝑃|

(5)

where 𝐹ത௦ is the average adjusted fitness of members in species 𝑠, 𝐹ത௧௢௧௔௟ is the total of all species adjusted
fitness averages, and |𝑃| is the size of the population. The choice of parents within each species is chosen
randomly amongst its top performers, and the lowest performing individuals of each species is eliminated.
The overall effect of speciation and fitness sharing on the population is the divergence of solutions between
species, and the protection of innovation amongst species.

Chapter 3 NeuroEvolution of Augmenting Topologies

 38

 In the next section, I summarize the entire NEAT evolutionary process involving the core
components discussed so far. The process is later modified to apply to a real time domain in the rtNEAT
variant.

3.5. THE GENERATIONAL NEAT PROCESS

Figure 9: A model of the basic NEAT process for reinforcement learning problems. The initial population of ANNs share a common topology but
with randomized weights. On each generation cycle, the population is evaluated via a fitness function. Until there is an acceptable solution, NEAT
advances to a new generation by going through an Epoch process.

Figure 9 depicts the overall model of NEAT operating to solve a RL problem. An initial ANN topology
design based on a model of the RL problem is used to seed an initial population with matching topology
and randomized weights. For example, in a robotic control problem analogy (such as in the task of
navigating a maze), the ANN design could incorporate each environmental sensor as input nodes, and
output nodes as parameters specifying the robots actions to take on the environment. In each generation,
the population is evaluated using a defined fitness function, which identifies how well performing each
individual is at the given RL task. In the robot control analogy, evaluations may be a simulated test run of
the robot using each individual ANN as a controller, and the fitness may be a function of errors and
progress made through the maze. The NEAT process terminates when an individual is found to pass some
defined performance criteria (such as successfully completing a maze). Otherwise, the generation is
advanced through an epoch process, which modifies the population via reproduction and replacement.

Chapter 3 NeuroEvolution of Augmenting Topologies

 39

The fitness function and acceptance criteria are problem domain specific, and can be adjusted to fit
multiple objectives.

Figure 10: A model of the epoch process in more detail. The fitness sharing, offspring assignment and species assignment mechanisms are as
those described previously in section 3.4. Reproduction mechanisms are those described in section 3.3.

Figure 10 depicts a model of the epoch process in more detail. After the population is evaluated
via the fitness function, individual fitness is adjusted via fitness sharing. The number of offspring reproduced
by each species is assigned based on each species average adjusted fitness. The worst performing
individuals in each species are removed to make room for new offspring (with adjustments that prefer to
remove more from species that have not improved in a while). Offspring are created via mutation and
crossover operations, then assigned to species based on the distance metric. A new generation of the
population is then ready for re-evaluation.

With a few changes to the basic NEAT model, it can be applied to real-time problem domains. In
the next section, rtNEAT is introduced as a viable version of NEAT that is specifically tailored for real-time
reinforcement learning and games.

Chapter 3 NeuroEvolution of Augmenting Topologies

 40

3.6. REAL-TIME NEAT

Figure 11: A model of the rtNEAT epoch process. It is a modified version of the generational NEAT epoch process, and occurs continuously in
real-time at a specified interval. It attempts to simulate generational NEAT in real-time by removing and reproducing a single individual per run.

Real-time NEAT is a version of NEAT tailored for problem domains such as in video game environments,
where multiple agents in the population play at the same time. Unlike generational NEAT, rtNEAT supports
real-time fitness evaluation and incremental evolution that is important for believable population AI
(Stanley, 2005). In order to do so, rtNEAT must encapsulate the fundamental NEAT components in a real-
time incremental process.

 Figure 11 summarizes the rtNEAT epoch process. Instead of modifying an entire population per
iteration, rtNEAT removes and reproduces a single individual per loop. First, the worst performing adjusted
fitness individual is found and removed from the population. Fitness adjustment is the same as in
generational NEAT, through the use of speciation and fitness sharing to encourage diversification of
solutions and to protect innovation. There is an added condition to this process, in the form of a specified
organism age threshold, which protects individuals that may not have played long enough for an accurate
fitness assessment. This contrasts with generational NEAT which does not have a concept of age since
networks are generally evaluated for the same amount of time.

 After removing an individual from some species, the species fitness averages must be recalculated.
This ensures that the next step of choosing a parent species is accurate. Recall in section 3.4 that the

number of offspring 𝑁௦ reproduced by a species 𝑠 is determined by 𝑁௦ = ிതೞ
ிത೟೚೟ೌ೗

|𝑃|, where 𝐹ത௦ is the species

fitness average of 𝑠, 𝐹ത௧௢௧௔௟ is the total of all species fitness averages, and |𝑃| is the size of the population.
This is approximated in rtNEAT for determining which species reproduces an offspring, by ensuring that
over the long run, the number of offspring for each species is proportional to 𝑁௦. The probability 𝑃 of a
species 𝑠 is chosen for reproduction is given as:

Chapter 3 NeuroEvolution of Augmenting Topologies

 41

 𝑃(𝑠) = 𝐹ത௦
𝐹ത௧௢௧௔௟

(6)

where 𝐹ത௦ and 𝐹ത௧௢௧௔௟ are the same as in generational NEAT. The choice of parents within a chosen species
are same as in generational NEAT (randomly chosen amongst top performers).

The next step is to readjust the species and compatibility thresholds. In generational NEAT, a
number of new offspring are assigned to species based on the compatibility threshold and the distance
metric on every generation. In rtNEAT the species reassignment must be explicit to ensure all organisms
in the population are in the correct species, since only a single individual is replaced at a time. Once all the
above is accomplished, the reproduced organism replaces the removed organism. This is problem domain
specific, and may involve additional logic to rewire an agent’s controller to use the reproduced neural
network.

 The last step remains of determining the time interval between replacement, or how often to run
the rtNEAT epoch process within the real-time environment. If this occurs too quickly, then the population
may not be accurately evaluated and new innovations may be needlessly thrown away. On the other hand,
evolution must occur quick enough for agent learning to satisfy some real-time constraints, such as to
continuously meet the challenge level of a human player (Olesen et al., 2008). A law of eligibility is formed
by Stanley (2005) that states the number of game ticks 𝑛 between replacement. This is based on the
fraction of the population ineligible for replacement 𝐼, the minimum time for individuals to be alive 𝑚, and
the population size |𝑃|:

 𝑛 = 𝑚
|𝑃| × 𝐼

(7)

where 𝑚 and 𝐼 are user defined values.

Chapter 3 NeuroEvolution of Augmenting Topologies

 42

3.7. SUMMARY OF NEAT

In the above sections, the NEAT framework was discussed in detail. At the beginning, its foundations in
Genetic Algorithms (GA) and Artificial Neural Networks (ANN) was explained. GAs are biologically inspired
search algorithms which work well on sparse domain knowledge problems. ANNs are biologically inspired
computational processing structures that can approximate any continuous function. NEAT is essentially a
Neuroevolution (NE) algorithm, which are GAs that specifically search over an encoded space of ANNs.

 Following on, Topology and Weight Evolving ANNs (TWEANNs) are introduced as the class of NE
that allows topologies to be evolved as well as weights. TWEANNs have potential in performing better
than static topology NE, as well as traditional reinforcement learning techniques on benchmark control
tasks. NEAT was created by Stanley (2004) to address many of the challenges inherent in existing TWEANN
techniques at the time. Firstly, NEAT avoids the competing conventions problem while also avoiding
constraints on topology by having a genetic encoding that allows efficient topology comparison during
topology crossovers. Secondly, NEAT uses speciation and fitness sharing to protect new innovations and
to encourage diversification of solutions. Thirdly, NEAT is proven to speed up training time and increase
solution accuracy, through minimally complex incremental topology evolution.

 In the end, each of the NEAT components were summarized as the generational NEAT process.
A modified variant called rtNEAT for real-time problem domains was also introduced. The next chapter
begins to discuss the SC: BW environment in more detail, as the chosen test-bed for the thesis work.
Particularly, the micromanagement task and its complexity attributes are discussed. In doing so, it can be
seen that both generational NEAT and rtNEAT have the potential to be applied to SC: BW.

Chapter 4
STARCRAFT TEST-BED

StarCraft: Brood War is a Real-Time Strategy game released by Blizzard Entertainment in 1998. In short, it
is a science fiction themed military simulator, where players take control of futuristic armies with the aim
to destroy all other opponents (Figure 12). Due to its fast paced, deep and balanced gameplay, it fosters
human competition up to professional levels. The nature of the gameplay requires many capabilities of
human-level AI, thereby making it an attractive test-bed for evaluating and observing these capabilities. In
this chapter, I provide an overview of the SC: BW gameplay sufficient for understanding what an AI agent
ought to do in order to play well. In particular, the micromanagement layer is discussed in more detail as
it is the focus of this thesis. An analysis of the complexity of the micromanagement task serves to illustrate
its difficulty for an AI agent and the appropriateness of the NEAT method. Finally, the BWAPI plugin is
introduced as the primary tool for interfacing AI agents in the SC: BW environment.

Chapter 4 StarCraft Test-Bed

 44

Figure 12: An in-game screenshot of a SC: BW battle between two air unit armies. Combat is a central part of the SC: BW gameplay, as is in any
military simulation.

4.1. STARCRAFT ENVIRONMENT

The environment of a SC: BW game can be viewed as a large 2D geometric map seen from an isometric
view (Figure 13). The player’s view is restricted to a portion of the entire map, but can be adjusted by
scrolling in any direction. A Head-Up Display (HUD) overlays the game view and displays information about
the game world. For example, the Minimap is an abstracted overview of the entire map, with colour coded
objects to identify enemy and allied units, buildings, resources and unexplored terrain. It can be used to
quickly identify enemies and allies, as well as quickly navigating to specific points of the map. The map can
be perceived as a grid represented by two dimensional Euclidean coordinates. Units and building locations
are represented on the map as x and y pixel points. They can also be selected and controlled using mouse
and keyboard buttons. For example, a group of units can be selected by dragging a selection box over
their positions, or selected individually via mouse cursor pointing and clicking. All game actions such as
unit movements occur in real time.

Chapter 4 StarCraft Test-Bed

 45

Figure 13: In-game screenshot of SC: BW. The game is viewed from an isometric view where 2D objects in the environment are projected such
that they appear 3D. The HUD constitutes extra information such as the minimap (A), selected unit information (B) and resources (C). The rest of
the screen is the view of the actual game environment (D).

Areas of the map that the player has not explored are covered in black. Units can scout unexplored
areas simply by moving closer to them. Once an area is explored, the terrain can be seen. However,
explored areas that do not have unit or building vision over them are covered by a Fog of War (FoW).
Additionally, there are concepts of elevation in the terrain of SC: BW such that units on top of a higher
elevation gain greater sight, while units on a lower elevation do not gain sight of the higher elevation
(covered by FoW). FoW a common game mechanic in RTS games that hides the presence of enemy units
and buildings on the map where there is no player unit vision. This constitutes the incomplete information
attribute of the RTS game domain, where the knowledge of the environment and opponent states is limited
to where a player has units and buildings. Therefore, the act of scouting the environment with units is an

Chapter 4 StarCraft Test-Bed

 46

important aspect of SC: BW in order to predict and react to opponent build strategies and troop
movements.

4.2. GAMEPLAY

As previously mentioned, the objective of a SC: BW game is to eliminate opponent players. A player is
eliminated when all their buildings are destroyed. Buildings and units have an attribute called Hit-Points
(HP) that can be reduced from being attacked by enemy units (Figure 14). When HP drops to 0, the unit
or building is destroyed. However, players do not simply begin with a full sized army ready for combat. At
the beginning of a game, a player has the control of a single ‘main’ building and multiple worker units.
The main building can produce more worker units, while the worker units themselves can be used to gather
resources or to construct additional buildings that can eventually train combat units. Constructing new
units and buildings expend resources, which the player has a small amount to begin with. Therefore the
core gameplay of SC: BW involves gradually expanding from a small and weak base with no combat units,
to a large base with an army of combat units and a sustainable economy.

There are a variety of buildings and units that facilitate different goals. Generally speaking, buildings
can enhance either resource collection or military capabilities. For example, certain buildings can be
constructed at new resource locations to exploit the resource, while others facilitate the training of combat
units or the researching of combat enhancements (Figure 15). On the other hand, the majority of unit
variations are for combat purposes, with the main exception being the worker units used for resource
collection and constructing buildings, and other special purpose units such as those for transport or
scouting. Combat units can be categorized in tiers, with lower tier units costing fewer resources but are
less flexible and have lower combat strength than higher tiers. Combat unit tiers and enhancement
research are unlocked via the construction of buildings in a hierarchical tree, such that certain lower tier
buildings must first be constructed to unlock higher tiered buildings and units (Figure 16).

In general, collected resources can be used to increase resource gathering efficiency (via building
additional resource gathering unit and buildings), or to increase military might (by training additional
combat units or researching combat technologies). Therefore, part of the strategic challenge is to balance
efficient resource gathering and combat unit production for both a sustainable economy and an effective
army. During the early part of a game, players usually choose to follow a selection of optimized building
orders that are able to achieve some set of units and buildings by some time constraint. These are akin to
opening moves in chess, except spanning numerous actions over a timespan. For example, build orders
that emphasize long term economic advantage may aim for as many workers and resource collecting

Chapter 4 StarCraft Test-Bed

 47

buildings as possible while maintaining minimal combat numbers for defence. An aggressive ‘rush’ build
order on the other hand, may aim to produce as many combat units as possible as quickly as possible to
overwhelm an opponent in an early attack.

The sub-task of build order optimization is to facilitate the discovery of these build orders, by
optimizing the order of economic and military spending that enables the goal set of units and buildings
to be achieved within a certain timespan. The actual task of choosing a build order involves higher level
strategic tasks such as scouting and opponent modelling, in order to choose the most favourable build
order to counter an opponent's. For example, if an opponent adopts an extreme economic build with
minimal defence, it may be very weak against a fast and aggressive build. On the other hand, if it is known
that the opponent is following an aggressive build, the player can adapt a build order which achieves just
enough defence to survive an early attack, while maintaining an economic edge that ensures its victory
after the opponent exhausts its resources.

Figure 14: Unit and building Hit-Points (HP). Top: a damaged unit’s HP is shown as a bar when selected. Bottom: likewise for a damaged building’s
HP. When a bar is full, the unit or building is undamaged. When the bar depletes completely, the unit or building is destroyed.

Chapter 4 StarCraft Test-Bed

 48

Figure 15: The general unit and building components of a SC: BW game. Resource gathering units and buildings are necessary to enable spending
on other units and buildings. The construction of certain buildings enable spending on upgrades that enhance the combat capability of units, and
unlocks higher tier units for training. Other buildings directly produce combat units that can be used to attack the enemy. Taken from (Weber,
2012).

Figure 16: Part of the Terran race tech tree.

Chapter 4 StarCraft Test-Bed

 49

4.3. RACES AND UNITS

Figure 17: Examples of units in SC: BW. From left to right: Hydralisk, a Zerg ranged unit, SCV a Terran worker unit, Zealot a Protoss melee (short
ranged) unit, and Wraith, a Terran flying unit. Green bars indicate a units HP, with the exception of the yellow bar on Hydralisk that indicates it has
been damaged. The blue bar indicate shield points, which is a Protoss specific unit attribute that offers additional protection. The purple bar
indicates energy points, which are used in certain units for special abilities.

The existence of three different races, each with its unique set of units, buildings and technology
progression, adds to the variety and depth of gameplay. Each race’s unique strengths are counteracted
by their unique weaknesses, such that the gameplay is varied but generally balanced between any race.
For example, the ‘Zerg’ race emphasizes cheap and fast produced units that are individually weak
compared to other race units. Zerg units are purely biological and have the unique ability to regenerate
HP over time. The ‘Terran’ race, modelled after futuristic humans, have slow producing units of moderate
strength and cost. They also have units and buildings that facilitate strong defensive capabilities. Finally,
the ‘Protoss’ race is a high tech alien race that emphasize strong and expensive units. Protoss units have
a unique shield attribute that acts as extra regenerative protection against damage (Figure 17).

 Besides race specific differences, many attributes differentiate units from each other. The basic
attributes include the HP of the unit, its attack damage, attack cool-down and attack range. The attack
damage of a unit is roughly how much HP it takes away from an enemy per attack, although other
attributes such as weapon type and armour also affects this. The cool-down is the duration of pause
between consecutive unit attacks, such that a unit that does half the damage but has half the cool-down
as another unit can essentially inflict the same amount of damage, with all else being equal and given the
same time span. The attack range of a unit determines a positional superiority, such that a long ranged
unit can attack a shorter ranged unit without retaliation, until the shorter ranged unit moves closer.

Unit varieties increase even more when considering unit special abilities. For example, certain units
can render themselves invisible while still attacking, which means enemy units cannot attack it unless special
sensor units or buildings are nearby. Some units can expend an energy resource to execute abilities with
wide ranging effects, such as high damage over all units in a specific area or attaching a protective shield

Chapter 4 StarCraft Test-Bed

 50

over an allied unit. Units with flight capabilities can only be targeted by units with an air attack weapon.
Due to such a large variety of unit attributes, there is no strict total ordering on unit strength. For example,
a unit may have fewer HP and attack damage compared to another, but can defeat the other unit by
landing more hits from a superior attack range. However there are still obvious unit quality differences,
which are inherently balanced by different unit resource costs, training time and the technologies and
buildings required to unlock the unit.

4.4. MULTI-SCALE AI AND MACROMANAGEMENT

As previously mentioned, the gameplay of SC: BW involves tasks across multiple scales. At the
macromanagement level are concerns of balancing economic development with military progress. For
example, players aim for maximal vision of the map to predict and react to opponent strategies in the long
term (such as build order adaptations) and short term (such as intercepting an advancing army). Control
over a large portion of the map ensures maximal vision and access to resource locations, but would need
a strong combat force to achieve. This would require immediate spending on military units, which may
allow the opponent to gain an economic edge. If it can be determined that military spending is the best
strategy for a scenario, it must still remain to decide what are the optimal types and numbers of units, and
whether to spend on different unit upgrades. For example it is possible to spend on developing the
technology for and training sensor units that can detect invisible enemy units. However, if the enemy does
not develop such units then the spending would be wasted.

The challenges at the macromanagement level for an AI agent are numerous. Firstly, how does
the agent generate effective strategies, such as: how to correctly predict opponent strategies, knowing
which building and unit combinations best align together for specific strategies, the timing of attacks or
when to expand to new resources, build orders, etc. Secondly, how does the agent detect and react to
changes in the environment and opponent strategy, such as: acknowledging when the enemy is
approaching for an attack, reacting to newly scouted information about enemy unit and building types,
when and how to retreat or defend, when to change strategies, etc. Thirdly, how to synchronize these
multi-scale objectives, from low level decisions such as an individual unit’s actions, through to high level
decisions such as planning the timing of expansions and attacks. Additional challenges arise when
considering that the agent must make such decisions on a 2D environment with elevated terrain and
obstacles. This requires terrain analysis techniques and for the agent to understand the significance of
paths, obstacles and distances. In section 2.2.1, many of the existing approaches in tackling the

Chapter 4 StarCraft Test-Bed

 51

macromanagement layer was discussed, and some have shown promising results compared to other AI
techniques and against human players.

The focus of this thesis is on the lower scale task of micromanagement. In section 2.2.2, existing
approaches to the problem and some analysis of its complexity was discussed. The actual problem and
the general challenges are elaborated in the following section.

4.5. MICROMANAGEMENT

Micromanagement refers to the individual control of units in a combat scenario so as to override their
default behaviours. This is done to maximize their individual combat effectiveness, since the default
behaviour is often an inefficient control method. For example, when a unit is given an order to attack a
location, it simply begins attacking the first enemy unit that comes into range. This leads to ineffective
target selection and no coordination between multiple units. Instead, the player can explicitly direct unit
attacks on prioritized targets, such as to eliminate the lowest HP units first so that the damage output of
the opponent army is reduced as quickly as possible. On the other hand, it is possible to direct low HP
units temporarily away from a fight until enemy units acquire a different target. In this way, the damage to
a player’s units is spread evenly across all units, increasing the average lifespan of each unit and maximizing
the combined damage output over time (Figure 18).

 Another example of micromanagement is the strategy of ‘kiting’, where a unit with a superior attack
range can adopt a hit-and-run strategy against inferior attack range units. When properly micromanaged,
the ranged unit can avoid all damage while successfully eliminating multiple enemy units. This works
because a long ranged unit can attack a short ranged unit without retaliation until the short ranged unit
moves into its own attack range. If the long ranged unit moves away after every attack, and if the short
ranged unit does not have superior movement speed, then it will never catch up to attack the long ranged
unit. The long ranged unit’s damage output is not reduced, because it only moves after it has attacked
during its weapon cool down period (Figure 19).

Chapter 4 StarCraft Test-Bed

 52

Figure 18: A combat scenario in SC: BW between two identically sized ranged unit armies. To gain an advantage, target prioritization and focus
fire, such as aiming for the lowest health enemy unit to reduce enemy damage output is beneficial (on left, orange lines denote unit targeting).
Also beneficial is to direct damaged units temporarily away from enemy units, so that the enemy reacquires targets. This will spread damage
across units for maximum survivability and damage output (on right, blue line shows unit movement away from enemy units).

Figure 19: Example of kiting strategy. Blue circle denotes the attack range of the long ranged unit, while the orange circle denote the range of the
short ranged enemy unit. The long ranged unit targets the short ranged unit for attack (red line) and when on weapon cool-down will proceed
to move away (teal line), thereby always avoiding damage to itself while maintaining maximal damage output. If done correctly, a single long
ranged unit can eliminate numerous short ranged units.

Chapter 4 StarCraft Test-Bed

 53

Simply adopting these two key principles of target selection and spreading incoming damage
ensures an advantageous edge over non-adopters. However, to implement these principles for an AI agent
controlling numerous individual units is a challenge. There are a number of choices of unit target selection,
such as attacking the closest unit first or the weakest unit first. Simply directing all units to attack the weakest
unit may waste some unit attacks (total damage of all attacks exceeding remaining enemy unit HP). Units
with low attack range may take a long time to get into range to attack a target, and so it may be more
beneficial for them to target the closest unit. Furthermore, it is more beneficial to include enemy unit attack
damage into consideration, so as to target units with the highest damage output in proportion to its HP.
The variety of unit types and attributes makes it difficult to define an optimal target selection or movement
strategy for all units and in all scenarios.

 Scripted behaviour is a popular way to implement these principles for AI agents. For example,
different unit types can have their own scripts tailored for their unit’s specific attributes (HP, damage,
ranged etc.) However, scripted behaviour is a form of approximation that can be exploited, since it is
limited by what the domain expert can conceive of, and is static once defined. Approximations are
necessary to reduce the complexity of the state and action spaces in micromanagement, but there is still
room for emergent behaviour. In the next section, the complexity of the micromanagement task is
explored.

4.6. COMPLEXITY ATTRIBUTES OF MICROMANAGEMENT

Micromanagement is a fast acting and reactive task. Many actions in quick succession must be performed
to control each individual unit effectively, and in direct response to opponent actions. In professional
gameplay, expert players are able to perform hundreds of actions per minute in their attempts to maximize
combat unit control while also managing other areas in the strategic layer, such as queuing unit production,
building construction, scouting and resource collection. For the average player, there is both a physical
limitation of issuing commands quickly with a mouse and keyboard, and a mental limitation of making
decisions over many different areas in quick succession. If too much focus is put on micromanaging units,
then the overall economy and strategy of the player suffers. On the other hand, if micromanagement is
not done properly, even a superior army can be defeated by a disadvantaged but well micromanaged
enemy squad.

It is a common misconception that because computer AI can perform thousands of actions per
second, it is necessarily better at micromanagement than human players. In reality, the AI must first deduce
what is the correct move to make at each given point of a game, and not simply choose to perform

Chapter 4 StarCraft Test-Bed

 54

thousands of random actions per second. It is more appropriate to consider how many actions the AI can
evaluate within a game frame constraint in order to perform the approximately optimal move for that
frame. If posed in this way, then it is easy to see why micromanagement is a challenging problem for AI.

Consider a trivial combat scenario involving two opposing armies of 12 units each. Suppose each
unit has 8 possible directions to be moved, or each can attack any of the 12 units on the enemy’s side.
The total number of actions each unit can perform is therefore 20. For optimal control in each time frame,
each unit should be assigned an action. In order to evaluate the optimal action for each unit, the
combination of unit actions must be considered. This means there are 20ଵଶ possible combination of
actions to be evaluated for the optimal choice. In general, it is 𝐴௎ combinations where 𝐴 is the number of
possible actions for each unit, and 𝑈 is the number of units. The estimate becomes larger when considering
the possible distances of movement actions, unit abilities and with increasing number of units. As
mentioned in section 2.2.2, the complexity of the micromanagement task necessitates approximations,
especially within real-time decision constraints. Although searched based techniques with appropriate
heuristics are possible, they are currently confined to working within simulations of SC: BW with simplified
and approximated states and actions.

Reinforcement Learning is a viable alternative to heuristic based search approximation. There are
already examples of RL applied to micromanagement in the literature (section 2.2.2). NEAT based RL is a
strong competitor against traditional RL techniques and is apt for the micromanagement task (section
2.2.3). Instead of evaluating unit moves and looking ahead as in heuristic search, NEAT searches for an
ANN best able to specify the approximate optimal actions for a state. The challenge here is finding the
appropriate state and action space representation of micromanagement, as well as a meaningful fitness
function that allows successful incremental NEAT evolution. Part of this challenge is inherently tied to the
technical workings of the SC: BW environment, such as in the way information about the environment is
revealed to an agent and in how unit actions can be specified. In the following section, the BWAPI
framework is discussed, which exists as the input and output layer between the SC: BW environment and
custom AI.

4.7. BWAPI

The Brood War Application Programming Interface is an open source framework for interacting with SC:
BW. Almost all AI research involving SC: BW as the test-bed uses BWAPI for executing actions and for
querying information in the game. For example every SC: BW AI tournament requires entries to be AI

Chapter 4 StarCraft Test-Bed

 55

modules developed to run with BWAPI. Simply put, it is the most preferred framework for the development
of AI agents in SC: BW.

 Although many language extensions exist, the core BWAPI framework is developed in and applied
with the C++ programming language. The framework functions as a plugin DLL that is injected into a
running instance of SC: BW. Custom AI modules act as extensions to this plugin and are executed by the
BWAPI DLL. With this, BWAPI gives full access to game state and actions that a human player is given.
With the activation of some cheat flags it can provide even more information, such as the complete map
information of all enemy units. All AI interactions with the SC: BW game are through the BWAPI’s functions.
By enforcing BWAPI as the standard for AI tournaments, it allows unbiased comparisons and ensures AIs
do not employ cheating information if they are not allowed to.

 In SC: BW, the game state is updated continuously every 56 milliseconds when set to the normal
game speed. BWAPI exposes an event that is triggered on every update, which allows custom AI agent
code to run in order to react to the updated game state. The state of the game can be queried, such as
about each of the players units and buildings. Actions can also be issued for each of the units and buildings.
Enemy unit and building information is restricted to those that can be seen via the player’s unit sight. On
top of these basic features is a library of UI drawing features that allow debug or analysis data to be
rendered on screen. Other library extensions built on top of BWAPI offer additional features, such as terrain
analysis to provide pathing and obstacle information for the AI agent (Figure 20).

The work in this thesis uses the BWAPI framework to develop AI agents that interact with SC: BW.
In the following chapter, the implementation details of integrating the NEAT methodology into a BWAPI
AI module is discussed in detail. The design and details of the micromanaging agent module is also
discussed, which enables the learning of the correct unit behaviours for specific combat scenarios.

Chapter 4 StarCraft Test-Bed

 56

Figure 20: Top: example of debugging and analysis information rendered onto the UI in the SC: BW bot Skynet15. Bottom: the result of terrain
analysis by a BWAPI extension called BroodWar Terrain Analyser16.

15 Skynetbot, a SC: BW Bot using BWAPI. https://code.google.com/p/skynetbot/
16 BWTA, a terrain analyzer for BWAPI. https://code.google.com/p/bwta/

Chapter 5
DESIGN AND IMPLEMENTATION

In this chapter I discuss a number of design considerations in modelling SC: BW micromanagement for the
application of NEAT. This involves the design of the basic starting network architecture as well as the fitness
function used to guide evolution. A number of NEAT specific parameters are also discussed, such as the
probability of different mutations and the values chosen to derive the number of game ticks between
replacements in rtNEAT. Finally, the agent implementation details are discussed in terms of the architectural
integration between BWAPI and NEAT.

5.1. NETWORK MAPPING

Recall in section 3.5 that the NEAT process involves a continuous evaluation of a population of ANNs. In
order to apply NEAT for micromanagement, an appropriate model of the problem domain is needed.
Fundamentally, there needs to be a mapping between the ANNs in a NEAT population and the combat
units within a micromanagement scenario. This involves choosing the right abstraction of state information
(ally and enemy unit attributes such as HP and weapon cool-down, distances and locations of units etc.)
and actions (unit attack target selection, retreat movement direction etc.)

At first glance, the NEAT methodology maps naturally to multiple unit control in
micromanagement. Each unit in a combat scenario can be modelled and mapped to a single neural
network in the NEAT population. The fitness of the network is then determined by how well the single unit
does within the micromanagement task. Such a one to one mapping is intuitive and should be easy to
manage. Alternatively, multiple units can be mapped to a single network such that the network is evaluated
based on the performance of the entire squad of units. If necessary, a single unit can be mapped to
multiple neural networks, such as in Shantia et al 2011, where each ANN represented the reward function
of a single action and where the action associated with the highest output network is chosen.

There are a number of issues with models that are not a one to one mapping, related to granularity
of control and network complexity. When mapping multiple units to a single network, the basic network

Chapter 5 Design and Implementation

 58

structure is necessarily complex. The network must be able to take in enough information about the
problem state to give meaningful control outputs for multiple units. The number of outputs are also
dependent on the number of units. Unless meaningful groupings and abstractions are used, the network
structure will have too large a number of parameters for NEAT to search over (Figure 21). On the other
hand, groupings and abstractions take away the granularity of state information and control of units (Figure
22).

Figure 21: Example of a many unit to one network mapping model. A fine grain input layer must capture the attributes of each enemy and allied
unit (such as current health and weapon cool-down), and the output layer must specify the action for each unit. Consider a 12 vs. 12 unit scenario
with 4 unit attributes (HP, cool-down, damage and range) and 20 possible unit actions (move in 8 directions or attack one of 12 enemies). The
number of input nodes is 𝟐𝟒 × 𝟒 = 𝟗𝟔 and output is 𝟏𝟐 × 𝟐𝟎 = 𝟐𝟒𝟎. This results in 𝟐𝟒𝟎 × 𝟗𝟔 = 𝟐𝟑, 𝟎𝟒𝟎 connections as a starting network
topology and increases quadratically with number of units.

Chapter 5 Design and Implementation

 59

Figure 22: A highly abstracted, many unit to one network model. State inputs are aggregated and output actions are at squad level granularity
(i.e. all units perform the same action). Such a model is very efficient for NEAT to start with (only 6 starting weights connections to optimize) but
is very limiting in what can be learned and controlled.

 Mapping multiple networks to a single unit is also problematic when considering the NEAT
evolutionary process. The reason it works in Shantia et al 2011 is because a RL learning approach is used
and each ANN approximates a state-action value function for a single unit action. All units use the same
set of ANNs, and each network is updated via variants of the Sarsa RL algorithm. In contrast, NEAT cannot
train multiple ANNs with different functions (action specific output), because you cannot meaningfully
compare fitness or reproduce between different purposed networks. However, it may be possible to
separately evolve different ANNs for different unit control purposes, such as one for enemy target
selection, one for deciding whether to attack or retreat, and another for the direction of the unit movement.
This would require separate runs of the NEAT algorithms and some consistent and default behavior to fill
in for decision controllers that have not yet been evolved.

 The model chosen in this thesis is a one to one mapping between network and unit. This is due to
the complications as mentioned above with many to one mappings, and the technical intuitiveness of
attaching a single network to a single unit. During a NEAT or rtNEAT evolution cycle, new networks can be
easily reattached to an exisitng unit. Fitness evaluation can also be intuitively conveyed as the lifetime
performance of a unit between matches (generational NEAT), or its immediate real time performance
(rtNEAT). In the next section, a number of one to one mapping neural network models are discussed,
which illustrates a network complexity versus information granularity trade off.

Chapter 5 Design and Implementation

 60

5.2. NEURAL NETWORK DESIGN

With a one unit to one network mapping in mind, it remains to decide a network’s inputs and outputs.
These constitute the state information necessary to learn to control a unit effectively, and the unit actions
that can be performed for effective unit behaviour. In theory, a neural network can approximate a function
mapping the entire state information of a SC: BW game as inputs, and all possible unit actions as the
outputs. Learning the optimal mapping between these inputs and outputs would achieve the optimal unit
behaviour for all SC: BW game states. However in practise, the state and action spaces are too large and
complex to model completely as such, and learning such a complete mapping is intractable. Thus,
abstractions are necessary.

5.2.1. INITIAL MODEL

A number of ways to abstract unit state and actions were considered. Figure 23 depicts the initial model,
with inputs and outputs based on domain knowledge and previous work in the literature. Many of the
inputs involve the unit attributes described in section 4.3 and are chosen to induce learning
micromanagement behaviour described in section 4.5. For example, a unit with a superior weapon range
to an enemy unit’s should retreat some distance when its weapon is on cool down to minimize damage
(kiting). Another example is if a unit’s health is low, it may be beneficial to temporarily retreat so as to be
out of the line of fire, and return to fight when more allies are in range.

In this model, the output of the neural network corresponds to two possible unit actions: fight or
retreat. The action with the largest corresponding node output after network activation is the chosen action
to be performed. If the fight action is taken, the unit follows a simple routine that attacks the enemy unit
with the lowest HP within its weapon range. The retreat action makes the unit move a small distance in the
direction of a computed vector. The vector is computed by weighing enemy and obstacle vectors such
that the unit retreats away from enemy units and obstacles These actions are based on similar
implementations in the literature (Shantia et al., 2011; Wender & Watson, 2012) as they are simple to
implement, but complicated enough to produce sophisticated micro-management behaviour when
performed in various sequences.

Chapter 5 Design and Implementation

 61

Figure 23: A fully connected and feed forward neural network architecture, which has its hidden nodes gradually added or changed via NEAT or
rtNEAT evolutions. Nodes on top from left to right: Bias, weapon Cool Down, remaining Hit Points, Weapon Range, Enemy Weapon Range,
Number of Allies in Range and Number of Enemies in Range. These denote a mixture of agent internal and external percepts as input to the
network, while nodes Fight and Retreat denote the outputs as two possible unit actions. All inputs are normalized to [𝟎, 𝟏] for consistency.

The performance of this model was evaluated in a number experiments (section 6.1), with good
results against the default SC: BW AI. However, there are a number of limitations to the model, namely in
the granularity of its actions. The ‘Fight’ subroutine is comparable to a static script that targets lowest health
enemy units, while the ‘Retreat’ subroutine is also a static script for navigating a unit away from enemies.
Without finer granularity control, a unit cannot take advantage of other factors in enemy target selection
(i.e. cases where low HP units are not the ideal targets such as high weapon damage targets, short ranged
units or other unit attributes) and unit movement (e.g. the location of allied units or the nature of the map
terrain may be important). Moreover, it would be interesting to see if an agent is able to learn these
scripted behaviours when the model allows for it.

Chapter 5 Design and Implementation

 62

5.2.2. ALTERNATIVE MODELS

Figure 24: An alternative extension of the initial neural network model with unit type granularity. Here the ‘Attack’ output is replaced by three unit
type specific attack targeting subroutines. Four additional inputs were also included, which specified the number each type of enemy unit that can
be seen, normalized by dividing the total number of units.

An attempt was made to incorporate unit type granularity into the initial model (Figure 24). However, some
initial testing scenarios involving multiple unit types showed the model was ineffective. This was due to
units no longer prioritizing low HP units regardless of unit type, which would sometimes allow low HP
enemy units to linger. Another alternative involved full granularity unit input and output (Figure 25). Since
each unit is a possible output target and all unit attributes are included as input, both low HP targeting
and unit type targeting behaviour can be learned and combined.

Chapter 5 Design and Implementation

 63

Figure 25: Full unit granularity attack model. Attributes of each enemy and the unit itself is included as input. Each enemy unit attack target
corresponds to a single output. The figure depicts a simplistic scenario against two enemy units. Each additional enemy unit adds an additional
output node, and a number of input nodes corresponding to unit attributes involved. Not depicted are allied unit attributes which may also be
important.

There are two major problems with this model. Firstly, it does not incorporate game state
information on location of enemy and allied units. Simple relative distances between units can be added
as inputs, but this does not convey directional information. This type of information is important to expand
the granularity of the Retreat action, and is also important in some decisions of target selection (e.g. melee
units should not target a low health unit that is blocked by other enemy or allied units in the way).

Secondly, the number of units for which the network model can work on is static. NEAT cannot
dynamically introduce or remove input and output nodes (i.e. with variable unit number scenarios). A
possible solution to this is training multiple neural networks for separate unit number scenarios, but this
requires multiple NEAT evolutionary runs for each possible unit number match up, and for an agent to
dynamically switch out its neural network controller during a micromanagement engagement.
Furthermore, such a model may not scale well for larger unit numbers, since the starting topology becomes
more and more complex as the number of input and output nodes increase in respect to unit numbers.

Chapter 5 Design and Implementation

 64

5.2.3. DIRECTIONAL GRANULARITY MODEL

Figure 26: Directional sensors modelled as neural network inputs. The direction of enemy units can be specified as inputs to one of 8 nodes.
Output nodes also map to 8 directions for movement, with an optional node to specify the magnitude of movement in a direction. This setup
essentially replaces the Retreat routine in previous models, by moving the unit in the direction associated with the largest node output. Not
depicted are all the other relevant percepts and outputs for attack target selection.

It is possible to model directional information as a set of sensors around a unit (Figure 26). Here the sensors
map directly to input nodes in a neural network. Outputs also correspond to directions that the unit can
move towards. The direction with the largest corresponding node output is the chosen direction of
movement for the unit. Another node can specify the magnitude, or how far to move the unit in a specified
direction. Such a model can replace the Retreat subroutine in the other models such that if the unit decides
to retreat, it will do so at a direction and for a distance specified by the network outputs. A successful
learning criterion mirroring the behaviour of the Retreat subroutine would be if the network mapped the
input and output directional nodes to oppose each other, such that the unit will retreat in the opposite
direction to enemy unit positions.

 In section 6.2 I describe some tests to evaluate the effectiveness of this model. The directional node
input and outputs are combined with the percepts and outputs of the initial model from section 5.2.1 (unit
attributes and the fight subroutine). The directional inputs are defined as -1 if no enemy units are close by
(within some distance threshold, such as twice the maximum weapon range of units) in that direction, -0.5
if an enemy unit is close by but neither unit is within range of each other, 0 if the enemy is within the
current unit’s weapon range and 1 if the current unit is within the enemy unit’s weapon range.

Chapter 5 Design and Implementation

 65

5.3. FITNESS FUNCTION

In both the NEAT and rtNEAT algorithms, the evolutionary process is guided by a simple fitness metric. In
the context of SC: BW unit micromanagement, the fitness should reflect the performance of an individual
neural network controlling a unit during a micromanagement scenario. This is similar to the reward signal
function implemented in a reinforcement learning approach that rewards an agent given its performance
(Wender & Watson, 2012). There are a number of ways to define a unit’s success over time, for example
its damage output over its lifetime, the number of enemies a unit eliminates, and it’s remaining HP (or
whether it survives). Such factors are considered in the fitness function in Gabriel et al., (2012) and in the
reward function of Shantia et al., (2011). Ultimately, a successful unit should minimize damage dealt to it-
self while maximizing damage dealt to enemy units, and a fitness function should reflect and encourage
this.

 With some consideration, the number of units eliminated and whether a unit survives or not can
be argued as poor metrics for fitness. In SC: BW, the unit that deals the fatal blow (the final attack that
reduces the enemy HP to 0) to an enemy unit is considered the eliminator of that enemy. Rewarding such
a unit with higher fitness over others would disregard the contributions of allied units in reducing the
enemy unit’s HP. It is entirely possible for a unit to only contribute a single attack, but deals the fatal blow
to claim the higher fitness reward for unit elimination, over other units that dealt more significant damage.
The survivability of a unit also does not tell us whether the unit has contributed any significant damage
towards enemies units. A unit’s survival is only important if it maximizes damage dealt to enemies, but
rewarding units survived may reward ones that simply retreat throughout an entire match.

 Thus in the experiments described in this thesis for both NEAT and rtNEAT, the fitness function is
conveyed strictly using the damage dealt and damage received for an individual unit. Specifically, the
fitness 𝐹௜ for a unit 𝑖 is defined as:

 𝐹௜ =
𝑇𝐷𝐷௜ − 𝐻𝑃𝐿௜

𝐼𝐻𝑃௜
+ 1

(8)

 The function takes in the Total Damage Dealt by a unit 𝑖 (𝑇𝐷𝐷௜) and its Hit Point Loss (𝐻𝑃𝐿௜)
accrued over a match and divides by its Initial Hit Points (𝐼𝐻𝑃௜). In theory, the fitness is only upper bound
by the total hit points of all enemy units (if a single unit eliminates all enemy units by itself, and receives no
damage). However in practice, the average fitness of each unit falls under [0, 2] where at the lowest, the
unit has dealt no damage and does not survive, and at its highest value it has dealt twice as much damage
than it has received.

Chapter 5 Design and Implementation

 66

5.4. NEAT PARAMETERS

Parameter Description Value

Excess Coefficient Weight of excess gene numbers in similarity
metric. (𝑐ଵ of 𝐸𝐺 in section 3.4)

2.0

Disjoint
Coefficient

Weight of disjoint gene numbers in similarity
metric. (𝑐ଶ of 𝐷𝐺 in section 3.4)

2.0

Weight Difference
Coefficient

Weight of weight differences in similarity
metric (𝑐ଷ of 𝑊ഥ in section 3.4)

1.0

Compatibility
Threshold

Threshold used in determining species based
on similarity metric (𝐷௧ in section 3.4)

3.0

Mutation Power The power of a weight mutation on a link 2.5

Survival Threshold The amount of within each species allowed to
breed which controls interspecies greediness.

0.2

rtNEAT specific

𝑃

Population size matching unit numbers used
to determine replacement time (section 3.6).

12

𝐼

The amount of population eligible for
replacement at any time (section 3.6)

0.5

𝑚 Minimum time alive for any unit (section 3.6) 300

Table 1: Summary of key parameters and their values in NEAT and rtNEAT.

Having decided on a model of the problem, network input and outputs, and a fitness function to guide
NEAT selection, what remains is to select values for various parameters for running NEAT and rtNEAT.
Table 1 summarizes some of the key parameters and their chosen values used in experiments of NEAT
and rtNEAT in this thesis. The choice of these values are the result of a combination of empirical testing
and from existing sources. For example the rtNEAT specific parameters are based on those used in (Stanley
et al., 2005), and the base NEAT parameters are based on recommendations from example experiments
on the NEAT users page and from source code17.

17 NEAT Users Page parameter recommendation and definitions. From http://www.cs.ucf.edu/~kstanley/neat.html.

Chapter 5 Design and Implementation

 67

5.5. AGENT IMPLEMENTATION

In order to apply the theoretical designs discussed in the previous sections to SC: BW micromanagement,
a NEAT agent must be integrated into the SC: BW game environment. The BWAPI open source framework
discussed in section 4.7 is used to create and run AI modules in SC: BW. This is integrated with NEAT open
source code and together constitutes an AI agent system for micromanagement. A number of open source
implementations using different programming languages exist for both NEAT and BWAPI. Coincidentally
the main development branches for BWAPI and the original NEAT package by Kenneth O Stanley are both
in C++, which allows for a straight forward integration. With an emphasis for code efficiency and on using
original sources, the default C++ packages are used in this thesis. The integrated development
environment used was Visual Studios 2012, which has attractive integrated compilation and debugging
facilities and is also a personal preference.

5.5.1. AGENT ARCHITECTURE

Figure 27: An overview of the agent architecture. BWAPI serves as the communication layer between the SC: BW and custom AI module codes.
The AI module communicates with BWAPI to get information about game state and issue commands. BWNEAT objects represent an individual
game unit, with an attached neural network which it activates to decide what actions to take. The NEAT Manager module manages NEAT and
rtNEAT algorithm evolutions, based on fitness retrieved from BWNEAT units and controls the evolution and network replacement policies.

Chapter 5 Design and Implementation

 68

Figure 27 summarizes the architecture of the agent system. BWAPI acts as a communication layer for
custom code modules and exposes functionality to retrieve information about the game state and to issue
commands to game units. A unit in SC: BW is encapsulated as a BWNEAT class unit, which links a game
unit with a neural network. The unit is responsible for using its internal percepts, as well as external game
state percepts from the AI Module, as inputs to its neural network. It is also responsible for activating the
network and interpreting the output as a decision for what the unit should do next. The NEAT Manager
module is responsible for initially instantiating the BWNEAT Units, assigning each of them a neural network,
and is an interface to the NEAT and rtNEAT algorithms. It receives evaluated fitness from each unit,
performs the NEAT and rtNEAT epoch processes and reassigns neural network offspring to BWNEAT units.

5.5.2. MAIN EVENT PROCESSES

Figure 28: A summary of the main loops and processes of the AI agent. The AIModule has three main events that dictate the flow of the system.
The onStart() event is triggered at the start of an SC: BW game and is when the BWNEAT units and the NEATManager is initialized. The onFrame()
method is called continuously throughout the SC: BW game and is where each unit updates its percepts, and interprets its neural network controller
for its next action. If rtNEAT is run, this is also where rtNEAT epoch occurs. In the onEnd() method called when the game ends, statistics are
collected and the generational epoch process is run if it is a normal NEAT run.

Chapter 5 Design and Implementation

 69

Figure 28 summarizes the systems main event processes. The first event onStart() is called at the beginning
of an SC: BW game, which begins the Initialize process. This process first initializes a NEATManager object
by passing the collection of starting game units (represented in BWAPI in a Unit class). In turn the
NEATManager initializes a population of neural networks (based on a basic input and output design or
from a population saved in previous runs, and represented in NEAT as a population class) and a collection
of BWNEATUnit objects. Each BWNEATUnit object consists of a BWAPI unit, a NEAT organism (a NEAT
class encapsulating a neural network and its fitness) and a number of variables and functions to store and
calculate a unit’s percepts.

 In SC: BW, the game state is updated continuously every 56 milliseconds when set to the normal
game speed. BWAPI exposes an event that is triggered on every update called onFrame(), which allows
custom AI agent code to run in order to react to the updated game state. In our system, it is during this
event that the game state is fed to each BWNEAT unit and when each unit activates its associated neural
network in order to decide on an action. This is summarized as the update process pseudo code as follows:

SC: BW Figure 29: Pseudocode for the Update process in the AIModule.

foreach (BWNEAT unit 𝑖 in bwneatUnitList) {

 foreach (Percept 𝑝 in unit 𝑖 percepts) {

/** Update each percept 𝑝. Internal percepts such as unit health and
cool down can be queried using BWAPI calls such as
BWAPI::Unit::getHitPoints(). Environmental percepts such as enemy unit
directions require a number of calls and additional calculations. **/

 Update(p);
// Feed each 𝑝 into NN inputs nodes
Feed(p);

 }

// Activate 𝑖’s neural network, which has all percepts in its input nodes
activateNN(𝑖);

/** Interpret the output of 𝑖’s neural network. The nodes with the largest
outputs denote the action to be taken. An action can be performed by using
BWAPI calls such as BWAPI::Unit::attack() or BWAPI::Unit::move()
**/
interpretNN(i);

//If rtNEAT is run and number of frames between replacements has passed
//then perform epoch
if (isRTNEAT && Game.frameCount % ReplacementInterval == 0) {

 NEATManager.Epoch();
}

}

}

Chapter 5 Design and Implementation

 70

 Lastly, the onEnd() method called at the end of an SC: BW game begins the collection process.
This does a saving to file of the population of neural networks, statistics collection (such as recording
average fitness and win rate in experiments and some memory management (necessary in C++ to release
unused dynamically allocated memory). If generational NEAT is run, here is also where the NEAT epoch
process occurs. The NEAT and rtNEAT processes involved are those as described in section 3.5 and 3.6
and involve calls to the NEAT population library code.

5.5.3. UNIT PERCEPTS AND ACTIONS

As mentioned above, a unit’s percepts and actions are implemented using a combination of BWAPI library
calls and other calculations. In the initial model (section 5.2.1), the internal unit percepts are retrieved via
BWAPI calls in the Unit class, such as BWAPI::Unit::getHitPoints() for querying a unit’s current hit
points and BWAPI::Unit::getShields() for a unit’s current shield points. External percepts such as
the number of ally and enemy units in range of the unit involves BWAPI calls to retrieve collections of
observable units in the game, and conditionally counting units that are within the unit’s range. For the
Fight and Retreat actions, their behaviours are summarized as follows:

Figure 30: Pseudocode for the Fight unit action. A script that targets the closest enemy unit for attack. Checks must be made ensure a new attack
command does not override an existing command frame, otherwise an attack may be unintentionally cancelled.

//for a current unit 𝒖:
void BWNEATUnit::Fight(){
 if(we have issued a command to unit 𝒖 already in this frame){
 return;
 }
 else{
 find an enemy unit 𝒊 that is closest to unit 𝒖;
 if (unit 𝒊 exists){
 if (the last command for unit 𝒖 was to attack unit 𝒊){
 return;
 }
 else{
 𝒖 -> attack(𝒊);
 }
 }
 }
}

Chapter 5 Design and Implementation

 71

Figure 30 and Figure 31 summarizes pseudocode for the Fight and Retreat actions for the initial model. In
both cases, it must check that a previous command has been completed before pursuing a new one,
otherwise commands may be constantly interrupted by each other, causing a jittering behaviour in units
that does not allow them to get anything done.

The directional granularity model (section 5.2.3) adds further complexity to the implementation of
unit percepts and actions. The main addition is the calculation of the direction of enemy units around a
given unit, and mapping this to one of eight neural network input nodes. The output also mirrors this
mapping into one of eight retreat movement directions. This is summarized as follows:

Figure 31: Pseudocode for the Retreat unit action. A script that calculates a flee direction that is a sum of weighted vectors of enemy unit positions
to the current unit’s position. The unit is moved in this direction by a static distance, if it does not interrupt a previous command.

//for a current unit 𝒖:
void BWNEATUnit::Retreat(){
 if(we have issued a command to unit 𝒖 already in this frame){
 return;
 }
 else{
 initialize an empty flee vector 𝒇;
 foreach(enemy unit 𝒊 in enemy units){
 create vector 𝒊𝒖 from 𝒊’s position to 𝒖;
 //weigh the influence of closer enemy units higher
 divide 𝒊𝒖 by length squared of 𝒊𝒖;
 add 𝒊𝒖 to 𝒇;
 }
 find nearest terrain obstacle 𝒘;
 create vector 𝒘𝒖 from 𝒘 to 𝒖 and normalize by distance;
 add 𝒘𝒖 to 𝒇;
 normalize 𝒇;

/** Create a position 𝒑′ = 𝒑 + (𝒇 ∗ 𝟖𝟎), that is unit 𝒖’s current position
𝒑 moved in the direction of the flee vector 𝒇 by some static distance
**/
create 𝒑′;

 if (the last command for unit 𝒖 was to move to 𝒑′){
 return;
 }
 else{
 𝒖 -> moveTo(𝒑′);
 }
 }
}

Chapter 5 Design and Implementation

 72

Figure 32 summarizes the pseudocode for calculating and mapping the direction of enemy units
in respect to a given unit, for the directional granularity model. The value of inputs are based on the
distance of the enemy unit to the current unit as described in section 5.2.3. The angle to node mappings
using the arc tangent function is summarized as follows:

Figure 32: Pseudocode of how directional inputs are calculated and mapped to an associated input node.

//for a current unit 𝒖:
void BWNEATUnit::InputDirectionalPercepts(){
 foreach(enemy unit 𝒊 in enemy units){
 create vector 𝒊𝒖 from 𝒊’s position to 𝒖;
 //using std::atan2
 get the arc tangent angle of 𝒊𝒖;

/** Retrieve node associated with the angle. Nodes from 1 to 8 are
mapped around a unit circle starting with node 1 aligned to the positive
X axis, and going anti clockwise. Each node has an associated 45 degree
arc which the angle of 𝒊𝒖 can fall under. **/
retrieve node 𝒏 associated with 𝒊𝒖’s angle;
/** Generate input 𝒏𝒊 for node 𝒏 based on the distance of enemy unit 𝒊
to unit 𝒖.**/
generate input 𝒏𝒊 for node 𝒏;
/** Because multiple enemy unit 𝒊’s can be in the same direction, the
input that is highest (most dangerous) is chosen. **/

 if (𝒏 does not already have an input or input is less than 𝒏𝒊){
 change 𝒏’s input to 𝒏𝒊;
 }
 }
}

Chapter 5 Design and Implementation

 73

Figure 33: A summary of the 8 directional nodes mapping using the arctangent function. Blue circles indicate nodes.

 This mapping is also used for the directional outputs, except that the node with the largest output
is chosen. A unit retreats in the angle determined by this mapping, similar to in Figure 31, except that the
flee vector is determined by the angle mapping result.

5.5.4. FITNESS EVALUATION

The fitness function discussed in section 5.5.4 is primarily based on the amount of damage a unit receives
from and dealt to enemy units. Damage received is the difference between a unit’s current and starting
HP (and shield points for Protoss units). This is easily implemented via BWAPI calls such as
BWAPI::Unit::getHitPoints() and by storing a units starting HP and shields at the initialization of
the BWNEATUnit collection. However, there is no inbuilt library call or straightforward way to query a unit’s
damage dealt over time. This requires some estimation techniques based on observing game states.

 The first attempt to estimate a unit’s damage output was done by observing when a unit’s weapon
cool down resets. Whenever this happens, it is assumed that the unit has landed a successful attack. In
tracking and counting the number of attacks at any time, the unit’s damage dealt can be estimated by
multiplying with its weapon damage. The problem with this estimation is that attacks may not have landed
successfully, for example range projectiles can miss due to terrain elevation differences or just by random

Chapter 5 Design and Implementation

 74

chance18. Another problem is that weapon and unit types affect the actual damage received by the enemy
unit, for example a Dragoon unit only deals half damage to Zealot units (explosive damage type deals half
damage to small sized units19). Furthermore, in the case of multiple units attacking a single low HP enemy
unit, all units would count their attack as successful even though only one of the attacks actually reduced
the enemy unit HP to 0.

 The second attempt solves these issues by estimating based on observing Bullet objects in the
game environment. On every game frame, a collection of observable Bullet objects (weapon projectiles)
can be queried, which gives information about the source unit, the target unit, and the weapon type that
fired the bullet. The bullet returns null for its target unit if the bullet is a miss, or the unit is no longer
accessible (destroyed). It is then possible to assign the correct amount of damage dealt for any weapon
types and on any unit types, while avoiding attack misses or attacks on destroyed units. The only exception
are melee units such as Zealots, which do not generate Bullet objects when they attack, so their damage
dealt is estimated with the previous weapon cool down method. However, melee attacks do not miss, so
the method is relatively accurate for estimating melee damage.

 With these techniques, a unit’s fitness can be calculated at any point in time during the running of
the system. This is important to support different epoch cycles for generational and real time NEAT runs.
For rtNEAT runs, each unit’s fitness is calculated on every epoch interval (section 3.6) during real time game
frames. For generational NEAT runs, fitness evaluation does not occur until a match has ended (section
3.5).

5.6. SUMMARY OF DESIGN AND IMPLEMENTATION

This chapter began with discussions on designs and models for a micromanagement agent controlled via
neural networks. Firstly, a one unit to one neural network mapping was discussed to be advantageous for
evolution using the NEAT methodology. Secondly, a number of network designs were considered, differing
in the number and types of game state information to be incorporated as neural network inputs, as well
as unit actions as outputs. Lastly, the fitness function used to guide evolution was defined and discussed,
as well as a number of NEAT specific parameter values.

18Liquidpedia: The StarCraft Encyclopedia. http://wiki.teamliquid.net/starcraft/Damage#Misses
19 http://wiki.teamliquid.net/starcraft/Damage#Explosive_Damage

Chapter 5 Design and Implementation

 75

 The implementation of the agent was also discussed in detail, including its architectural integration
of the BWAPI framework and NEAT open source code. The inner workings of the agent system was further
elaborated in an examination of its three main processes: an initialization of unit and neural network pairs,
on frame updating of unit percepts and querying neural network controllers, and the collection of statistics
and saving of network results. Further details of more specific parts of the system, such as how the unit
percepts and actions are implemented, as well as how the fitness evaluation is calculated was also
discussed.

In the next chapter, I discuss a number of experimentations conducted to validate the performance
of the designs discussed previously. The implementation of the agents used in these experimentations are
as those discussed in this chapter.

Chapter 6
EVALUATION

In this chapter, I discuss a number of experiments aimed at evaluating the effectiveness of the proposed
AI system in Chapter 5. Experiments are grouped into two rounds, with the first examining the proposed
initial agent neural network model (section 5.2.1). The result of these experiments lead to the extension of
the model to include directional input (section 5.2.3), and a second round of experimentations for
comparison. A primary goal behind these experiments is a comparison of the rtNEAT and generational
NEAT algorithms. Specifically, in their evolutionary performance over time as well as their effectiveness at
generating successful neural network controllers for micromanagement.

The primary measure in these experiments is the performance of the NEAT evolved AI agent
against the default SC: BW AI. The default AI consists of a static unit behaviour script built-in to the SC: BW
game. There are a number reasons for employing this measure. Firstly, this method of evaluation is
employed in the majority of previous work on micromanagement AI. Secondly, the alternative measures
(playing against real human players, or other AI agents) are problematic and difficult to set-up. I discuss
the limitations of this benchmark and the alternatives later in section 7.2.

 The parameters used for NEAT and rtNEAT are as those discussed in section 5.4. These were
determined by examples in the literature and by informal tests using the experiment setups described
below. The values for the parameters remain constant throughout each of the experiments.

6.1. INITIAL MODEL EXPERIMENTS

Experiments were first conducted using the initial model, to gauge the effectiveness of NEAT and rtNEAT
evolved micromanagement agents in SC: BW. In these experiments, the NEAT and rtNEAT-trained agent
AI played micromanagement battles against the SC: BW built-in AI. The initial focus was on the
performance of each algorithm when left running over generations of evolution, in terms of agent win rate
and network fitness. A variety of unit setup was used in order to simulate different micromanagement

Chapter 6 Evaluation

 77

scenarios. The result of these experiments showed very high fluctuation and variation in the fitness and
win rate of agents over generations. In order to adjust for these fluctuations, further experiments were
conducted to show the number of generations taken for each algorithm to converge to a suitable solution,
when evolution is halted upon finding a potential candidate.

6.1.1. UNIT SET-UP

As mentioned in section 4.3, units vary based on a number of attributes, such as the race, weapon type
and HP. In order to keep the experiment variables constant and to avoid an explosion of unit type
permutations, the experiment setup is based on Gabriel et al., (2012) which compared 4 unit type variations
(Zealots vs. Zealots, Dragoons vs. Dragoons, Zealots vs. Dragoons and Dragoons vs. Zealots). These
variations require different types of agent behaviour to be evolved, in order for the agent to achieve a
high win rate. For example as mentioned previously, a ranged unit has an inherent advantage against a
melee unit if it adopts a hit-and-run strategy called kiting. While a Dragoon unit deals less damage to a
Zealot unit and has a higher weapon cool down, it has a superior weapon range and should be
advantageous if it employs kiting. On the other hand if the agent is controlling Zealots, it should be
aggressive and quickly advance against the Dragoons to reduce their weapon range inferiority.
Figure 34 summarizes the unit attributes for Zealots and Dragoons.

Unit Name HP Shield Damage Range Cool Down
Dragoon 100 80 20* 128 30
Zealot 100 60 16 15 22

Figure 34: Main attributes for units used in initial model experiments. *Dragoon attack damage is halved against Zealots.

6.1.2. SCENARIO SET-UP

The scenario map used throughout experimentation is a simple and flat map with no elevated terrain (64
by 64 grid size), based on those used in the AIIDE 2010 StarCraft micromanagement tournament20. This is
because the current models do not take elevation into consideration in its state inputs. Fog of War is

20 AIIDE2010 micromanagement tournament: http://eis.ucsc.edu/StarCraftTournament1

Chapter 6 Evaluation

 78

enabled on the map, preserving the incomplete information attribute of the game which can hide enemy
units outside of unit vision. The number of units is kept at constant 12 versus 12, which is the maximum
selectable number of units for a human controlled squad. The enemy and ally squads are positioned in
equal and symmetrical starting positions with a static distance away from each other, such that both sides
are able to see some units of the enemy at the beginning of a match, but are not immediately in weapon
range of each other (Figure 35). This setup is used to reduce unit starting positional advantages while
allowing Fog of War, because if the default AI does not have vision of enemy units, it tends to break apart
its squad into a disadvantageous layout while in search of the enemy.

Figure 35: A screenshot of an example starting scenario map with unit layout (Dragoon vs Dragoon). Depicted bottom right corner is the minimap
view of the entire map.

6.1.3. TECHNICAL SETUP

All experiments are run with the following set-up:

 Intel i5-3550 Quad Core CPU clocked at 3.30 GHz with 8 GB RAM
 Windows 7 64-bit OS
 StarCraft: Brood War version 1.16.1
 Visual Studios 2012 for compiling and live debugging
 rtNEAT C++ version 1.0.2
 BWAPI C++ version 3.7.4
 Chaoslauncher version 0.5.5 for injecting BWAPI DLLs into SC:BW

Chapter 6 Evaluation

 79

During experimentation runs, BWAPI is configured for automatic and uninterrupted repeat runs of
the same scenario map. For maximum running speed, the game speed is set to 0 which skips all delays
between game frames, and the GUI and sound engines are also disabled. This ensures that as many
experimentation runs can be completed as quickly as possible to allow for hundreds of generations of
learning. After a match is finished, statistics such as match result and average unit fitness are recorded to
a text file. The resulting population of neural networks are also serialized to a formatted file to be loaded
back in at the beginning of the next match. When experimenting on both generational NEAT and rtNEAT,
the matches are run in sequence, switching between matches of rtNEAT and NEAT one at a time.

6.1.4. EVOLUTIONARY PROCESS EXPERIMENT

The first experiment compared the performance of the NEAT and rtNEAT algorithms on each of the 4 unit
matchup variations. Each unit matchup is played over 300 matches of evolution, with the NEAT or rtNEAT
agent controlling one side and the default SC: BW AI controlling the other. In the first match, the population
is initialized with a basic neural network structure with no hidden nodes and random starting weights for
all connections (each of the 12 units have the same neural network structure but with different random
starting weights). For rtNEAT, evolution occurs in real-time over the 300 matches, while for generational
NEAT, evolution occurs after each match. A single run of the experiment is the completion of 300 matches,
upon which the population is reset to the starting basic structure with random weights. This 300-match
run is repeated 25 times in order to adjust for the randomness in starting weights in each run. The average
fitness of all units and the match outcome is recorded over each 300-match run, and averaged over the
25 runs.

 The experiment ran successfully and terminated after a week of computation, with minor problems.
The experiment had to be manually restarted (rebooting BWAPI and SC: BW) on occasion due to SC: BW
crashing from memory issues when left running for extended matches, and also due to some memory
leaks from the AI module itself. Transitioning between units match-ups were also done manually. Overall
the results are summarized in the following figures:

Chapter 6 Evaluation

 80

Figure 36: Plot of range unit Dragoon (NEAT agent) vs. Melee unit Zealots, mean win rate for 25 runs over 300 matches.

Figure 37: Plot of Dragoon vs. Dragoon mean win rate for 25 runs over 300 matches.

0

0.2

0.4

0.6

0.8

1

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281

Ag
en

t w
in

 ra
te

 o
ve

r 2
5

ru
ns

Matches

Dragoon vs. Zealot

NEAT Win
Rate
rtNEAT Win
Rate

0

0.2

0.4

0.6

0.8

1

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281

W
in

 ra
te

 o
f a

ge
nt

 o
ve

r 2
5

ru
ns

Matches

Dragoon vs. Dragoon

NEAT
Win Rate

rtNEAT
Win Rate

Chapter 6 Evaluation

 81

Figure 38: Plot of Zealot (NEAT agent) vs. Dragoon mean win rate for 25 runs over 300 matches.

Figure 39: Plot of Zealot vs. Zealot mean win rate for 25 runs over 300 matches.

0

0.2

0.4

0.6

0.8

1

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281

Ag
en

t w
in

 ra
te

 o
ve

r 2
5

ru
ns

Matches

Zealot vs. Dragoon

NEAT Win
Rate

rtNEAT
Win Rate

0

0.2

0.4

0.6

0.8

1

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281Ag
en

t w
in

 ra
te

 o
ve

r 2
5

ru
ns

Matches

Zealot vs. Zealot

NEAT
Win Rate

rtNEAT
Win Rate

Chapter 6 Evaluation

 82

Figure 40: Summary results for evolutionary process experiment using the initial model (IM). The column graph plot shows the mean win rate
categorized by unit match up. The error bars indicate the 95% confidence interval for the mean.

The summary results (Figure 40) suggest that there is no single algorithm dominating all of the
match variations. The mean win rate is higher for NEAT on Dragoon vs. Zealot (97.59% mean, 7.95% SD)
and Zealot vs. Dragoon (58.89% mean, 10.79% SD), while rtNEAT is higher on Dragoon vs. Dragoon
(60.39% mean, 9.86% SD) and Zealot vs. Zealot (49.73% mean, 11.63% SD).

Dragoon vs. Dragoon Dragoon vs. Zealot Zealot vs. Zealot Zealot vs. Dragoon

NEAT 60.39% 97.59% 23.80% 58.89%

rtNEAT 72.35% 69.48% 49.73% 47.87%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

W
in

 R
at

es
 O

ve
r 2

5
Ru

ns

Unit Match-Ups

IM Evolutionary Process Experiment

NEAT rtNEAT

Chapter 6 Evaluation

 83

If we consider a win rate higher than 50% to indicate better than baseline performance against the
built-in SC: BW AI, then both NEAT and rtNEAT show effectiveness on Dragoon vs. Dragoon and Dragoon
vs. Zealot battles. NEAT is also effective in Zealot vs. Dragoon (58.89% mean ± 1.23% at the 95%
confidence level). Neither algorithm were able to have higher than 50% win rate on Zealot vs. Zealot,
which indicates it is the most difficult matchup for the agent. The reason that a win rate above 50% indicates
the agent’s effectiveness is that it implies it has an edge over the default SC: BW AI. These are statistically
significant results with minimal differences at the 95% confidence level (for all results greater than 50%, the
95% CL does not drop below 50% at the lower confidence bound). Note that even a win rate at 50% is far
greater than random, since randomized unit control would rarely achieve a win against the default AI.

For both algorithms, the main advantage against the default AI occurs when controlling Dragoons
(ranged unit). From examining the agent behaviour, the effectiveness of controlling Dragoon units can be
attributed to having learnt the hit-and-run micromanagement strategy (kiting), both against melee units
and also against other Dragoon units. It is interesting to note the generally poor performance of both
algorithms when controlling Zealot (melee) units. This is discussed further in section 6.1.6.

Figure 36 to Figure 39 show the plots of average win rate over generations of matches for all
match variations. The average fitness plot is not shown, but is highly correlated to the average win rate.
From these plots, we see a trend of initial poor performance and a quick convergence to some local
optima. This is typical of evolutionary algorithms where the initial starting solutions are randomized and
are not expected to perform well, but quickly converge towards local optima.

On all variations the first convergence to a local optimal occurs between the 10th to 20th matches.
From then on, there is a trend of significant fluctuation of win rate, which is further illustrated by the
standard deviation of each match up (with values around 10%). With the exception of the Zealot vs.
Dragoon matches, the standard deviation is higher with the rtNEAT algorithm, suggesting a greater
fluctuation of evolutionary success over generations than the NEAT algorithm. This may be due to the
nature of the rtNEAT algorithm, in introducing evolutionary changes to the population in real time, which
is faster than generational NEAT.

From this experiment it can be seen that both algorithms are able to produce high performing
solutions (above and beyond 50% win rate), but are also quick to introduce mutational changes that
weaken the solutions. This is partly due to the nature of the experiment where evolution is allowed to
continue even after achieving a winning solution. If winning behaviour is explicitly preserved, such that no
changes occur in candidate solutions, then their effectiveness can be better gauged. In the next
experiment, I analyse the number of generations it takes for each algorithm to converge to a successful
solution.

Chapter 6 Evaluation

 84

6.1.5. GENERATIONAL CONVERGENCE EXPERIMENT

By defining a winning criterion, the evolution can be halted in both the NEAT and rtNEAT algorithms when
a candidate solution is first found. A winning solution is defined to be an agent that achieves 10 consecutive
wins as an indication of success (the probability an agent with at most 50% win rate can win 10 consecutive
games is < 0.1%). This is a strict criterion as an agent may still be high performing even though it loses 1
game out of 10, for example due to the stochastic nature of the game states. However it is used to simplify
the running of the experiment and to show it is possible to robustly generate agents of this level of
performance.

For this experiment, all variables are kept the same as in the previous experiment (agent model,
unit set-up, scenario set-up, technical set-up) except for the running procedure. Instead of a single run of
300 matches, a run in this experiment is defined as winning 10 consecutive matches, or failing to do so
after 1000 matches. On encountering a win, evolution is halted for the agent so that its neural network
population is unchanged for the next match. If the agent encounters a loss, evolution continues as normal.
After 10 consecutive wins, or if not successful after 1000 matches, the experiment is reset to an initial
population with randomized weights for the next run. For each algorithm and each matchup, the
experiment is stopped and analysed after 60 runs. The experiment successfully ran and terminated after 4
days of computation with minor manual restarts (similar issues to previous experiment).

Figure 41 summarizes the results of this experiment. In all experimental runs, an acceptable solution
(10 consecutive wins) could be found before 1000 matches, with most solutions converging in less than
100 matches. Once again there was high variability in the results, this time in the number of matches taken
to arrive at an acceptable solution. This is evident in the high standard deviation in some match ups (e.g.
124.39 SD and 116.03 Mean for NEAT Dragoon vs. Dragoon, 26.03 SD and 19.95 Mean for rtNEAT
Dragoon vs. Zealot). The mean number of matches taken between NEAT and rtNEAT is comparable to the
average win rate performance of the previous experiment: NEAT takes fewer number of generations for
Dragoon vs. Zealot and Zealot vs. Dragoon match ups, while rtNEAT takes fewer in Dragoon vs. Dragoon
and Zealot vs. Zealot match ups.

Chapter 6 Evaluation

 85

Figure 41: Summary results for the generational convergence experiment on the initial model (IM). The mean number of matches taken to produce
an acceptable solution for each algorithm is plotted on the column graph categorized by unit match up. The error bars indicate the 95% confidence
interval for the mean.

There is a much higher range in the number of matches taken between different matchups for
NEAT (4.15 mean for Dragoon vs. Zealot and 116.03 mean for Dragoon vs. Dragoon) than for rtNEAT
(18.33 mean for Dragoon vs. Dragoon and 26.78 mean for Zealot vs. Zealot). This suggests the
performance of rtNEAT is more stable and robust under different unit variations. Overall, the experiment
showed that both algorithms were capable of generating effective solutions for different unit variations in
the task of micromanagement against the default SC: BW AI. In order to do so, it is necessary to establish
an acceptance criterion for which to halt evolution and to preserve winning behaviour. In the next section,
some of the observations and implications on the above experiments are discussed.

Dragoon vs. Dragoon Dragoon vs. Zealot Zealot vs. Zealot Zealot vs. Dragoon

NEAT 116.03 4.15 42.52 9.6

rtNEAT 18.33 19.95 26.78 22.07

0

20

40

60

80

100

120

140

160

M
ea

n
N

um
be

r o
f M

at
ch

es
 O

ve
r 6

0
Ru

ns

Unit Match-Ups

IM Generational Convergence Experiment
NEAT rtNEAT

Chapter 6 Evaluation

 86

6.1.6. UNIT BEHAVIOUR AND NETWORK COMPLEXITY OBSERVATIONS

In the evolutionary process experiment, the fluctuation of fitness and success rate of solutions can be due
to a number of reasons. Firstly, it suggests that any structural innovations introduced were making
significant differences in the performance of the neural networks. This is probably due to the simplicity of
the network design, where only 2 outputs exist, such that any structural change may affect the action
selected. A simple neural network allows faster convergence by reducing the search space of initial nodes
and weights. But it also means it is faster to diverge from the local optima. On top of this, the stochastic
nature of the game environment can result in the same solution having varied success over different runs.

This also explains the general poor performance of both algorithms on Zealot match ups in the
evolutionary process experiment. Melee units do best in direct attack as they lack the weapon range to
perform hit-and-run manoeuvres. Any innovation introduced to make melee units retreat will immediately
reduce the success rate of the solution. In the second experiment, the algorithms have no problem
generating a solution for melee match ups, when no new innovations were introduced after a solution
begins to do well. However, it is still slower and thus more difficult to converge on good unit control
behaviour for melee units, than with range units.

Another factor is an interesting behaviour exhibited by the units over generations of evolution:
some units are evolved to retreat when enemies are first found, but come back to fight after allied units
are engaged in combat. These units tend to generate more fitness than those directly attacking from the
beginning, as they do not receive as much damage over time. However, as the population begins to favour
this behaviour, there is a breaking point in which no units will stay to fight, leading to a match loss and a
return to evolution favouring units that do not retreat. This cycle is highly correlated with the fluctuation
of win rate over matches.

Interestingly, the first experiment showed that rtNEAT produced higher variation in success of
solutions than NEAT over time. However in the second experiment, the average number of matches for
an acceptable solution was less varied across different match ups than NEAT. This suggests real-time
evolution can be quicker in introducing changes that reduce fitness, but also allow a more robust
convergence to a solution regardless of unit variation (variability in state and solution space). This is
intuitive, since rtNEAT should be faster in reacting to changes in the environment in real time, than regular
NEAT evolution between matches.

 From these experiments it was hypothesized that modifying the network complexity would induce
a training time versus solution robustness trade-off. For example, the inputs can incorporate a deeper
ontology of unit quality and type variations (armour, weapon and ability types etc.) and more precise

Chapter 6 Evaluation

 87

directional and distance data. Instead of fight or retreat actions, the decisions can be to move at specific
angles for specific distances, and to explicitly decide which units to attack. The advantage of more
complicated neural network designs should be agents with more complicated behaviours that are able to
perform well under a higher variety of conditions. The disadvantage is in a greater number of dimensions
to search and optimize for, resulting in slower training time. In the next section, I discuss experiments for
an initial attempt to explore increasing network complexity

6.2. DIRECTIONAL GRANULARITY EXPERIMENTS

In order to explore increased network complexity, the AI agent was adapted to use the directional
granularity neural network model discussed in section 5.2.3. This was done by modifying the starting
network topology loaded at the beginning of a match, and implementing directional unit percepts and
actions discussed in section 5.5.3. The main difference in this model is the replacement of the retreat
subroutine and network output with a number of directional information input and outputs. In effect, it
was an attempt to allow the agent to learn the directions to retreat on its own, as well as exploring increased
network complexity.

Experiments conducted on the directional granularity model were similar to those done on the
initial model. First, a version of the evolutionary process experiment was run, with an extended number of
matches per run. The results showed similar fluctuations to the initial model experiments, even through
extended matches. Secondly, the generational convergence experiment was also conducted, with the same
setup as previous. The results were analysed and discussed in comparison to the first model.

In order for results to be comparable to the initial model experiments, controlled variables must
be held constant. Therefore, the unit, scenario and technical set-ups remain the same as those described
in the previous experiments. The NEAT parameter values also remain unchanged throughout.

6.2.1. EVOLUTIONARY PROCESS EXPERIMENT 2

Experiments on the directional granularity model began with the same evolutionary process experiment
as in the previous model, except with an extended number of matches. Each unit match-up run consists
of 600 matches instead of 300 as in the previous model. This was done because I hypothesized that the
extra complexity of the model would require more time for convergence. By extending the number of

Chapter 6 Evaluation

 88

matches, the results can still be directly comparable between the first 300 matches, and also provide some
insight into the models performance after the extended matches. Each unit match up was run 25 times
and the results recorded as in the previous experiments. The experiment running time exceeded double
the time taken in the previous model (around 16 days) and were successfully completed with minor manual
restarts. The results are summarised below:

Dragoon vs.
Dragoon

Dragoon vs.
Zealot

Zealot vs.
Zealot

Zealot vs.
Dragoon

NEAT First 300 40.35% 12.39% 14.05% 36.23%

NEAT Last 300 39.17% 12.04% 13.54% 37.95%

rtNEAT First 300 41.65% 7.80% 30.81% 28.59%

rtNEAT Last 300 39.91% 7.77% 31.00% 32.47%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

M
ea

n
W

In
 R

at
e

O
ve

r 2
5

Ru
ns

Unit Matchups

DG Evolutionary Process Experiment
NEAT First 300 NEAT Last 300 rtNEAT First 300 rtNEAT Last 300

Figure 42: Summary results for the evolutionary process experiment using the directional granularity (DG) model. A column graph categorized by
unit matchup shows the mean win rates of each algorithm in the first and last 300 matches. The error bars show the confidence interval for the
mean.

Chapter 6 Evaluation

 89

Figure 43: Plots of the best (Dragoon vs. Dragoon) and worst (Dragon vs. Zealot) performing unit match ups. Plots are categorized by unit match-
up and by first and last 300 matches. Each plot indicates the mean win rate of both the NEAT and rtNEAT algorithms over 300 matches.

0

0.5

1

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281

W
in

 R
at

e

Matches

Dragoon vs. Dragoon First 300 Win Ratio
rtNEAT WR NEAT WR

0

0.5

1

301 321 341 361 381 401 421 441 461 481 501 521 541 561 581

W
in

 R
at

e

Matches

Dragoon vs. Dragoon Last 300 Win Ratio
rtNEAT WR NEAT WR

0

0.5

1

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281

W
in

 R
at

e

Matches

Dragoon vs. Zealot First 300 Win Ratio
rtNEAT WR NEAT WR

0

0.5

1

301 321 341 361 381 401 421 441 461 481 501 521 541 561 581

W
in

 R
at

e

Matches

Dragoon vs. Zealot Last 300 Win Ratio
rtNEAT WR NEAT WR

Chapter 6 Evaluation

 90

 The first thing to note is that the results are generally poor (all below 50% win rate) for all algorithms
and unit match-ups (Figure 42). There is no significant difference between the performance of the first and
last 300 matches (except for a small but significant difference for rtNEAT on Dragoon vs. Zealot), which
suggests the model generally does not converge better with extra training. I confirmed this point by
running single runs of 10,000 matches for each algorithm and each match-up, and which indicated the
same poor performance even for long extended evolution periods.

 The best performing unit match-up was Dragoon vs. Dragoon, at around 40% win rate for both
algorithms and on both the first and last 300 matches (Figure 42). The worst performing was the Dragoon
vs. Zealot match-up, where the algorithms performed at 7% - 12% win rate. NEAT performed significantly
worse than rtNEAT on Zealot vs. Zealot (around 14% for NEAT and 30% for rtNEAT), while performing
better on Zealot vs. Dragoon (NEAT at 36% - 38% and rtNEAT at 28% - 32%). NEAT also performed better
on Dragoon vs. Zealot, while there is no clear winner on the Dragoon vs. Dragoon match-ups.

 Figure 43 depicts the win-rates of the best and worst performing unit match-ups during the first
and last 300 matches. The first 300 matches of the Dragoon vs. Dragoon match-up (best performing)
shows the same quick convergence in the first 10 to 20 matches (starting from the default randomized
weight topology) as in the initial model experiments. Also similar to previous experiments is a high
fluctuation of win-rate for both NEAT and rtNEAT. There are spikes of up to 72% win-rate for rtNEAT and
74% for NEAT in some matches, but also dropping to below 20%. This fluctuation continues onto the last
300 generations where there seem to be even worse average performance, despite not having the initial
poor performance of starting with a default topology (since the last 300 matches continue on from the
first 300).

 On the Dragoon vs. Zealot unit match-up, it can be seen that the AI could not converge during
the first 300 matches, and constantly dropped to 0% win rate throughout matches (Figure 43). There is no
significant difference on the last 300 matches either, which suggests that the directional granularity model
performs very poorly controlling Dragoons vs. Zealots, even with extended training. Not depicted are the
win rate plots for Zealot vs. Zealot and Zealot vs. Dragoon, but their performance is very similar, with high
fluctuation over matches and insignificant difference between the first and last 300 matches.

 Since there is the observed problem of high fluctuations of win-rate as in the initial model, it is a
good candidate for a repeat of the generational convergence experiment. In the next section, I describe
the results of this repeated experiment.

Chapter 6 Evaluation

 91

6.2.2. GENERATIONAL CONVERGENCE EXPERIMENT 2

The generational convergence experiment from the initial model is repeated for the directional granularity
model without introducing any changes. Once again the winning criteria is defined as 10 consecutive wins,
and a run terminates on reaching the criteria or failing to do so after 1000 generations. Each unit match-
up is again run 60 times, with the resulting number of matches taken to reach a winning solution (or a
failure) recorded at the end of reach run. The unit, scenario and technical setup also remains unchanged.
The experiment successfully ran and terminated after 9 days of computation. The results are summarized
below:

Dragoon vs.
Dragoon

Dragoon vs. Zealot Zealot vs. Zealot Zealot vs. Dragoon

NEAT 156.95 16.27 0 0

rtNEAT 52 19.77 0 210.33

0

50

100

150

200

250

300

M
ea

n
N

um
be

r o
f M

at
ch

es
 O

ve
r 6

0
Ru

ns

Unit Match-UPs

DG Generational Convergence Experiment

NEAT rtNEAT

Figure 44: Summary results of the generational convergence experiment on the directional granularity model (DG). The mean number of
generations taken to produce a winning solution is plot on a column graph. The error bars indicate the 95% confidence interval for the mean. A
0 value indicates the algorithm was unable to produce a winning solution for at least 1 of its 60 runs (hence not able to calculate a comparative
mean).

Chapter 6 Evaluation

 92

Unlike in the initial model experiments, the directional granularity model could not consistently
generate winning solutions for all unit match-ups. This resulted in significantly longer experiment running
time, as more runs had to complete a full 1000 matches. Figure 44 depicts the mean number of matches
taken to generate a winning solution for the match-ups and algorithms that were able to do so for all 60
runs. Figure 45 depicts results for those match-ups and algorithms that failed one or more of its 60 runs,
in the form of a success rate and maximum and minimum number of matches needed within its successful
runs.

Both algorithms were able to consistently generate winning solutions for Dragoon vs. Dragoon
and Dragoon vs. Zealot match-ups. NEAT takes significantly more matches than rtNEAT on Dragoon vs.
Dragoon match-up, while there is an insignificant difference in the Dragoon vs. Zealot match-up. The
lowest number of matches taken for both algorithms was on the Dragoon vs. Zealot match-up, which is
surprising as it is the worst performing match-up during the evolutionary process experiment for both
algorithms. This suggests that halting evolution is especially important for this match-up for the directional
granularity model.

Neither algorithms were able to consistently generate winning solutions for the Zealot vs. Zealot
match-up. NEAT is especially worse on this, having only 30% success rate versus rtNEAT at 77% (Figure
45). This is consistent with the evolutionary process experiment, where NEAT has a significantly worse win
rate than rtNEAT on this match-up. For the Zealot vs. Dragoon matchup, only rtNEAT was able to
consistently generate a winning solution (although taking the highest mean number of matches amongst
all unit match-ups to do so). This is in contrast to the evolutionary process experiment where NEAT had a
significant win rate advantage over rtNEAT, and suggests rtNEAT benefits from halting evolution more so
than NEAT on evolving successful neural network controllers on the directional granularity model. In fact,
on all match-ups where rtNEAT performed significantly worse in the evolutionary algorithms, it has taken
less matches for rtNEAT than NEAT on the generational convergence experiment (or there is an
insignificant difference) to generate a successful solution.

Match Variation Success Rate Max Min
NEAT Zealot vs. Zealot 0.30% 933 17
rtNEAT Zealot vs. Zealot 0.77% 923 11
NEAT Zealot vs. Dragoon 0.83% 860 9

Figure 45: Results for the unit match up and algorithms that could not generate acceptable solutions for at least 1 of its 60 runs. The success rate
(out of the 60 runs), maximum (Max) and minimum (Min) number of generations taken for an acceptable solution over its successful runs is shown.

Chapter 6 Evaluation

 93

In general, there is a large variation in the number of matches taken to generate successful
solutions for both algorithms (confidence intervals at almost 100), except on the Dragoon vs. Zealot match-
ups. For the match-ups that the algorithms could not be consistent on, there is a large range of matches
taken (maximum over 900, minimum below 10). This and the poor results of the evolutionary process
experiment in general suggests unstable evolution and poor performance for the directional granularity
model. In the next section, I discuss unit behaviour observations that elaborate the performance of this
model, and directly compare the results of this model and the initial model.

6.2.3. UNIT BEHAVIOUR AND COMPARING MODELS

Much of the poor performance of the directional granularity model is elaborated when examining the unit
behaviour during evolution. For example it was observed in the initial model that when controlling Zealot
units, the best result occurs when the network is trained to pursue aggressive attacking behaviour (section
6.1.6). In the initial model, the worst performing match-ups for the evolutionary process experiment were
in controlling Zealot units (Figure 46). This was due to how quickly evolution introduced defensive unit
behaviour which reduced the viability of Zealot units (by making units retreat instead of attacking).

The directional granularity model is also affected by this, and is made even worse because the
defensive behaviour is error prone. In the initial model, the retreat action is a static script that directs a unit
away from enemy units, ensuring that it does not take further damage. This is sometimes advantageous if
the unit is low in HP, but disadvantageous most of the time when damage output is a priority. In the
directional granularity model, the retreat action moves a unit in a direction based on the network outputs.
If there is an incorrect mapping, the unit may move toward enemy units, which will quickly reduce its HP.
In short, the model performs even worse than the initial model when evolving defensive behaviour for
Zealots, and yet tends to do so as often.

 This problem was solved in the initial model when evolution is halted in the generational
convergence experiment. Both algorithms were able to successfully generate winning solutions for Zealot
unit match-ups under 50 matches (Figure 47). This is not the case for the directional granularity model,
where only rtNEAT could consistently generate a winning solution, and only for Zealot vs. Dragoons (also
taking over 200 matches on average to do so). This suggests the model is simply not viable for consistently
evolving good Zealot behaviour control. Increasing the complexity of the retreat action is detrimental to
unit control that requires a focus on the aggressive attacking behaviour.

Chapter 6 Evaluation

 94

Figure 46: The results of the evolutionary process experiment for the initial model (IM) and the first 300 matches of the direction granularity (DG)
model plotted together for comparison.

Figure 47: The results of the generational convergence experiment for the initial model (IM) and the direction granularity (DG) model plotted
together for comparison.

60.39%

97.59%

23.80%

58.89%

72.35% 69.48%

49.73% 47.87%
40.35%

12.39% 14.05%

36.23%

41.65%

7.80%

30.81% 28.59%

Dragoon vs. Dragoon Dragoon vs. Zealot Zealot vs. Zealot Zealot vs. Dragoon

IM vs. DG Model Evolution Process Win-Rate

Initial Model NEAT Initial Model rtNEAT DG Model NEAT DG Model rtNEAT

116.03

4.15

42.52

9.618.33
19.95

26.78 22.07

156.95

16.27
nan nan

52
19.77

nan

210.33

Dragoon vs. Dragoon Dragoon vs. Zealot Zealot vs. Zealot Zealot vs. Dragoon

IM vs. DG Model Generational Convergence Mean Matches

Initial Model NEAT Initial Model rtNEAT DG Model NEAT DG Model rtNEAT

Chapter 6 Evaluation

 95

 Although the win-rates of the DG model is poor when controlling dragoons in the evolutionary
process experiment, the results of the generational convergence experiment are comparable to those of
the initial model. For Dragoon vs. Dragoon, rtNEAT is able to find successful solutions faster than NEAT
much like for the initial model (Figure 47). For Dragoon vs. Zealots, the difference between DG and the
initial model is small, especially between rtNEAT runs. In general, the DG model seems to perform best
when controlling Dragoons, and when evolution is halted.

 When examining the unit behaviour of DG model dragoons, it can be seen that the units are able
to achieve a level of hit-and-run competency. Although the directional mappings for the retreat action
may not always be ideal (opposite of enemy unit directional vectors), the units are still able to retreat in
the right situations (weapon cool-down and when on low HP). However, in order for this behaviour to
stabilize, evolution must be halted when the right innovations emerge. This is evident in the poor
performance of dragoons in the evolutionary process experiment and the good performance in the
generational convergence experiment.

 In summary, the overall performance of the initial model appears to be superior to the DG model
in comparative experiments. The simplicity of the initial model ensures a faster convergence when
evolution is halted, as well as allowing higher win-rate when evolution is allowed to run its course. The
initial model is consistent in generating winning solutions, while the DG model fails occasionally over 1000
matches. The insignificant difference in the result of the first and last 300 generation runs also suggest the
DG model is not able to take advantage of longer evolution. Although the DG model has some success in
generating solutions for controlling Dragoons, it performs poorly with Zealots units.

 The next chapter continues to discuss the overall results of the experiments and its implications on
the original research questions. It also addresses a number of limitations to the current approaches and
identifies areas of future work.

Chapter 7
DISCUSSION AND CONCLUSION

This chapter begins with a discussion of the overall results of the previous chapter experiments. Following
on, the core limitations of the methodology and evaluation are addressed. Some alternative solutions are
considered, as well as areas of future work. Finally, some concluding remarks are made on the overall
limitations and success of this thesis work.

7.1. OVERALL RESULTS

As part of the established objectives in section 1.2, the NEAT based micromanagement agent implemented
in this thesis was evaluated in several ways. The results of the first round of experiments on the initial model
(section 5.2.1) suggested a general viability for NEAT based techniques for adaptive micromanagement
agents (consistent with the initial conclusions of Gabriel et al., 2012 on rtNEAT). It was first shown that when
NEAT and rtNEAT are left running unchecked, the resulting solutions fluctuate between strong and weak
performance against the default SC: BW AI (evolutionary process experiment). It was then shown that both
NEAT and rtNEAT were capable of generating agents that can consistently defeat the default SC: BW AI,
when the algorithms are halted upon a potential candidate solution (generation convergence experiment).

 These experiments also suggest that rtNEAT was in general, more consistent and robust than NEAT
in generating solutions with the initial model. This is evident in the generational convergence experiment
where rtNEAT’s performance is less variable between unit match-ups. It confirms rtNEAT’s original design
purpose as the algorithm that is quicker and more consistent in reacting to real time changes. However,
generational NEAT is still capable of outperforming rtNEAT in some situations, as evident by higher win
rates and faster convergence in some unit match-ups.

 The second round of experiments with the directional granularity model was not as successful as
the first. In the evolutionary process experiment, despite extending the number of generations, both
algorithms performed poorly against the default SC: BW AI. The results of the generational convergence

 97

experiment were also generally worse than in the initial model, and both algorithms were inconsistent in
generating solutions for some unit match-ups. Despite this, the performance of rtNEAT over NEAT was
comparable to that of the initial model, such as having better or worse performances on the same unit
match-ups.

The main difference between the two models is the directional input and output, which is also the
main reason for the poor performance of the directional granularity model. Solutions were unable to learn
the correct mapping between directional inputs (enemy and allied units) and outputs (direction to move).
Even extending the number of generations of learning could not resolve this problem. This is inconsistent
with the findings of Gabriel et al., 2012 which employed similar directional input and outputs. It is possible
that the inconsistency results from implementation differences, and there is potential for future work in this
direction (for example in developing an alternative encoding method for directional information, such as
the vision grids used by Shantia et al., 2011).

The extension of the initial model to include more granularity in its inputs and outputs is not an
arbitrary act of increasing complexity. The current action outputs of the initial model are static scripts and
do not represent all possible actions (for example targeting an enemy for attack based on its damage
output potential, rather than remaining hit points). Ideally, both target selection and unit movement should
have the finest granularity input and output (capturing each enemy and allied unit attributes and locations),
allowing the AI to learn the ideal action for all possible states. However, as demonstrated by the poor
performance of the directional granularity model, this is not always practical or possible to learn and
requires the right abstraction and encoding of the state and action space.

The overall objective stated in section 1.2 was to contribute to the development of a full SC: BW
game playing AI capable of executing human level strategies. The results of the experiments in this thesis
showed that NEAT is a viable learning technique for the micromanagement part of the SC: BW game
domain. It is capable of generating AI that is able to defeat a static script strategy. Such emergent AI
behaviour is an important precursor to human level strategies in the overall game. However, the extent of
this viability is up for discussion and further evaluation. The input and output granularity is an example of
the limitations of the methodology of this work. In the next section, several other limitations are discussed
which requires addressing in order to expand the observed viability of NEAT based micromanagement.

 98

7.2. LIMITATIONS AND FUTURE WORK

As artificial neural networks are the core of NEAT algorithms, there are the associated limitations with using
neural networks. The first is the difficulty of modelling and representing the problem as neural network
inputs and outputs. As seen from the success of the initial model and the failure of the directional
granularity model, it is not always intuitive or straight forward to model as complex a task as SC: BW
micromanagement. This limitation of the methodology was addressed in the design section of Chapter 5.
While a number of neural network mappings and models were considered, the ideal design is yet unknown.
To address this, a potential area of future work is to employ automatic feature selection (Whiteson et al.,
2005), so that NEAT learns to optimize for the ideal inputs when given a large variety.

 Another limitation of neural networks is the difficulty of analysing resulting networks from training.
A network evolved via NEAT may have hundreds of nodes and thousands of connections and weights.
Retracing network activation or analysing network structure for meaning is a slow and arduous process.
One of the important requirements for commercial game AI is transparency and simplicity, such that the
behaviour of the AI can be explained and therefore tweaked if necessary. Complexity and unpredictability
is not unique to Neuroevolution based game AI and is a common barrier for adapting machine learning
techniques in commercial games in general. However, it is made worse for Neuroevolution because of the
difficulty of analysing network structure.

Limitations also exist in the evaluation methodology, namely in the performance metric of playing
against the default SC: BW AI. As previously mentioned, such a metric is commonly employed in existing
micromanagement work. Due to the lack of implementation open sourcing, and differences in unit type
and map scenarios used in evaluations between researchers, it is difficult to comparatively evaluate
micromanagement agents. Ideally, training and evaluations should be against human players, and there
are some avenues to do so for full game playing AI. However, the number of games and the variety of
player skills needed for significance of results makes this difficult. More so for micromanagement agents
because of the lack of existing tools to do so, and the fact that most human players online gather to play
full SC: BW games, not custom micromanagement scenarios.

There exist many competitive avenues for full SC: BW game playing AI to be comparatively
evaluated, and in theory it is possible to combine micromanagement agents as modules to these agents
to be evaluated. However, the performance of the micromanagement component will then be dependent
on the macromanagement components. In general there is a need to corroborate micromanagement
techniques with research on macromanagement level learning, in order to further the goal of AI that can
play complete matches of SC: BW at an expert human level. There is difficulty in merging standalone
micromanagement agents together with agents making macromanagement level decisions. In future work,

 99

there is a need to establish standardized evaluation methodologies and to modularize micromanagement
agents for full SC: BW match incorporation.

 Following the idea of extending evaluations, of particular interest is comparative evaluations
against existing reinforcement learning micromanagement agents (Shantia et al., 2011; Wender & Watson,
2012). As discussed in section 2.2.3, existing literature suggest that Neuroevolution and NEAT techniques
are superior to traditional RL techniques for large and partially observable state-space problems. Using a
standardized map and unit type set-up, SC: BW micromanagement can be aptly appropriate to further
test this hypothesis. The challenge however, will be in standardizing the problem model employed across
the different learning techniques, such as the unit inputs and actions.

 Other potential areas of improvement include: exploring alternative network models, increasing
the complexity of unit types and NEAT parameter tuning. As previously mentioned, a different encoding
scheme for directional information may enable a network to include location information as input and
output. Unit target selection itself could be a separate learning task with its own neural network input and
output. Changing the types of units involved in training as well as their numbers will induce differences in
the types of unit behaviour being learnt. For realistic micromanagement, the model must continue to work
with a variable number of units and unit types. Finally, tuning the parameters of the NEAT algorithms will
affect the evolution and learning processes, such as the speed of introducing new mutations or rate of
retaining old structures. The use of recurrent networks and adaptive weights such as Hebbian update rules
is also possible within the NEAT framework (Stanley, 2004), which poses potential future work.

 The next section offers a summary of work within this thesis, as well as final concluding remarks on
the contributions, successes and limitations.

7.3. CONCLUSION

This thesis presented the design, implementation and evaluation of a NEAT based learning agent for the
task of micromanagement in the RTS game SC: BW. This concluding section summarizes the contributions
made and readdresses the original research objectives stated in section 1.2. It also revisits and summarizes
some of the key points of the previous chapters.

 The work in this thesis was motivated and situated in the area of game AI research. In Chapter 1, I
briefly introduced the motivations and benefits to AI research, as well as the challenges behind working in
this area. RTS games and SC: BW is introduced as a unique test-bed for AI techniques, and the NEAT
framework is introduced as a potential solution. This introduction is expanded in an extensive background

 100

and related work review on the history of game AI research, current work on SC: BW AI and NEAT in
Chapter 2. Chapter 3 and Chapter 4 served as thorough reviews of the NEAT methodology and the SC:BW
game environment. This was necessary to convey the theoretical motivations and practical workings of the
NEAT algorithms, as well as explain the technical details of the SC: BW test-bed environment.

 The rest of the chapters were dedicated to answering the research objectives established in section
1.2. The first research objective was the design and implementation of a NEAT based micromanagement
agent in SC: BW. This was successfully accomplished and summarized in Chapter 5 of the thesis, opening
way to experimentations on different NEAT algorithms and neural network models.

The accomplishment of the second objective, the basic evaluation of the NEAT based agent’s
performance against the default SC: BW AI was presented as part of the initial model experiments of
Chapter 6. Evaluations here confirmed the viability of NEAT and rtNEAT algorithms in evolving agents for
various SC: BW micromanagement scenarios. When the algorithms are allowed to run non-stop, win rate
of agents against the default SC: BW AI fluctuates highly throughout generations. However when evolution
is halted upon reaching an acceptable level of performance, both algorithms are able to consistently
generate winning agents under 100 generations.

 Following the third objective of extending the basic network model and exploring different NEAT
algorithms, the rest of Chapter 6 detailed experiments on the directional granularity model. Throughout
each experiment in the chapter, the performance of the NEAT and rtNEAT algorithms were also compared.
Results of these experiments allowed comparative analysis between each algorithm, over different match-
ups, models and evolution processes (generational convergence vs. evolutionary process experiments).
This allowed insights into the strengths and weaknesses of each algorithm under various conditions, as
well as identifying the stronger network model.

 The stated overall objective of the thesis was to contribute to the development of a full SC: BW
game playing AI capable of executing human level strategy. Early in this chapter, I discussed in part the
viability of the NEAT based approach for the micromanagement aspect of the SC: BW game, as well as its
limitations. Overall, NEAT’s ability to generate AI capable of defeating the SC: BW static AI is an important
precursor to a full game playing AI system with learning and emergent behaviour. Further work in
comparatively evaluating the NEAT based approach against other techniques and human players will
better gauge its effectiveness. More work is needed to adapt these techniques for full games of SC: BW,
but results here have shown promising performance in a learning micromanagement AI capable of
defeating scripted AI under short training time.

 As each research objective has been addressed, the application of NEAT for SC: BW
micromanagement can be considered successful. This thesis serves as a thorough first step in designing,

 101

implementing and evaluating NEAT based agents for SC: BW, and overall as an exercise in novel
applications of machine learning in a complex, real-time problem domain.

 102

REFERENCES

Bakkes, S. C. J., Spronck, P. H. M., & van den Herik, H. J. (2009). Opponent modelling for case-based
adaptive game AI. Entertainment Computing, 1(1), 27–37.

Buro, M. (2003). Real-Time Strategy Games : A New AI Research Challenge. IJCAI, 1534–1535.

Buro, M. (2004). Call for AI research in RTS games. In Proceedings of the AAAI Workshop on AI in Games
(pp. 139–141). AAAI Press.

Buro, M., Bergsma, J., & Deutscher, D. (2006). AI system designs for the first RTS-game AI competition.
Proceedings of the GameOn Conference, 13–17.

Buro, M., & Churchill, D. (2012). Real-Time Strategy Game Competitions. AI Magazine, 33(3), 106–108.

Buro, M., & Furtak, T. M. (2004). RTS games and real-time AI research. In Proceedings of the Behavior
Representation in Modeling and Simulation Conference (pp. 63–70).

Cadena, P., & Garrido, L. (2011). Fuzzy case-based reasoning for managing strategic and tactical reasoning
in starcraft. Advances in Artificial Intelligence, 7094, 113–124.

Chellapilla, K., & Fogel, D. B. (2001). Evolving an expert checkers playing program without using human
expertise. Evolutionary Computation, IEEE Transactions on, 5(4), 422–428.

Cho, H., Kim, K., & Cho, S. (2013). Replay-based strategy prediction and build order adaptation for StarCraft
AI bots. In The Proceedings of the IEEE Conference on Computational Intelligence in Games (pp. 265
– 266).

Churchill, D., & Buro, M. (2011). Build Order Optimization in StarCraft. AIIDE, 14–19.

Churchill, D., & Buro, M. (2013). Portfolio greedy search and simulation for large-scale combat in starcraft.
The Proceedings of the IEEE Conference on Computational Intelligence in Games, 217 – 224.

Churchill, D., Saffidine, A., & Buro, M. (2012). Fast Heuristic Search for RTS Game Combat Scenarios. AIIDE,
112–117.

Dereszynski, E., Hostetler, J., & Fern, A. (2011). Learning Probabilistic Behavior Models in Real-Time
Strategy Games. AIIDE, 20–25.

Furtak, T., & Buro, M. (2010). On the Complexity of Two-Player Attrition Games Played on Graphs. In AIIDE
(pp. 113–119).

 103

Gabriel, I., Negru, V., & Zaharie, D. (2012). Neuroevolution based multi-agent system for
micromanagement in real-time strategy games. In Proceedings of the Fifth Balkan Conference in
Informatics (pp. 32–39). New York: ACM Press.

Gomez, F., & Miikkulainen, R. (2003). Robust non-linear control through Neuroevolution. The University of
Texas at Austin.

Hagelbäck, J., & Johansson, S. (2009). A Multi-Agent Potential Field-based Bot for a Full RTS Game
Scenario. AIIDE, 28–33.

Herbrich, R., Minka, T., & Graepel, T. (2006). TrueskillTM: A Bayesian skill rating system. Advances in Neural
Information Processing Systems 19, 569 – 576.

Herik, H. van den. (2005). Opponent Modelling and Commercial Games. In Proceedings of IEEE 2005
Symposium on Computational Intelligence and Games (pp. 15 – 25).

Hingston, P. (2009). A Turing Test for Computer Game Bots. IEEE Transactions on Computational
Intelligence and AI in Games, 1(3), 169–186.

Hoang, H., Lee-Urban, S., & Muñoz-Avila, H. (2005). Hierarchical Plan Representations for Encoding
Strategic Game AI. AIIDE, 63–68.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer Feedforward Networks are Universal
Approximators. Neural Networks, 2(5), 359 – 366.

Hsieh, J. L., & Sun, C. T. (2008). Building a player strategy model by analyzing replays of real-time strategy
games. In Proceedings of the IEEE International Joint Conference on Neural Networks (pp. 3106–
3111).

Jang, S.-H., Yoon, J.-W., & Cho, S.-B. (2009). Optimal strategy selection of non-player character on real
time strategy game using a speciated evolutionary algorithm. In Proceedings of the 5th international
conference on Computational Intelligence and Games (pp. 75–79).

Karakovskiy, S., & Togelius, J. (2012). The Mario AI Benchmark and Competitions. IEEE Transactions on
Computational Intelligence and AI in Games, 4(1), 55–67.

Kovarsky, A., & Buro, M. (2005). Heuristic search applied to abstract combat games. Proceedings of the
18th Canadian Society conference on Advances in Artificial Intelligence, 66–78.

Laird, J., & van Lent, M. (2001). Human-level AI’s killer application: Interactive computer games. AI
Magazine, 22(2), 15–26.

 104

Levy, D. (1988). Computer chess compendium, 286–292.

Lucas, S. (2004). Cellz: a simple dynamic game for testing evolutionary algorithms. Evolutionary
Computation, 2004., 1007–1014.

Lucas, S. (2007). Ms pac-man competition. ACM SIGEVOlution, 2(4), 37–38.

Marsland, T. A., & Björnsson, Y. (1997). From MiniMax to Manhattan. Deep Blue Versus Kasparov: The
Significance for Artificial Intelligence, 31–36.

Mateas, M. (2003). Expressive AI: Games and Artificial Intelligence. Proceedings of International DiGRA
Conference.

Nareyek, A. (2004). AI in Computer Games. Queue - Game Development, 1(10), 58–65.

Newell, A., Shaw, J., & Simon, H. (1958). Chess-playing programs and the problem of complexity. Journal
of Research and Development, 2(4), 320 – 335.

Nguyen, K. (2013). Potential flows for controlling scout units in StarCraft. The Proceedings of the IEEE
Conference on Computational Intelligence in Games, 344 –350.

Norris, K., & Watson, I. (2013). A Statistical Exploitation Module for Texas Hold ’em And It’s Benefits When
Used With an Approximate Nash Equilibrium Strategy. In The Proceedings of the IEEE Conference on
Computational Intelligence in Games (pp. 423 – 430).

Olesen, J. K., Yannakakis, G. N., & Hallam, J. (2008). Real-time challenge balance in an RTS game using
rtNEAT. In 2008 IEEE Symposium On Computational Intelligence and Games (pp. 87–94).

Palma, R., Sánchez-Ruiz, A. A., Gómez-Martín, M. A., Gómez-Martín, P. P., & González-Calero, P. A. (2011).
Combining expert knowledge and learning from demonstration in real-time strategy games.
Proceedings of the 19th international conference on Case-Based Reasoning Research and
Development, 6880, 181–195.

Parker, G., & Parker, M. (2007). Evolving parameters for xpilot combat agents. Proceedings of the IEEE
Conference on Computational Intelligence and Games, 238–243.

Polceanu, M. (2013). MirrorBot: Using human-inspired mirroring behavior to pass a turing test. Proceedings
of the IEEE Conference on Computational Intelligence and Games, 201 – 208.

Rathe, E., & Svendsen, J. (2012). Micromanagement in StarCraft using Potential Fields tuned with a Multi-
Objective Genetic Algorithm. Norwegian University of Science and Technology.

 105

Richards, D., & Hart, T. (1961). The alpha-beta heuristic. Massachusetts Institute of Technology.

Robertson, G., & Watson, I. (in press). A Review of Real-Time Strategy Game AI. AI Magazine.

Rubin, J., & Watson, I. (2012). Case-based strategies in computer poker. AI Communications, 25(1), 19–48.

Sailer, F., Buro, M., & Lanctot, M. (2007). Adversarial Planning Through Strategy Simulation. In Proceedings
of the IEEE Symposium on Computational Intelligence and Games (pp. 80–87).

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of research
and development, 3(3), 210–229.

Sandberg, T., & Togelius, J. (2011). Evolutionary Multi-Agent Potential Field based AI approach for SSC
scenarios in RTS games. IT University of Copenhagen.

Schaeffer, J. (2001). A gamut of games. AI Magazine, 22(3), 29–46.

Schaeffer, J., Burch, N., Björnsson, Y., Kishimoto, A., Müller, M., Lake, R., … Sutphen, S. (2007). Checkers Is
Solved. Science , 317 (5844), 1518–1522.

Schrum, J., Karpov, I. V, & Miikkulainen, R. (2012). Humanlike Combat Behavior via Multiobjective
Neuroevolution. In P. F. Hingston (Ed.), Believable Bots (pp. 119–150). Springer Berlin Heidelberg.

Shaker, N., Togelius, J., Yannakakis, G. N., Weber, B., Shimizu, T., Hashiyama, T., … Baumgarten, R. (2011).
The 2010 Mario AI Championship: Level Generation Track. IEEE Transactions on Computational
Intelligence and AI in Games, 3(4), 332–347.

Shannon, C. (1950). XXII. Programming a computer for playing chess. Philosophical magazine, 41(314).

Shantia, A., Begue, E., & Wiering, M. (2011). Connectionist reinforcement learning for intelligent unit micro
management in starcraft. In The 2011 International Joint Conference on Neural Networks (pp. 1794
– 1801).

Siegelmann, H., & Sontag, E. (1991). Turing computability with neural nets. Applied Mathematics Letters,
4(6), 77–80.

Siwek, S. E. (2010). Video Games in the 21st Century. Entertainment Software Association.

Slate, D. J. (1987). A chess program that uses its transposition table to learn from experience. International
Computer Chess Association Journal, 10(2), 59–71.

 106

Smith, M., Lee-Urban, S., & Muñoz-Avila, H. (2007). RETALIATE: Learning winning policies in first-person
shooter games. Proceedings of the 19th national conference on Innovative applications of artificial
intelligence, 2, 1801–1806.

Spronck, P., & Ponsen, M. (2006). Adaptive game AI with dynamic scripting. Machine Learning, 63(3), 217–
248.

Stanley, K. O. (2004). Efficient evolution of neural networks through complexification. The University of
Texas at Austin.

Stanley, K. O., Bryant, B. D., & Miikkulainen, R. (2005a). Evolving neural network agents in the NERO video
game. Proceedings of the IEEE 2005 Symposium on Computational Intelligence and Games, 182–
189.

Stanley, K. O., Bryant, B. D., & Miikkulainen, R. (2005b). Real-time Neuroevolution in the NERO video game.
IEEE Transactions on Evolutionary Computation, 9(6), 653–668.

Stanley, K. O., & Miikkulainen, R. (2002a). Efficient evolution of neural network topologies. Proceedings of
the Genetic and Evolutionary Computation Conference, 1757–1762.

Stanley, K. O., & Miikkulainen, R. (2002b). Evolving neural networks through augmenting topologies.
Evolutionary computation, 10(2), 99–127.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge Massachusetts:
MIT Press.

Synnaeve, G., & Bessiere, P. (2011). A Bayesian Model for Plan Recognition in RTS Games Applied to
StarCraft. In AIIDE (pp. 79–84). AAAI Press.

Synnaeve, G., & Bessière, P. (2011). A Bayesian model for RTS units control applied to StarCraft. In
Proceedings of the IEEE Conference on Computational Intelligence and Games (pp. 190–196).

Tesauro, G. (1994). TD-Gammon, a self-teaching backgammon program, achieves master-level play.
Neural computation, 6(2), 215–219.

Thompson, K. (1982). Computer chess strength. Advances in computer chess, 3, 55–56.

Togelius, J., Yannakakis, G., Karakovskiy, S., & Shaker, N. (2012). Assessing believability. In P. Hingston (Ed.),
Believable Bots (pp. 215–228). New York: Springer-Verlag.

Turing, A. (1988). Chess. In David Levy (Ed.), Computer chess compendium (pp. 14–17). New York, NY,
USA: Springer-Verlag New York, Inc.

 107

Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59(236), 433–460.

Wang, Z., Nguyen, K. Q., Thawonmas, R., & Rinaldo, F. (2012). Monte-Carlo planning for unit control in
StarCraft. In The 1st IEEE Global Conference on Consumer Electronics 2012 (pp. 263–264). IEEE.

Weber, B. (2012). Integrating Learning in a Multi-Scale Agent. University of California, Santa Cruz.

Weber, B., Mateas, M., & Jhala, A. (2010a). Applying Goal-Driven Autonomy to StarCraft. In AIIDE (pp. 101–
106). AAAI Press.

Weber, B., Mateas, M., & Jhala, A. (2010b). Case-based goal formulation. Proceedings of the AAAI
Workshop on Goal-Driven Autonomy.

Weber, B., Mateas, M., & Jhala, A. (2011). Building human-level AI for real-time strategy games. In
Proceedings of the AAAI Fall Symposium Series (pp. 329–336).

Weber, B., & Mawhorter, P. (2010). Reactive planning idioms for multi-scale game AI. IEEE Conference on
Computational Intelligence and Games, 115–122.

Weber, B., & Ontañón, S. (2010). Using Automated Replay Annotation for Case-Based Planning in Games.
In ICCBR Workshop on CBR for Computer Games (pp. 15–24).

Wender, S., & Watson, I. (2012). Applying reinforcement learning to small scale combat in the real-time
strategy game StarCraft: Broodwar. In IEEE Conference on Computational Intelligence and Games
(pp. 402–408). Ieee.

Whiteson, S., Stone, P., Stanley, K. O., Miikkulainen, R., & Kohl, N. (2005). Automatic feature selection in
Neuroevolution. In Proceedings of the 2005 conference on Genetic and evolutionary computation
(pp. 1225–1232). New York, New York, USA: ACM Press.

Yannakakis, G., & Hallam, J. (2007). Capturing player enjoyment in computer games. In N. Baba, L. Jain, &
H. Handa (Eds.), Advanced Intelligent Paradigms in Computer Games (Vol. 71, pp. 175–201). Springer
Berlin.

Yao, X. (1999). Evolving artificial neural networks. Proceedings of the IEEE, 87(9), 1423–1447.

Yildirim, S., & Stene, S. (2008). A Survey on the Need and Use of AI in Game Agents. In Proceedings of the
2008 Spring simulation multiconference (pp. 124–131).

Zhen, J., & Watson, I. (2013). Neuroevolution for Micromanagement in the Real-Time Strategy Game
Starcraft: Brood War. In AI 2013: Advances in Artificial Intelligence (pp. 259–270).

 108

Zielke, M. a, Evans, M. J., Dufour, F., Christopher, T. V, Donahue, J. K., Johnson, P., … Flores, R. (2009).
Serious games for immersive cultural training: creating a living world. IEEE computer graphics and
applications, 29(2), 49–60.

APPENDIX A:
NOMINATED BEST STUDENT PAPER AT THE 2013

AUSTRALASIAN JOINT CONFERENCE ON

ARTIFICIAL INTELLIGENCE (AI 2013)

Neuroevolution for Micromanagement in the

Real-Time Strategy Game Starcraft: Brood War

Jacky Shunjie Zhen and Ian Watson

Department of Computer Science, University of Auckland
szhe024@aucklanduni.ac.nz,ian@cs.auckland.ac.nz

Abstract. Real-Time Strategy (RTS) games have become an attractive
domain for AI research in recent years, due to their dynamic, multi-agent
and multi-objective environments. Micromanagement, a core component
of many RTS games, involves the control of multiple agents to accomplish
goals that require fast, real time assessment and reaction. In this paper,
we present the application and evaluation of a Neuroevolution technique
in evolving micromanagement agents for the RTS game Starcraft: Brood
War (SC:BW). The NeuroEvolution of Augmented Topologies (NEAT)
algorithm, both in its standard form and its real-time variant (rtNEAT)
is comparatively evaluated in micromanagement tasks. Preliminary re-
sults suggest the general viability of these techniques in comparison to
traditional, non-adaptive AI. Further analysis of each algorithm identi-
fied di↵erences in task performance and learning rate.

Keywords: Real-Time Strategy Games, Neuroevolution, Evolutionary
Computation

1 Introduction

It was predicted more than a decade ago, that interactive computer games would
emerge as an ideal platform for Artificial Intelligence research [1]. Due to their
increasingly complex and realistic simulations, video games have become fine
approximations of real world environments. AI techniques can be developed and
evaluated in a cost e↵ective and contained manner, before being applied to more
complicated real world problems [1,2]. The popularity of video games as an
entertainment medium has resulted in a consistently growing, multi-billion dollar
software industry [3]. This in turn is a driver of video game technology and
research, of which AI is a vital component [4].

The popularity and ease of access to videogame hardware and software has
increased the accessibility of computing power and simulation environments for
AI research. On the other hand, the contribution of AI research to commercial
game development has been lacking in recent years [5]. This has resulted in
high dependency on deterministic and non-adaptive AI techniques in commercial
games that limit their realism, replayability and challenge [6].

Real Time Strategy (RTS) games are a genre of video games that provide
unique challenges to AI research [7]. Characteristic of the genre is a real-time,

Jacky Shunjie Zhen and Ian Watson

stochastic environment, with multiple objectives and enormous action and state
space. These features require AI agents with multiple levels of abstraction and
reasoning, fast reaction and expert game knowledge. An example of the genre
is Starcraft: BroodWar (SC:BW)1, an RTS game that is a popular game envi-
ronment for AI research. Using a third party plugin called the Brood War API
(BWAPI)2, it is possible to create complex AI agents to play matches of SC:BW.

In this paper, we aim to evaluate the e↵ectiveness of Neuroevolution (NE)
techniques in developing learning agents for playing SC:BW. The goal is to con-
tribute to the development of a complete AI system capable of learning and
executing human expert level strategy in SC:BW. In particular we focus on ‘mi-
cromanagement’, a crucial level of abstraction in the RTS domain, handling the
fast combat component of the overall game. NE applies evolutionary algorithms
to train artificial neural networks that are known to be e↵ective approximators
of complex, non-linear functions. Meanwhile, RTS games have a large state and
action space that is suitable for neural networks. Furthermore, research on the
NEAT algorithm [8] has shown the e↵ectiveness of NE in reinforcement learning
tasks, of which SC:BW has been successfully modelled [9,10].

We first implemented a micromanagement agent for SC:BW that uses NEAT
and a real time variant rtNEAT for learning behavior. Next, the viability of the
agent was evaluated against the existing SC:BW AI in multiple experiments.
Finally, we analyzed the di↵erence in performance between standard NEAT and
the real-time variant, both in the rate of learning and in match performance. The
rest of the paper is structured as follows: we provide a survey of related work
around SC:BW AI and the NEAT algorithm. Next, we describe an overview of
the implementation of our AI agent and the usage of NEAT, followed by the
evaluation of the agent and a discussion of results. Finally, we give concluding
remarks and highlight areas of future research.

2 Related Work

In many RTS games, the game strategy can be roughly divided into two lev-
els of abstraction. Macromanagement is the level that is concerned with high
level strategic decision making such as resource planning and opponent mod-
eling. Techniques dealing with macromanagement must choose and adapt se-
quences of strategic actions to meet goals of varied hierarchy. Example of tech-
niques applied to this domain include Case Based Reasoning[11] and Goal Driven
Autonomy[12]. Micromanagement is the level concerned with direct combat tac-
tics and unit control. Traditionally, micromanagement is accomplished via static
AI techniques such as scripts based on simple metrics [13]. More complicated
techniques in the literature include Reinforcement Learning (RL) and Evolu-
tionary Algorithm approaches.

RL combined with neural networks has been applied to SC:BW microman-
agement [10]. Agent learning was accomplished using the online Sarsa RL al-

1 Starcraft: Brood War: http://us.blizzard.com/en-us/games/sc/
2 Brood War API:http://code.google.com/p/bwapi/

Neuroevolution for Micromanagement in the RTS game Starcraft: Broodwar

gorithm, with neural-networks to approximate the state-action value function.
Results showed a significant winning advantage against standard Starcraft AI,
but required thousands of training rounds and are limited in the type and number
of units represented. In [9], a comparative evaluation of RL techniques applied
to SC:BW was presented. Four variants of RL algorithms were applied to a spe-
cific micromanagement task, involving a long ranged unit with high mobility
against numerous melee (close ranged) enemies. Evaluations identified strengths
and weaknesses of the di↵erent algorithms, and showed a high win rate against
the default SC:BW AI. However, the results are derived from a very limited sce-
nario, and the author acknowledges it is only the first part of a larger RL based
SC:BW agent.

Work that is most related to ours is from [14], in which rtNEAT was applied
to SC:BWmicromanagement. Units were controlled by separate neural networks,
specifying actions to take in real time. The network typology is evolved over gen-
erations of 12 vs 12 unit combat. Evaluations showed a significant win rate within
300 training generations and also claimed the rtNEAT algorithm allowed fast,
real-time strategy adaptation. A limitation of the study is the use of a custom
SC:BW map that replenishes unit numbers with up to 100 unit reserves. This is
an unrealistic depiction of real SC:BW combat where units are not replenished
immediately to replace dead units. Furthermore, real-time fitness improvement
occurs only over unit combat time that is minimal in a full SC:BW match. How-
ever, the work showcased the potential of applying NEAT based algorithms to
SC:BW micromanagement that our work analyzes further.

2.1 Neuroevolution and NEAT

Neuroevolution (NE) has shown e↵ectiveness compared to standard RL, in prob-
lems with continuous and high-dimensional state spaces [8]. Traditional NE
worked on pre-defined topologies, and searched over the space of connection
weights. Topology and Weight Evolving Artificial Neural Networks (TWEANNs)
attempts to also evolve the topology of the network, and has the potential to
improve training speed and accuracy of solutions [15]. Furthermore, it reduces
the uncertainty and e↵ort of deciding on network topology by researchers [16].

However, TWEANN techniques face numerous challenges, such as complica-
tions with network structure in crossover and problems with genetic encoding.
Work by [16] developed the NEAT algorithm to address these challenges. The
classic NEAT algorithm was expanded to a real-time variant[17], in which evolu-
tion occured over a real time environment. The rtNEAT algorithm was demon-
strated in a game called NERO, where agents are evolved and adapted in real
time to tackle changing objectives. Regular NEAT has been successfully applied
to RTS by [18], where neural networks are evolved to become AI players in an
ensemble process. In [6] both NEAT and rtNEAT were used to automatically
balance the challenge of the AI player in an RTS game. A novel challenge metric
coupled with a fitness function guided the evolution of neural networks. The AI
was continuously evolved to converge to the same challenge level as the human
player, thus creating a more balanced gaming experience.

Jacky Shunjie Zhen and Ian Watson

3 Implementation

Fig. 1. An overview of the agent architecture.

We use the BWAPI open source framework for creating and executing AI
modules. It exposes functionality to retrieve information about the game state
and to issue commands to game units. Units are encapsulated as BWNEAT
units, with an accompanying neural network for decision making. The SC:BW
game state is updated once per frame, i.e. every 56 milliseconds on normal game
speed. BWAPI triggers an event on every game state update, allowing AI code
to react. During this event, each BWNEAT unit feeds internal and external
percepts from the AI Module as inputs to its neural network, and interprets the
network output as the next action to be performed. The NEAT Manager module
is responsible for instantiating the BWNEAT Units and is an interface to the
NEAT and rtNEAT algorithms. It receives evaluated fitness from each unit,
performs NEAT evolution and reassigns neural networks to BWNEAT units.
Fig. 1 summarizes the agent architecture.

3.1 Neural Network Architecture

The basic neural network architecture is fully connected and feed forward, with
randomized starting weights (Fig. 2). It begins with 0 hidden nodes and gradually
allows nodes and connections to be added via the NEAT and rtNEAT algorithms.
The inputs were chosen as important percepts to induce learning behavior that
would allow a unit to inflict as much damage to the enemy units, while taking as
little damage as possible. For example, when the unit’s weapon is on cooldown
(a pause between consecutive attacks), it should do its best to avoid damage.
Another aspect is the range of unit weapons. If for example, the unit has a

Neuroevolution for Micromanagement in the RTS game Starcraft: Broodwar

Fig. 2. Initial network architecture. Nodes A to G (Bias, WeaponCooldown, Re-
mainingHealth, WeaponRange, EnemyWeaponRange, NumAlliesInRange and NumEn-
emiesInRange) denote a mixture of agent internal and external percepts as input to the
network, while nodes H and I (Fight and Retreat) denote the outputs as two possible
unit actions.

longer weapon range than the enemy units, it is possible to perform a hit-and-
run strategy. These percepts are based on domain knowledge of SC:BW and is
common in many RTS games.

The output of the neural network corresponds to two unit actions: fight or
retreat. The action with the largest corresponding output is chosen by the unit. If
the fight action is taken, the unit executes a simple routine that targets the enemy
unit with the lowest hit points (health) within its weapon range. The retreat
action makes the unit move a small distance away from enemies and obstacles,
via a weighted vector. These actions are based on similar implementations in [9]
and [10], as they are simple to implement, but complicated enough to produce
sophisticated behavior when performed in varying sequences.

3.2 Fitness Function

The NEAT and rtNEAT algorithms are guided by a fitness metric. In the context
of SC:BW unit micromanagement, the fitness should reflect the performance of
an individual unit. For both NEAT and RTNEAT, we define the fitness Fi for a
unit i as:

Fi =
TDDi �HPLi

IHPi
+ 1 (1)

The function takes in the total damage dealt by the unit (TDD), its hit point
loss (HPL) accrued over the match and its initial hit point (IHP). In theory, the
fitness is only upperbound by the total hit points of enemy units. However in
practise, the average fitness of each unit falls under [0, 2] where at its lowest the
unit has produced no damage and dies, and at its highest value it has dealt twice
as much damage than it has taken.

Jacky Shunjie Zhen and Ian Watson

3.3 NEAT Evolution

Training via the classic NEAT algorithm occurs over generations of SC:BW
matches. After a match, regardless of win or loss, the population of neural net-
works go through an evolutionary process. First the fitness of each network is
evaluated based on the units performance during the match. Next, some of the
worst performing networks are replaced by the o↵spring of some of the best
performing networks. This simple process is guided by three principles: track-
ing evolution via historical markers, protecting innovation via speciation and
minimizing search via ‘complexification’ [8].

NEAT uses historical markings to e�ciently evaluate similarity between net-
work topologies. Networks are then speciated using a similarity metric formed
via the number of disjoint genes D (genes that exist in one network and not the
other), excess genes E (genes that appear in one network later in evolution than
any genes on the other network) and the mean weight di↵erence of matching
genes W[8]:

S =
c1E

N
+

c2D

N
+ c3W (2)

c1, c2 and c3 are adjustible weighting coe�cients, and E and D are normal-
ized by dividing N , the number of genes in the larger network. Networks are
grouped into species via this similarity metric, and a compatibility threshold
that can be modified to specify species bounds. A network shares its evaluated
fitness with other members of its species, in order to encourage diversification of
solutions and prevent single species dominance. NEAT adjusts each network’s
fitness based on its similarity metric against all other organisms in the popu-
lation. The number of o↵springs spawned by a species after each generation is
based on the proportion of its average species fitness to the total of all average
species fitness [8].

3.4 rtNEAT Evolution

The real-time variant of the NEAT algorithm is designed specifically to operate
in a continuous, real-time domain. In particular when adapted to video games,
the performance of AI agents is able to improve gradually as the game is played,
without abrupt changes over a whole generation of evolution. In the context of
SC:BW, rtNEAT applies evaluation and replacement on game units every n ticks
of game time. The number of game ticks between replacement is an important
factor that a↵ects evolution. If new organisms are replaced too quickly, then they
cannot be evaluated accurately and new innovations may be needlessly thrown
away. A law of eligibility is formed by [17], stating the number of ticks between
replacements, with respect to the fraction of the population that is too young
to be replaced I, the minimum time alive m and the population size P :

n =
m

|P |I (3)

Neuroevolution for Micromanagement in the RTS game Starcraft: Broodwar

In our experiments we empirically define m as 300 game frames, to o↵set the
delay between the start of a match and the first enemy encounter. We follow
[17] in defining 50% of the population as eligible for replacement, and p = 12
the number of units which is constant. This gives us n = 50, the number of
games frames between replacement in rtNEAT experiments. In the next sec-
tion we describe in more detail, evaluations that incorporate these algorithms
and principles to analyse the e↵ectiveness of NEAT and rtNEAT for SC:BW
micromanagement.

4 Experimentation and Results

We devised experiments to gauge the e↵ectiveness of NEAT and rtNEAT evolved
micromanagement agents against the standard SC:BW AI. A variety of unit
setups were used in order to simulate di↵erent micromanagement scenarios. From
these experiments, we saw very high fluctuation and variation in the fitness and
win rate of agents over generations. In order to adjust for these fluctuations, we
ran experiments to find the number of generations taken for each algorithm to
converge to a suitable solution, when evolution is halted upon finding a potential
candidate.

4.1 Experiment Setup

SC:BW units vary on attributes such as race, weapon and armour type. In
order to keep the experimental variables constant and to avoid an explosion of
unit type permutations, we based our experimental setup on [14] that compared
4 unit type variations (melee vs. melee, ranged vs. ranged, melee vs. ranged,
ranged vs. melee). The number of units is kept at a constant 12 vs. 12, which
is the maximum selectable number of units for a human controlled squad. The
scenario used throughout experimentation is a flat map, based on those used in
the AIIDE 2010 Starcraft micromanagement tournament3.

4.2 Evolutionary Process Experiment

We first compared the performance of NEAT and rtNEAT algorithms on each of
the 4 unit matchup variations, over 300 generations of evolution. Each matchup
is repeated 25 times to reduce randomness in network starting weights. The
average unit fitness and the match outcome is recorded over 300 generations,
and averaged over the 25 runs.

The results suggest that there is no single algorithm dominating all match
variations (Fig. 3). Mean win rate is higher for NEAT on range vs. melee (mean
97.59%, SD 7.95%) and melee vs. range (58.89% mean, 10.79% SD), while rt-
NEAT is higher on range vs. range (60.39% mean, 9.86% SD) and melee vs
melee (49.73% mean, 11.63% SD). If we consider a win rate higher than 50% to

3 AIIDE 2010 micromanagement tournament: eis.ucsc.edu/starcrafttournament1

Jacky Shunjie Zhen and Ian Watson

Fig. 3. Summary statistics for our first experiment. Mean win rate (WR) over 300
generations, standard deviation (SD) and the 95% confidence level (CL) is shown.

Fig. 4. Plot of the best performing match up (range vs. melee) average win rate.

Fig. 5. Plot of the worst performing match up (melee v.s melee) average win rate.

indicate better than baseline performance against the built-in SC:BW AI, then
both NEAT and rtNEAT show e↵ectiveness on range vs. range and range vs.
melee battles. NEAT is also e↵ective in melee vs. range (58.89% mean ± 1.23%
at 95% confidence level). From examining the agent behavior, the e↵ectiveness
of controlling ranged units can be attributed to having learnt the hit-and-run
micromanagement strategies. It is interesting to note the generally poor per-
formance of both algorithms when controlling melee units. We discuss in more
detail the evolved behavior of the agents contributing to the performance in
Section 5.

Fig. 4 and Fig. 5 show plots of some of the best and worst performing match
up variations. The average fitness plot is not shown, but is highly correlated to
the average win rate. From these plots, we see a trend of initial poor perfor-
mance and a quick convergence to some local optima. This is typical of evolu-

Neuroevolution for Micromanagement in the RTS game Starcraft: Broodwar

tionary algorithms where the initial starting solutions are randomized and are
not expected to perform well. On all variations the first convergence to a local
optimal occurs between the 10th to 20th generation. There is significant fluc-
tuation of win rate throughout generations that is further illustrated by high
variance shown by their standard deviations. In general, the standard deviation
is higher on rtNEAT runs, suggesting greater variation in evolutionary success
over generations than standard NEAT. This may be due to the nature of the
rtNEAT algorithm, in introducing real time change. Both algorithms are capable
of producing high performing solutions at various generations, but are also quick
to introduce mutations weakening the solutions. This is partly due to the nature
of the experiment where we allow evolution to continue even after achieving a
winning solution.

4.3 Generational Convergence Experiment

By defining a success criteria, we can halt the evolution of both the NEAT and
rtNEAT algorithms once an acceptable solution is achieved. We defined a suc-
cessful solution to be an agent that achieves 10 consecutive wins (the probability
an agent with 50% win rate can win 10 consecutive games is < 0.1%). This is a
strict criteria as an agent may still be high performing even though it loses 1 game
out of 10 (e.g. due to the stochastic nature of the game state). However, we use
this to simplify the running of the experiment and to show that it is possible to
robustly generate agents of this level of performance. We keep all other variables
the same as in our previous experiment, except that the evolution terminates
when a solution reaches 10 wins, or after 1000 generations. When a solution
achieves a win, evolution is halted until the agent either achieves 10 wins, or a
loss is encountered, where upon evolution continues. After a successful solution
is achieved, or if no solution is found after 1000 generations, the experiment is
reset to an initial population with randomized weights. For each algorithm and
each matchup, we stopped the experiment at 60 runs and analyzed the results.

Fig. 6. Summary statistics for generational convergence experiment. Mean number
of generations (MNG) taken to produce an acceptable solution is shown. Standard
deviation (SD) and the 95% confidence level (CL) for the mean was also calculated.

In all experiments, an acceptable solution was found before 1000 generations,
with most converging under 100 generations (Fig. 6). There was high variability
in the number of generations required to arrive at an acceptable solution, evident
by the high standard deviation in some match ups (e.g. 124.39 SD and 116.03

Jacky Shunjie Zhen and Ian Watson

Mean generations for NEAT range vs range). The mean number of generations
taken between NEAT and rtNEAT is comparable to the average win rate per-
formance of the previous experiment: NEAT converges faster for range vs. melee
and melee vs. range match ups, while rtNEAT is faster for range vs. range and
melee vs. melee. The range in generations taken between di↵erent matchups is
higher for NEAT (4.15 mean for range.vs melee and 116.03 mean for range vs.
range) than for rtNEAT (18.33 mean for range vs. range and 26.78 mean for
melee vs. melee). This suggests the performance of rtNEAT is more stable under
di↵erent unit variations.

Overall, the experiment showed that both algorithms were capable of gen-
erating e↵ective solutions for micromanagement against the default SC:BW AI.
However, it was necessary to establish an acceptance criteria for which to halt
evolution and to preserve winning behavior. In the next section, we discuss fur-
ther implications of the experimental results.

5 Discussion

In the first experiment, the fluctuation of fitness and success rate of solutions can
be due to a number of reasons. Firstly, it suggests that any structural innovations
introduced were making significant di↵erences in the performance of the neural
networks. This is probably due to the simplicity of the network design, where only
2 outputs exist, such that any structural change may a↵ect the action selected.
A simple neural network allows faster convergence by reducing the search space
of initial nodes and weights. But it also means it is faster to diverge from the
local optima. On top of this, the stochastic nature of the game environment can
result in the same solution having varied success over di↵erent runs.

This also explains the general poor performance of both algorithms on melee
match ups in the first experiment. Melee units do best in direct attack as they
lack the weapon range to perform hit-and-run maneuvers. Any innovation intro-
duced to make melee units run will immediately reduce the success rate of the
solution. In the second experiment, the algorithms have no problem generating a
solution for melee match ups, when no new innovations were introduced after a
solution begins to do well. Another factor is an interesting behavior exhibited by
the units over generations of evolution: some units are evolved to retreat when
enemies are first found, but come back to fight after allied units are engaged in
combat. These units tend to generate more fitness than those directly attacking
from the beginning, as they do not receive as much damage over time. However,
as the population begins to favour this behavior, there is a breaking point in
which no units will stay to fight, leading to a match loss and a return to evolu-
tion favouring units that do not retreat. This cycle is highly correlated with the
fluctuation of the win rate over generations.

Interestingly, the first experiment showed that rtNEAT produced higher vari-
ation in the success of solutions than NEAT over time. However in the second
experiment, the average number of generations for an acceptable solution was
less varied across di↵erent match ups than NEAT. This suggests real-time evo-

Neuroevolution for Micromanagement in the RTS game Starcraft: Broodwar

lution can be quicker in introducing changes that reduce fitness, but also allow a
more robust convergence to a solution regardless of unit variation (variability in
state and solution space). This is intuitive, since rtNEAT should be faster in re-
acting to changes in the environment in real time, than regular NEAT evolution
between generations.

It is possible to complicate the initial neural network architecture, by incor-
porating more percepts as input nodes and providing finer grain output deci-
sions. For example, the inputs can incorporate a deeper ontology of unit quality
and type variations (armour, weapon and ability types etc) and more precise
directional and distance data. Instead of fight or retreat actions, the decisions
can be to move at specific angles for specific distances, and to explicitly decide
which units to attack. Enemy target selection is itself complicated enough to be
a separate learning task, perhaps requiring the optimization of a separate neural
network that takes into consideration enormous unit type variations and the lo-
cation of units. More complicated neural network designs allow for agents with
more complicated behaviors that are able to perform well under a higher variety
of conditions. The disadvantage is a greater number of dimensions to search and
optimize for, resulting in slower training time.

There are limitations to the evaluation methodology to be addressed. For
example, while the experiments show that the technique is able to learn to
defeat the standard SC AI, the results do not extend to human opponents.
However, testing against the standard SC AI is a baseline measure used in much
of the related work, particularly for micromanagement. It is di�cult to evaluate
against human players, due to the number of games required to be played, and
the lack of an objective human skill measure for the micromanagement task
(current measures exist only for full SC games). It is possible to evaluate against
other micromanagement AI, but there is a lack of a standardized evaluation
methodology to do so.

6 Conclusions

Our evaluations confirmed the viability of NEAT and rtNEAT algorithms in
evolving agents for various SC:BW micromanagement scenarios. When the al-
gorithms are allowed to run non-stop, the win rate of agents against the default
SC:BW AI fluctuates highly over generations. However, when evolution is halted
upon reaching an acceptable level of performance, both algorithms are able to
consistently generate winning agents, with most under 100 generations. Each
algorithm di↵ers in the variability of performance over di↵erent unit matchups.
Factors contributing to the di↵erence in performance include the complexity of
the network starting topology and the variation in unit types. There is room to
explore network complexity further, and a need to establish standardized evalu-
ation methods for micromanagement agent evaluations. More work is needed to
adapt these techniques for commercial RTS game deployment, but results here
have shown promising performance in a learning AI capable of defeating scripted
AI under short training time.

Jacky Shunjie Zhen and Ian Watson

References

1. Laird, J., VanLent, M.: Human-level AI’s killer application: Interactive computer
games. AI magazine 22(2) (2001) 15–26

2. Buro, M.: Call for AI research in RTS games. In: Proceedings of the AAAI-04
Workshop on Challenges in Game AI. (2004) 2–4

3. Siwek, S.E.: Video Games in the 21st Century. Technical report, Entertainment
Software Association (2010)

4. Yildirim, S., Stene, S.B.: A survey on the need and use of ai in game agents. In:
Proceedings of the 2008 Spring simulation multiconference. (2008) 124–131

5. Mehta, M., Ontañón, S., Amundsen, T., Ram, A.: Authoring behaviors for games
using learning from demonstration. Workshop on Case-Based Reasoning for Com-
puter Games (ICCBR) (2009)

6. Olesen, J.K., Yannakakis, G.N., Hallam, J.: Real-time challenge balance in an RTS
game using rtNEAT. In: 2008 IEEE Symposium On Computational Intelligence
and Games. (2008) 87–94

7. Buro, M., Furtak, T.M.: RTS games and real-time AI research. In: Proceedings of
the Behavior Representation in Modeling and Simulation Conference. (2004) 63–70

8. Stanley, K.O., Miikkulainen, R.: E�cient Evolution of Neural Network Topolo-
gies. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC02).
IEEE. (2002)

9. Wender, S., Watson, I.: Applying reinforcement learning to small scale combat in
the real-time strategy game StarCraft:Broodwar. In: Computational Intelligence
and Games (CIG). (2012) 402–408

10. Shantia, A., Begue, E., Wiering, M.: Connectionist reinforcement learning for
intelligent unit micro management in starcraft. In: The 2011 International Joint
Conference on Neural Networks (IJCNN). (2011) 1794–1801

11. Cadena, P., Garrido, L.: Fuzzy Case-Based Reasoning for Managing Strategic and
Tactical Reasoning in StarCraft. In: Advances in Artificial Intelligence. Volume
7094. (2011) 113–124

12. Weber, B., Mateas, M., Jhala, A.: Applying goal-driven autonomy to StarCraft.
Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2010) (2010)

13. Davis, I.L.: Strategies for strategy game AI. In: Proceedings of the AAAI Spring
Symposium on Artificial Intelligence and Computer Games. (1999) 24–27

14. Gabriel, I., Negru, V., Zaharie, D.: Neuroevolution based multi-agent system for
micromanagement in real-time strategy games. In: Proceedings of the Fifth Balkan
Conference in Informatics - BCI ’12. (2012) 32

15. Yao, X.: Evolving artificial neural networks. In: Proceedings of the IEEE. Vol-
ume 87. (1999) 1423–1447

16. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evol. Comput. 10(2) (2002) 99–127

17. Stanley, K.O.: Evolving neural network agents in the NERO video game. In: Pro-
ceedings of the IEEE 2005 Symposium on Computational Intelligence and Games.
(2005) 182–189

18. Jang, S.H., Yoon, J.W., Cho, S.B.: Optimal strategy selection of non-player char-
acter on real time strategy game using a speciated evolutionary algorithm. In:
Proceedings of the 5th international conference on Computational Intelligence and
Games. (2009) 75–79

ABBREVIATIONS

AI Artificial Intelligence
ANN Artificial Neural Network

BT Behaviour Trees
BWAPI Brood War Application Programming Interface

CBP Case-Based Planning
CBR Case-Based Reasoning

FPS First-Person Shooter
FSM Finite-State Machine

GA Genetic Algorithm
GDA Goal-Driven Autonomy

HP Hit-Points
HTN Hierarchical Task Network

NE Neuroevolution
NERO Neuro Evolving Robotic Operatives
NN Neural Network

ORTS Open Real-Time Strategy

RETALIATE Reinforced Tactic Learning in Agent-Team

Environments
RL Reinforcement Learning
RTS Real-Time Strategy

SC: BW StarCraft: Brood War

TWEANN Topology and Weight Evolving Artificial Neural Network

UT Unreal Tournament

