
Integrating Reinforcement Learning

into Strategy Games

by

Stefan Wender

Supervised by Ian Watson

The University of Auckland
Auckland, New Zealand

A Thesis submitted in fulfillment
of the requirements for the degree of

Master of Science in Computer Science

The University of Auckland, February 2009

Abstract

The present thesis describes the design and implementation of a machine learning agent
based on four different reinforcement learning algorithms. The reinforcement learning agent
is integrated into the commercial computer game Civilization IV. Civilization IV is a turn-
based empire building game from the Civilization series. The reinforcement learning agent
is applied to the city placement selection task. The city placement selection determines the
founding sites for a player’s cities.
The four reinforcement learning algorithms that are evaluated are the off-policy algorithms

one-step Q-learning and Q(λ) and the on-policy algorithms one-step Sarsa and Sarsa(λ). The
aim of the research presented in this thesis is the creation of an adaptive machine learning
approach for a task which is originally performed by a complex deterministic script. Since the
machine learning approach is nondeterministic, it results in a more challenging and dynamic
computer AI.
The thesis presents an empirical evaluation of the performance of the reinforcement learning

approach and compares the performance of the adaptive agent with the original deterministic
game AI. The comparison shows that the reinforcement learning approach outperforms the
deterministic game AI. Finally, the behaviour and performance of the reinforcement learn-
ing algorithms are elaborated on and the algorithms are further improved by analysing and
revising their parameters. The performance of the four algorithms is compared using their
identified optimal parameter settings and Sarsa(λ) is shown to perform best at the task of
city site selection.

iii

Acknowledgements

I am very grateful for the supervision and support of my advisor Ian Watson. Without his
ideas and guidance this thesis would not have been possible.

My fellow computer science students Sebastian, Paul, Ali and Felix made sure that the time
in the lab was never wasted, or at least never wasted alone. Thank you for many insightful
and enlightening conversations.

The comments and time given by my readers Clare and Christine greatly improved and
clarified this thesis.

I would especially like to thank my family who have supported me in every possible way for
all my life, whatever I wanted to do, wherever I wanted to go. To my mum and dad, Susanne
and Bernd, and to my brother and sister, Andreas and Christine, thank you for always being
supportive.

v

Contents

List of Tables xi

List of Figures xiii

List of Algorithms xv

1 Introduction, Motivation and Objectives 1

2 Thesis Outline 5

3 Background 7

3.1 Machine Learning in Games . 7
3.2 Evolution of Computer Game AI . 10
3.3 Origins of Reinforcement Learning . 11
3.4 Related Work . 12

3.4.1 Q-Learning . 13
3.4.2 Sarsa . 13
3.4.3 Reinforcement Learning and Case-Based Reasoning 14
3.4.4 Neuroevolution . 15
3.4.5 Dynamic Scripting . 16
3.4.6 Motivated Reinforcement Learning . 16
3.4.7 Civilization Games as Testbed for Academic Research 17

3.5 Algorithms . 18
3.5.1 The Markov Property . 18
3.5.2 Markov Decision Processes . 19
3.5.3 Temporal-Difference Learning . 19
3.5.4 The Q-Learning Algorithm . 20
3.5.5 The Sarsa Algorithm . 20
3.5.6 Eligibility Traces . 22

4 Testbed 25

vii

Contents

4.1 Selection Criteria . 25
4.2 Testbed Selection . 26
4.3 The Civilization Game . 28
4.4 Existing Civilization IV Game AI . 29
4.5 City Placement Task . 29
4.6 Existing Procedure for City Foundation . 31

5 Design and Implementation 35

5.1 Policies . 35
5.1.1 Greedy Policies . 35
5.1.2 ε-Soft Policies . 36
5.1.3 ε-Greedy Policies . 36
5.1.4 Softmax Policies . 36

5.2 Reinforcement Learning Model . 37
5.2.1 States . 37
5.2.2 Actions . 39
5.2.3 The Transition Probabilities . 40
5.2.4 The Reward Signal . 40

5.3 Implementation of the Reinforcement Learning Algorithms 43
5.3.1 Integration of the Algorithms . 43
5.3.2 Implementation of Eligibility Traces 46

5.4 Accelerating Convergence . 49
5.4.1 Reduction of the State Space . 49
5.4.2 Pre-Initialised Q-Values . 49

6 Evaluation 51

6.1 Experimental Setup . 51
6.1.1 Algorithm Parameters . 51
6.1.2 Game Settings . 52

6.2 Parameter Selection for the Reinforcement Learning Algorithms 55
6.2.1 Aim of Parameter Selection . 55
6.2.2 Preliminary Test Runs . 55
6.2.3 Test Runs with Full Discount . 59
6.2.4 Test Runs with Pre-Initialised Q-Values 60
6.2.5 Test Runs with a Reduced Number of Turns 62

6.3 Comparison of Reinforcement Learning Algorithm Performance 64
6.4 Comparison of the Standard Game AI with Reinforcement Learning 68
6.5 Optimising the Learning Rate α . 71

viii

Contents

7 Discussion and Future Work 75

8 Conclusion 81

A Paper Presented at the 2008 IEEE Symposium on Computational Intelligence and
Games (CIG’08) 83

B Results for 1000 Episodes of Length 60 Turns using Sarsa with Declining ε-Greedy
Policy 91

C RLState class 95

References 97

Abbreviations 103

ix

List of Tables

4.1 Comparison of Civilization Games . 26

5.1 Relationship between the Map Size and the Number of Possible States 38

6.1 Game Settings . 54
6.2 Parameter Settings for Preliminary Runs . 56
6.3 Parameter Settings for Full Discount Runs . 59
6.4 Parameter Settings for Tests with Pre-Initialised Q-Values 60
6.5 Parameter Settings for Test Runs with Reduced Length 62
6.6 Parameter Settings for Comparison of Reinforcement Learning with the Stan-

dard AI . 68

xi

List of Figures

4.1 Civilization IV: Workable City Radius . 30
4.2 Civilization IV: The Border of an Empire . 31
4.3 City Distribution . 33

5.1 Excerpt of the State Space S including the Actions that lead to the Transition 39
5.2 Computation of the Rewards . 42
5.3 General View of the Algorithm Integration for City Site Selection 43
5.4 Flow of Events for City Site Selection . 44
5.5 Computation of the Rewards . 47
5.6 Comparison of Value Updates between One-Step Q-Learning and Watkins’ Q(λ) 48

6.1 Results for Preliminary Tests using the One-Step Versions of the Algorithms . 56
6.2 Results for Preliminary Tests using the Eligibility Trace Versions of the Algo-

rithms . 56
6.3 Results for Fully Discounted One-Step Versions of the Algorithms 59
6.4 Results for Fully Discounted Eligibility Trace Versions of the Algorithms . . . 60
6.5 Results for Pre-Initialised Q-Values using the One-Step Versions of the Algorithms 61
6.6 Results for Pre-Initialised Q-Values using the Eligibility Trace Versions of the

Algorithms . 61
6.7 Results for Short Runs using the One-Step Versions of the Algorithms 63
6.8 Results for Short Runs using the Eligibility Trace Versions of the Algorithms 63
6.9 Illustration of Early Algorithm Conversion . 67
6.10 Results for Declining ε-Greedy using the One-Step Versions of the Algorithms 69
6.11 Results for Declining ε-Greedy using the Eligibility Trace Versions of the Al-

gorithms . 69
6.12 Performance Comparison between Standard AI and Reinforcement Learning

Algorithms . 70
6.13 Comparison of Different Learning Rates using One-Step Q-Learning 71
6.14 Comparison of Different Learning Rates using One-Step Sarsa 72
6.15 Comparison of Different Learning Rates using Q(λ) 72

xiii

List of Figures

6.16 Comparison of Different Learning Rates using Sarsa(λ) 73

7.1 Performance Comparison between Standard AI and Reinforcement Learning
Algorithms with Optimal Settings . 77

xiv

List of Algorithms

1 A Simple TD Algorithm for Estimating V π . 19
2 Pseudocode for One-Step Q-Learning . 20
3 Pseudocode for One-Step Sarsa . 21
4 Pseudocode for TD(λ) . 22
5 Pseudocode for Sarsa(λ) . 23
6 Pseudocode for Watkins’s Q(λ) . 23

xv

Chapter 1

Introduction, Motivation and Objectives

Despite the fact that commercial computer games still suffer by and large from the shortcom-
ings in artificial intelligence (AI) that John Laird mentioned in his keynote address at the
AAAI 2000 conference (Laird and van Lent, 2001) there have been tremendous developments
in the area of using commercial computer games as testbeds for AI research. This develop-
ment has been made possible by substantial improvements in game technology in recent years.

While learning computer game AI in commercial games is still almost non-existent, the
graphics in the games today are closer than ever to photorealism. Laird predicted this peak in
graphics as a turning point. After reaching perfection in terms of graphics, he assumed, focus
in computer game development would shift away from visuals and towards more captivating
gameplay, including game AI.
Computer games have changed from being the hobby of a small group of people to being

one of the mainstream entertainment industries. This transformation was already well un-
derway when Laird held his keynote address. However, the market for computer games was
still a lot smaller than today, when several publishers have turnovers of billions of dollars and
single games like Grand Theft Auto IV or World of Warcraft yield hundreds of millions of
dollars in return. The size of projects also implies that games have become far more complex
and extensive than before. Increasing game complexity also affects the development process:
The most recent commercial computer games go through a software life cycle that includes
thorough quality assurance. The source code of a game is now developed by large teams of
software engineers and thus has to be highly modular and of high quality to enable parallel
work with several people working on the same code. However, since nearly all commercial
games are closed source, the more recent trend of including extensive interfaces for modifica-
tions through users is very important for academics that want to use commercial games as
testbeds.
Publishers have started to realize that the length of the lifetime of a game largely depends

on how active the respective users, the community of that game, are involved with the game.
Therefore the publishers have started to create more and more powerful tools for community

1

Chapter 1. Introduction, Motivation and Objectives

developers who want to extend and modify the game. What started with simple map editors
in games like Warcraft II or Doom has now evolved through very capable scenario editors
in games like Bioware’s Baldurs Gate series into entire scripting languages that allow the
community to create content of their own for their favourite game. The scripting language
Lua can be used to create powerful user interfaces in World of Warcraft and allows users
to specify the complete AI of their computer-controlled servants in Ragnarok Online. Some
developers even release the entire source code of their games, for example Id Software for
both their Quake and Doom series. This is an important development for academics who
want to use commercial games as testbeds for their research since the nature of their tasks
usually requires profound changes to integrate custom applications. One sign of researchers
using these new interfaces is that the number of projects using interactive computer games
for AI research has grown tremendously (see Section 3.4 for numerous examples). And while
some researchers used computer games as testbeds already a decade ago, they usually either
developed their own games as test environments or used simple older games. Today more and
more researchers apply machine learning techniques in recent commercial computer games.

Among the most popular commercial games, especially in terms of long-term gameplay, are
the games of the Civilization series. These turn-based strategy games achieve their high replay
value not through advanced adaptable AI techniques but through a high level of complexity in
the later stages of the game. The early stages, however, are mostly deterministic and therefore
not very challenging. This point will be elaborated on in Section 4.4. These characteristics
as well as the large number of tasks involved in playing the game make Civilization games
an ideal testbed for AI research. It is possible to replace one of the large number of tasks
by a machine learning agent, thus making the AI less predictable and improving the overall
gameplay experience.

This is one of the main incentives for integrating machine learning techniques into video
games: the potential the techniques have to make these games more interesting in the long
run through the creation of dynamic, human-like behaviour. The technique that probably
resembles the human learning process most closely is Reinforcement Learning. Reinforcement
learning in this thesis is used to do exactly what is described above: replace a deterministic
task, thus making the game AI more adaptable.

There are three major objectives that this thesis tries to achieve. The first aim is the
integration of machine learning into a professionally developed, complex computer game. The
aim is not to create a machine learning agent that controls every aspect of the whole game.
Since recent games are very intricate environments and Civilization games are especially
renowned for their complexity, this would not be possible. However, an important task in the
game will completely be taken over by reinforcement learning, namely the task of selecting the

2

Chapter 1. Introduction, Motivation and Objectives

best position for a player’s cities. In order to perform this task efficiently, the reinforcement
learning agent should show a clear tendency to improve.
The next objective of this thesis is to show that machine learning techniques can on the one

hand provide a more versatile, adaptive computer game AI than standard techniques while
on the other hand performing at least as well as the standard AI. Therefore the performance
of the reinforcement learning agent will be compared to that of the current existing AI after
reinforcement learning has successfully been integrated into the game. The results of this
thesis in terms of these first two objectives have been published in (Wender and Watson,
2008) (see Appendix A). The second part of the empirical evaluation of this thesis further
improves and extends the findings in the paper.

A third objective is to optimise the applied technique. Reinforcement learning includes a
wide range of different algorithms that have different characteristics. Since some algorithms
are better suited for certain tasks than others, it is important to evaluate their performance
in the task of city site selection and select the algorithm that is suited the best for the
task. The reinforcement learning algorithms contain parameters that can be used to put
emphasis on different aspects of the reinforcement learning process. These parameters will
be evaluated in order to find an optimal setting.

This chapter illustrated the motivation behind the topic of this thesis, the integration of
reinforcement learning into a commercial computer game. It lists objectives of the thesis and
their order of priority.
The following chapter will give an overview of the background of this thesis. It includes
sections that elaborate on the historical background of machine learning in games and on the
evolution of computer game AI. Reinforcement learning and its origins are explained in detail
and research that is related to the topic of this thesis is mentioned. Finally, the reinforcement
learning algorithms that will be used in this thesis are presented in detail and the general
layout of a reinforcement learning environment as a Markov decision process is described.

3

Chapter 1. Introduction, Motivation and Objectives

4

Chapter 2

Thesis Outline

This chapter gives overview on the outline of this thesis. The different chapters that this
thesis consists of are briefly mentioned and their content is explained.
The following chapter will give an overview on several topics that form the background of

this thesis. On the one hand these are computer games in general and computer game AI in
particular. On the other hand this is reinforcement learning, a set of unsupervised machine
learning techniques. The ‘Background’ chapter contains information both on the historical
background and development of these areas and on the research related to this thesis that
has been done in these areas. Finally, the reinforcement learning algorithms that will be used
throughout this thesis are explained in detail.

The chapter ‘Testbed’ explains the considerations behind the choice of Civilization IV as
the testbed for this thesis. It then goes on to elaborate on the game mechanics in Civilization
IV with focus on the existing game AI. Finally, the task of city site selection, that is taken
over by the reinforcement learner is further illustrated and the present procedure behind this
task is explained in detail.

The chapter ‘Design and Implementation’ contains information on how reinforcement
learning is integrated into Civilization IV. At first the choices that are made when designing
the reinforcement learning model are listed. The possible policies that can be used by
the reinforcement learning algorithms are explained in detail and the deliberations behind
choosing the ε-greedy policy are clarified. Then the integration of the algorithms into the
actual game is presented. Finally, several improvements are listed that were made in order
to speed up the convergence of the algorithms towards an optimal policy.

The subsequent chapter presents the empirical evaluation of the reinforcement learning
algorithms that have been integrated in Civilization IV. It starts by elaborating on the
reasoning behind the selection of the game settings and of the algorithm parameters. These
settings are then tested in experimental runs and further adapted until the algorithms

5

Chapter 2. Thesis Outline

prove that they are capable of developing efficient policies for selecting city sites. Then the
algorithms’ performance is compared compared with each others performance as well as with
taht of the standard game AI. Through additional changes of the algorithm parameters the
performance is further improved.

The chapter ‘Discussion and Future Work’ analyses the results of the experiments in
the preceding chapter. The performance of the single algorithms is explained in detail.
Furthermore possible extensions are listed and directions for future research are presented.

The conclusion sums up the results of this thesis. Furthermore, the overall contributions
are mentioned and the initial objectives are compared with the actual results.

6

Chapter 3

Background

This chapter gives a brief overview of the background of machine learning in games as well
as providing the background knowledge on the algorithms and techniques which are used
throughout this thesis.
Its first part is a short summary of the development of artificial intelligence (AI) in clas-

sic board games. This section draws on surveys by Schaeffer and Fuernkranz (Schaeffer,
2000)(Fuernkranz, 2001) and summarises the research done for some of the most influential
’classic’ games for AI research. The second part is about the evolution of AI in commercial
games. It is mainly based on Tozour (2002) and also briefly touches on the differences between
academic research and commercial applications. Finally the algorithms that are used in later
parts of this thesis are explained in detail.

3.1 Machine Learning in Games

Arthur L. Samuel was one of the first people to pursue the application of machine learning to
game AI. In 1947 he came up with the idea of creating a program that could play checkers. The
two main papers describing his research, that lasted over the next three decades, are landmark
papers for AI in general and for AI learning in particular. They introduce several techniques
and ideas for AI learning which are still in use today in one way or another (Samuel, 1959)
(Samuel, 1967). Samuel’s program was based on the principle of learning the game without
previously defined moves. This is in contrast to what became the common approach not only
for checkers but also for chess and most other classical games where the computer programs
have a certain amount of predefined game states in which they search for a solution.
In the late 1970s Samuel’s program was defeated by a checkers program which was developed

at Duke University (Truscott, 1978). This victory led to the assumption that the new program
could match just about any human player. The assumption was indirectly proven wrong with
the development of one of the most advanced checkers programs of the early 90s, Chinook,
at the University of Alberta. Chinook is based on the now common principles of an opening
book, an endgame database, previous knowledge, and extensive search through possible moves

7

Chapter 3. Background

(Schaeffer et al., 1992). Its evaluation function is not based on learning but has been tuned
manually. Chinook won the ’world man-machine championship’ in 1994 against the world
champion checkers player Marion Tinsley and did not lose any game in the following years
before retiring in 1997. In 2007 the developers stated that they computed the weak solution
for checkers and thus Chinook cannot lose anymore (Schaeffer, 2007).

The history of computer AI playing checkers shows that even though Samuel started with
a machine learning approach, research soon switched to optimising brute force searching
programs which went on to become more effective and eventually unbeatable for human
players. Despite this, there are also approaches that use machine learning algorithms to play
checkers. Chellapilla and Fogel, for example, created a checkers program in the late 1990s,
which did not use expert domain knowledge but learned playing the game through co-evolution
(Chellapilla and Fogel, 1999).

One of the most researched areas in computer AI is the game of chess. Among the first
papers to be published on the topic of computer chess was a paper by Shannon (1950). The
author split algorithms applied to this problem into two types A and B. While both types
are based on searching for possible moves, Type A algorithms do this by brute-force while
Type B includes selective search. Type B algorithms search in a way that is similar to how
human chess players tend to think. Subsequently Type A algorithms gained popularity due
to their being easier to implement and to debug. Brute-force programs have managed to beat
human grand masters for quite some time now; most well known is the series of duels between
then world champion Gary Kasparov and chess programs made by IBMs Deep Blue team
(ChipTest, Deep Thought and the famous Deep Blue) (Campbell et al., 2002).

In a way similar to checkers, considerable research has been done in the area of machine
learning for chess. Probably the area most thoroughly studied is the induction of chess, that
is the classification into won/not won from a given endgame. Quinlan (1983), for example,
used the decision tree learning algorithm ID3 to acquire recognition rules. Muggleton (1990)
applied DUCE, a machine learning algorithm that suggests high-level concepts to the user.
The suggestions are based on recognized patterns in the rule database and the technique
reduces the complexity of the rule base and generates concepts that are meaningful for domain-
experts. Another machine learning technique which gained particular interest during the late
1980s is explanation-based learning (Mitchell et al., 1986). This approach was based on
the assumption, that the domain theory can be utilised to find an explanation for a certain
example. This example then can be generalized.

During the mid-90s a related approach called case-based reasoning (CBR) (Kolodner, 1992)
was developed and applied to computer chess. Case-based reasoning is a technique which is
quite similar to explanation-based learning and in principle ’Learning by Analogy’ (Campbell
et al., 2002). In order to solve a problem a CBR system looks for previously encountered

8

Chapter 3. Background

similar problems in its case-base. It then tries to adjust the solution to these known problems
to fit the current one. The problem-solution pair it acquires in this way is then used to
extend the existing case-base. MAPLE (Spohrer, 1985) is an early system that is based on
CBR and learns whenever it makes a fatal mistake, that is when it reaches a point where
all moves lead to a loss. CASTLE (Krulwich, 1993) is a modular (threat detection module
and counterplanning module) system that also learns through mistakes. Whenever one of
its components fails, it performs a self-diagnosis to find out which module failed and then
uses explanation-based learning to extend its case-base by the missing case. Both CASTLE
and MAPLE rely heavily on case-based planning (Hammond, 1989) which itself is based on
explanation-based learning.

Another possibility to apply machine learning to computer chess programs is the design
of the evaluation function. The evaluation function is the method that evaluates how good
a certain move or a certain sequence of moves is. The tuning of this function has actually
become the most promising direction for the application of machine learning to computer chess
(Campbell et al., 2002). Tunstall-Pedoe (1991) used a genetic algorithm (GA) to optimize
the evaluation function. The fitness of a certain parameter was determined by comparing
the result of the function with the moves of a grandmaster. van Tiggelen and van den
Herik (1991) came to the conclusion that genetic algorithms are too inefficient for use in
a middle-game application and therefore used an artificial neural network (ANN or NN)
instead. According to the authors this resulted in a more efficient and at the same time more
accurate program. Schmidt (1994) was not satisfied with the results he got when he used a
neural network and used temporal difference learning (TD learning) instead. The idea of TD
learning had already been developed by Samuel (1959) for his checkers player but not really
been in use again until Tesauro (1992) achieved amazing results with this in his backgammon
program. In chess it is quite hard to evaluate effects of decisions made in the middle-game
since the game is only decided at the end. TD learning addresses this problem by trying to
minimise the differences between successive position evaluations. This means, for example,
that if the program discovers after a series of evaluations that the assumed outcome is wrong,
a previous assumption must have been wrong and the weights of the function have to be
changed accordingly.

While checkers and chess have received tremendous attention and research, there are lots of
other games for which computer players have been researched using plenty of different tech-
niques. The aforementioned Tesauro created a backgammon player TD-Gammon (Tesauro,
1992) capable of beating human players. TD-Gammon is based on neural networks which
are trained using TD learning. Bill is an Othello program written by Kai-Fu Lee and Sanjoy
Mahajan that was among the best during the early 1990s. Besides using deep search and

9

Chapter 3. Background

extensive domain knowledge, it uses Bayesian learning in its evaluation function (Lee and
Mahajan, 1990).

The game of poker offers several attributes that make it very interesting for AI research:
it offers incomplete knowledge due to the hidden cards, it is played by several agents, and it
uses concepts such as agent modeling and deception. Therefore, a lot of interesting research
in the area of machine learning for poker has been produced. Loki, a program developed at
the University of Alberta, uses explicit learning by observing its opponents and constructing
models of these opponents. It then adapts to the play of these opponents (Billings et al., 1999).
Korb and Nicholson (1999) produced a poker program that is based on Bayesian networks.
The poker program of Dahl (2001) uses reinforcement learning (Russell and Norvig, 2003) to
play the poker variation ‘Texas Hold’em’. Rubin and Watson (2007) use case-based reasoning
for their poker program CASPER which plays Texas Hold’em evenly against strong, adaptive
competition. Other games that are popular with AI researchers include Go (Mueller, 2000),
which has an even larger search space than chess, Scrabble (Sheppard, 2002) and Nine-Men-
Morris (Gasser, 1996).

3.2 Evolution of Computer Game AI

Since the mid 1970s, computer games have been developed that allow a single player to com-
pete with the program itself. Seminal games like Pac-Man, Space Invaders or Donkey Kong
used, mostly due to restrictions of available resources, very simple techniques; these include
finite-state machines, decision trees and production rule systems together with some random
decision-making to add less predictable behavior. But while processing power increased in
the following decade and games grew more complex and better-looking, the AI techniques
remained by and large the same. Only in the 1990s were more complex techniques used.
One reason for this was the success of strategy games such as MicroProse’s Civilization or
Blizzard’s WarCraft II , since these games require AI as part of the central playing experi-
ence. Additionally, strategy games require a range of different AI techniques for unit-level
AI as well as for overall strategic and tactical AI. First Person Shooters (FPS) are another
game genre which led to the introduction of more complex AI into commercial games. While
there have been games which belong to this genre since the early 1990s, they mostly tried
to challenge the player by the sheer number of opponents or the amount of firepower he was
facing. Significant progress was made in Valve’s Half-Life which was praised for its tactical
AI and Epic Games’ Unreal Tournament which included bots that showed tactical behavior
and scalability. One computer games genre which is practically based on AI is that of sim
games/artificial life (A-Life) games.

10

Chapter 3. Background

Maxis’ SimCity was one of the first games in this genre. Especially noteworthy for the
complexity of its agents is The Sims which uses fuzzy state machines and A-Life technologies.
The games of the Creatures series are basically A-Life simulators which make use of a wide
range of AI techniques to simulate the evolution of the ‘Norns’ that populate the game.
More recently Lionhead Studio’s Black&White games have been built around a complex
reinforcement learning approach that allows the player to train a ‘creature’. These games
show one of the most advanced game AIs to date.

While these games do use very advanced AI techniques, the most common technique still
remains the simpler and thus easier to create and debug rule-based systems. This gap between
academic research and the computer gaming industry has not gone unnoticed. Laird and van
Lent (2001) state that while there is significant room for academic research in computer
games, the computer games industry tends to go in its own direction. They then conclude
that it is up to academic researchers to close this gap by using computer games as testbeds
to develop AI methodologies which then can be used in commercial games. According to
Nareyek, the academic community has so far failed to achieve this (Nareyek, 2004) (Nareyek,
2007). He states that apart from the usage of a few common techniques, in particular the A*
algorithm for path finding, usually no academic research is used in commercial products. He
also claims that common academic research goes into a direction that is all but uninteresting
to the computer games industry.

On the other hand there have been quite a few attempts to bridge this gap between academia
and the industry. Champandard (2003) uses the open-source framework FEAR (Flexible
Embodied Animat ’Rchitecture) together with the commercial First Person Shooter Quake
2 to evaluate several AI techniques proposed by the academic community. He succeeds at
implementing these various techniques for different tasks of a non-player character (NPC), a
so-called bot. Gold (2005) does research using a commercial game engine as testbed to develop
a prototype game. He reaches the conclusion that it is indeed possible to mix commercial
game development and research. Miikkulainen et al. (2006) argue that the AI techniques
which are usually applied in modern games are in fact not appropriate at all for the purposes
they are used for. On the other hand machine learning techniques which are not used at all
in commercial products such as neuroevolution (neural networks in combination with genetic
algorithms) are particularly well suited for computer games.

3.3 Origins of Reinforcement Learning

This section points out the early origins of reinforcement learning and is based on Sutton’s and
Barto’s survey on reinforcement learning (Sutton and Barto, 1998). The specific reinforcement
learning algorithms that are used in this thesis are described in Section 3.5.

11

Chapter 3. Background

The modern field of reinforcement learning was introduced in the late 1980s and evolved
mainly from two different branches of research: optimal control, and learning by trial and
error. A third branch which also played into the development to a smaller degree is TD
learning. A short explanation for all three areas is given below.

‘Optimal control’ is a term which is used to describe the search for a controller that mini-
mizes a specific variable in a dynamic system over time. One of the most prominent approaches
to this problem was developed by Richard Bellman in the 1950s, the so-called dynamic pro-
gramming (Bellman, 1957b). This technique is still used today to solve reinforcement learn-
ing problems. Bellman (1957a) also developed the notion of the Markovian decision process
(MDP) which is the discrete stochastic version of the optimal control problem. Both dynamic
programming and MDPs form a vital part of what is today known as reinforcement learning.

The other big branch of reinforcement learning, learning by trial and error, is based on the
‘Law of Effect’ in cognitive sciences: An action followed by a positive reward is remembered
in this context and thus more likely to be performed again in the same situation. An ac-
tion followed by a negative reward is remembered in a negative context and will be avoided
(Thorndike, 1911). The ‘Law of Effect’ is selectional, i.e. it tries several different options
and choses based on consequences. The law is also associative: the alternative found will
be associated with a particular situation. One of the first attempts at teaching a computer
program through trial and error learning was made by Farley and Clark (1954).

The third, quite recent branch which comes into play in modern reinforcement learning is
TD learning. The first application of a form of TD learning, by analyzing the difference of a
certain attribute between time-steps, was done by Samuel (1959). Witten (1977) was the first
to integrate optimal control and trial and error learning. He also made a significant contribu-
tion to TD learning, an area which had received little attention since its first developments
in the late 1950s.

The final step to create modern day reinforcement learning was the development of Q-
learning by Watkins (1989). His work integrated all three previously described branches
and extended the field of reinforcement learning in general. One of the first successful and
noteworthy applications of these techniques was performed by Tesauro (1992), who brought
further attention to the emerging field of reinforcement learning with his backgammon player
TD-Gammon.

3.4 Related Work

This section is concerned with previous research on reinforcement learning in computer games.
It is divided into subsections for research into different algorithms as well as their applications
in computer game AI. Furthermore there is an explanation of other reinforcement learning

12

Chapter 3. Background

techniques such as motivated reinforcement learning (MRL) which address certain problem
areas of reinforcement learning. The specific algorithms that are applied in this thesis are
described in detail in Section 3.5. Also the previous usage of Civilization games as testbed
for AI research is described.

3.4.1 Q-Learning

An important breakthrough in the history of reinforcement learning was the development of
Q-learning (Watkins, 1989). Q-learning integrates, as stated in Section 3.3, different branches
of previous research such as dynamic programming and trial-and-error learning into reinforce-
ment learning.

Andrade et al. (2005) use a Q-learning algorithm to create an adaptive agent for a fighting
game Knock’em. The agent is initially trained offline to be able to adapt quickly in an online
environment. During the game it adjusts its play to the other players level of skill. The game
AI thus always presents a challenge but remains beatable regardless of the players level of
skill.

Smith et al. (2007) the authors introduce RETALIATE (for: Reinforced Tactic Learning in
Agent-Team Environments), an online Q-learning technique that creates strategies for teams
of computer agents in the commercial FPS game Unreal Tournament. The bots controlled by
RETALIATE were able to adapt and devise a winning strategy against the inbuilt game AI
in most cases in just one game.

Whiteson and Stone (2006) use a combination of Q-learning and the NEAT (NeuroEvolution
of Augmented Topologies) algorithm to perform on-line evolutionary function approximation.
They test this method with several standard reinforcement learning benchmarks and con-
clude that evolutionary function approximation can significantly improve standard temporal
difference learning.

3.4.2 Sarsa

Graepel et al. (2004) use the Sarsa algorithm to compute strategies in the commercial fighting
game Tao Feng to create a challenging computer opponent. Q-learning could not be used
because of the lack of information about possible actions in any given state. Sarsa does not
require this information. Stone et al. (2005) use the game RoboCup Soccer Keepaway as a
testbed. In the game a number of agents (the keepers) try to keep the ball in their possession
within a limited area while the opponents (the takers) try to capture the ball. The episodic
semi-Markov decision process (SMDP) version of a Sarsa(λ) algorithm is used to compute the
best strategy for the adaptive keepers against a set of predefined static takers. As a result

13

Chapter 3. Background

of empirical studies, the time it takes the takers to acquire the ball from the keepers rises
constantly with number of episodes that were played.

McPartland and Gallagher (2008b) use a tabular Sarsa(λ) algorithm to control a bot in
a first-person-shooter. Different techniques are combined with reinforcement learning (state
machine, rule based and hierarchical reinforcement learning) to control the bot. Hierarchical
and rule based reinforcement learning prove to be the most efficient combinations (McPartland
and Gallagher, 2008a).

3.4.3 Reinforcement Learning and Case-Based Reasoning

Several publications explore a combination of case-based reasoning (CBR) and reinforcement
learning for computer game AI.
Sharma et al. (2007) use a multi-layered agent to create strategies and tactics for an agent
that competes in the real-time strategy (RTS) game MadRTS. One of the main aims of
their research is to use transfer learning in an RTS environment. In order to achieve this,
a hybrid case-based reasoning and reinforcement learning algorithm is used. CARL (CAse-
Based Reinforcement Learner) consists of multiple layers, each of these layers being made up
of three modules: a planner, a controller and a learner. The planner selects from the actions
that are available in the state that the layer is currently in. The controller acts as an interface
for perceptions/actions to lower layers and the learner modifies the data/features used by the
planner.

For their experiments the authors use three layers, each consisting of the three modules
described above. The top layer is hand coded to select the overall strategy and the bottom
layer takes the orders from above and translates them into MadRTS specific orders. The
middle layer contains a hybrid case-based reasoner and reinforcement learner. The hybrid
CBR-RL Layer uses CBR as an instance-based function approximator to retrieve matching
cases from the case-base while a TD reinforcement learning algorithm is used to revise the
cases according to how the selected case performs. The performed experiments show that this
architecture works well for the given task of controlling combat in the selected RTS game.
Furthermore, transferring the gained knowledge to a slightly more complex task works as well:
the agent adapts much faster if it uses previous cases than if learns from scratch.

Auslander et al. (2008) use the reinforcement learning algorithm RETALIATE developed
by Smith et al. (2007). RETALIATE uses online Q-learning to create strategies for teams
of agents in the FPS Unreal Tournament. As an extension the authors introduce techniques
from CBR for the agent to adapt faster to a change in the strategy of its opponent. The
resulting technique, CBRetaliate, tries to obtain a better matching case whenever the collected
input reading shows that the opponent is outperforming it. The Q-table of the previously
computed policy is part of the stored/retrieved cases among other recorded data. As a result

14

Chapter 3. Background

of the extension, the CBRetaliate agent is shown to significantly outperform the RETALIATE
agent when it comes to sudden changes in the opponent’s strategy.

Aha and Molineaux (2008) introduce the Continuous Action and State Space Learner
(CASSL) which uses CBR and reinforcement learning in the continuous action/state space
of the RTS game MadRTS. The integration of CBR and reinforcement learning has the ad-
ditional benefit of showing causal relations between different states, something which CBR
alone would not be able to do. The ensuing experiments show that this approach outperforms
the same algorithm which descretizes the state space. CASSL maintains two case-bases, one
for transitions, i.e. applying actions in certain states and another case-base for values, i.e.
estimates of the value of certain states using the current policy. Each of these case-bases sup-
ports a cycle of case retrieval, reuse, revision and retention. At the beginning both case-bases
are initialised to the empty set. By applying CASSL to a sequence of gameplay episodes the
case-bases are subsequently filled with new cases and revises. A nearest neighbor metric is
used to retrieve similar cases.

3.4.4 Neuroevolution

Neuroevolution algorithms use neural networks which are trained through genetic algo-
rithms.There is a distinction between neuroevolution algorithms that only calculate the
weights for the neural networks and algorithms that change the entire topology of the network.

Stanley et al. (2005) use a modification of the NEAT (NeuroEvolution of Augmented
Topologies) algorithm (Stanley and Miikkulainen, 2002), rtNEAT (real-time Neuroevolution
of Augmented Topologies) to build the Neuroevolving Robotic Operatives (NERO) game. In
this game teams of virtual robots are trained using the inbuilt machine learning techniques
to compete against other teams. A major contribution of rtNEAT is the fact that an evolu-
tionary algorithm, which is usually designed to run off-line, is trained during the game. In
the NERO game the player acts as an instructor for his team of robots which start the game
without any skills at all. The player can only influence the environment and thus force the
robots to perform certain actions.
Karpov et al. (2006) use NEAT to generate strategies for bots that play the FPS Unreal Tour-
nament. The authors perform their experiments in the test environment TIELT (Testbed for
Integrating and Evaluating Learning Techniques) (Aha and Molineaux, 2004) and also in-
clude an evaluation on the time and effort required to integrate a commercial game and use
it as testbed for AI research. As a test case the task of navigating through a level in Unreal
Tournament was used.

15

Chapter 3. Background

3.4.5 Dynamic Scripting

Spronck et al. (2006) developed an online learning technique they called ‘dynamic scripting’
. Dynamic scripting enables the computer game AI to adapt itself to the player, either in
level of difficulty or in style of play. A rule base is used to create scripts which define the
performance of the AI. For each computer agent there exists a rule base of manually defined
domain specific rules. Each of these rules has a weight assigned to it that determines the
likelihood for this rule of being chosen into the script. The script defines the agent’s behavior
during the game. At the beginning of a new evaluation cycle such a script is composed for
every single agent according to the weights using a softmax procedure. After the end of a cycle
the weights of the rules involved are updated in the rule base. If the outcome was a success,
the weights for rules involved in the successful script are incremented, otherwise the weights
are decremented. The overall sum of weights is kept constant; an increment of one weight
results in all other weights being decremented. Dynamic scripting is comparable to actor-critic
reinforcement learning and Monte Carlo control. The authors use the commercial role-playing
game (RPG) Neverwinter Nights as a testbed for their research. They compose a scenario
where two teams of equally strong computer characters fight each other. The characters on
the one side are controlled by different versions of ingame AI rules. The characters on the
other side are controlled by dynamic scripting. The result showed that the opponent AI which
was based on dynamic scripting managed to adapt quite quickly (20-50 cycles on average)
depending on the strength of the inbuilt game AI.

Ponsen et al. (2006) improve the basic dynamic scripting by eliminating the shortcoming
of manually designed rule bases. The authors introduce the Evolutionary State-based Tactics
Generator (ESTG), which creates tactics fully automatically. An evolutionary algorithm is
used to fill the initial rule base with domain specific knowledge. A test against selected
manually created scripts shows that dynamic scripting with automatically generated rule
bases is able to adapt itself to changing strategies. After a certain amount of adaption, even
the most advanced manual script was beaten by dynamic scripting.

3.4.6 Motivated Reinforcement Learning

Motivated reinforcement learning (MRL) is reinforcement learning for which the reward signal
is computed through an additional motivation function. The motivation function uses domain
independent rules to calculate the motivation signal. Thus the development of the agent
relies more on environment and experiences rather than domain specific knowledge. The
motivational function relies heavily on research in cognitive sciences.

Merrick and Maher (2007) target the development of NPCs for open-ended virtual worlds
that adapt to changes in their environment. By adapting to changes in their environment,

16

Chapter 3. Background

the NPCs provide an ongoing interesting experience for the players. The adaptable NPCs
are different to NPCs of recent commercial MMOGs (Massively Multiplayer Online Games)
which are controlled by static scripts and do not adapt to changes in the game world. The
authors describe an experiment in the game Second Life. The experiment uses a task which
is defined as a MDP. Virtual sheep are created and controlled by an MRL algorithm. Two
experiments show that the sheep adapt to changes in their previous environment.

Merrick and Maher (2006) also use a similar approach to create agents which act as support
characters for the player. It is shown through empirical evaluation how a virtual agent that is
controlled by an MRL algorithm can act as a vendor for goods produced by the player. The
virtual agent is unsupervised and adapts to changes in its environment following a behavioral
policy that has been previously defined. Merrick (2007) sums up previous research on creating
adaptive NPCs. Furthermore, two different models of MRL that are used to control NPCs
are compared.

3.4.7 Civilization Games as Testbed for Academic Research

Civilization is the name of a series of turn-based strategy games. Several variants of Civiliza-
tion have been used in academic research because of the broad spectrum of problems involved
in the games as well as the multitude of versions available, quite a few of them with open
source code.

Ulam et al. (2004) use the Civilization variant FreeCiv, an open source version of the
commercial game Civilization II, to show the effectiveness of model-based reflection and self
adaption. The comparably small but important task of managing the construction of defensive
units and buildings in a city is used as a testbed. Houk (2004) goes further and introduces
an agent that plays the complete early expansion phase of FreeCiv. The Lisp module which
was created to do this controls city management, unit management, and exploration.

Souto (2007) and Gundevia (2006) describe the integration of the commercial Civilization
game Call To Power 2 (CTP2) with the test environment TIELT (Aha and Molineaux,
2004). Their overall aim is transfer learning, but the test environment can also be used as an
integrated testbed for future research using CTP2. TIELT integrated with CTP2 is used by
Sánchez-Ruiz et al. (2007) as a testbed for adaptive game AI. In order to communicate with
the game an ontology for the domain is developed and case-based planning in combination
with CBR is used to create an adaptive AI.

Sánchez-Pelegrín et al. (2005) document the development of an AI module for the open
source Civilization clone C-Evo. This variant, which is closest related to Civilization II,
allows for the development of different AI modules which can then compete against each
other. The authors develop an AI module based on CBR that can perform simple combat

17

Chapter 3. Background

actions. The modular architecture of C-Evo is then used to compare this module with a
non-learning version of itself.

3.5 Algorithms

This section which is based on (Sutton and Barto, 1998) describes the general algorithms and
concepts which are used throughout this thesis in detail. First the notions of the Markov
property and Markov decision processes are explained. These are important since they are
prerequisites for the efficient use of reinforcement learning techniques. The idea behind the
reinforcement learning technique temporal difference learning is described afterwards. Both
TD algorithms that are applied throughout this thesis are based on this technique. These
specific algorithms, Q-learning and Sarsa, are elaborated afterwards. After explaining the
simple, one-step versions of these algorithms, their more complex versions which include
eligibility traces are shown in detail.

The algorithms described in this section are not yet altered in any way to adjust them for
the specific area of application in this thesis. These alterations are described in Chapter 5.

3.5.1 The Markov Property

The agent in a reinforcement learning framework makes its decisions based on the information
it gets about the environment at any one time, the so called state. If this state signal contains
all the information of present and past sensations it is said to have the Markov Property. This
does not mean that single actions leading up to the present state have to be observable, only
the important parts for the current state have to be present. Mathematically the complete
probability distribution for the response of an environment at time t + 1 to an action taken
at time t looks as follows

Pr
{
st+1 = s

′
, rt+1 = r|st, at

}
.

If an environment has the Markov property this also means that given the current state
and action, it is possible to predict the next state and reward. Through iteration this allows
to predict all future states. Furthermore choosing a policy based on a Markov state is just
as effective as choosing a policy when knowing the complete history until that state. In
reinforcement learning Markov states are important since decision are only made based on
the current state. Even if a reinforcement learning environment does not have the Markov
property, the standard algorithms which assume this property can still be applied. However
these algorithms will usually only be as effective as far as the state signal resembles a Markov
state.

18

Chapter 3. Background

3.5.2 Markov Decision Processes

If a reinforcement learning task presents the Markov property it is said to be aMarkov decision
process (MDP). If the task has a finite number of states and actions it is called a finite MDP.
A specific finite MDP is defined by a quadruple (S,A,Pa

ss
′ ,Ra

ss
′).

In this quadruple

• S represents the state space,

• A represents the action space,

• Pa
ss′

= Pr
{
st+1 = s

′ |st = s, at = a
}

represents the transition probabilities, i.e. the
probability of reaching state s′ from s after taking action a.

• Ra
ss′

= Pr
{
st+1 = s

′ |st = s, at = a
}

represents the expected reward, given a current
state s, an action a and the next state s′ .

The MDP is used to maximize a cumulative reward by deriving an optimal policy π according
to the given environment.

3.5.3 Temporal-Difference Learning

Temporal-difference (TD) learning is a reinforcement learning method which combines ideas
from dynamic programming with Monte Carlo methods (Sutton, 1988). Like Monte Carlo
methods it samples the environment to observe the current state without the need of a
complete model of this environment. Both methods update their estimated value V of a
visited state st based on the return after visiting the state while following a policy π. Just as
for dynamic programming the estimation is thus based on previous estimates, the so-called
’bootstrapping’. The pseudo code for the simple TD algorithm looks as in Algorithm 1.

Initialise V (s) arbitrarily and π to the policy to be evaluated
for (each episode) do

Initialise s
repeat for each step of episode

a←action given by π for s
Take action a; observe reward, r, and next state, s′

V (s)← V (s) + α
[
r + γV (s

′
)− V (s)

]

s← s
′

until s is terminal
Algorithm 1: A Simple TD Algorithm for Estimating V π

19

Chapter 3. Background

3.5.4 The Q-Learning Algorithm

Q-learning is an off-policy TD algorithm, i.e. it calculates the values of policies not only based
on experimental results but also based on estimates about values of hypothetical actions, i.e.
actions which have not actually been tried.
The formula for simple one-step Q-learning is

Q(st, at)← Q(st, at) + α [rt+1 + γmaxaQ(st+1, at)−Q(st, at)] . (3.1)

Since Q-learning works independent of the policy being followed, the learned action value
Q function directly approximates the optimal action-value function Q∗. In contrast to simple
TD it does not assign a value to states, but to state-action pairs. The only prerequisite it has
to finding the optimal policy with probability 1 is just that all states are visited infinite times,
which is a basic requirement for all reinforcement learning methods that are guaranteed to
find the optimal behavior.
The procedural form of the Q-learning algorithm can be seen in Algorithm 2.

Initialise Q(s, a) arbitrarily
for (each episode) do

Initialise s
repeat for each step of episode

Choose a from s using the policy derived from Q
Take action a, observe r, s′

Q(st, at)← Q(st, at) + α [rt+1 + γmaxaQ(st+1, at)−Q(st, at)]
s← s

′

until s is terminal
Algorithm 2: Pseudocode for One-Step Q-Learning

3.5.5 The Sarsa Algorithm

Sarsa is an on-policy TD learning algorithm very similar to Q-learning (Rummery and Ni-
ranjan, 1994). The main difference is that it is not necessarily the action with the biggest
reward that is used for the next state but the action according to the same policy that led to
the present state. Sarsa stands for State-Action-Reward-State-Action, more specifically the
quintuple referred to here is (st, at, rt+1, st+1, at+1). This implies that to compute the update
for a Q-value the following information is needed:

• The current state st.

• The chosen action at according to a policy π.

• The reward rt+1 gained from executing this action.

20

Chapter 3. Background

• The resulting new state st+1.

• The next at+1 action that is chosen the policy π.

Sarsa was developed as an alternative to the off-policy Q-learning which always chooses the
action yielding the maximum reward. Sarsa allows for a more controlled trade-off between
exploitation (taking the highest yielding action) and exploration (picking random/ unknown
actions). The update function for Q-values is

Q(st, at)← Q(st, at) + α [rt+1 + γQ(st+1, at+1)−Q(st, at)] . (3.2)

This function makes use of every element in the quintuple described above. In its general
form Sarsa looks as shown in Algorithm 3.

Initialise Q(s, a) arbitrarily
for (each episode) do

Initialise s
Choose a from s using the policy derived from Q
repeat for each step of episode

Take action a, observe r, s′

Choose a′ from s′ using the policy derived from Q
Q(st, at)← Q(st, at) + α [rt+1 + γQ(st+1, at+1)−Q(st, at)]
s← s

′

a← a
′

until s is terminal
Algorithm 3: Pseudocode for One-Step Sarsa

21

Chapter 3. Background

3.5.6 Eligibility Traces

Eligibility traces are a basic mechanism of reinforcement learning that is used to assign tem-
poral credit. This means that it is not only the value for the most recently visited state or
state-action pair that is updated. Value for states or state-action pairs that have been visited
within a limited time in the past are also updated. The technique can be combined with any
TD technique and it speeds up the learning process. As future chapters will show, assigning
temporal credit is important for the task of city site selection that was chosen for this thesis.

TD(λ) is a popular TD algorithm that uses eligibility traces and was developed by Sutton
(1988). It was used by Tesauro (1992) for his famous backgammon agent which learned to play
on the same level as human players. The λ in TD(λ) is the so-called trace-decay parameter,
i.e. the parameter which determines how far rewards propagate back through a series of
states/actions. This parameter is used to compute the eligibility trace which is for state s at
time t

et(s) =




γλet−1(s) if s 6= st;

γλet−1(s) + 1 if s = st.

To guarantee convergence towards the optimal solution, the limits for lambda are 0 < λ < 1.
This is quite obvious since lambda has to decay in order to make future rewards less important
than present rewards. The pseudocode for TD(λ) can be seen in Algorithm 4.

Initialise V (s) arbitrarily and e(s) = 0 for all s ∈ S
for (each episode) do

Initialise s
repeat for each step of episode

a←action given by π for s
Take action a; observe reward, r, and next state, s′

δ ← r + γV (s
′
)− V (s)

e(s)← e(s) + 1
forall s do

V (s)← V (s) + αδe(s)
e(s)← γλe(s)

s← s
′

until s is terminal
Algorithm 4: Pseudocode for TD(λ)

For both Q-learning and Sarsa eligibility traces are not used to learn state values Vt(s) but
rather values for state-action pairs Qt(s, a), just as in the one-step versions of these algorithms.
The pseudocode for the eligibility trace version of Sarsa(λ) can be seen in Algorithm 5.

There are two different popular methods that combine Q-learning and eligibility traces.
They are called Peng’s Q(λ) (Peng and Williams, 1994) and Watkins’s Q(λ) (Watkins, 1989)
after the people that first proposed them. Empirically, it has been shown that Peng’s Q(λ)

22

Chapter 3. Background

Initialise Q(s, a) arbitrarily and e(s) = 0 for all s ∈ S
for (each episode) do

Initialise s, a
repeat for each step of episode

a←action given by π for s
Take action a; observe reward, r, and next state, s′

Choose a′ from s
′ using policy derived from Q

δ ← r + γQ(s
′
, a
′
)−Q(s, a)

e(s, a)← e(s, a) + 1
forall s, a do

Q(s, a)← Q(s, a) + αδe(s, a)
e(s, a)← γλe(s, a)

s← s
′
; a← a

′

until s is terminal
Algorithm 5: Pseudocode for Sarsa(λ)

usually performs better and nearly as good as Sarsa(λ) (Sutton and Barto, 1998). However
Peng’s Q(λ) is far more complex to implement than Watkins’s Q(λ), has not yet been proven
to converge to the optimal function Q∗, and is basically a hybrid between Watkins’s Q(λ) and
Sarsa(λ). Therefore in this thesis only Watkins’s Q(λ) is used as Q-learning algorithm with
eligibility traces. The pseudocode for Watkins’s Q(λ) can be seen in the figure for Algorithm
6.

Initialise Q(s, a) arbitrarily and e(s) = 0 for all s, a
for (each episode) do

Initialise s, a
repeat for each step of episode

Take action a; observe reward, r, and next state, s′

Choose a′ from s
′ using policy derived from Q

a∗ ← argmaxbQ(s
′
, b) (if a′ then a∗ ← a

′)
δ ← r + γQ(s

′
, a∗)−Q(s, a)

e(s, a)← e(s, a) + 1
forall s, a do

Q(s, a)← Q(s, a) + αδe(s, a)
If a′ = a∗, then e(s, a)← γλe(s, a)
else e(s, a)← 0

s← s
′
; a← a

′

until s is terminal
Algorithm 6: Pseudocode for Watkins’s Q(λ)

This chapter gave an overview of the historical background of machine learning in games in
general and machine learning in computer games in particular. After illustrating the histori-
cal background of reinforcement learning, this chapter also looked at the use of reinforcement
learning in computer games. It illustrated the related work for the chosen testbed, the com-

23

Chapter 3. Background

puter game Civilization IV. Finally, the specific reinforcement learning algorithms and their
applications in computer games were explained.
The next chapter deals with the computer game that will serve as a testbed in this thesis.
The selection of the testbed from a range of candidates will be elaborated on first. Then the
game mechanics as well as the specific task for which reinforcement learning is used will be
outlined.

24

Chapter 4

Testbed

This chapter gives an overview of the testbed that is used in this thesis, namely the computer
game Civilization IV. At first a comparison of the four Civilization games that were considered
as testbeds is given. The results of this comparison are the motive for using Civilization IV as
a testbed. After selecting the testbed, a general introduction to the games of the Civilization
series and their game mechanics is given. Then the way the existing Civilization IV AI works
is illustrated before the task the reinforcement learning algorithms will perform is explained
in detail.

4.1 Selection Criteria

As suggested in the previous section on related work, a general choice was made to use a
game of the Civilization series as a testbed. The next section describes the selection of the
Civilization game. The criteria according to which the game is chosen, are listed below.

• Code Availability: All important parts of the code have to be open source. These parts
must be easily accessible. This is an exclusion criterion.

• Ease of Use: This criterion includes several subitems.

– Quality of the Documentation: Even the smaller games contain an extensive code
base. It is therefore important that information exists on how to use the code.

– Quality of the Code: The quality of the code base is very important. The code
should be well structured and be developed according to standards that make
working in one part of the code similar to working in any other part.

– Programming Language: The programming language should be as capable as pos-
sible, i.e. contain high-level functionality. While low-level programming languages
offer more control over memory management and are usually faster, not speed but
functionality is the main focus of this thesis. A potent development environment
should exist for the programming language the code base is written in.

25

Chapter 4. Testbed

• Modularity: Only a small part of the existing AI will be replaced. It is important that
this is easily possible and the rest of the existing AI remains completely functional.

• Quality of the Existing AI: Since only a small part of the overall AI will be replaced by
reinforcement learning, the rest of the standard AI will still be used in experiments. It
is therefore important that the existing AI is very capable and does not contain errors.
These errors could make experimental results worthless.

• Age and Popularity: These two criteria are signs of the effort that went into the devel-
opment of the game and of ongoing support. More recent programs usually underwent
a more complex development and thus is also more likely to have higher quality code.
If a commercial or open source game enjoys a high popularity the developers are more
likely to release patches and bug fixes for it than for a game with low popularity. Since
the results of young age and huge popularity are already covered by previous criteria,
age and popularity are only used as indicators for these previous criteria.

• Reusable Results: Ideally there exists code or documentation from similar projects that
can be reused.

4.2 Testbed Selection

Section 3.4.7 expands on related work that has been done on Civilization games. It lists
several of these games of the Civilization series. All three of the games mentioned in that
section have been used successfully as testbeds for academic research. A choice therefore
had to be made between these three versions of Civilization and the most recent commercial
version of the original game, Civilization IV. The criteria according to which this choice is
made have been listed in the previous section. Table 4.1 lists some basic characteristics of the
four games.

Release Open Source (OS)/ Programming Target Group
Commercial Language

C-Evo 1996 Open Source Delphi/Pascal Very Advanced
Players

FreeCiv 1999 Open Source C Medium to
Advanced Players

Call to Power 2 2000 Originally Commercial C++ All Levels
Completely OS Now of Experience

Civilization IV 2005 Originally Commercial C++/Python All Levels
Partly OS Now of Experience

Table 4.1: Comparison of Civilization Games

26

Chapter 4. Testbed

A first choice can be made between the inherently open source versions C-Evo and FreeCiv
and the commercial versions CTP2 and Civilization IV which offer open source code but were
not designed to be released to the public. The two open source games offer complete access
to commented source code, they are smaller in scale and less complex than their commercial
counterparts. Since they are easier to access and have been available for a longer time, they
have been the preferred testbeds for research. Especially C-Evo offers great support for AI
because it has its own interface for complete AI modules (Gerlach, 2008).

However, the code base of the two community projects is of a very different quality than the
professionally developed commercial games. C-Evo’s core has been developed by one person
only. Consequently it has several shortcomings such as undocumented hidden dependencies
and missing documentation for certain parts of the code. FreeCiv, on the other hand, was
entirely developed as a community project. As a consequence, there are various inconsistencies
in its code base. Its AI in particular has been poorly documented and developed according to
the developers (Freeciv Project, 2008). For this thesis only a small part of the AI was to be
replaced by reinforcement learning while the standard game AI controls all remaining tasks.
The bad quality of its AI thus makes FreeCiv an unfavorable testbed.

A further disadvantage of the open source games is their programming languages. Since
the open source games are older than the commercial ones, they have been developed in
Delphi and C. The commercial games on the other hand both were developed using C++.
The most convincing argument in favor of CTP2 and Civilization IV is the fact that they
are commercial games: They have been developed by professional programmers, artists
and designers with a massive budget, they went through a software life cycle that included
thorough testing and reviewing and they have a huge user base. These two games represent
the testbeds that John Laird referred to in his keynote address at the AAAI 2000 conference
(Laird and van Lent, 2001) when he was talking about computer games being ideal testbeds
for academic research.

The choice between CTP2 and Civilization IV is more complicated than between commercial
and open source games. Both CTP2 and Civilization IV offer easily accessible interfaces
for sophisticated user-developed modifications (‘mods’) besides their published source code.
Furthermore, both games originally lacked documentation because the companies deleted all
comments from the source code prior to releasing it as open source. They did so in order to
avoid legal problems. All existing documentation has been added by the communities of the
respective games.
CTP2 has the advantage of offering complete access to the source, in contrast to Civilization
IV, which offers access only to the core. Thanks to prior work done by Souto (2007) and
Gundevia (2006), it would be an option to use TIELT in conjunction with CTP2 instead

27

Chapter 4. Testbed

of working directly in the code. However, this integration with TIELT would offer only a
limited set of commands. Since these limited commands do not allow to completely control
the task of city site selection described in more detail in Section 4.5, it was decided not to
pursue this approach. Another setback of the use of CTP2 is the amount of code lines that
can be modified. If CTP2 is used, more than 2000 000 lines of code (LOC) are accessible and
subject to possible change. Another problem of CTP2 is that the developer Activision ceased
to support the game very soon after its initial release. Most of the large number of errors
that remained in the code at that time have since been fixed by the community. This meant,
however, that the development of other features like AI was neglected.

Civilization IV, on the other hand, is still in active development by the original developer
Firaxis. Parts of the code developed by the community have actually been included in the
commercial product (BetterAI Project, 2007). While the published source code for the core
of Civilization IV contains about 100000 LOC with the AI code consisting of roughly 25000
LOC, a quick analysis of the code showed that the chosen task can actually be performed by
replacing a single method. The information that is important for the task is contained in three
to four classes. A further advantage of Civilization VI over CTP2 is its age. Civilization IV
is about two computer game generations younger than CTP2 (Civilization IV’s predecessor
Civilization III was released one year after CTP2). The game thus contains more advanced
features. Since the AI in Civilization IV is strong, the success of a competing agent using
reinforcement learning for parts of its decision making process would be very impressive. For
the reasons stated above, Civilization IV was chosen as testbed.

4.3 The Civilization Game

Civilization is the name of a series of turn-based strategy games in which the player has to
lead a civilization of his choice from the beginnings (BC) to the present day. The games
involve building and managing cities and armies, advancing the own empire through research
and expansion as well as interacting with other, computer-controlled civilizations through
means of diplomacy or war in a turn-based environment. The popularity of the original game
has lead to a multitude of incarnations of the game, both commercial and open source. The
variant of the Civilization game which will be used as a testbed in this thesis is Civilization
IV (Firaxis Games, 2005). Civilization IV was developed by Firaxis Games and is the latest
version in the commercial series of the original game. Large parts of its code base, including
the part which controls the AI, have been released as open source. These parts can be modified
to allow machine learning algorithms to take over tasks of the existing AI.

28

Chapter 4. Testbed

4.4 Existing Civilization IV Game AI

Since Civilization IV is a commercial game that aspires to provide enjoyable gameplay for all
levels of skill, the existing computer AI is already quite sophisticated. It has furthermore been
improved by the Better AI project (BetterAI Project, 2007). This is a community project
that modified the code base of the existing game to improve overall AI performance. The
performance of the computer AI players is therefore comparable to that of strong human
players with equal handicaps and can, through a number of modifiers, be scaled up or down
to several levels of difficulty. However, this scaling does not make the AI itself stronger or
weaker. It merely influences the conditions under which the AI operates (the game rules) and
makes them more or less favourable.
One of the AI’s major shortcomings (from a machine learning point of view) is that the

computer AI is almost completely deterministic: Only a very limited set of decisions and
events in the game are controlled by randomness. The situations in which the AI’s decisions
are controlled by randomness are limited to combat situations. This shortcoming can however
be used as an advantage when it comes to creating environments for empirical evaluation of
modifications. The computer can provide a challenging opponent in these experiments but
is still more or less completely normalized, i.e. deprived of randomness. Furthermore, an
improvement of the Civilization IV AI would show that research can be used to create a bigger
challenge for the player and thus offer a more enjoyable playing experience. Consequently, the
improvement of the existing computer AI through reinforcement learning would demonstrate
that scientific research can be used to improve commercial computer games.

4.5 City Placement Task

The most important asset in a game of Civilization IV are the cities. The three major resources
a city produces are food (used for growth and upkeep of a city), commerce (used among others
for research and income) and production (used to produce units and buildings). Furthermore,
special bonuses that grant additional basic resources or other benefits like accelerated building
speed can be gained. The playing field in Civilization IV is partitioned into ‘plots’ with each
plot producing a certain amount of the resources mentioned above. A city has access only to
the resources of a plot which is in a fixed shape of 21 plots surrounding the city (Figure 4.1).

29

Chapter 4. Testbed

Figure 4.1: Civilization IV: Workable City Radius

In addition, the borders of an empire and thus the area of influence of its player are defined
by the connected borders of the cities of that empire. Therefore the placement of cities is
a crucial decision and influences the outcome of a game to a large degree. This is one of
the main reasons why we chose to apply reinforcement learning to the city site selection
task. Furthermore, city placement can be evaluated at a relatively early stage of the game
since according to the game mechanics, the founding of cities (and thus the creation of the
empires) takes place during the initial phase of the game. Depending on map size and number
of players, it takes between one fourth and one half of the complete game time to settle a whole
map. Once a whole map has been settled, the focus shifts from exploration and settlement
to consolidation and combat. This allows to focus the experiments on the first third of the
game, the settling phase. The first third of the game is also the fastest part of it because of
the low number of active units in this phase of the game. It thus allows for a high number
of runs in a relatively small period of time. Figure 4.2 shows an overview of an empire that
consists of two small cities. The cities as well as the border of the whole empire are marked.

30

Chapter 4. Testbed

Figure 4.2: Civilization IV: The Border of an Empire

4.6 Existing Procedure for City Foundation

The existing procedure for building cities for a given civilization consists of several steps.
However, it is strictly sequential and only takes into account information from the moment
the plot is selected. This means, for instance, that possible locations for future cities or a
high-level plan for the layout of the empire are not taken into consideration.

It is with respect to this characteristic that the adaptable reinforcement learning algorithms
are to improve the existing AI. Since the reinforcement learning agent only replaces a small
part of the process of founding a new city, it is important to understand how the existing
process works. It is vital that the newly created process fits in seamlessly with the other parts
of the game to enable meaningful experimental comparison between the existing process and
the newly created process.

Creating Settlers

The founding of a new city is not determined by a direct decision of the AI that another city
is needed but by the creation of a new settler unit in one of the cities. The creation of a
new settler is a completely decentralized process. Every turn the best unit or building to be

31

Chapter 4. Testbed

produced in each city is determined by evaluating the needs of the active player in general
and the needs of the specific city in particular.
Since the existing computer AI is programmed in a way that never lets a settler move

around on its own, i.e. without a fighting unit as an escort, the fact that settlers are easily
killed by any hostile fighting unit does not matter for the settlers controlled by computer
AI. Consequently, the reinforcement learning process does not have to take into account lost
settlers but can just assume that once the site for a new city has been chosen, that city will
be built. Human players on the other hand often take the risk of sending a settler out on his
own to save the time and resources it takes to build a defending escort.

Founding a City

Once a settler has been created, the computer AI computes a new command for this settler at
every turn. The computation consists of a sequence of checks for possible actions. Depending
on what the circumstances are the settler will usually be sent to a certain spot on the map
where it will found a city. Since settlers cannot defend themselves, the computation also
includes the check for a suitable escort. If such an escort is not available, the computer AI
will order the settler to return to a safe place.
Other possible actions include loading the settler onto a transport ship if a much better

founding spot has been discovered on a different continent or founding a city on the spot
where the settler is located if the game has just begun and every turn that a city can be
founded earlier is crucial.

The Selection of the Best Founding Sites

The most important method in the existing game AI with regard to this thesis is the method
that determines the value of a certain plot when it comes to founding a city on this specific
plot. The reinforcement learning approach will have to compete with the method the existing
AI uses to determine the value of a certain plot. Therefore the present section will analyse
the existing method of determining the value of a plot.
The existing method of selecting the best founding site computes an integer number for

every plot. The number represents the value of founding a city on this plot by a given player.
For the computation of the value a number of different factors are taken into account:

• Position of the plot in relation to water.

• Proximity of enemy settlements.

• Proximity of friendly (own) cities.

• Existing cities on the same continent (Team member’s/Enemies/Own).

32

Chapter 4. Testbed

(a) Badly Distributed Cities (b) Well Distributed Cities

Figure 4.3: City Distribution

• Characteristics of the enclosed workable tiles for the possible city:

– Number of workable tiles.

– Number of workable tiles owned by enemies or team members.

– Number of workable tiles used by another one of the player’s cities.

– Yield of the workable tiles in terms of production, commerce, and especially food.

– Possible gain in special resources.

– Special resources that founding a city here will lock from access.

It is obvious from these characteristics that the selection of founding plots by the computer
AI is completely static and based on the time of the calculation. No planning for future city
placements or consideration of the bigger picture is done.
The actual effect of the use of reinforcement learning should therefore be twofold.

1. The already existing technique should be copied where it is useful. However, this should
not be done by using a static evaluation method but through reinforcement learning.
An example of a basic learnable strategy is optimising the distance between cities. Only
one city can use a plot at any one time. Therefore, if the distance between cities is
too small, their growth and the number of special resources they can access is limited
(Figure 4.3).

33

Chapter 4. Testbed

2. Furthermore, the application of reinforcement learning should also lead to the develop-
ment of new, improved strategies where the old method is lacking. This would include
the founding of cities at sites that are neglected by the existing static evaluation
method. For example sites that will normally be occupied by an opponent is not an
obvious first choice as a founding site. However, settlement of some of these sites offers
access to important resources and/or strategically important areas and can thus be
decisive for a whole game.

The present chapter has given an overview of the chosen testbed, Civilization IV. The ex-
isting alternatives were pointed out and it was illustrated why Civilization IV was selected as
a testbed. The game mechanics and the existing game AI have been described. Finally, the
selected task, the selection of city sites, was elaborated on. The importance of this task as
well as the method that is used by the standard game AI were explained.
The following chapter will focus on the integration of the algorithms and methodology (de-
scribed in Chapter 3.5) into the game environment described in the present chapter. Both
the design decision and considerations in terms of implementation will be explained in detail.

34

Chapter 5

Design and Implementation

This chapter describes the integration of reinforcement learning into Civilization IV. It fur-
thermore elaborates on how the algorithms described in Section 3.5 have been adapted to the
task described in Section 4.5. The process of adaption includes modifications to the game in
order to produce a working system. Moreover, decisions on the design will be explained. Sec-
tion 5.4 shows the adjustments that were made to speed up convergence and thus to counter
the problem of a huge state space described in Section 5.2.1.

5.1 Policies

As stated in the section on algorithms (Section 3.5), while the overall aim of the agent is to
find an optimal policy π∗ for the given state space, it has to be provided with a standard policy
π which it can use to pick the next action while learning this optimal policy. The policy π
basically describes, given a state s, the probabilities of picking a ∈ A(s). That is, it describes
the probabilities of being picked for all actions that are available in a state s. The policy
provided can be one of several different types that have different levels of trade-off between
exploration (picking a random action) and exploitation (picking the action that leads to the
highest estimate). Depending on the purpose of an experiment, some policies are more useful
than others. The selection of a preliminary policy is crucial since it determines the speed of the
convergence. In theory, even with a completely random policy, convergence in the algorithms
discussed is guaranteed if every state is visited infinite times and the reinforcement learning
parameter are set to commonly used values. In practice however, convergence should of course
be as fast as possible.

5.1.1 Greedy Policies

A greedy policy is a policy which always selects the action that maximises the return. It
means that the agent will always pick the action with the best return according to the current
knowledge of the agent. On the down side, a greedy policy completely ignores exploration,

35

Chapter 5. Design and Implementation

i.e. no random and possibly better actions are picked. As for probabilities, a greedy policy
implies that the action with the maximal estimated value is chosen with probability 1. If
there are several actions that have the maximal value, it depends on the implementation if
the first or last action with a maximal estimated value or a random action from all actions
with maximal value is chosen.

5.1.2 ε-Soft Policies

ε-soft policies are all policies for which π(s, a) ≥ ε
|A(s)| for some ε > 0 for all states and actions.

This means that all states will eventually be visited. ε-soft policies are thus a superset of a
whole range of policies, including ε-greedy policies which are described in the next section.

5.1.3 ε-Greedy Policies

One of the most commonly applied strategies in reinforcement learning is the ε-greedy strategy.
The ε-greedy strategy implies that with probability 1 − ε, 0 < ε < 1 the agent will take an
explorative action in ε ∗ 100 percent of all choices and an exploiting action in (1 − ε) ∗ 100

percent of the cases. For the probabilities of the actions this implies that for all nongreedy
actions a the probability of the action being picked is π(s, a) = ε

|A(s)| . For the greedy action
the probability is the remainder, 1− ε

|A(s)| .

A special case of ε-greedy policies are declining ε-greedy policies. While the policy starts
out as a standard ε-greedy policy, ε will slowly decline with the number of episodes until the
policy is completely greedy.

5.1.4 Softmax Policies

A softmax policy can be used to counter the major drawback of ε-greedy methods, namely
that when it comes to exploration, all actions are picked with equal probability. This strategy
of picking actions implies that both the actions with the worst and with the second-best
estimated value are equally likely to be picked, which is undesirable. To counter this drawback
of ε-greedy methods, a parameter β > 0 is introduced into the probability equation. It is called
temperature. This parameter determines how peaked the distribution is around the greedy
action. The most widely used softmax method uses a Gibbs, or Boltzman, distribution:

π(s, a) =
e
Q(s,a)
β

∑
a′∈A(s) e

Q(s,a
′
)

β

.

36

Chapter 5. Design and Implementation

The higher the temperature is, the closer the actions get to being all equiprobable. On the
other hand for β → 0, the probability distribution approaches that of a greedy policy.

Depending on the area of application and human expertise, both policies, softmax and ε-
greedy, have their advantages. However while both policies have exactly one parameter that
has to be set, the effects of changes in ε are easy to track. A change of β, on the other hand,
requires knowledge of the possible estimated values for the actions. For this reason ε-greedy
and declining ε-greedy policies are used throughout the evaluation described in Chapter 6.

5.2 Reinforcement Learning Model

In order to apply reinforcement learning algorithms in an effective way, a model which con-
tains the modules of an MDP described in Section 3.5.2 has to be defined. The model should
furthermore fulfill the Markov property (Section 3.5.1) to enable efficient reinforcement learn-
ing. Therefore the reinforcement learning model for the city placement task consists of the
quadruple (S,A,Pa

ss′
,Ra

ss′
): the set of states S, the set of possible actions A, the transition

probabilities Pa
ss′

and the expected scalar reward signal Ra
ss′

. Ideally the chosen state and
action space are finite. If they are finite, it implies that the MDP is a finite MDP which
would simplify the reinforcement learning process. The following sections describe design and
selection of the individual modules of the MDP.

5.2.1 States

A state s ∈ S should contain all information at one point of the game that is important to
the reinforcement learner, i.e. that the agent needs to make a decision. In order to have the
Markov property, the state should also sum up all important information up to that point
in time so that no previous information is required. For the task of city site selection, the
important information at any one point in time is the information on all existing cities of the
active player. The recorded values for each city are

• its position as (x, y) coordinates, i.e. the plot this specific city was built on,

• its rank in the founding sequence, i.e. when the city was founded, in relation to the
other cities of this player.

The rank in the founding sequence is important to satisfy the Markov property: Without the
rank, previous states would be required to obtain all necessary information. In general the
rank of a city is crucial since a different order of founding can lead to very different results.
Thus a state s ∈ S can be described as a set of triples (X-Coordinate, Y-Coordinate, Rank in
the Founding Sequence) with each triple representing one city.

37

Chapter 5. Design and Implementation

This definition of a state suggests, that the set of all states S consists of all possible
combinations of the (X-Coordinate, Y-Coordinate, Rank in the Founding Sequence) triples
where cities can be built. They can be built on any plot p ∈ P where P is all plots on the
map. The resulting size of the state space is

|S| =
c∑

i=0

|P |!
(|P | − i)! , (5.1)

with c = |P | since every plot on the map could be a city.
Civilization IV offers several different standard map sizes for different numbers of players

and terrain settings. It also offers the option to create custom map scripts. Table 5.1 shows
the size of the standard maps in plots as well as the resulting number of possible states,
depending on the number of cities that have been built.

Duel Map Tiny Map Small Map Standard Map Large Map
(640 Plots) (960 Plots) (1664 Plots) (2560 Plots) (4368 Plots)

1 City 640 960 1664 2560 4368
2 Cities 409600 921600 2768896 6553600 19079424
3 Cities 261326080 882894720 4601908480 16764113920 83300773920
4 Cities 1.66465E+11 8.44931E+11 7.64377E+12 4.28658E+13 3.63608E+14
5 Cities 1.05872E+14 8.07755E+14 1.26887E+16 1.09565E+17 1.58678E+18
6 Cities 6.72289E+16 7.71407E+17 2.10505E+19 2.79939E+20 6.92314E+21

Table 5.1: Relationship between the Map Size and the Number of Possible States

It is obvious from Table 5.1 that a brute force approach with experiments that use the
biggest map size and run for a complete game with every player building a large number of
cities, will not result in noteworthy coverage of the state space. As stated in Section 3.5 in the
description of the algorithms, a convergence to the optimal policy π∗ is only guaranteed for
infinite visits to every single state. Convergence becomes more likely the more often all states
are visited. The large number of states, especially for the bigger maps, makes it unlikely that
all states are visited even once in the course of an experiment.
It is therefore necessary to keep the number of possible states to an absolute minimum and

to optimise the algorithms. Measures taken to achieve this goal are described in Section 5.4.

38

Chapter 5. Design and Implementation

5.2.2 Actions

The transition from one state to another is brought about by founding another city, thereby
extending the existing set of (X-Coordinate, Y-Coordinate, Rank in the Founding Sequence)
triples by another one. The set A of possible actions which can be taken when in a state
s ∈ S thus consists of founding a city on any of the plots (p ∈ P‖p /∈ s), i.e. on any plot
where there is no city of the active player yet.
This definition of the states and actions implies that the resulting state space will be like
a graph with no cycles, i.e. a tree. Figure 5.1 shows a part of such a tree with the nodes
representing the states and the branches representing the actions. Due to the structure of the
state space, no state can be reached more than once in one episode.

Figure 5.1: Excerpt of the State Space S including the Actions that lead to the Transition

The model above is a simplification of the game since it ignores cities which are lost to an
enemy as well as cities which are won from an enemy. However, for the purpose of the present
study, the simplification is acceptable because this approach focuses on the early expansion
phase in the game during which attacks on cities are rare.

39

Chapter 5. Design and Implementation

5.2.3 The Transition Probabilities

The algorithms that have been introduced in Section 3.5, Q-learning and Sarsa, compute
a state-action function Qπ and not a state-value function V π in contrast to standard TD-
learning. Therefore no model of the environment, i.e. of the transition probabilities Pa

ss′
, is

required.

5.2.4 The Reward Signal

Choosing the scalar reward signal rt ∈ Rass′ is one of the most important decisions for the
success of an agent that is based on reinforcement learning. The reward signal defines the
goal for the agent and if it is chosen incorrectly, the agent will not be able to learn how to
achieve its goal.

The Scalar Reward

The chosen reward signal for the task of selecting city sites is based on the score of a player.
In the normal game this score is used to compare the performance of the players with each
other and it is updated every turn for all players. The game score is determined by

• Population (in the cities),

• Territory (the cultural borders of the cities, see Figure 4.2),

• Technological advancement (developed with research output from the cities) and

• Wonders of the world (special buildings in the cities that provide particular benefits).

All the parts the game score is made up of are directly linked to the cities. The game score
does not include any points for military strength since military units are always only a means
to an end. A whole game can only be won through cities.

Attributing Rewards and the Problem of Delayed Reward

Since cities show their true potential only later in the game when they grow bigger and
become more advanced, reward can only be attributed with delay. Another problem is the
difficulty of attributing game score to a specific city since some information is not accessible
to the agent. For instance the reward signal measures the direct contribution of a city to
the score but it does not calculate the additional score if the city leads to the foundation
of another city and thus indirectly adds to the player’s total score. This problem arises
because the decision to build a new city lies with a different part of the AI and is still
controlled by the original game. Through the right choice of algorithm and parameters

40

Chapter 5. Design and Implementation

for this algorithm (see Section 5.3), reinforcement learning should however be able to at-
tribute the state-action pair which leads to this city being built an appropriately high Q-value.

Since cities are built only infrequently, states have to be decoupled from the normal game
turns. Going from one game turn to the next is unlike the transition from one state to
the next. A time step for the reinforcement learner is the time frame in which it has to
choose an action and receives a reward after performing that action. It is defined as the time
between founding one city and founding the next city. The update of the Q-value Q(st, at)

after taking an action at in state st happens immediately before executing the next action
at+1, i.e. founding the next city. The selection of the appropriate plot for the foundation of
a city, however, can happen several game turns before, with the settler unit moving to the
chosen plot afterwards. The scalar value which represents the actual reward is computed by
calculating the difference in game score between the founding turn of the last city and the
founding turn of the city about to be founded. The difference is then divided by the number
of game turns that have passed between the two foundations:

r ← (GameScorenew −GameScoreold)
(GameTurnsnew −GameTurnsold)

41

Chapter 5. Design and Implementation

Figure 5.2 shows the process of attributing reward for a computer agent that selects city
sites by using the method presented above.

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90 100

1 6542 3

T1
Ω1

Ω5

Ω4

Ω3

Ω2

T5

T4

T3

T2

Figure 5.2: Computation of the Rewards

The downward arrows mark the game turns in which new cities are founded and the state is
changed. The time it takes the settler unit to move to the designated founding site is ignored
for the sake of a comprehensive view. If it was taken into account, it would not change the
actual reward computation since the turns counted would remain the same with the state
changing at a slightly earlier time. The ruled triangles mark the intervals which are taken
into account for the computation of a reward. The x-axis represents the game turns T while
the y-axis represents the game score Ω. The diagram shows that rewards are attributed in
retrospect, i.e. after the next city has been founded.
by default the TD algorithms described in Section 3.5 propagate rewards backwards if they
are run for several episodes. This feature is also very useful because it partly offsets the
problem of delayed score gains described at the beginning of this section. Another mechanism
to counter the problem of delayed reward even more effectively are eligibility traces (Section
3.5.6). Their integration is described in the Section 5.3.

42

Chapter 5. Design and Implementation

5.3 Implementation of the Reinforcement Learning Algorithms

This section explains how the algorithms described in Chapter 3.5 are integrated into Civi-
lization IV and how they are used to learn the task of city site selection.

Figure 5.3 shows a general view of how reinforcement learning is integrated with the game
environment. The integration is independent of the algorithm and parameters used.

t t

t

t+1

Figure 5.3: General View of the Algorithm Integration for City Site Selection

The diagram clearly shows that the algorithm works in an asynchronous way. While the
change from state st to state st+1 already occurs in step 3, the update of the estimated value
for the state-action pair Q(st, at) only occurs in step 6, after the game has created another
city with the next settler unit.

The following sections illustrate how the algorithms and techniques described in Section
3.5 are adapted to the specific task at hand.

5.3.1 Integration of the Algorithms

The implementation of the two algorithms as well as the implementation of certain variations
like eligibility traces and previously initialised states are similar for Q-learning and Sarsa.
Internally, they use a ‘linked tree’ of state objects to store the single states. Due to the
enormous size of the state space described previously, not all possible states are initialised

43

Chapter 5. Design and Implementation

at the start of a game. The data structure that has been created to store all the necessary
information of a single state is shown in Appendix C.

The reinforcement learning method completely replaces the method which is used to control
the settler in the original game. Every time a settler becomes active for the agent that uses
reinforcement learning, the reinforcement learning method is executed. Since settlers do not
choose the preferred city site, travel there and build a city all in one turn, this newly created
method can not only be a simple reinforcement learning method. It must also be able to move
a settler that has already chosen the best city site and to create a city with the settler once it
gets there. Furthermore it must be able to handle exceptions along the way, e.g. if the chosen
city site becomes unavailable because an opponent settles there first or if the path is blocked
by enemy territory.

The basic method or rather the basic set of methods into which the actual reinforcement
learning methods are embedded is a set of if-else statements. The flow-diagram for this part
of the logic can be seen in Figure 5.4.

Figure 5.4: Flow of Events for City Site Selection

44

Chapter 5. Design and Implementation

The actual algorithm is split into two parts. One part is the method that chooses the city
site. The execution of this method is highlighted by the dashed border in the flow chart in
Figure 5.4. The pseudocode for this method for one-step Q-learning can be seen in Listing 5.1.

if (p o s s i b l e s t a t e s s
′

which f o l l ow tak ing ac t i on a ∈ A(s) are not yet i n i t i a l i s e d){
Determine what p l o t s meet the c r i t e r i a for s e t t l ement .
Create s t a t e ob j e c t s for a l l o f the chosen p l o t s .

}

while (no c i t y s i t e s e l e c t e d)
{

Compute random number α with 0 < α < 1 ;
if (α < 1− ε)
{

// f o l l ow e x p l o i t a t i v e po l i c y
Choose ac t i on a as the ac t i on with the h i ghe s t est imated Q−value Q(s, a) ;

}
else
{

// f o l l ow exp l o r a t i v e po l i c y
Compute random number φ with 0 ≤ φ < |A(s)| ;
Choose ac t i on a as the ac t i on at po s i t i o n φ in the array o f A(s) ;

}
if (p l o t chosen through ac t i on a i s r eachab l e and s e t t l e a b l e)
{

break ;
}

}

Listing 5.1: Pseudocode for the Implementation of the Plot-Selection Method for Q-Learning

The other part, which updates the value function Q(s, a), is highlighted by the dotted
border and the pseudocode for one-step Q-learning can be seen in Listing 5.2. This method
is always executed when a new city is founded.

if (the re i s a prev ious s t a t e st−1 for which Q(st−1, at−1) can be updated)
{

Determine number o f turns Tnew as Tnew = Tnow − Tlastcity which
have passed between the founding o f t h i s c i t y and the l a s t ;

Determine the gained s co r e Ωnew s i n c e the l a s t c i t y
was founded : Ωnew = Ωnow − Ωlastcity ;

Compute the reward rt as the s co r e gained per turn between founding
t h i s c i t y and the l a s t : rt ← Ωnew

Tnew
;

Update Q(st−1, at−1)← Q(st−1, at−1) + α [rt + γmaxaQ(st, at−1)−Q(st−1, at−1)] ;
}

Listing 5.2: Pseudocode for the Implementation of the Value-Update Method for Q-Learning

45

Chapter 5. Design and Implementation

The pseudocode in Listings 5.1 and 5.2 shows Q-learning in particular. However, the
methods for Sarsa look very similar. The major difference between Sarsa and Q-learning is
that for Sarsa the following state and action have to be taken into account as well. This means
that both methods, the one for choosing the city site and the one for updating the Q-values
require one more state and one more action to be recorded previous to the execution of the
method described above.

5.3.2 Implementation of Eligibility Traces

The introduction of eligibility traces (Section 3.5.6) into one-step Q-learning and one-step
Sarsa is vital for the given task of selecting optimal city sites. Usually eligibility traces in
reinforcement learning algorithms are used to speed up learning by propagating rewards back
through a number of states that led up to the current state.
As stated in Section 5.2.4, an issue specific to the given task is that it is problematic to

attribute game score to one city only. The approach taken uses the score gain per turn
between one city founding and the next city founding,which, in a way, is inaccurate. The
approach manages well to record the tangible benefits of improved territory and population,
but it ignores most long-term effects that occur after the next city founding. However, these
long-term effects are very important since cities develop to their full potential only after
they have been allowed to grow for a number of turns. This shortcoming can to a certain
degree be rectified by using eligibility traces. Eligibility traces assign temporal credit through
propagating rewards back through the sequence of states and actions that have led up to the
current state. eligibility traces therefore ensure, that cities are attributed with the score they
help achieve in the long term.
In terms of implementation, instead of the one-step versions of Q-learning and Sarsa, vari-

ations of these algorithms which use eligibility traces are used: Watkins Q(γ) and Sarsa(γ)

(Section 3.5.6).
Figure 5.5 illustrates again the method of attributing reward in retrospect, i.e. after the next

city has been founded, introduced in Section 5.2.4. Based on Figure 5.5, Figure 5.6 compares
the update of Q-values for the state-action pairs with a one-step Q-learning algorithm with
that of Watkins’ Q(λ).

46

Chapter 5. Design and Implementation

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90 100

1 6542 3

T1
Ω1

Ω5

Ω4

Ω3

Ω2

T5

T4

T3

T2

Figure 5.5: Computation of the Rewards

47

Chapter 5. Design and Implementation

Figure 5.6: Comparison of Value Updates between One-Step Q-Learning and Watkins’ Q(λ)

The diagram shows clearly that value updates through Q-learning (left side) are slower at
propagating rewards of later states backwards. The trace threshold, i.e. the value underneath
which the trace e(s, a) will simply be counted as 0, is set to (λγ)2. This implies that rewards
only propagate backwards two time steps, which is a relatively low value. Nevertheless, a
noticeably faster convergence towards the estimated values of future state-action pairs can be
observed.

For Watkins’ Q(λ) it is also notable that, in order to make the propagation viable with
Q(λ), the policy shown has to be the optimal policy since otherwise the backward propagation
would stop at the first non-optimal choice.

48

Chapter 5. Design and Implementation

5.4 Accelerating Convergence

This section discusses the modifications that were made to speed up the convergence of the
reinforcement learning algorithms and thus to handle the problem of computability described
in Section 5.2.1.

5.4.1 Reduction of the State Space

As shown in Table 5.1, the number of possible states grows exponentially with the map size.
Therefore, simply reducing the map size and thereby the number of plots alone will not solve
the problem, though this can contribute to solving the problem as well. A reduction in map
size would efficiently reduce the number of possible states in earlier iterations of the algorithm,
thus making these maps usable for evaluation.
Another option is to limit the plots that are considered for settling. Plots that can not be

used to found a city are ignored.
This includes

• plots that are completely covered in water (either inland lakes or oceans) and

• plots that contain high mountains.

Ignoring these plots effectively reduces the number of plots on a map by two thirds on average.
Since the reinforcement learning algorithms can not be influenced negatively or slowed down
in any way through ignoring these plots, the exclusion described above is part of all performed
experiments.

5.4.2 Pre-Initialised Q-Values

In order to accelerate convergence, previous knowledge can be used. Reinforcement learners
generally do not require any previous knowledge of the environment and acquire all informa-
tion through the learning process. However, previous information that is already available
can be useful to speed up this acquisition process.
The knowledge available about the best city sites in a game of Civilization IV is computed
by the standard city site selection method. This information is available to the standard
game AI and can be used to initialise the Q-values for state-action pairs of the reinforcement
learner. Usually these Q-values are all initialised to 0, which makes all actions equally likely
to be picked. Consequently every state has to be visited in order to determine its usefulness
for the exploitation part of the policy, often only to conclude that its usefulness is very low.
If the states were instead initialised to the precomputed ‘founding values’ that are used by
the standard game AI, these values could serve as indicators for the usefulness of a plot for

49

Chapter 5. Design and Implementation

the reinforcement learner. This process would not speed up the guaranteed convergence to
an optimal policy π∗ but it would generate better performance earlier on.
However, this strategy has two side effects that have to be considered. One of the side effects

is that the use of values computed by the standard AI could easily lead to a performance very
similar to that of the standard game AI. To prevent this, only the values that are computed
before the first cities are placed will be used to initialise both the first and later states. This
strategy will also avoid making the founding values dependent on city locations.
The second side effect is that the founding values are in a completely different range than the

values for rewards: Founding values usually range from 500 to 5000, whereas reward values,
i.e. score gain per turn, will be somewhere between 4 and 50 depending on the stage of the
game. Therefore, a pre-initialised Q-value will be changed completely after the particular
state has been visited the first time. If Q-values were not normalised after the first visit to a
state on that layer in the state-space, they keep the higher pre-initialised founding values. To
avoid this, all Q-values are normalised relative to the computed reward of the first state-action
pair to make the Q-value of all other states on the same layer of the state space comparable.
Possible negative effects of the initialisation with founding values computed by the standard
AI are evaluated in in the empirical evaluation in Section 6.
Besides the two techniques that are used in order to speed up convergence and reduce

run-time, several other decisions with the goal of speeding up convergence were made when
setting up the experiments to evaluate the algorithms. These decisions are all elaborated on
in the section on experimental setup in the following chapter.

The present chapter has described how the reinforcement learning algorithms from section
3.5 were adapted to Civilization IV. The implementation of the different parts of the Markov
model from section 3.5.2 in the game environment has been illustrated in detail as has the
integration of the algorithm into the overall system. The issues related to including this
machine learning technique into a commercial game environment have been described as well
as the measures taken to resolve these issues.
The following chapter will present experiments that are performed using the different rein-

forcement learning algorithms implemented in Civilization IV. The experiments are executed
using multiple sets of parameters on each algorithm. Each of the performed experiments
serves a certain purpose that is elaborated on in the appropriate section.

50

Chapter 6

Evaluation

This chapter describes the experiments that were run using the algorithms and the environ-
ment described in the previous chapters.

In the first section the experimental setup as well as the measures that are taken to improve
reliability of the experiments are described. The following section illustrates how the opti-
mal settings for the test runs are determined by analysing preliminary experimental results.
Subsequently the shortcomings in the experimental setup that can be identified from the re-
sults are eliminated. The third section elaborates on the performance of the four different
algorithms after a working setup has been found. The final section of this chapter uses the
knowledge acquired in previous sections to compare the performance of the four variations of
reinforcement learning algorithms with the approach of the standard game AI.

6.1 Experimental Setup

This section gives a description of the parameters which are used in the algorithms as well as
the settings which are chosen within the game for the subsequent experiments.

6.1.1 Algorithm Parameters

As stated in Section 5.3, several different parameters can be set for the algorithms. The
parameters that are shared by all algorithms are the following ones:

• The learning rate α. The learning rate 0 < α < 1 determines how much of the previous
estimate will be replaced with the new estimate. A value of 0 will prevent the agent
from learning anything while a value of 1 will completely replace any previous values.

• The discount factor γ. The discount factor 0 < γ < 1 determines the weight of future
rewards. For a value of 0 future rewards are ignored. A value of 1 will result in the
agent considering current and future reward as equally important.

51

Chapter 6. Evaluation

• The exploration rate ε. In the ε-greedy policy which is used the exploration rate deter-
mines the ratio between exploration and exploitation (see Section 5.1).

The parameters which are specific to the algorithms that use eligibility traces, Q(λ) and
Sarsa(λ), are the trace decay rate λ and a threshold Λ for trace decay. The trace decay rate
0 < λ < 1 determines how much of a reward propagates backwards to Q-values of state-action
pairs leading up to the current state. For the value 0, a future reward is only propagated
backwards once, namely to the Q-value of the state-action pair directly preceding the current
one. For the value 1, all Q-values leading up to the current one will receive the full reward.

The threshold Λ determines up to what value traces are taken into consideration. When
an eligibility trace is too small, the according Q-value will be ignored when updating future
estimates.

The actual values that the different parameters are set to are different from experiment to
experiment. They are given in the according sections.

6.1.2 Game Settings

Civilization IV offers a multitude of settings to customize the game environment. Most of the
settings serve the purpose to offer interesting game play for players of different skill levels or
with different preferences when it comes to the style of playing. When running experiments,
however, it is not the players’ needs that have to be taken into account. Rather, the settings
have to create an environment for experiments that provide reliable data. The requirements
for experiments to be carried out successfully are discussed below.

The game environment has to be fast. This is important because the more quickly one game
is over, the more games can be played in the course of one experiment. In order to shorten
the time it takes to play one game, the game is run with the lowest settings possible in terms
of graphics. Unfortunately, the parts of the game which have been released as open-source do
not include the code for the graphical interface. Therefore it is not possible to deactivate the
graphical front-end completely.

Furthermore, it is important to find the optimal length of a game. A game becomes in-
creasingly slow as history progresses, because the players acquire more cities and units as well
as more complex cities and units. Therefore, a low number of turns is beneficial for processing
speed and game time. Also, as stated in Section 6.1, state space increases exponentially as
numbers of cities increase.
However, in order to obtain meaningful results, a certain number of cities has to be built. A
minimum number of cities is also necessary to analyse how well rewards propagate backwards

52

Chapter 6. Evaluation

when using eligibility traces. The possible number of cities also depends on the map size and
the number of players. To obtain the maximum number of cities per player while keeping
the map size small, the experiments performed are duels between the reinforcement learning
agent and one standard computer AI. If only two players are in the game, both of them
will be able to found more cities than with a higher number of players. For two players the
smallest possible map size, Duel, is used. Despite the small map size both players can still
have up to five cities per player if they play optimally, i.e. greedy. The type of the map used
is called Pangaea. For a Pangaea type map, all land surface is linked in one big continent.
Other possible map types include islands. These are not used in the experiments because of
the ships that as a matter of transporting settler units would have to be considered by the
reinforcement learner. Thanks to the small map size and the fact that it only consists of
one continent, the number of turns in the experiments can be limited to the first 110 turns
1 and still encompass the complete settling phase. The settling phase is the phase during
which the area is divided between the players through their city founding. As for the length
of experiments, several test runs showed that for 110 turns played per game a viable number
of episodes would be 1500. One episode is one game that lasts 110 turns. After 110 turns the
environment is automatically reset and the game starts from the beginning again.
The limiting factor in terms of episodes is not time but memory, since all states are kept

in memory by the program (for a description of the state object class see Appendix C). The
memory needed for state objects created in 1500 episodes of length 110 turns amounts to
about one gigabyte. An alternative approach was tested as well: States were stored to and
retrieved from a database instead of being kept in memory. However, this approach was too
slow to be used while running the experiments in real-time.

1 a complete game lasts up to 400 turns

53

Chapter 6. Evaluation

Table 6.1 lists the settings that were chosen to make experiments fast yet meaningful.

Setting Value
Map Size Duel

Plot Number 640
Plot Number after Pre-Selection 214

Map Type Pangaea (One Continent)
Number of Turns 110 (4000BC - 375BC)

Number of Episodes 1500
Number of Opponents 1

Barbarians Off
Leader Hatsheput, Egyptian

Difficulty Noble (4/9)

Table 6.1: Game Settings

In order to obtain reliable results, normalisation of the experiments is even more important
than running them at the least amount of time possible. Normalisation is the process of
making results comparable. Among other things, normalisation implies that the random
factor is minimised. As stated in the description of the standard game AI in Section 4.4,
Civilization only contains few random events. Barbarians are one of these few random
events. Barbarians are basically another player who gets new units every turn and uses these
to attack all other players. Since the barbarians turn up randomly outside the field of view
of the players, they were switched off completely for the experiments.

When setting up the experiments, another prerequisite to make results comparable is that
the conditions for each player in the game have to be equal. The first setting that has to be
adjusted is the general level of difficulty. The difficulty setting can be used to control a set
of basic values (e.g. the cost for creating and maintaining units and buildings or researching
technologies) by which the AI and the human players have to play. By adjusting these values
it can be made harder or easier for the human player to compete against the computer. Since
the reinforcement learning agent replaces the human player, this setting has to be set to
Noble, the fourth from the bottom out of nine levels of difficulty, which means that the
computer AI and the reinforcement learning agent play by exactly the same set of rules.

Every player in Civilization IV represents a leader that the game assigns certain ‘traits
of character’ by the game. These traits determine the player’s style of play. For example,
computer players can be aggressive or non-aggressive and they can focus on different priorities,
e.g. expansion or research. In order to normalise experiments, the same leaders have to be
chosen for all games. Furthermore, choice of leaders can influence the number of cities that are
built during the first 110 turns since players expand faster if a leader that favours expansion is

54

Chapter 6. Evaluation

chosen. To this end the leader Hatshepsut of Egypt was chosen for both players. Her traits
of character allow cities to extend their borders fast. As an opponent she is not aggressive
but focuses on extending her empire.

6.2 Parameter Selection for the Reinforcement Learning

Algorithms

This section is concerned with preliminary experiments that identify a number of problem
areas. In order to be able to obtain meaningful results in section 6.4 where the reinforcement
learning algorithms are compared with the standard AI, it is important to know how the
algorithm parameters have to be configured. Several problems occur when the wrong set
of parameters for the algorithms is chosen. The problems and their possible solutions are
discussed in the following sections.

6.2.1 Aim of Parameter Selection

The aim of this section is to identify the settings that are most appropriate for obtaining
meaningful results in future tests. In order to approximate these settings, the following
method is used. A number of tests with different settings are run and evaluated. The main
criterion of evaluation is the ability of the algorithms to learn the task of selecting city sites
through reinforcement learning. Game score is used as a reward signal. Therefore, a clear
growth of game score over time is expected to indicate a successful learning process. Since an
ε-greedy policy is used throughout this section, the markedness of the increase in game score
is determined by the value of ε. The increase in game score is triggered by the detection of
better possible actions that can then be pursued when picking according to a greedy policy.
Nevertheless, a growth in game score should be observable for any ε < 1, i.e. for any policy
that contains some degree of greedy selection.

6.2.2 Preliminary Test Runs

The first runs were carried out with parameters set to common values as described by Sutton
and Barto (1998). The parameters are displayed in table 6.2. The values were slightly adjusted
to match the given task since its focus on future reward is stronger than usual (higher discount
rate γ) and its exploration rate ε is slightly higher than common because the large basic state
space has to be taken into account.

55

Chapter 6. Evaluation

Learning Rate α 0.2
Discount Rate γ 0.6

Exploration Rate ε 0.3
Trace Decay Rate λ 0.9

(for Sarsa(λ) and Q(λ))

Table 6.2: Parameter Settings for Preliminary Runs

400
500
600
700
800
900

1000

m
e

Sc
or

e

110 T

0
100
200
300
400

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00

G
a

Episodes Played

110 Turns

60 Turns

(a) One-Step Q-Learning

400
500
600
700
800
900

1000
m

e
Sc

or
e

110 T

0
100
200
300
400

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00

G
a

Episodes Played

110 Turns

60 Turns

(b) One-Step Sarsa

Figure 6.1: Results for Preliminary Tests using the One-Step Versions of the Algorithms

400
500
600
700
800
900

1000

m
e

Sc
or

e

110 T

0
100
200
300
400

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00

G
a

Episodes Played

110 Turns

60 Turns

(a) Q(λ)

400
500
600
700
800
900

1000

A
xi

s
Ti

tl
e

110 T

0
100
200
300
400

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00

A

Episodes Played

110 Turns

60 Turns

(b) Sarsa(λ)

Figure 6.2: Results for Preliminary Tests using the Eligibility Trace Versions of the Algorithms

56

Chapter 6. Evaluation

The results of test runs for 1500 episodes can be seen in Figures 6.1 and 6.2. The scores are
averages over 50 episodes to account for the large random proportion caused by exploration.
The different lines in the diagrams account for scores after 60 turns and after 110 turns. Each
algorithm was run 10 times for 1500 episodes with the diagrams displaying the average of
these runs. An example of the raw data that underlies these and subsequent diagrams is
shown in Appendix B. Appendix B shows 1000 episodes of the results of a test run in Section
6.4.

The diagrams in Figures 6.1 and 6.2 show that there is no observable tendency towards
a better policy that leads to a higher score. Furthermore, all algorithms seem to have
comparable performance and the only thing distinguishing the results of the test runs from
the results of a completely random policy is the comparably high score. There are several
reasons for this behaviour.

The underlying reason is the size of the state space as described in Section 5.2.1. Since for
the chosen game settings the number of cities averages about four per game, there are about
two billion possible states at the fourth level of the tree that maps the state space (Formula
5.1 and Figure 5.1). While the size of the state space was expected to keep the agent from
learning the optimal policy, the lack of an observable improvement has a different cause.

The reason for the lack of learning lies in the mechanics of the reinforcement learning
algorithms as well as in the chosen values for the parameters. All Q-values are initialised
at 0. This means that even for a greedy pick, the first selection will always be random. No
matter how bad this first selection is, if a greedy pick is made at the same point of the state
space in the next episode(a greedy pick happens in 80% of all cases due to ε being 0.2), the
action to settle the plot that was previously picked at random will be picked again. Through
the defined learning rate an algorithm will always replace about 20% of the old estimate by
a combination of immediate and future rewards. Therefore, the Q-value for this state-action
pair will not reach its full value at once but will reach it within a short time because of
the 80% greedy selection policy. The problem of this policy is that in order to achieve the
highest Q-value, randomly picked actions that lead to the founding of cities on better plots
would have to be picked as many times - randomly - as the action that was picked first.
Due to the bad ratio between possible states and episodes run, this is unlikely to happen.
Consequently, the agent that uses reinforcement learning algorithms with the values chosen
above will very likely pick a random policy and stick to it applying only minor variations.
Figure 6.9 illustrates this behaviour.

The four algorithms only show minor differences in their results. Sarsa is slightly less
influenced by the problem described here because it is an on-policy algorithm. It therefore has

57

Chapter 6. Evaluation

a random component when selecting actions for the future-reward-component of the algorithm
(Formula 3.2). Both Sarsa(λ) and Q(λ) slightly aggravate the problem described above, since
they increase the approximation of the Q-value after it has been selected through propagating
rewards backwards. However, the difference between algorithms is marginal.

There are several solutions to this problem. The first option is to change the parameters
of the algorithm. The first step is to set the learning rate α to 1. This effectively means that
only the estimate computed at a given point in time matters, i.e. no previous estimates will
be taken into account. This can be combined with setting the discount rate γ to 0 in order
to completely ignore the future rewards that could also influence Q-values.
The obvious downside of this approach is that it makes the whole learning process very
volatile since no bootstrapping takes place anymore. Single outliers in terms of reward could
influence the outcome of a complete experiment. Moreover, if future rewards are ignored,
one of the key components of the TD algorithms is taken away.

The second option is changing the Q-values initialisation as described in Section 5.4.2.
Instead of initialising them all to 0, they are set to the value of the plot that is settled in the
action leading up to the respective state. This value is estimated by the standard game AI
at the beginning of a game. This estimation is supposed to provide the reinforcement learner
with some basic ideas as to what plots are desirable to found a city on, i.e. what actions
should be selected when following a greedy policy.
The possible drawback of this approach is, that the developed policies might be very similar
to those of the standard game AI. Furthermore, the problem it tries to solve might continue
to exist albeit on a smaller scale: the reinforcement learning agent is still likely to pursue
most often the policy it picks first . To counter this behaviour, an attenuated version of the
first approach could be used. The learning rate α could be set very high and the discount
rate γ very low.

A third possible approach would be to increase ε, i.e. the exploration rate. A higher
exploration rate would increase randomly selected actions and thus the chances of finding and
properly estimating the value of a rewarding action. However, it would also increase the time
it takes to find good policies, which is undesirable.

Another very basic approach would be to reduce the number of turns, thus liming the
number of cities that are built and thereby reduce the size of the state space. If the number
of turns is limited, the underlying problem of inadequate state space coverage would also
be resolved. Reducing the number of turns consequently seems to be the most promising
strategy.

The following three sections show the results for tests applying the first two strategies as
well as the last one. The strategies are always combined with an increased exploration rate

58

Chapter 6. Evaluation

ε. An increased exploration rate will lead to a slightly lower average game score but also to
a faster traversal of the complete initial levels of the tree that represents the state space.

6.2.3 Test Runs with Full Discount

In this section the results of the experiments run according to the first option to solve the
problem of the agent never switching policies are illustrated. The parameters are set to ignore
previous estimates and to not take into account future rewards. The according algorithm
parameters are listed in table 6.3.

Learning Rate α 1
Discount Rate γ 0

Exploration Rate ε 0.4
Trace Decay Rate λ 0.8

(for Sarsa(λ) and Q(λ))

Table 6.3: Parameter Settings for Full Discount Runs

The results of the test run for these settings are displayed in the diagrams in figures 6.3
and 6.4.

600

800

1000

1200

m
e

Sc
or

e

110 R

0

200

400

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00

G
a

Episodes Played

110 Runs

60 Runs

(a) Q-Learning

400
500
600
700
800
900

1000

m
e

Sc
or

e

110 T

0
100
200
300
400

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00

G
a

Episodes Played

110 Turns

60 Turns

(b) Sarsa

Figure 6.3: Results for Fully Discounted One-Step Versions of the Algorithms

As expected for the given parameter settings, the diagrams of the results testify to a higher
degree of variation in game score although the results are averages over a period of time
and a number of runs. This is especially noticeable for the algorithms based on Q-learning,
both for the one-step version and Q(λ). Usually the Q-learning algorithms should exhibit
a more consistent performance than Sarsa since they are off-policy while Sarsa is on-policy.
For the applied ε-greedy policy therefore Sarsa has an additional source of randomness (the

59

Chapter 6. Evaluation

600

800

1000

1200

m
e

Sc
or

e

110 T

0

200

400

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00

G
a

Episodes Played

110 Turns

60 Turns

(a) Q(λ)

400
500
600
700
800
900

1000

m
e

Sc
or

e

110 T

0
100
200
300
400

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00

G
a

Episodes Played

110 Turns

60 Turns

(b) Sarsa(λ)

Figure 6.4: Results for Fully Discounted Eligibility Trace Versions of the Algorithms

40% random actions when selecting future actions) whereas Q-learning always chooses the
best estimate according to a greedy policy. However, in the current setup no difference can
be observed since future rewards are ignored completely. Since none of the four algorithms
shows any noticeable trend of improving the game score, the chosen parameter settings are
deemed to be unsuccessful in overcoming the problem described in the previous section.

6.2.4 Test Runs with Pre-Initialised Q-Values

This section examines the results of tests run with the settings described in Section 5.4.2. The
Q-values for all state-action pairs are initialised to the values that the standard AI attributes
to them prior to the start of the game, i.e. before any city is built. The values are recorded
before the first city is founded and then used to initialise Q-values whenever new states are
created. The values have to be calculated before any city is built, because they afterwards
become dependent on the location of enemy and own cities. The parameter settings for the
tests run for this section are displayed in table 6.4.

Learning Rate α 0.2
Discount Rate γ 0.6

Exploration Rate ε 0.4
Trace Decay Rate λ 0.8

(for Sarsa(λ) and Q(λ))
Initial Q-Values Q(s, a) Initial Values of

Standard AI

Table 6.4: Parameter Settings for Tests with Pre-Initialised Q-Values

60

Chapter 6. Evaluation

The results of the test runs are displayed in figures 6.5 and 6.6.

600

800

1000

1200

m
e

Sc
or

e

110 T

0

200

400

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00

G
a

Episodes Played

110 Turns

60 Turns

(a) Q-Learning

1000

1200

800

1000

e

600

m
e

Sc
or

e

110 T
400

G
a 110 Turns

60 Turns

0

200

0

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00

Episodes Played

(b) Sarsa

Figure 6.5: Results for Pre-Initialised Q-Values using the One-Step Versions of the Algorithms

1000

1200

800

1000

e

600

m
e

Sc
or

e

110 T rns
400

G
a 110 Turns

60 Turns

0

200

0

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00

Episodes Played

(a) Q(λ)

1000

1200

800

1000

e

600

m
e

Sc
or

e

110 T
400

G
a 110 Turns

60 Turns

0

200

0

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00

Episodes Played

(b) Sarsa(λ)

Figure 6.6: Results for Pre-Initialised Q-Values using the Eligibility Trace Versions of the
Algorithms

As the diagrams show, the use of pre-initialised Q-values does not have the desired effect
of leading to a reliable convergence towards a higher score. In fact, the opposite is the case.
After an initial high the score becomes either very volatile or declines to an average score that
is far worse than the initial score.
On the upside it is noteworthy that initially all algorithms start with a high average when

compared to previous test runs. This indicates that in the first few episodes the algorithms
perform exceptionally well. This performance implies that using pre-initialised states can

61

Chapter 6. Evaluation

speed up convergence. However, the reinforcement learning agent fails to maintain the strong
performance in the first few episodes and ultimately uses a policy which is worse than if
Q-values are not set previously.

As the test results presented above show, pre-initialised Q-values alone are not sufficient
to solve the general problem of finding an appropriate policy. Therefore the next section will
consider the approach of reducing the number of turns played to obtain a better state space
coverage.

6.2.5 Test Runs with a Reduced Number of Turns

Since both a variation of core algorithm parameters and the use of pre-initialised Q-values did
not produce the desired results, the approach of running experiments for a reduced number
of turns was taken. This approach automatically leads to less cities being founded, and thus
limits the state space. Furthermore, since this approach only takes into account the early
game, it tremendously speeds up the test runs and makes possible experiments with more
than double the number of episodes. On the other hand it also leads to the players having
lower scores on average. Consequently, it makes trends in the development of average score
less noticeable. The number of turns chosen for the tests was 60. Test runs of length 60
turns limit the observed phase in the game to half of the initial settling phase. The initial
settling phase is the phase during which the players divide the continent between them through
founding cities. The expected number of cities for games of length 60 turns is between two
and three. The number of episodes that is played per experiment was set to 3500, i.e. more
than double the number of episodes of previous experiments. Table 6.5 shows a summary of
these parameter settings.

Learning Rate α 0.2
Discount Rate γ 0.6

Exploration Rate ε 0.4
Trace Decay Rate λ 0.8

(for Sarsa(λ) and Q(λ))
Initial Q-Values Q(s, a) 0

Number of Turns 60 (4000BC - 1600BC)
Number of Episodes 3500

Table 6.5: Parameter Settings for Test Runs with Reduced Length

Figures 6.7 and 6.8 show the results of those test runs.

62

Chapter 6. Evaluation

250
300
350
400
450
500
550
600

m
e

Sc
or

e

0
50

100
150
200
250

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

G
a

Episodes Played

(a) Q-Learning

250
300
350
400
450
500
550
600

m
e

Sc
or

e

0
50
100
150
200
250

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

G
a

Episodes Played

(b) Sarsa

Figure 6.7: Results for Short Runs using the One-Step Versions of the Algorithms

250
300
350
400
450
500
550
600

m
e

Sc
or

e

0
50
100
150
200
250

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

G
a

Episodes Played

(a) Q(λ)

250
300
350
400
450
500
550
600

m
e

Sc
or

e

0
50
100
150
200
250

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

G
a

Episodes Played

(b) Sarsa(λ)

Figure 6.8: Results for Short Runs using the Eligibility Trace Versions of the Algorithms

The diagrams show a clear tendency towards improving the game score. They therefore
improve the used policies for selecting city sites. All four algorithms exhibit a tendency of
improving the average score over time. However, their behaviour differs in the way and speed
of improving game score. The diagrams display the results of 10 separate runs over 3500
episodes each.
The performance of the four algorithms in this experiment is exemplary of how the al-

gorithms perform at the task of city site selection in general. Therefore the next section
compares the performance of the four different algorithms and elaborates on how the results
can be interpreted.

63

Chapter 6. Evaluation

6.3 Comparison of Reinforcement Learning Algorithm

Performance

This section elaborates on the results of the test runs of length 60 turns that are shown in
Figure 6.7 and Figure 6.8. The focus will be on measurable and observable features like the
speed of convergence towards higher scores, the average score throughout the experiments
and the range of variations of the score during the run of an experiment.

One-step Q-learning shows a consistent performance. Despite the high percentage of 40%
random decisions the average score rises by nearly 25% during the run of the experiment.
There are several distinct steep rises of the average score. They mark the points where one
of the contributing runs learned a noticeably improved greedy policy. The improvement thus
is not completely linear, but there is a continuous improvement over time.

Sarsa improves as well but it mostly does so through distinct rises at certain times. Between
these distinct improvements the average score declines since unlike Q-learning Sarsa does
not pick the maximum possible future reward but strictly follows its ε-greedy policy, i.e. it
sometimes picks future rewards at random. In this particular case this policy leads to a lower
score on average. The following section will explore if this is also the case when the agent
tries to play optimally.

Both of the algorithms that use eligibility traces, Q(λ) and Sarsa(λ), exhibit an even more
distinctive version of the same behaviour as Sarsa. Their major gains are distinctive rises in
average score. Unlike the one-step versions of the algorithms they show neither growth nor
decline between thee steep gains but only a volatile up and down around an average value.
It is noteworthy that the steep inclines (two in the case of Sarsa(λ), one nearly continuous
incline in the case of Q(λ)) are markedly steep despite the diagrams in Figure 6.8 being
an average of 10 runs. The inclines mark the discovery of a better greedy policy. Their
markedness in a diagram that shows an average over multiple runs implies that they always
happen at nearly the exact same point in time. This is due to the fact that apart from the
random exploration that Sarsa contains, the algorithms always behave in the way described
in Section 6.2.2. They pick a random policy at first and then slowly improve this policy. The
steep inclines in average score mark the points where such an improvement takes place.

A major characteristic of the performance of an algorithm is the number of episodes it
takes for the algorithm to overcome this initial random policy and replace it with a better
policy. An important factor influencing this characteristic is the quality of the initially chosen
random policy. However, it can be ignored in the test runs since all algorithms seem to be
performing at roughly the same levels initially (around a game score of 400 on average).

64

Chapter 6. Evaluation

The results of the phenomenon of algorithms being stuck with their initial policy have been
discussed in Section 6.2.2. If all actions are attributed with the same reward at the beginning,
it depends on the implementation which one is chosen. Since one aim of the test runs was to
compare algorithms actions were not picked at random from all actions leading to the same
reward but the last one that is found was picked. When comparing the Q-values of available
actions in a state s, the most recent action a with a Q(s, a) that ties for the highest value
will thus replace a previous action of the same value.

The problem of algorithms converging towards a non-optimal policy at the beginning is
illustrated in Figure 6.9. The figure shows the sequence of events that is described above with
some example reward values. At the bottom of the figure the probability of being chosen is
given for the different actions. With the current ε-greedy policy the probability for picking
an action a ∈ A that is available in the current state is

• ε
|A| for picking a random action, i.e. performing an explorative move and

• (1− ε) for picking the greedy action, i.e. performing an exploitative move.

In the current experiments ε = 0.4. The number of possible actions is equal to the number of
possible plots that can be settled, i.e. 214 for the initial level of the state space on the chosen
map. For the actual probabilities this means that any random action has the probability
0.4
214 ≈ 0.0019 to be picked. The greedy action is picked with probability 0.6 which means
that the greedy action is picked approximately 0.6/0.0019 = 316 times as often as any other
action. This leads to the conclusion that the estimate for the random action which is picked
first will approximate the actual reward it receives very quickly, regardless of the value of the
learning rate α is.

When computing a Q-value in a simplified version of the update function for Q-learning
where both future and current rewards are considered as one variable r this means that

Q(st, at) = Q(st, at) + α ∗ (r −Q(st, at)).

If the values are initialised at 0 and a value update is performed not only once but n times,
the Q-value will be

Q(st, at) = α ∗ r ∗
n∑

i=0

(1− α)i. (6.1)

This is a simplification of the usual case in which the reward signal varies between different
value updates. However this simplification allows to calculate how many episodes it will take
to replace the action a′ that was selected first and where the according Q-value approximated

65

Chapter 6. Evaluation

the reward. As an example it is assumed that there is a different action a∗ that yields 1.5
times the reward r of the action a′ that was chosen first. This is a comparably large value if
the action that was chosen first does not perform very bad. The currently used learning rate
is α = 0.2. The wanted value is the number of times n this action a∗ has to be chosen until
the according Q-value Q(st, a∗t) becomes bigger than Q(st, a

′
t).

0.2 ∗ (1.5 ∗ r) ∗
n∑

i=0

(0.8)i > r

⇒
n∑

i=0

(0.8)i >
10
3

This equation can be resolved for n ≥ 4, i.e. including the update for n = 0, Q(st, a∗t) would
have to be updated 5 times before Q(st, a∗t) > Q(st, a

′
t). Considering the number of possible

actions |A| = 214 and the exploration rate of ε = 0.4, this would mean that on average
214
0.4 ∗ 5 = 2675 episodes would be required to replace the first, non-optimal action a′ with a∗

when following a greedy policy. This is despite the fact that a∗ yields a much higher reward
and despite ignoring future reward, which would further aggravate the problem.
The calculations above further illustrate why the initial test runs did not produce any viable
results. However, the calculation in equation 6.1 also shows how improvements to the algo-
rithm’s performance could be possible. If the value of the learning rate α was changed, this
would directly influence the number of episodes that are required until a non-optimal action
is replaced by an action that yields a higher reward. Through choosing a higher learning rate
it should thus be possible to speed up convergence towards the optimal policy. This approach
is evaluated in Section 6.5.

A comparison of the algorithms by speed of convergence shows that Q-learning is the most
continuous while not reaching the highest value. The average score of the Q-learning algorithm
starts to improve from the very beginning. Its curve only shows minor steep improvements.
One-step Sarsa is the algorithm second to overcome the initial random policy. However,
it does not manage to achieve the same average score level as one-step Q-learning. This
observation can be attributed to a second significant policy improvement that Q-learning
achieves while Sarsa uses a policy that has only improved once. Both of the algorithms that
use eligibility traces also show two clearly marked policy improvements. For Sarsa(λ) these
improvements happen roughly after one third and after two thirds of the number of episodes
played. For Q(λ) both improvements happen within a very short time after about two thirds
of the total number of episodes. The results section presented in this demonstrate that the
settings used in this section allow the reinforcement learning agent to effectively learn better
policies. The next section describes the comparison of the performance of the reinforcement
learning algorithms with the standard game AI.

66

Chapter 6. Evaluation

Episode 1: Selection of any Action

(1, 1, 1) (23, 15, 1)(10, 11, 1) (10, 12, 1) (23, 14, 1)

Step 1
(1st settler unit)

Greedy or Random Selection

Step 2
(2nd settler unit)

Greedy or Random Selection
(23, 15, 1)(10, 11, 1)(1, 1, 1)

(23, 15, 1)
(1,1, 2)

(23, 15, 1)
(13,7, 2)

(23, 15, 1)
(23,14, 2)

Episode 2: Greedy Selection of the Previous Action

Reward: None Yet

Reward: 9

(23, 15, 1)(10, 11, 1)(1, 1, 1)

(23, 15, 1)
(1,1, 2)

(23, 15, 1)
(13,7, 2)

(23, 15, 1)
(23,14, 2)

Selected Action/State

(23, 15, 1)(10, 11, 1)(1, 1, 1)

(23, 15, 1)
(1,1, 2)

(23, 15, 1)
(13,7, 2)

(23, 15, 1)
(23,14, 2)

(23, 15, 1)(10, 11, 1)(1, 1, 1)

(10, 11, 1)
(1,1, 2)

(10, 11, 1)
(10,12, 2)

(10, 11, 1)
(23,15, 2)

Episodes 4 to N: Repeat of the Above.
Chances of the Greedy State/Action Pair being picked: (1-ε) + (ε/|S|)
Chances of any other State/Action Pair being picked: ε/|S|

(23, 15, 1)(10, 11, 1)(1, 1, 1)

(10, 11, 1)
(1,1, 2)

(10, 11, 1)
(10,12, 2)

(10, 11, 1)
(23,15, 2)

Selected Action/State

Estimate
0

Estimate
0

Estimate
0

Estimate
0

Estimate
0

Estimate
0

Estimate
0

Estimate
0

Estimate
0

Estimate
0

Estimate
0

Estimate
0

Estimate
0

Estimate
0

Estimate
0

Estimate
0

Estimate
0

Estimate
0

Estimate
0

Estimate
0

Estimate
0

Estimate
0

Estimate
0

Estimate
0

Estimate
0

Estimate
0

Estimate
0

Estimate
2.4

Estimate
2.94

Step 1
(1st settler unit)

Greedy Selection

Reward: None Yet

Step 2
(2nd settler unit)

Greedy or Random Selection
Reward: 7.5

Step 1
(1st settler unit)

Greedy Selection

Reward: None Yet

Step 2
(2nd settler unit)

Greedy or Random Selection
Reward: 12

Episode 3: Random Selection of a Different Action

Estimate
2.94

Selected Action/State

Estimate
2.94

Estimate
0

Selected Action/State

Estimate
0

Estimate
1.8

Selected Action/State

Estimate
1.8

Selected Action/State

Figure 6.9: Illustration of Early Algorithm Conversion

67

Chapter 6. Evaluation

6.4 Comparison of the Standard Game AI with Reinforcement

Learning

In this section the performance of the reinforcement learning algorithms is compared with
the performance of the standard game AI. As demonstrated in the previous section, all four
reinforcement algorithms implemented are able to learn new policies for city site selection.
However, their performance was skewed because some actions were selected at random. Con-
sequently, random selections are eliminated to enable reliable comparison. In order to achieve
elimination of random selection, a declining ε-greedy policy (Section 5.1)instead of the stan-
dard ε-greedy policy is used to pick actions. The reinforcement learning agent starts at an
exploration rate ε of 60%. The exploration rate is subsequently reduced by 0.6/3500 in every
episode, i.e. after 3500 episodes the policy is completely greedy. Table 6.6 shows the settings
for these test runs.

Learning Rate α 0.2
Discount Rate γ 0.6

Exploration Rate ε Between 0.6 and 0.0
Declining by 0.6/3500 (0.017%) per Episode

Trace Decay Rate λ 0.8
(for Sarsa(λ) and Q(λ))
Initial Q-Values Q(s, a) 0

Number of Turns 60 (4000BC - 1600BC)
Number of Episodes 3500

Table 6.6: Parameter Settings for Comparison of Reinforcement Learning with the Standard
AI

68

Chapter 6. Evaluation

The results of running the four algorithms individually with these settings are shown in
Figure 6.10 and Figure 6.11.

250
300
350
400
450
500
550
600

m
e

Sc
or

e

0
50
100
150
200
250

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

G
a

Episodes Played

(a) Q-Learning

250
300
350
400
450
500
550
600

m
e

Sc
or

e

0
50
100
150
200
250

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

G
a

Episodes Played

(b) Sarsa

Figure 6.10: Results for Declining ε-Greedy using the One-Step Versions of the Algorithms

250
300
350
400
450
500
550
600

m
e

Sc
or

e

0
50

100
150
200
250

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

G
a

Episodes Played

(a) Q(λ)

250
300
350
400
450
500
550
600

m
e

Sc
or

e

0
50

100
150
200
250

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

G
a

Episodes Played

(b) Sarsa(λ)

Figure 6.11: Results for Declining ε-Greedy using the Eligibility Trace Versions of the Algo-
rithms

As expected the average score is even higher than the average score in the previous test
runs in Section 6.2.5. The random selection of actions is continually reduced as the number of
episodes increases. Thus the number of greedy selections increases. The curve of the average
game score shows a slight continuous growth for all four algorithms. Apart from the additional
growth, the algorithms exhibit the characteristics that have been described in Section 6.3. For
the one-step algorithms Q-learning shows a very consistent growth with nearly no observable

69

Chapter 6. Evaluation

steep increases in average game score while Sarsa has a slightly less marked growth but has
two distinctive increases. Both of the algorithms that use eligibility traces show two strong
increases in average game score. For Q(λ) the increases happen in close succession whereas
for Sarsa(λ) they are more distributed and hidden by a more consistent increase over time.
All four algorithms improve by about 25% over 3500 episodes.
The standard game AI always picks its city sites according to a greedy policy. If there is no

random event involved, standard game AI will always perform the same actions. As a result,
if two players controlled by the standard AI are playing each other and there are no crucial
battles (one of the few random events in Civilization IV) or attacks by randomly spawned
barbarians (switched off for the tests carried out), the course of the game will be exactly the
same for every single episode.
To obtain the average score of the standard game AI, it has to play under exactly the same
conditions as the reinforcement learning agent. If the standard AI plays under exactly the
same conditions as the reinforcement learning agent, the experiment shows that for games
with length 60 turns the AI will always gain the same score in every single game. Figure
6.12 shows the comparison of the performance of the standard AI with the results of the
reinforcement learning algorithms.

450

475

500

525

m
e

Sc
or

e

Standard AI

Q-Learning

375

400

425

0

25
0

50
0

75
0

10
00

12
50

15
00

17
50

20
00

22
50

25
00

27
50

30
00

32
50

35
00

G
am

Episodes Played

Q Learning

Sarsa

Q(λ)

Sarsa(λ)

Figure 6.12: Performance Comparison between Standard AI and Reinforcement Learning Al-
gorithms

70

Chapter 6. Evaluation

The difference between the achieved game score of the reinforcement learning algorithms
and the standard AI is remarkable. The reinforcement learning algorithms start at an average
score of about 400 and improve to an average score of about 500 with Q-learning achieving
slightly less.
The standard game AI, which follows a greedy policy from the very beginning, achieves

a score of 439. The reinforcement learning algorithms thus perform between 10% and 20%
(depending on the algorithm) better than the standard AI after learning for 3500 episodes.
However, this does not imply that the reinforcement learning algorithms have found the
optimal policy already. As shown in the previous section, the current parameter settings might
enable the reinforcement learning algorithms to learn better policies, but there is evidence
that they still can be improved.

6.5 Optimising the Learning Rate α

A change to the algorithm parameters that can possibly improve the results is an increase of
the learning rate α. This change is suggested by Equation (6.1) in Section 6.3. Experiments
were performed with α = 0.5 and α = 0.8. All other settings, including the declining ε-
greedy policy, remained the same. The results of these experiments are shown in figures 6.13
to 6.16. Each diagram compares the results for the different settings of α using one of the
reinforcement learning algorithms.

250
300
350
400
450
500
550
600

m
e

Sc
or

e

α = 0.2

0
50

100
150
200
250

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00
20

00
22

00
24

00
26

00
28

00
30

00
32

00
34

00

G
a

Episodes Played

α = 0.5

α = 0.8

Figure 6.13: Comparison of Different Learning Rates using One-Step Q-Learning

71

Chapter 6. Evaluation

250
300
350
400
450
500
550
600

m
e

Sc
or

e

α = 0.2

0
50

100
150
200
250

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00
20

00
22

00
24

00
26

00
28

00
30

00
32

00
34

00

G
a

Episodes Played

α = 0.5

α = 0.8

Figure 6.14: Comparison of Different Learning Rates using One-Step Sarsa

250
300
350
400
450
500
550
600

m
e

Sc
or

e

α = 0.2

0
50

100
150
200
250

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00
20

00
22

00
24

00
26

00
28

00
30

00
32

00
34

00

G
a

Episodes Played

α = 0.5

α = 0.8

Figure 6.15: Comparison of Different Learning Rates using Q(λ)

72

Chapter 6. Evaluation

250
300
350
400
450
500
550
600

m
e

Sc
or

e

α = 0.2

0
50

100
150
200
250

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00
20

00
22

00
24

00
26

00
28

00
30

00
32

00
34

00

G
a

Episodes Played

α = 0.5

α = 0.8

Figure 6.16: Comparison of Different Learning Rates using Sarsa(λ)

The diagrams exhibit several interesting features when comparing the results for a learning
rate of 0.2 with those of a learning rate of 0.5. None of the algorithms performs worse with
increased learning rate compared to the previous lower α when they are judged according to
the quality of the learned policy at the very end of a test run.
Both algorithms that are based on Q-learning end up with a similar final score for both

settings of α. The Sarsa-based algorithms on the other hand manage to improve their per-
formance by up to 50 score points, i.e. 10% of their overall average score. As predicted by
the findings in Section 6.3, the score improves the most during the first 500 episodes of the
experimental runs. While running with a setting of α = 0.2 all four algorithms show no
improvements or very little improvements in this phase. With a setting of α = 0.5 however,
there is a steady increase in average score right from the start. After the first 1000 episodes,
the performance of the algorithms that run with α = 0.5 is comparable to those running
with a setting of α = 0.2. It is noteworthy that despite the increased learning rate all four
algorithms show variations that are less marked than before. This behaviour is striking since
the Q-values were expected to fluctuate more due to larger changes in the values at every
update.

73

Chapter 6. Evaluation

The results for a setting of α = 0.8 differ again between the algorithms that are based on
Q-learning and those that are based on Sarsa. The average performance of one-step Sarsa
and Sarsa(λ) is nearly identical for α = 0.5 and α = 0.8 in terms of game score. However,
the average game score fluctuates a lot more for α = 0.8. Also the score that is achieved
when following the final policy that is found, i.e. the greedy policy after 3500 episodes,
is slightly worse for α = 0.8 for both algorithms. The fluctuation with α = 0.8 is also
worse than before for one-step Q-learning and Q(λ). However, it is less strong than for the
Sarsa-based algorithms. Furthermore, the algorithms based on Q-learning do perform far
better for α = 0.8. Both one-step Q-learning and Q(λ) perform up to 50 score points, i.e.
10% of their overall average score better with α = 0.8 than with α = 0.5. This increase of
10% is similar to what the Sarsa-based algorihms gained by increasing α from 0.2 to 0.5.
Consequently, on-policy and off-policy algorithms require different settings for α in order to
perform optimally.

This chapter started by elaborating on the experimental settings for the game environment
as well as for the parameters for the different reinforcement learning algorithms. These set-
tings were then tested and refined in preliminary test runs. The results of these test runs
were analysed and different improvements to the settings were made in order to improve the
learning process for the algorithms. Once settings were found that showed promising learn-
ing capabilities, the performance of the four reinforcement learning algorithms was compared
to the performance of the other reinforcement learning algorithms. In the final section the
performance of the reinforcement learning algorithms was compared to that of the standard
game AI.
In the following chapter the results of the experimental runs and of the whole thesis will be

discussed. Furthermore, possible future work building on the results of the research in this
thesis will be discussed.

74

Chapter 7

Discussion and Future Work

This chapter elaborates on the findings of the experiments discussed in the previous chapter.
Furthermore, the general results of this thesis are discussed and possible improvements are
mentioned.

The empirical evaluation carried out in Chapter 6 shows the potential of applying re-
inforcement learning to select the best plots for founding cities in Civilization IV. Several
adjustments to the preliminary settings had to be made before obtaining satisfactory results.
They were necessary because of the specific requirements of the chosen task and especially of
the chosen test environment. Particularly the memory constraints of Civilization IV as well
as the decreasing game speed in the later phases of the game make long-term evaluations time
consuming and impractical. Although this can partly be compensated for by choosing the
appropriate game settings, the attempts at finding settings that make it possible to evaluate
the complete settling phase were not successful.
The application of fully discounted reinforcement learning algorithms that completely ignore

previous estimates was not successful. Failure of fully discounted reinforcement learning
algorithms was to be expected because it ignores one of the core elements of TD learning.
No bootstrapping takes place in the application, i.e. previous estimates are no longer used to
create new estimates. Therefore, the reinforcement learning agent loses its ‘memory’.
The second attempt at adapting the settings for test runs by using pre-initialised Q-values

did not produce an improvement in developing new policies either. However it is promising
for future applications: The idea of using existing domain knowledge to initialise the Q-values
of state-action pairs can be used if the values that are used are adjusted to better fit the
purpose. For instance the current implementation does not consider an opponent’s territory
because the values that are used are computed before anybody has claimed any territory.
One possible approach would be to not completely rely on the pre-initialised value when
picking the next founding plot, but to only use these values when there is a draw between
two plots with equal value.

75

Chapter 7. Discussion and Future Work

The ensuing decision to reduce the number of turns that are played per episode makes the
learning process easier to observe. The reduction in game reduces the state space because
fewer cities are built. It also limits the number of possible actions of both the reinforcement
learning agent and the standard game AI. The reduction in average game score means that
it is easier to distinguish between a real improvement and a random event. It thus facilitates
evaluation of the true performance of an algorithm because it reduces the ‘noise’ hiding the
true performance of the algorithms. In the first three experiments the episodes are 110
turns long and the noise manifests itself in the strong variations in average game score. The
variations also occur in the 60-turn episodes but they are far less distinctive.

Although the reduction in length led to very good results, the extension of the time span
analysed is still part of future improvements. Since the ultimate goal is to create a reinforce-
ment learning agent that can play the complete settling phase, both the length of the games
and the number of episodes used for the experiments will have to be extended in the long
run. However, it would not be useful to extend the learning process to a whole game. In
later stages only few cities are founded but there is a large number of cities that is won or
lost through combat. The fluctuating number of cities would obscure the actual score that is
gained by newly founded cities and make learning according to the current reward signal all
but impossible. With the length of one episode adjusted to 60 turns, all four reinforcement
learning algorithms used improved their policies for selecting the best plots to found a city on
by up to 40% over the standard game AI. Considering the short playing time, this improve-
ment is very remarkable. As stated in Section 5.2.4 where the different components of the
game score are described, a higher score can result in a number of improvements for the rein-
forcement learning agent. Since the difference in score is big in the case of these experiments,
the reinforcement learning agent will have a number of advantages over his opponent.

• The reinforcement learning agent has more population or more cities than its opponent.

• The reinforcement learning agent has a larger territory than its opponent. This means
that the reinforcement learning agent has access to more special resources that increase
the yield in production, food and commerce.

• The reinforcement learning agent has more advanced technologies than its opponent,
leading to a number of benefits such as stronger combat units and higher yield from
plots.

• The reinforcement learning agent has more Wonders of the World (special, very expen-
sive buildings) that can have numerous effects that further benefit the reinforcement
learning agent’s empire.

76

Chapter 7. Discussion and Future Work

Figure 7.1 shows a summary of the best results of the four algorithms with their optimal
settings from the empirical evaluation.

500

525

550

575

co
re

Sarsa (λ) (α = 0.5) Q-Learning (α = 0.8) Standard AI

Sarsa (α = 0.5) Q(λ) (α = 0.8)

375

400

425

450

475

0

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

19
50

21
00

22
50

24
00

25
50

27
00

28
50

30
00

31
50

33
00

34
50

G
am

e
S c

Episodes Played

Figure 7.1: Performance Comparison between Standard AI and Reinforcement Learning Al-
gorithms with Optimal Settings

Both algorithms that use eligibility traces show a better performance than their one-step
counterparts. This was to be expected due to the nature of the task. City site selection
relies heavily on reward propagation. Due to this heavy reliance, even in games that only
last 60 turns the improvement through eligibility traces becomes apparent. The comparison
also shows that the on-policy Sarsa algorithms perform better than the off-policy Q-learning
algorithms. One-step Q-learning is the weakest algorithm in terms of final score and also
exhibits the strongest fluctuations in its average score during the learning process. One-step
Sarsa performs at about the same level as Q(λ) but Q(λ) has a stronger and more stable
performance earlier during the experiment. Sarsa(λ) shows the strongest performance by
a margin of about 3% when compared to Q(λ) and one-step Sarsa. Since Sarsa(λ), just
like Q(λ), also exhibits a consistent growth, with the current settings Sarsa(λ) is the best
algorithm for the task of city site selection in Civilization IV.

77

Chapter 7. Discussion and Future Work

Through a number of changes to the experimental setup further improvements could be
achieved. The first setting to be changed is the aforementioned extension of the number of
episodes. In several experiments the increase in average game score can be attributed to a
large degree to two distinct rises at two points in time. This principally means that the greedy
policy that an agent pursues was improved greatly at those two points in time. However, it
is unlikely that two improvements already lead to the optimal policy π∗. Therefore, given a
suitable number of episodes, it can be assumed that there will be additional improvement of
the score.
The second setting that could be changed in order to obtain better results is the number of
turns an episode takes. Since cities need time to develop their full potential, the gap in score
between good and mediocre cities widens with the number of turns played.

The mediocre performance of the standard game AI and especially the complete lack of
variation in its performance were additional interesting discoveries of the experimental runs.
These findings confirm a general premise of this thesis: Despite its apparently sophisticated
and critically acclaimed AI (BetterAI Project, 2007) Civilization IV has a very simplistic
and mostly static AI. If there is no human player to add randomness to the gameplay, the
game is close to being completely deterministic. In the final experiment the reinforcement
learning agent gradually approximates a completely greedy and thus deterministic policy. If
the reinforcement learning agent were to be integrated into the game the exploration rate ε
would have to be prevented from reaching 0 in order to keep the game more interesting and
versatile. However, for the experiments carried out in this thesis, using a completely greedy
policy does make sense since the optimal performances of the algorithms and the standard
AI were compared.

Possible extensions and additions to the reinforcement learning agent in Civilization IV can
be divided into four categories. These categories are the improvement of the four algorithms
which have been used, the evaluation of other reinforcement learning approaches, and the
combination of other machine learning techniques with reinforcement learning. Moreover, the
task in Civilization IV that is solved through reinforcement learning can be extended.

The results of the empirical evaluation show that the applied reinforcement learning
methods have the potential to outperform the static standard AI. However, learning becomes
computationally unfeasible when crossing a certain threshold of game complexity, either in
terms of game turns or of map plots. Consequently, the algorithms have to be optimised
further to extend the range of tasks for which the reinforcement learning agent can be used,
i.e. for longer games or larger maps. One way to optimise the algorithms is to speed up
the learning process to accelerate the convergence towards the optimal action-value function.
The two algorithms that use eligibility traces are a first step into this direction.

78

Chapter 7. Discussion and Future Work

They could further improved by changing the standard policy that is used to select actions
from an ε-greedy policy to a softmax policy (Section 5.1.4). If the policy is changed to a
softmax policy some issues arise. Softmax policies are a double-edged sword. On the one
hand they can remedy the problem that actions that eventually yield higher rewards are not
picked since another random action was picked first and now has become part of the greedy
policy (see Section 6.2.2). On the other hand a softmax policy could aggravate the exact
same problem since it less often choses actions that have not yet been yet. Consequently, a
softmax policy only improves the algorithm if an action that yields a higher reward than the
current greedy action has already been picked at least once. In spite of this problem, softmax
policies should be evaluated and their performance compared to that of the currently used
ε-greedy policy.

Apart from the extension of the existing methods, future research can be carried out in
the field of other reinforcement learning techniques: Monte Carlo methods or pure dynamic
programming can be evaluated as to how well they are suited for the city placement selection
task (Sutton and Barto, 1998).

The most promising technique when it comes to solving the problem of dimensional-
ity would be the use of function approximation. This form of generalisation is used in
several of the publications on reinforcement learning and it is particularly suitable to
handle problems of big state spaces. Function approximation was considered at the very
beginning of this thesis. However, function approximators are problematic when it comes
to convergence (Sutton, 2000). Therefore, a table-based approach was chosen to prove
the feasibility of using reinforcements learning algorithms to select city sites. Another
major drawback of function approximation is its dependency on an accurately chosen
representation (Sutton and Barto, 1998). Based on the knowledge gained in this thesis
and particularly in the empirical evaluation, function approximation could now be attempted.

An additional field for future research on reinforcement learning using Civilization IV as
a test bed is the combination of other machine learning methods with reinforcement learn-
ing. One particularly promising method is Case-Based Reasoning (CBR). The application
of CBR to the plot selection task would allow to solve the problem of experience learned on
one map being useless on another map because of the different topology. A combination of
reinforcement learning and CBR has successfully been applied to a similar problem before.
Auslander et al. (2008) solve the problem of transferring knowledge acquired through rein-
forcement learning from one type of behaviour of the opponents to a different behaviour in the
FPS Unreal Tournament. Their algorithm CBRetaliate manages a case-base of policies for a
number of agents that have been learned through Q-learning. The case-base is used to speed

79

Chapter 7. Discussion and Future Work

up the process of creating winning strategies through reinforcement learning in a changing
environment.
A possibility to improve the game play experience would be the application of Motivated

Reinforcement Learning (MRL). One of the game mechanics in Civilization IV is the
aforementioned ‘character traits’ (Section 6.1.2) of the different computer AIs. Certain
players by definition have advantages in certain areas of the game for example in the fields
of expansion, finance or combat. These advantages are hard coded numbers and are meant
to express certain character traits like aggressiveness or expansionism. Instead of hard
coded numbers the agents could use a reinforcement learning agent which is rewarded by a
motivational function as described by Merrick and Maher (2007). This could lead to more
interesting, human-like behaviour for AI players.

Another possibility to build on the research carried out for this thesis is to extend the
task for which these machine learning techniques are used. For the purpose of the present
thesis, the task of the reinforcement learning agent has been limited to the choice of site for
building a city. For future development, the task could be extended to include the choice of
the optimal number of cities and when to build them.

This chapter elaborated on the general results of the evaluation. The results of the experi-
ments experiments that were performed were discussed and the implications of their outcome
was illustrated. Possible future extensions were discussed for the test runs as well as for the
algorithms and the testbed integration. Furthermore, the application of other reinforcement
learning techniques for the overall task was considered as was the integration of reinforcement
learning with other machine learning techniques.
The next chapter will summarize the results of the thesis and draw a conclusion on its

achievements, success and and possible improvements of reinforcement learning agents in
Civilization IV.

80

Chapter 8

Conclusion

This section concludes the thesis. The premises as well as the design and implementation of
the reinforcement learning agent are summed up first. Then the results and contributions of
this thesis are summarized.

This thesis has presented the integration of reinforcement learning into the commercial
computer game Civilization IV. Civilization IV was chosen as a testbed because it is accessible,
recent and critically acclaimed as a commercial product. The task that was chosen for the
integrated reinforcement learning algorithms is the selection of the plots on the map that
are used to found cities on. The particular task was selected for being comparably easy to
observe while at the same time being crucial to the game. The reinforcement learning model,
i.e. the states, actions and the reward signal are defined to contain the Markov property.
They constitute a finite Markov decision process.

Four different reinforcement learning algorithms have been adapted to the task of city site
selection and have been integrated into the game environment. All four of them are based on
TD learning. Q-learning and Sarsa are one-step versions while Q(λ) and Sarsa(λ) work with
eligibility traces. By using Q-learning and Sarsa, both on-policy and off-policy algorithms are
tested.

After establishing proper settings for the test runs, algorithms were evaluated empirically.
The results of the empirical evaluation were promising. All four algorithms that were used
manage to learn city placement strategies for a specific map. After undergoing a training
process, the reinforcement learning agent outperforms the standard game AI in short matches
by up to 40%, depending on the algorithm used. The standard AI is comparatively weak in
its general performance. Moreover, it behaved in a completely deterministic way, which is one
of the major drawbacks that machine learning can improve upon in commercial games. The
integration of the reinforcement learning agent into Civilization IV thus extends the otherwise
deterministic early game by a non-deterministic, adaptable component that enhances the
game-playing experience.

81

Chapter 8. Conclusion

The findings of the initial experiments also point out possible shortcomings of the algo-
rithms. They thus lay the groundwork for future work. Several possible extensions that are
mentioned in Chapter 7 could further improve the performance of the algorithms and extend
the reinforcement learning agent’s capabilities and responsibilities.
Another contribution of this thesis to the field of computer game AI research is the use

of the commercial computer game Civilization IV as a testbed for AI research. Civilization
IV has great potential and can be used for other machine learning experiments in the future
because of the diversity of the tasks involved in the game and the relative ease with which
these deterministic tasks can be taken over by learning agents. The findings of experiments
that were run with Q-learning were published in (Wender and Watson, 2008))(see Appendix
A). The second part of the empirical evaluation of this thesis is based on the findings in the
paper and further improved and extended the results by using different algorithms and better
settings.
As a general conclusion it can be said that the objectives that were defined in the beginning

have been achieved. The objectives were to integrate the reinforcement learning agent into
Civilization IV and to find settings for the agent that enable it to perform at or above the
level of the standard game AI. Furthermore these settings were to be optimised to allow the
reinforcement learning agent to perform at the highest level possible.
Since all these objectives have been achieved, the application of reinforcement learning to

select city sites in Civilization IV has been successful.

82

Appendix A

Paper Presented at the 2008 IEEE
Symposium on Computational Intelligence

and Games (CIG’08)

83

Using Reinforcement Learning for City Site Selection in the
Turn-Based Strategy Game Civilization IV

Stefan Wender, Ian Watson

Abstract— This paper describes the design and implemen-
tation of a reinforcement learner based on Q-Learning. This
adaptive agent is applied to the city placement selection task
in the commercial computer game Civilization IV. The city
placement selection determines the founding sites for the cities
in this turn-based empire building game from the Civilization
series. Our aim is the creation of an adaptive machine learning
approach for a task which is originally performed by a complex
deterministic script. This machine learning approach results in
a more challenging and dynamic computer AI. We present the
preliminary findings on the performance of our reinforcement
learning approach and we make a comparison between the
performance of the adaptive agent and the original static game
AI. Both the comparison and the performance measurements
show encouraging results. Furthermore the behaviour and
performance of the learning algorithm are elaborated and ways
of extending our work are discussed.

I. INTRODUCTION

One of the main incentives for integrating machine learn-
ing techniques into video games is the ability of those
techniques to make those games more interesting in the long
run through the creation of dynamic, human-like behaviour
[1]. Among the most captivating games, especially in terms
of long-term gameplay, are the games of the Civilization
series. However these turn-based strategy games achieve
their high replay value not through advanced adaptable AI
techniques but through a high level of complexity in the later
stages of the game. The early stages however are, as we will
also see in this paper, mostly deterministic and therefore
not very challenging. These characteristics as well as the
large number of tasks involved in playing the game make
Civilization games an ideal test bed where one of those many
tasks can be replaced by a machine learning agent, thus
making the AI less predictable and improving the overall
game play experience.

II. RELATED WORK

The machine learning method we chose for our task is
Reinforcement Learning (RL) [2], a technique which allows
us to create an adaptive agent that will learn unsupervised
while playing the game. More specifically the Q-Learning
algorithm as introduced by [3] will be used to demonstrate
the applicability of reinforcement learning in the commercial
video game Civilization IV.

Because of the broad spectrum of problems involved in
Civilization video games as well as the multitude of versions
of the games that are available, several of them with open

Stefan Wender and Ian Watson are with The University of Auck-
land, Department of Computer Science, Auckland, New Zealand; e-mail:
swen011@aucklanduni.ac.nz ‖ ian@cs.auckland.ac.nz

source code, multiple variants of the game have been used
in academic research. Perhaps most popular as a test bed
is the Civilization variant FreeCiv, an open source version
of the commercial game Civilization II. FreeCiv has been
used to show the effectiveness of model-based reflection and
self adaption [4]. Furthermore an agent for FreeCiv has been
developed that plays the complete early expansion phase of
the game [5].

The development of an AI module that is based on Case-
Based Reasoning (CBR) for the open source Civilization
clone C-Evo is documented in [6]. C-Evo is an open source
variant of Civilization, which is closest related to Civilization
II and allows for the development of different AI modules
which can compete against each other.

More directly related to this paper is research which
uses the commercial Civilization games as a test bed. The
commercial Civilization game Call To Power II (CTP2) is
used as a test bed for an adaptive game AI in [7]. In
order to communicate with the game an ontology for the
domain is developed and case-based planning in combination
with CBR is used to create an adaptive AI. CTP2 has also
been integrated with the test environment TIELT [8], thus
preparing a test bed for future research using CTP2.

In [9] a Q-Learning algorithm is used to create an adaptive
agent for the fighting game Knock’em. The agent is initially
trained offline to be able to adapt quickly to the oppo-
nent in an online environment. RETALIATE (Reinforced
Tactic Learning in Agent-Tam Environments), an online
Q-Learning algorithm that creates strategies for teams of
computer agents in the commercial First Person Shooter
(FPS) game Unreal Tournament is introduced in [10]. This
approach is extended in [11], where the authors use CBR
in order to get the original RETALIATE algorithm to adapt
more quickly to changes in the environment.

III. CIVILIZATION IV AS TEST BED FOR RESEARCH IN
COMPUTER GAME AI

The variant of the Civilization game which will be used
as a test bed in this paper is Civilization IV. Civilization
IV is the latest title in the commercial series of the original
game. Large parts of its code base, including the part which
controls the AI, have been released as open source. Also the
existing computer AI is already quite sophisticated and thus
can provide a challenging opponent in empirical experiments.
Furthermore an improvement of the existing AI would show
that research from academia can be used to create a bigger
challenge and thus offer a more enjoyable playing experience
which will in the end lead to better games in general.

However the use of Civilization IV as a test bed for
research also bears a challenge. The code base that was
released as open source consists of more than 100000 lines
of code, which mostly are very sparingly commented. Since
only parts of the source code have been released, several
major functions have to be emulated, most importantly the
automatic restarting of a game which is crucial when running
tests that are supposed to last for several thousand games.

A. The Game

Civilization is the name of a series of turn-based strategy
games. In these games the player has to lead a civilization
of his choice from the beginnings BC to the present day. It
involves building and managing cities and armies, advancing
the own empire through research and expansion as well
as interacting with other, computer-controlled civilizations
through means of diplomacy or war in a turn-based envi-
ronment. The popularity of the original game has lead to a
multitude of incarnations of the game, both commercial and
open source.

B. The City Placement Task

The most important asset in a game of Civilization IV
are the cities. The three major resources a city produces
are food (used for growth and upkeep of a city), commerce
(used among others for research and income) and production
(used to produce units and buildings). Furthermore special
bonuses which grant additional basic resources or other
benefits like accelerated building speed can be gained. The
playing field in Civilization IV is partitioned into ”plots”
with each plot producing a certain amount of the resources
mentioned above. A city can gain access only to the resources
of a plot which is in a fix shape of 21 plots surrounding the
city: Figure 1.

Fig. 1. Civilization IV: Workable City Radius

In addition the borders of an empire and thus the area of
influence of its player are defined by the summarized borders
of the cities of that empire. Therefore the placement of cities
is a crucial decision and influences the outcome of a game

to a large degree. This is the reason why we chose to apply
RL to the city site selection task.

Cities are founded by mobile settler units which can be
exchanged for a city on the plot they are located on. The
standard AI uses a strictly sequential method of determining
which are the best sites for building new cities. Each plot on
the map is assigned a ”founding value” which is based on
numerous attributes like the position of the plot in relation to
water, proximity of enemy settlements, proximity of friendly
cities and of course the resources that can be gained from
plots. We replace this sequential computation of founding
values with reinforcement learning.

At the current stage of our research the task of the
reinforcement learner is limited to choosing the best location
for an existing settler. The decision of when to build a settler
is still made by the original game AI.

IV. REINFORCEMENT LEARNING MODEL

Reinforcement learning is an unsupervised machine learn-
ing technique, in which an agent tries to maximise the reward
signal [2]. This agent tries to find an optimal policy, i.e. a
mapping from states to the probabilities of taking possible
actions in order to gain the maximum possible reward. The
reinforcement learning model for the city placement task
consisting of the set of states S, possible actions A and the
scalar reward signal r is defined as follows:

A. States

A state s ∈ S contains the coordinates of all existing cities
of the active player. The other important information besides
the position of a city is when this city was created. This
information is crucial since a different order of founding can
lead to very different results. Therefore, in order to satisfy the
Markov property (i.e. any state is as well qualified to predict
future states as a complete history of all past sensations up
to this state would be) and thus for the defined environment
to represent a Markov Decision Processes (MDP) each plot
also contains the information when, in relation to the other
cities, this city was founded.

A state s ∈ S can be described as a set of triples (X-
Coordinate, Y-Coordinate, Rank in the Founding Sequence)
and each triple is representing one city. This definition of the
states means that the resulting model will be a graph with no
cycles, i.e. a tree. Figure 2 shows a part of such a tree with
the nodes representing the states and branches representing
the actions. Because of this structure of the state space, no
state can be reached more than once in one episode.

The set of all states S consists therefore of all possible
combinations of the (X-Coordinate, Y-Coordinate, Rank in
the Founding Sequence) triples where cities can be built on
any plot p ∈ P .The resulting size of the state space is

|S| =
c∑

i=0

|P |!
(|P | − i)! (1)

With c = |P | since every plot on the map could be a city.

Fig. 2. Excerpt of the State Space S

B. Actions

The set A of possible actions which can be taken when in
a state s ∈ S consists of founding a city on any of the plots
(p ∈ P‖p /∈ s), i.e. any plot where there is no city of the
active player yet. Since the map size of a game varies and
for an average sized map there are |P | = 2560 plots already,
this results in a very large state space. One measure we took
to reduce this size significantly is to ignore ocean plots, as
cities can only be founded on land. This reduces the number
of possible plots to about one third of the map size.

C. Rewards

The reward signal is based on the score of a player. In the
original game this score is used to compare the performance
of the players with each other and it is updated every turn for
all players. The game score consists of points for population
in the cities, territory (the cultural borders of the cities added
up) and technological advancement (developed with research
output from the cities). Therefore, all the parts the game score
is made up of are connected to the cities. A time step, i.e.
the time frame in which the reinforcement learner has to
choose an action and receives a reward after performing that
action, is defined as the time between founding one city and
founding the next city. The update of the Q-value Q(si, ai)
after taking an action ai in state si happens immediately
before executing the next action ai+1, i.e. founding the next
city. The selection of the appropriate plot for this foundation
however can happen several game turns before that, with
the settler unit moving to the chosen plot afterwards. The
scalar value which represents the actual reward is computed
by calculating the difference in game score between the
founding turn of the last city and the founding turn of this
city. The difference is then divided by the number of game
turns that have passed between the two foundations:

r ← (GameScorenew −GameScoreold)
(GameTurnsnew −GameTurnsold)

V. ALGORITHM

The top-level algorithm which controls the overall city site
selection task can be seen in Figure 3.

Fig. 3. Top-level Algorithm for City Site Selection

The actual Q-Learning algorithm which is based on
One-step Q-Learning as described in [2] is shown below.

Initialise Q(s, a) to 0
Repeat for each episode:

Initialise s
Repeat for each step in this episode:

Determine possible actions Ai in si

Choose action ai ∈ Ai as
I) ai ← max Q(si, ai) with probability 1-ε
OR
II) ai ← random ai ∈ Ai with probability ε

Send settler unit to plot chosen in ai

r ← gameScoreGainPerTurn()
Q(si, ai)
←Q(si, ai)

+α
[
r + γ ∗maxai+1Q(si+1, ai+1)−Q(si, ai)

]

si ← si+1

until the number of steps is X

The setting of a fixed number of turns X is motivated by
the game mechanics. The size of X is directly related to the
size of the map and the number of opponents. The size is
usually defined in a way that after X turns, most of the map
has been divided between the different factions and the main
focus in the game shifts from expansion to consolidation of
acquired territory and conquest of enemy terrain and thus
away from the city placement task.

The discount factor γ in our experiments, which are
presented in section VI, is set to 0.1. The reason for this
rather low value lies in the large number of possible actions
in each state. All Q(s, a) values are initialised to zero
and the reward signal is always positive. Therefore, actions
which are pursued in earlier episodes are likely to be called

disproportionally more often if a policy different to complete
randomness is pursued. The learning rate α is set to 0.2
which proved to be high enough to lead to relatively fast
convergence while being low enough to protect the Q-values
from anomalies in the reward signal. Both γ and α values
have also been tested in trial runs and proven to work best
for our purposes with the values given above.

Since Q-Learning is by definition an off-policy algorithm,
the learned action-value function Q converges with prob-
ability one to the optimal action-value function Q∗ even
following a completely random policy. However, this requires
visiting every single state infinite times, which is computa-
tionally not feasible. The algorithm uses an ε-greedy policy.
Its general behavior can be modified by altering ε, depending
on whether the main aim is learning or performing optimally,
i.e. if the focus should be on exploration or exploitation.

It is noteworthy that all Q-values show a dependency on
the starting position on the map of the respective player.
Furthermore, since the usability of a plot as founding site
for a city completely depends on the geography of the
surroundings, the Q-values obviously are correlated to the
map which is used in the game. As soon as the geography
changes, the Q-values have to be computed from scratch.
This dependency and how we intend to deal with it is further
elaborated in section VII.

VI. EMPIRICAL EVALUATION

We ran several experiments to compare our adaptive
city plot selection algorithm to the existing deterministic
sequential approach. In order to be able to compare the
growing effectiveness of greater coverage over the state
space, several experiments with differing numbers of turns
as well as different settings for the ε-greedy policy were run.
Except for the method of choosing the best spot for its cities,
the original game AI was left unchanged.

The standard setup is one computer player that uses ex-
perience gained through Q-Learning against two other com-
puter players which use the standard method of determining
founding plots. The map used is the same in every game,
as well as the starting positions. All players have exactly
the same ”character traits” (a game mechanic which leads
to advantages in certain parts of the game like research or
combat) so they are starting under exactly the same premises.
The size of the chosen map is the second smallest in the
game and the map consists of about 300 plots which can be
settled. According to Equation (1) this leads to the number
of possible states

|S| =
c∑

i=0

300!
(300− i)! .

c is in this case equal to the number of cities that are ex-
pected to be built in the given number of turns. This basically
means that not the complete state-tree will be traversed but
only the tree up to a depth equal to the maximum number
of cities. The number of game turns differed between the
experiments and was decided according to the goal of the

respective test. Due to the low number of actions which are
taken in one episode, a large number of episodes had to be
played for every setup to get meaningful results.

One of our main aims was to find out how the reinforce-
ment learner performed compared to the standard game AI.
To achieve an adequate coverage of the state space, which is
necessary to reach comparable results to the static but quite
sophisticated standard game AI, the number of game turns
was set to 50 (12.5 % of the maximum length of a game).
This seems rather short but since the map on which the game
is played is small, the game phase during which the players
found new cities is usually very short as well. After 50 turns
on average about half of the map has been occupied by the
three players.

The limitation of the single episodes to a length of 50 turns
leads to an expected maximum number of cities of 2 for the
reinforcement player. This means that the possible states are
limited to about

2∑

i=0

300!
(300− i)! ≈ 90000.

Since despite the low number of cities the high branching
factor leads to this large state space, convergence is not
guaranteed, even though the Q-Learning algorithm is usually
able to cope through the ε-greedy policy which pursues the
maximum rewards with probability 1 − ε. ε was initialised
at 0.9, i.e. in 90% of all cases our algorithm would pick
a random action while selecting the action with the high-
est Q(s, a) value in the remaining 10%. This ratio was
subsequently slowly reverted, that means after 3000 played
episodes only 10% of all actions would be random while
90% were picked according to the highest Q(s, a) value.
This is necessary to draw a meaningful comparison between
the reinforcement learner and the standard AI when both try
to play optimal or close to optimal.
3050 episodes of length 50 turns were played by the com-
puter AI. After each episode the score of the players was
recorded. For the final evaluation, the score of the RL player
was averaged across the last 50 episodes to even out the
anomalies which occur because of the explorative policy. As
a reference value, the same experiment was performed with
a standard AI player instead of the reinforcement player, i.e.
three standard computer AI players compete against each
other on the same map with the same premises as in the
previous test. Figure 4 shows the results of both experiments.

The first thing that attracts attention is the performance of
the standard computer AI under these circumstances, which
results in the same score for every single game. This is due
to the fact that there is no randomness in the decisions of
the computer AI when it comes to city placement. There are
very few non-deterministic decisions in Civilization IV, most
of them in the combat algorithms, but those do not have any
effect until later in the game when players fight against each
other. Therefore, for the first 50 turns, the three standard AIs
always performed the exact same actions.

The diagram also shows that the reinforcement learner,

350

400

450

200

250

300

am
e

Sc
or

e

50

100

150

G
a

Standard AI

Reinforcement Learner

0

50

1 501 1001 1501 2001 2501 3001

Number of Training Episodes

Fig. 4. Average Score Comparison between Reinforcement Learner and
Standard AI for Games with Length 50 Turns

while initially inferior in average score, ends up beating the
average score of the standard AI. On the downside it is
noteworthy that it took the reinforcement learner more than
2000 episodes of the game to reach that point. Since the
number of the episodes played is still a lot smaller than the
state space for the placement of two cities, there also remains
room for improvement by finding even better policies.

14000

16000

18000

8000

10000

12000

14000

ar
ia

nc
e

4000

6000

8000V
a

0

2000

1 501 1001 1501 2001 2501 3001
Number of Training Episodes

Fig. 5. Variance in the Average Score: From Explorative to Exploitative
Policy by decreasing ε

Figure 5 shows the variance of the average of the scores for
the reinforcement learner. Its decline illustrates the change of
policy with increasing number of episodes.

Since the reinforcement learner performed very well for
short games and a large number of episodes, another exper-
iment was conducted to evaluate the convergence with less
episodes and more turns. The number of turns was doubled
to 100 turns per episode while the number of episodes was
reduced to 1500. The evaluation happened in the same way as
in the previous experiment through recording the game score
and averaging the score for 50 episodes. As an addition the
score was not only measured at the end of an episode, i.e.
after 100 turns but also after 50 turns like in the previous
experiment. Furthermore we performed another set of tests in
the same environment with an AI that follows a completely
random policy. This means that ε = 1, which results in the
player always picking actions at random.

700

800

900

400

500

600

700

g
G

am
e

Sc
or

e

100 Turns Reinforcement Learner

100 Turns Standard AI

100 T R d P li

100

200

300

400

A
ve

ra
g 100 Turns Random Policy

50 Turns Reinforcement Learner

50 Turns Standard AI

50 Turns Random Player

0

100

1 251 501 751 1001 1251 1501

Number of Training Episodes

Fig. 6. Average Score Comparison for Games of Length 100 Turns

Figure 6 shows the results of these tests. As in the previous
test run with only 50 turns, the standard AI achieves the
same score for every single game at 50 turns. According to
the diagram it also seems as if this is the case at 100 turns.
However the standard AI achieves not the same score in every
game, but alternates between two different scores which
ultimately results in the same average over 50 episodes.
This alternation suggests that a probabilistic decision is made
during the second 50 turns. At the beginning when the RL
agent has no experience yet, both RL and random agent
have about the same average score. But while the score for
the player following a completely random policy shows as
expected no sign of long term growth or decline, the average
score of the reinforcement learner improves with the growing
number of episodes played.

The score for the reinforcement learner at 50 turns shows
the same upward tendency as the score for the RL agent
in the previous experiment (Figure 5). The average score is
still lower than that of the standard AI because of the smaller
number of episodes played. If growth of the average score
continues, this would very likely change within the next 1000
episodes. The average score for the reinforcement learner
after 100 turns shows the same tendency as the score at 50
turns even though the gap between the score. However the
gap between the average score for the standard AI and the
reinforcement learner is much bigger at 100 turns than at 50
turns. This can be explained through the significant difference
in size of the state spaces for 50 turns and 100 turns. While
during 50 turns players will get a maximum of two cities, 100
turns will allow building up to five cities which multiplies
the number of possible states by nearly 3003. Therefore it
is remarkable that there is already a visible increase in the
average score at 100 turns. This also means that there is
potentially a huge margin to be gained over the standard AI
through optimising the Q-values.

VII. FUTURE WORK

As previously stated, this paper presents the first results of
a work in progress, the application of reinforcement learning
to tasks in Civilization IV. Several extensions and additions
are planned for the near future and can be divided into

three categories. These categories are the improvement of
the Q-Learning algorithm which has been used throughout
this paper, the evaluation of other reinforcement learning
algorithms and the combination of other machine learning
techniques with RL. Furthermore the usage of Civilization IV
as a test bed for computer game AI research can be extended.

The results of the empirical evaluation show that while
the applied reinforcement learning method has potential to
outperform the static standard AI, in its current state learning
becomes computationally unfeasible when crossing a certain
threshold of game complexity, either in matters of game
turns or map plots. Therefore the optimisation of the Q-
Learning algorithm is crucial to extend the tasks for which
it can be used, i.e. longer games or larger maps. One way
to to do this is by speeding up the learning process and
as a result accelerating the convergence towards the optimal
action-value function. This can for instance be achieved
by using eligibility traces and thus having a multi-step
Q-Learning algorithm instead of the current one-step Q-
Learning. Another way to improve the speed of convergence
is the initialisation. At the moment all Q(s, a) values are
initialised to 0 at the beginning of the algorithm. This means
that every state has to be visited in order to determine its
usefulness for the exploitation part of the policy, often only
to conclude that its usefulness is very low. If the states were
instead initialised to the precomputed ”founding values” that
are used by the standard game AI, these values could serve as
indicators about the usefulness of a plot for the reinforcement
learner. This would not speed up the guaranteed convergence
to an optimal policy π∗ but generate better performance
earlier on, resulting in more challenging gameplay.

Besides extending the existing method, other reinforce-
ment learning algorithms and techniques such as the on-
policy temporal-difference algorithm SARSA or Monte Carlo
methods will be evaluated as to how well they are suited for
the city placement selection task [2].

Another field for future research on RL using Civilization
IV as a test bed is the combination of other machine learning
methods with RL. One particularly promising method is
Case-Based Reasoning (CBR). The application of CBR to
the plot selection task would allow to resolve the previously
mentioned problem with learned experience on one map be-
ing useless on another map because of the different topology.

Furthermore the application of Motivated Reinforcement
Learning (MRL) could improve the game play experience.
One of the game mechanics in Civilization IV are ”character
traits” of the different computer AIs. Certain players have
by definition advantages in certain areas of the game like
expansion, finance or combat. These advantages are hard
coded numbers and are meant to express certain character
traits like aggressiveness or expansionism. If those agents
would instead use a reinforcement learner which gets his
rewards through a motivational function as described in [12],
this could lead to very interesting behaviour for AI players.

Also the task for which these machine learning techniques
are used can be extended. While at the moment the task only

consists of determining where a city should be, in the future
this could also include the choice if the city is needed at all,
i.e. the optimal number of cities and when to build them.

VIII. CONCLUSIONS

This paper presents the design and implementation of a
reinforcement learner which is used to perform a city site
selection task in the turn-based strategy game Civilization IV.
The Q-Learning algorithm which was used, manages to learn
city placement strategies for specific maps. After sufficient
training the RL agent outperforms the standard game AI in
short matches. The reinforcement learner also shows promis-
ing results for longer and more complex games. The findings
from these experiments on the possible shortcomings of the
algorithm lay the groundwork for future work. Furthermore
the usage of the commercial video game Civilization IV as a
test bed for AI research demonstrates great potential because
of the diversity of the tasks involved in Civilization and
the relative ease with which these deterministic tasks can
be taken over by machine learning agents. The integration
of our RL agent into Civilization IV extends the otherwise
deterministic early game by a non-deterministic, adaptable
component which enhances the game-playing experience.

REFERENCES

[1] J. Laird and M. van Lent, “Human-level AI’s Killer Application:
Interactive Computer Games,” AI Magazine, vol. Summer 2001, pp.
1171–1178, 2001.

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. MIT Press, 1998.

[3] C. Watkins, “Learning from Delayed Rewards,” Ph.D. dissertation,
University of Cambridge, England, 1989.

[4] P. Ulam, A. Goel, and J. Jones, “Reflection in Action: Model-Based
Self-Adaptation in Game Playing Agents,” in Proceedings of the
Nineteenth National Conference on Artificial Intelligence American
Association for Artificial Intelligence (AAAI), 2004.

[5] P. A. Houk, “A Strategic Game Playing Agent for FreeCiv,” North-
western University, Evanston, IL, Tech. Rep. NWU-CS-04-29, 2004.

[6] R. Sánchez-Pelegrı́n, M. Gómez-Martı́n, and B. Dı́az-Agud, “A CBR
Module for a Strategy Videogame,” in 1st Workshop on Computer
Gaming and Simulation Environments, at 6th Int. Conference on Case-
Based Reasoning (ICCBR), D. Aha and D. Wilson, Eds., 2005.

[7] A. Sánchez-Ruiz, S. Lee-Urban, H. Muñoz-Avila, B. Dı́az-Agudoy,
and P. González-Caleroy, “Game AI for a Turn-Based Strategy Game
with Plan Adaptation and Ontology-based Retrieval,” in Proceedings
of the ICAPS 2007 Workshop on Planning in Games, 2007.

[8] D. W. Aha and M. Molineaux, “Integrating Learning in Interactive
Gaming Simulators,” Intelligent Decision Aids Group; Navy Center
for Applied Research in Artificial Intelligence, Tech. Rep., 2004.

[9] G. Andrade, G. Ramalho, H. Santana, and V. Corruble, “Automatic
computer game balancing: a reinforcement learning approach,” in
AAMAS ’05: Proceedings of the Fourth International Joint Conference
on Autonomous Agents and Multiagent Systems. ACM, 2005.

[10] M. Smith, S. Lee-Urban, and H. Muñoz-Avila, “RETALIATE: Learn-
ing Winning Policies in First-Person Shooter Games,” in Proceedings
of the Seventeenth Innovative Applications of Artifcial Intelligence
Conference (IAAI-07), 2007.

[11] B. Auslander, S. Lee-Urban, C. Hogg, and H. Muñoz-Avila, “Recog-
nizing the Enemy: Combining Reinforcement Learning with Strategy
Selection using Case-Based Reasoning,” in Advances in Case-Based
Reasoning: 9th European Conference, ECCBR 2008, Trier, Germany,
September, 2008, Proceedings, K.-D. Althoff, R. Bergmann, M. Minor,
and A. Hanft, Eds. Springer, 2008.

[12] K. E. Merrick and M. L. Maher, “Motivated Reinforcement Learning
for Adaptive Characters in Open-Ended Simulation Games,” in ACE
’07: Proceedings of the International Conference on Advances in
Computer Entertainment Technology. New York, NY, USA: ACM,
2007, pp. 127–134.

Appendix B

Results for 1000 Episodes of Length 60
Turns using Sarsa with Declining ε-Greedy

Policy

91

0 595 476 392 469 476 413 439 451 469 447 125 475 420 478 406 292 445 412 375 392 403 250 481 392 478 407 553 469 481 459 435 478 375 503 314 470 342 369 490 460 459 458 485

1 493 419 420 405 426 426 290 405 417 462 126 432 431 456 406 546 401 431 472 449 390 251 439 371 499 406 510 490 438 459 391 478 376 353 413 478 421 552 490 448 308 458 312

2 441 420 479 435 400 392 397 215 406 361 127 363 378 438 301 402 445 349 488 435 262 252 531 420 478 366 384 469 460 459 392 478 377 439 335 387 350 510 490 481 459 458 478

3 458 371 438 406 481 478 425 370 445 397 128 432 216 421 392 539 459 481 459 362 368 253 531 371 387 406 546 445 495 459 456 384 378 531 371 484 421 510 490 481 478 402 405

4 463 442 421 529 400 363 390 386 435 397 129 482 413 429 400 460 490 293 278 392 390 254 356 420 478 412 469 497 481 411 435 485 379 531 335 478 227 510 490 481 459 458 485

5 465 420 492 406 354 398 335 392 476 397 130 439 484 456 406 539 490 453 459 399 478 255 439 371 478 406 539 445 481 459 326 427 380 441 413 478 457 510 490 481 430 484 347

6 465 441 456 383 407 363 397 343 435 493 131 410 371 471 267 510 490 386 459 406 493 256 385 420 478 406 405 357 481 442 399 478 381 531 464 434 313 510 490 481 459 458 478

7 465 407 471 392 491 420 393 370 435 397 132 481 424 456 370 510 490 481 459 494 485 257 439 371 478 406 552 445 481 459 456 500 382 256 371 478 414 377 298 481 461 455 468

8 278 261 456 490 400 363 397 378 435 458 133 378 413 411 443 510 490 412 459 435 478 258 434 420 478 406 510 232 481 385 406 485 383 439 471 251 387 510 490 481 459 406 478

9 465 413 456 406 262 439 465 370 494 361 134 439 379 421 406 510 490 453 459 346 478 259 439 403 471 421 510 490 481 459 428 330 384 304 420 471 421 478 376 481 375 308 478

10 465 407 450 456 378 403 397 497 435 397 135 302 413 336 437 510 490 311 459 406 471 260 397 371 471 392 510 269 451 414 406 485 385 531 483 442 414 510 445 385 472 392 478

11 465 371 329 406 405 260 495 392 399 397 136 439 349 450 406 382 490 495 459 414 485 261 481 469 442 346 510 503 481 459 464 471 386 531 371 478 450 283 500 481 424 401 478

12 465 298 456 437 442 403 397 360 435 480 137 382 420 197 450 539 490 375 459 435 431 262 351 420 478 406 510 407 481 339 458 478 387 531 420 443 450 552 490 469 459 435 478

13 465 413 384 406 403 335 404 370 399 397 138 531 493 450 392 386 490 481 355 399 478 263 439 456 449 450 382 445 481 459 468 413 388 531 371 507 421 466 490 481 461 442 478

14 465 457 421 445 400 410 397 392 435 176 139 531 371 471 439 552 196 481 472 435 439 264 272 420 478 392 510 465 282 225 435 478 389 531 420 327 401 510 490 453 459 399 469

15 571 371 373 406 462 346 397 392 328 368 140 531 401 456 412 320 503 481 428 278 478 265 432 394 327 215 320 497 488 459 399 322 390 531 371 513 457 437 449 481 327 320 478

16 458 510 421 297 400 410 397 392 435 260 141 531 420 337 227 517 355 481 459 435 478 266 433 371 513 457 517 450 412 414 406 485 391 364 420 448 421 539 445 434 459 435 500

17 372 413 442 406 404 503 397 190 205 390 142 462 371 405 406 362 445 481 404 527 478 267 439 379 448 425 193 490 481 459 435 478 392 432 371 471 414 369 353 467 358 347 485

18 471 446 479 385 407 490 397 399 392 438 143 439 420 421 412 517 441 481 466 435 478 268 327 413 471 421 517 490 328 308 399 478 393 426 420 478 414 510 490 368 459 441 330

19 449 378 462 399 372 490 397 256 435 397 144 462 371 405 406 383 490 481 406 314 478 269 481 450 478 414 233 445 488 459 435 478 394 439 431 507 414 402 272 460 459 234 485

20 465 379 450 421 413 490 397 370 399 354 145 503 420 421 406 552 442 481 459 441 478 270 429 407 478 414 539 497 481 459 399 478 395 375 371 447 414 517 503 495 459 435 225

21 365 378 370 406 520 490 397 423 435 390 146 354 371 405 357 261 490 481 260 435 384 271 531 440 478 335 328 445 481 459 435 478 396 439 252 478 414 539 416 481 459 378 478

22 465 444 456 397 400 490 397 392 399 253 147 439 408 421 406 539 437 481 459 399 498 272 531 413 478 443 510 503 445 459 399 431 397 233 413 478 414 510 490 312 459 435 448

23 389 413 421 406 469 490 397 272 435 368 148 531 407 405 492 254 445 410 298 435 478 273 531 348 478 389 551 490 481 459 435 485 398 439 393 478 414 510 372 488 459 304 478

24 458 355 405 328 400 490 495 399 493 393 149 531 470 421 406 517 250 488 459 399 478 274 531 413 478 421 510 490 350 459 346 433 399 531 470 478 414 510 490 387 459 441 322

25 279 413 421 406 322 490 397 422 399 397 150 432 371 405 517 358 490 480 499 435 478 275 345 421 478 414 377 490 481 459 435 485 400 577 400 478 368 510 319 488 459 435 485

26 458 261 405 406 400 347 490 392 440 396 151 439 380 421 392 546 326 481 459 399 478 276 481 378 478 414 517 490 415 459 343 468 401 243 470 478 414 510 445 442 459 399 444

27 367 442 421 406 400 490 397 254 435 390 152 407 413 405 354 377 445 481 329 435 412 277 400 283 478 415 539 490 460 459 435 485 402 535 285 478 291 510 376 481 459 435 478

28 471 366 494 406 400 405 481 399 450 397 153 439 475 421 406 517 327 481 459 372 478 278 439 413 405 457 510 490 478 459 448 440 403 338 470 478 421 270 445 481 406 399 323

29 345 378 456 406 400 503 397 488 399 397 154 449 420 456 360 395 503 481 262 441 431 279 453 371 507 421 423 441 481 450 441 485 404 542 422 478 313 539 503 481 459 435 485

30 465 389 441 406 400 544 449 392 486 397 155 439 376 456 406 510 393 481 459 479 478 280 439 420 353 414 517 445 384 466 372 431 405 577 470 478 421 412 490 481 260 399 478

31 460 413 456 450 400 445 397 384 406 450 156 406 407 434 176 423 490 481 449 399 384 281 400 371 507 414 539 426 488 260 392 485 406 577 315 344 401 539 490 481 459 435 478

32 458 371 451 392 400 440 485 399 349 361 157 439 421 405 406 517 468 481 459 205 485 282 439 420 471 414 510 490 481 459 440 186 407 577 470 507 414 465 490 481 298 432 478

33 288 420 456 408 400 445 397 478 392 300 158 531 442 429 329 539 445 363 430 441 427 283 476 371 507 414 510 486 481 401 406 485 408 577 433 464 376 539 490 481 459 435 478

34 465 371 458 406 386 403 479 392 449 361 159 531 446 421 406 510 310 488 459 383 478 284 531 420 378 414 510 445 481 459 382 449 409 577 512 478 457 385 490 481 392 472 478

35 450 420 456 403 400 490 397 458 435 375 160 531 371 422 406 510 503 253 488 392 427 285 432 371 478 414 510 439 481 283 392 485 410 344 462 574 394 510 490 460 459 399 504

36 458 371 524 406 240 407 311 370 428 361 161 400 421 450 406 444 442 481 459 186 498 286 531 437 405 414 476 490 481 466 308 372 411 599 512 478 421 491 490 481 329 399 478

37 465 420 456 176 442 490 397 392 406 473 162 439 413 470 354 552 490 481 459 392 402 287 272 371 478 414 539 490 481 459 458 485 412 356 437 499 415 510 490 434 459 406 386

38 465 371 421 406 363 490 319 392 497 397 163 495 393 456 406 254 432 481 459 410 485 288 503 262 478 522 470 445 495 459 472 441 413 535 512 478 457 471 469 467 462 523 478

39 465 235 405 377 400 445 390 392 399 368 164 439 371 451 204 517 445 403 459 399 478 289 559 413 478 421 539 422 481 413 458 485 414 250 512 440 420 510 490 437 459 399 439

40 465 413 451 406 481 250 207 392 439 361 165 442 399 450 406 411 249 488 459 378 478 290 531 437 335 397 518 445 481 472 458 167 415 599 512 478 457 450 379 488 430 354 478

41 465 284 450 250 481 490 390 392 399 260 166 531 442 403 417 517 490 293 459 435 478 291 439 371 478 421 510 393 271 449 458 478 416 577 512 183 457 517 490 550 466 392 396

42 465 407 433 406 354 490 335 368 289 390 167 429 411 456 406 228 490 453 459 361 478 292 531 450 233 271 469 490 488 459 458 485 417 584 512 507 457 458 393 481 430 456 485

43 465 383 450 346 539 490 397 406 435 410 168 439 371 411 412 517 490 393 459 406 478 293 531 442 507 457 510 451 363 458 458 478 418 432 512 299 421 517 490 242 459 421 265

44 465 442 446 370 460 470 365 487 328 390 169 471 420 405 406 491 490 481 459 435 340 294 531 407 276 354 466 445 488 459 458 478 419 577 512 507 414 539 410 488 450 404 478

45 465 445 456 448 539 445 397 370 399 290 170 432 371 421 406 510 490 481 459 399 478 295 531 371 471 457 510 495 357 227 458 478 420 437 512 251 414 510 445 495 459 450 430

46 271 371 254 406 369 445 397 488 435 390 171 438 420 405 406 424 490 481 319 435 433 296 432 374 437 512 386 445 481 459 458 478 421 584 384 471 414 510 437 481 375 437 478

47 465 446 421 233 474 490 397 392 399 306 172 531 371 529 406 539 490 481 459 399 478 297 531 413 478 421 539 392 427 385 435 478 422 400 505 413 414 510 490 375 472 456 478

48 497 413 336 370 440 450 397 283 435 397 173 233 420 479 464 443 490 481 448 435 403 298 467 393 501 414 404 445 481 459 458 478 423 535 564 507 414 510 347 488 395 421 478

49 471 291 450 447 517 503 397 370 399 427 174 481 498 384 406 517 435 481 459 399 478 299 531 371 507 414 517 503 536 298 266 432 424 577 512 401 414 510 490 394 459 421 478

50 411 413 456 406 444 503 397 377 435 397 175 439 420 421 456 481 490 481 413 435 440 300 298 378 235 397 443 490 488 459 458 485 425 577 475 471 414 510 282 481 459 421 478

51 458 357 421 412 510 490 397 428 399 377 176 531 413 491 406 517 516 481 459 352 478 301 439 413 471 457 539 420 345 225 458 354 426 577 470 482 414 510 503 424 459 421 478

52 465 407 405 406 488 297 397 426 435 390 177 531 371 456 269 472 445 367 428 406 428 302 474 305 478 420 386 503 481 459 458 485 427 577 270 478 271 517 356 460 459 421 396

53 465 527 421 406 539 490 397 399 505 320 178 327 427 421 406 539 405 481 459 486 485 303 439 413 478 457 510 522 478 459 329 447 428 577 470 478 457 510 503 495 459 421 485

54 326 413 405 406 411 490 397 260 435 390 179 439 413 405 419 494 503 345 461 435 504 304 388 371 478 425 510 445 488 459 458 485 429 419 457 478 354 517 411 481 459 421 269

55 465 392 421 406 517 490 497 399 428 397 180 519 432 421 406 539 356 481 459 355 478 305 481 420 478 421 510 446 481 459 390 378 430 542 505 478 457 443 490 481 459 421 485

56 475 378 405 433 539 490 397 376 435 397 181 439 420 405 445 510 503 386 403 435 473 306 444 371 478 407 510 503 481 459 458 485 431 332 495 478 487 517 381 481 459 421 319

57 458 347 421 406 510 490 390 399 372 397 182 367 469 421 406 510 494 488 459 504 485 307 439 420 478 457 510 503 481 459 408 378 432 535 512 478 421 292 490 481 365 421 478

58 491 413 405 455 510 490 481 449 435 478 183 481 371 405 304 510 490 358 251 435 431 308 411 371 478 421 510 490 481 459 458 498 433 278 451 478 420 510 459 392 459 421 365

59 465 371 456 412 216 490 487 428 468 397 184 382 298 421 406 510 410 481 459 495 485 309 439 420 478 414 299 490 481 459 463 338 434 599 470 478 457 479 503 481 291 463 478

60 360 420 450 469 539 490 453 348 399 513 185 439 413 363 422 510 445 413 341 435 431 310 531 371 478 414 552 490 481 459 458 478 435 400 441 478 458 510 445 298 459 421 375

61 465 371 355 406 261 490 488 428 383 390 186 350 357 450 406 510 394 495 459 363 478 311 531 442 356 414 363 490 481 459 458 471 436 584 505 478 457 350 503 481 440 391 485

62 351 420 421 401 539 490 481 428 406 421 187 439 407 263 498 510 490 386 346 399 485 312 531 371 478 414 552 490 434 423 458 478 437 382 402 424 420 546 490 433 459 450 386

63 465 371 234 412 539 490 375 428 478 390 188 467 401 450 406 443 419 431 459 371 478 313 531 327 418 414 320 490 488 459 466 487 438 599 470 478 457 520 490 488 458 430 478

64 338 420 450 478 510 445 481 428 392 450 189 531 413 418 412 539 445 460 329 435 478 314 531 413 507 414 517 490 471 236 458 485 439 400 440 328 364 517 490 457 459 456 478

65 465 371 494 392 355 465 419 428 371 397 190 458 436 450 406 320 440 481 459 399 260 315 372 448 328 436 412 490 481 459 410 207 440 584 470 507 457 366 490 495 505 356 478

66 380 392 479 319 517 445 431 428 435 478 191 439 371 376 406 539 490 338 459 435 478 316 439 413 507 421 546 490 471 290 458 485 441 417 512 412 421 517 490 475 459 450 478

67 458 420 430 412 227 362 278 443 360 361 192 428 401 405 406 444 459 488 459 535 424 317 420 449 412 355 261 490 488 459 307 478 442 577 512 471 414 539 490 488 503 444 478

68 370 205 405 383 552 503 431 435 435 441 193 481 420 431 406 539 445 449 459 435 478 318 531 407 471 421 539 404 360 398 458 478 443 432 512 465 319 510 490 488 459 456 478

69 465 442 460 406 465 516 478 439 398 361 194 497 443 421 399 405 357 488 459 370 233 319 400 391 478 479 299 445 488 459 458 478 444 577 512 478 457 510 490 481 418 429 365

70 465 350 456 433 539 445 495 399 435 478 195 432 378 449 406 552 490 487 459 435 485 320 481 371 507 457 517 375 271 452 458 431 445 577 512 420 421 510 490 474 459 456 485

71 465 371 361 406 485 458 356 480 242 397 196 439 525 450 372 517 358 453 459 417 338 321 473 279 535 468 338 445 488 459 458 478 446 577 512 478 414 510 479 481 413 495 319

72 465 517 421 349 539 445 488 399 435 571 197 531 407 386 399 510 445 488 459 435 485 322 439 413 507 450 546 394 372 490 458 365 447 577 512 500 414 510 490 434 459 456 478

73 465 371 364 412 453 385 318 234 448 397 198 531 420 450 466 462 497 481 459 435 372 323 442 408 285 469 470 490 488 459 458 485 448 577 512 478 414 510 419 488 428 493 360

74 465 383 421 354 510 503 481 399 435 397 199 439 371 454 412 517 445 481 459 399 478 324 531 371 471 421 517 475 424 430 176 319 449 577 512 450 414 471 445 471 459 450 478

75 465 371 451 399 480 437 442 346 399 397 200 531 420 421 359 510 529 481 432 435 401 325 391 440 353 510 327 445 488 459 458 485 450 307 380 478 414 510 503 481 420 485 442

76 465 442 421 412 510 490 438 399 435 397 201 401 371 458 406 517 490 481 459 399 478 326 439 442 513 421 517 440 441 385 516 310 451 542 470 335 414 244 490 481 459 456 485

77 467 371 458 406 443 432 179 423 399 397 202 439 420 450 430 245 490 481 459 435 478 327 468 205 376 452 539 490 460 459 458 485 452 400 408 478 414 517 495 481 459 421 381

78 458 471 450 406 539 445 488 428 466 397 203 478 371 216 406 517 490 481 459 464 478 328 531 413 478 457 510 459 495 403 364 345 453 599 512 183 414 441 503 481 459 421 478

79 398 420 421 386 441 289 282 402 435 428 204 531 420 405 468 340 490 312 332 435 478 329 463 270 234 450 510 445 481 459 458 485 454 254 369 507 414 517 269 481 459 421 403

80 458 469 405 406 539 503 488 428 464 390 205 356 177 421 412 552 490 481 459 456 478 330 439 413 478 421 510 497 481 420 439 403 455 599 470 499 414 309 490 481 459 421 485

81 444 420 303 421 510 449 481 392 435 449 206 439 413 405 472 510 490 443 243 435 478 331 531 473 276 413 510 445 481 459 458 485 456 435 382 478 468 517 253 481 459 421 347

82 465 515 421 406 510 490 481 428 485 390 207 367 481 421 412 510 468 488 459 436 478 332 531 371 471 457 510 503 481 392 261 219 457 584 512 431 421 421 490 481 459 421 478

83 319 407 357 429 510 298 481 403 435 375 208 481 413 405 426 510 490 346 369 435 478 333 531 420 437 396 510 490 481 459 458 478 458 535 499 478 469 517 376 481 459 421 485

84 465 378 456 406 510 445 481 399 401 361 209 419 360 421 392 510 427 488 459 448 413 334 484 371 478 457 467 394 481 332 420 262 459 577 512 478 421 327 445 481 336 421 478

85 525 413 421 466 510 285 481 428 435 468 210 439 413 405 406 510 503 255 439 399 478 335 432 420 478 421 539 445 481 459 458 485 460 260 376 478 459 517 535 357 459 421 478

86 465 411 405 406 369 503 401 428 456 361 211 350 270 421 412 510 437 488 459 474 427 336 471 371 478 414 510 363 481 459 413 421 461 535 512 478 421 538 490 481 479 421 478

87 445 413 421 464 546 459 481 428 406 368 212 439 413 405 406 510 490 440 474 435 478 337 531 420 478 414 517 490 307 459 493 485 462 486 205 478 361 539 490 481 459 421 478

88 439 371 405 406 443 503 412 215 446 361 213 531 428 421 406 207 461 481 459 458 431 338 528 371 478 414 244 490 481 459 464 465 463 584 512 478 457 380 490 481 465 285 478

89 428 420 421 456 517 312 431 399 392 438 214 531 420 405 406 517 497 438 440 399 478 339 439 420 478 414 517 490 320 459 493 478 464 233 263 478 401 510 544 347 466 456 478

90 439 371 405 406 393 490 448 470 458 397 215 531 475 421 406 467 282 431 459 464 400 340 412 382 478 414 539 490 488 459 410 419 465 535 505 478 457 510 445 488 449 421 478

91 330 420 421 308 517 319 481 428 406 444 216 531 371 465 406 539 503 463 458 435 485 341 439 378 478 414 510 490 363 459 458 485 466 577 414 478 450 510 503 206 459 421 478

92 481 371 405 392 261 445 469 349 474 390 217 531 430 456 276 520 468 495 459 505 197 342 447 417 478 414 510 490 460 459 420 478 467 577 505 478 457 510 490 488 486 483 260

93 479 233 421 479 517 376 481 399 435 290 218 497 420 500 406 517 490 444 505 435 478 343 531 378 478 414 517 490 419 459 458 478 468 577 495 393 396 510 490 497 466 421 485

94 531 413 296 406 466 503 412 407 410 390 219 531 420 478 232 385 384 488 459 399 382 344 350 392 327 253 539 490 460 459 458 478 469 577 512 513 457 510 490 467 526 474 478

95 344 321 421 387 510 503 453 428 435 272 220 497 371 433 406 517 490 431 459 435 478 345 439 407 471 457 510 490 485 434 464 478 470 577 457 376 435 553 490 488 459 456 478

96 481 407 314 406 466 490 378 283 435 397 221 531 433 478 298 329 272 481 459 399 176 346 484 320 471 538 431 490 481 459 458 478 471 528 470 478 450 510 490 488 336 418 290

97 439 427 450 464 539 490 488 399 399 397 222 391 420 373 370 510 503 251 459 435 478 347 432 413 471 421 510 490 419 375 458 372 472 584 499 327 414 437 490 278 459 450 485

98 531 413 529 406 369 490 311 389 435 397 223 503 252 507 528 489 459 431 459 399 328 348 354 400 442 412 462 490 481 472 458 485 473 497 512 471 414 517 490 488 479 456 355

99 531 464 479 406 510 490 481 428 399 397 224 256 413 256 406 539 503 393 459 435 478 349 503 420 478 421 539 432 392 459 458 365 474 542 512 187 414 539 490 481 459 421 485

100 531 371 493 406 451 490 375 169 435 397 225 439 371 513 441 414 312 481 459 399 478 350 439 257 478 454 438 445 481 459 458 485 475 577 512 471 414 510 282 481 459 465 553

101 531 609 479 406 517 490 481 428 399 397 226 278 420 500 412 546 490 481 459 420 478 351 531 413 478 421 510 426 372 236 458 311 476 577 512 257 414 393 503 481 459 450 485

102 549 371 609 406 559 420 176 336 435 260 227 503 371 507 466 349 196 481 391 392 478 352 531 334 327 368 510 490 488 459 458 498 477 350 512 507 414 552 449 481 459 251 478

103 531 470 479 406 510 490 481 399 253 361 228 360 420 257 406 510 503 481 472 378 478 353 531 371 513 443 510 465 481 290 389 480 478 535 512 357 414 261 490 481 459 450 478

104 428 371 470 272 421 307 307 347 435 321 229 481 371 507 243 510 354 481 318 441 478 354 531 380 448 320 510 445 481 459 458 478 479 460 512 478 414 517 336 481 459 456 478

105 439 440 456 406 539 490 481 399 343 361 230 419 420 403 406 517 503 481 459 468 478 355 571 413 471 450 233 384 481 379 550 478 480 577 512 465 414 366 490 481 459 421 478

106 243 442 396 406 510 490 442 428 435 462 231 439 371 478 412 235 243 481 197 399 478 356 531 360 478 278 539 503 481 459 458 478 481 345 419 478 449 517 357 481 459 404 478

107 503 428 405 406 510 445 481 428 500 390 232 531 408 363 406 552 490 481 466 354 452 357 450 413 507 457 309 272 481 461 471 478 482 599 512 535 457 320 490 481 375 443 487

108 457 420 363 365 510 260 448 428 435 461 233 531 371 478 406 510 452 513 272 441 478 358 531 477 391 421 517 503 481 459 458 478 483 542 360 507 458 539 459 387 472 456 485

109 531 392 456 406 510 490 481 428 434 397 234 531 384 447 406 510 445 481 459 433 381 359 457 371 478 421 421 401 481 461 436 412 484 577 512 478 457 350 503 481 488 421 424

110 356 413 398 426 510 253 481 428 435 397 235 531 378 478 406 510 470 557 413 399 498 360 531 420 478 351 517 445 481 459 458 478 485 577 440 478 443 546 442 428 459 421 485

111 439 257 421 392 392 490 481 422 428 397 236 531 373 258 336 510 503 481 472 342 410 361 456 371 478 421 327 372 481 430 425 403 486 577 512 478 421 549 503 460 236 421 354

112 463 378 431 364 539 372 481 428 406 427 237 428 413 507 406 510 503 481 335 435 478 362 531 420 478 461 517 490 219 459 458 485 487 577 460 478 361 510 312 385 459 392 485

113 439 371 405 392 407 445 481 451 304 361 238 439 483 347 392 298 490 481 472 360 349 363 356 371 478 450 538 319 488 459 385 478 488 577 470 478 457 510 445 488 290 450 425

114 351 420 347 506 539 469 481 428 435 397 239 304 371 513 406 517 490 424 420 435 478 364 439 420 376 414 539 445 236 459 493 478 489 577 338 478 493 510 468 360 459 421 485

115 481 609 450 406 327 490 481 488 346 397 240 531 425 478 458 350 490 488 466 398 422 365 497 371 478 414 442 347 488 459 447 478 490 450 470 478 421 510 490 488 350 421 284

116 435 413 456 470 510 469 481 428 435 393 241 584 371 478 406 546 490 361 459 435 485 366 531 420 478 414 510 503 471 459 458 478 491 577 506 478 374 510 234 374 459 421 485

117 531 446 421 412 290 445 338 458 407 390 242 439 440 478 400 452 490 481 459 435 282 367 531 473 478 414 380 423 481 459 457 478 492 515 470 478 457 510 490 481 432 469 347

118 531 413 405 387 517 468 438 428 435 397 243 346 378 478 406 539 490 425 459 399 485 368 531 371 478 414 539 445 356 459 493 284 493 577 477 478 421 551 253 310 459 456 485

119 531 371 421 406 392 490 431 449 435 397 244 439 393 478 267 423 433 495 459 435 348 369 531 378 478 414 386 452 481 459 458 498 494 449 512 478 414 510 490 488 346 410 334

120 531 420 405 333 539 432 431 399 399 397 245 468 407 478 406 517 445 243 459 399 478 370 531 413 478 414 510 445 481 459 458 198 495 577 442 478 244 377 328 214 459 450 485

121 441 371 421 406 564 503 363 436 435 340 246 531 320 478 429 255 346 488 459 435 478 371 531 279 478 332 357 479 481 459 458 478 496 356 512 478 457 517 503 488 401 378 478

122 531 443 405 412 510 176 431 399 399 368 247 468 371 478 406 510 490 461 459 399 478 372 233 378 478 457 517 445 497 459 458 284 497 535 216 478 310 284 420 226 459 450 478

123 476 407 421 406 401 490 448 377 435 474 248 531 290 478 314 436 372 495 459 435 478 373 439 421 478 282 424 503 488 459 458 478 498 272 470 478 414 546 490 488 414 339 447

124 531 471 450 406 510 291 481 459 232 397 249 272 378 471 399 539 445 481 459 430 478 374 300 378 478 457 539 490 438 291 458 339 499 542 412 499 414 423 490 481 459 450 485

500 447 512 478 414 517 490 481 459 375 396 625 577 393 478 232 421 490 206 505 550 478 750 356 286 499 349 510 490 490 498 608 508 875 584 553 499 412 510 328 357 505 492 425
501 577 512 403 414 453 490 481 459 456 478 626 577 476 392 457 552 490 488 365 421 478 751 535 470 499 421 205 490 345 433 521 478 876 393 553 499 421 424 503 481 498 384 485
502 410 512 507 414 510 490 481 459 375 478 627 577 384 478 451 366 490 526 505 469 478 752 367 512 499 279 552 490 512 498 550 501 877 535 553 499 414 510 494 262 461 550 278
503 599 512 382 414 480 490 481 459 450 478 628 577 512 427 421 517 490 495 511 498 478 753 599 512 499 457 510 490 468 511 378 478 878 577 553 499 414 299 503 488 511 550 485
504 577 512 507 414 510 490 481 459 421 478 629 577 283 478 279 539 490 501 498 431 478 754 419 512 499 461 510 490 526 498 550 478 879 577 553 564 368 539 488 358 498 550 478
505 577 512 327 414 443 490 481 459 421 478 630 460 470 251 457 510 490 488 395 498 478 755 535 512 462 421 510 490 448 511 550 478 880 577 553 492 443 480 503 481 511 550 478
506 577 512 471 414 539 490 501 459 474 478 631 542 392 471 472 510 490 481 505 498 478 756 495 205 499 361 510 490 519 498 550 478 881 577 553 499 497 510 503 307 498 563 478
507 577 512 405 414 378 490 488 459 456 449 632 282 512 353 457 510 490 481 498 498 478 757 599 512 340 457 510 337 461 511 550 478 882 577 553 499 421 344 490 481 511 550 478
508 577 591 478 477 539 517 307 459 447 478 633 599 335 513 375 510 490 481 511 498 478 758 341 270 492 491 510 445 490 498 550 478 883 389 553 487 414 517 490 386 498 233 478
509 346 470 353 450 429 503 481 459 456 465 634 605 512 478 457 433 490 481 498 498 368 759 577 470 477 450 510 503 522 511 550 393 884 577 553 470 414 384 490 460 511 544 478
510 535 343 513 504 517 529 348 459 464 478 635 577 177 478 364 552 499 481 511 498 478 760 298 459 499 387 299 490 526 498 400 485 885 403 448 511 414 517 490 495 498 320 478
511 468 512 478 421 510 490 481 291 450 420 636 304 470 234 457 464 445 481 498 498 498 761 599 512 451 421 552 420 488 511 550 420 886 535 553 499 414 395 490 481 511 608 368
512 577 309 478 415 510 499 474 472 456 478 637 584 510 478 421 517 503 481 511 498 478 762 577 273 492 437 453 490 526 422 429 478 887 498 458 309 414 510 490 481 498 516 485
513 577 505 234 421 510 445 481 528 421 369 638 243 512 357 414 414 490 307 498 498 368 763 577 505 505 457 539 404 490 498 608 401 888 542 549 492 414 423 490 481 511 608 284
514 577 335 478 439 510 503 434 459 421 485 639 599 512 478 437 510 404 481 511 498 478 764 577 469 499 359 442 445 526 451 437 478 889 495 374 453 414 517 490 481 498 359 498
515 330 470 357 457 510 490 481 398 421 440 640 307 512 465 457 356 503 414 498 392 410 765 577 512 524 457 510 449 490 498 550 438 890 584 553 499 443 539 490 481 511 492 218
516 599 472 478 432 510 375 497 459 421 478 641 542 512 478 421 517 285 495 375 475 478 766 577 512 499 421 386 503 526 320 464 498 891 457 440 499 421 510 490 481 498 608 478
517 278 505 465 421 510 503 495 459 421 440 642 474 512 457 414 360 503 431 476 327 432 767 382 512 424 414 510 375 490 498 550 377 892 542 553 499 414 510 400 481 490 550 485
518 599 471 507 254 404 272 451 459 421 485 643 535 512 507 414 517 407 488 327 498 485 768 599 512 470 414 329 445 526 308 475 485 893 577 386 499 414 510 445 481 498 550 478
519 344 470 478 457 517 503 481 355 421 396 644 577 512 413 414 510 490 457 498 278 310 769 341 512 499 414 510 235 490 505 608 475 894 577 553 499 420 510 430 526 431 550 368
520 535 460 478 270 472 416 176 472 392 485 645 577 512 484 414 517 361 495 284 475 478 770 599 512 499 414 510 445 476 346 347 478 895 577 327 499 414 510 503 495 498 550 478
521 577 470 478 450 539 490 488 440 450 375 646 577 512 478 414 193 490 439 498 363 485 771 457 458 499 414 510 471 512 498 544 478 896 577 546 499 414 510 346 439 413 550 485
522 577 434 478 443 386 442 481 459 421 485 647 577 512 478 414 517 289 467 398 462 478 772 577 512 499 414 510 445 448 319 557 478 897 577 405 499 414 309 490 481 498 550 478
523 577 512 478 421 510 503 495 470 528 478 648 577 512 478 414 233 490 425 498 358 478 773 298 507 499 414 510 503 490 505 608 478 898 480 553 362 235 552 430 356 391 550 478
524 577 484 478 414 393 312 481 466 456 478 649 564 512 478 414 539 354 495 402 498 478 774 584 512 499 414 510 490 412 498 550 478 899 584 413 470 450 423 490 481 505 608 478
525 577 512 478 414 539 445 481 505 347 478 650 577 479 478 414 510 503 279 498 465 478 775 419 421 499 521 510 490 483 511 550 478 900 429 553 397 402 552 493 438 321 446 478
526 406 512 478 414 292 468 481 498 450 478 651 233 505 478 414 510 334 495 461 498 478 776 535 505 471 450 510 490 419 498 550 478 901 577 553 470 421 262 445 488 498 550 478
527 577 512 478 414 539 490 481 511 254 478 652 535 476 478 451 510 490 310 498 493 478 777 388 434 492 427 510 490 512 511 550 478 902 384 553 438 539 517 503 438 508 360 478
528 564 512 478 414 431 490 481 498 450 478 653 304 512 478 421 510 423 481 391 498 478 778 599 470 456 421 510 490 329 498 550 478 903 535 553 499 421 489 490 495 511 544 478
529 577 512 478 414 510 490 481 511 469 478 654 599 460 478 294 510 490 491 505 352 478 779 605 456 470 472 261 490 519 511 421 478 904 437 553 398 414 539 461 311 498 499 478
530 233 512 355 414 357 490 481 498 456 443 655 243 470 478 421 350 308 488 476 498 207 780 577 470 456 421 539 490 365 498 608 269 905 584 553 492 414 392 497 481 511 608 397
531 535 512 471 414 517 490 481 511 395 478 656 535 447 478 481 546 490 345 505 498 485 781 577 484 499 265 292 490 490 511 350 485 906 462 553 318 414 552 282 481 498 379 485
532 365 512 406 414 539 490 481 498 450 416 657 338 470 431 457 520 490 481 343 498 391 782 577 512 398 457 539 490 451 498 608 485 907 535 553 505 414 450 503 481 511 492 422
533 535 409 478 443 510 490 450 511 439 478 658 542 366 478 254 517 490 481 505 498 478 783 577 417 492 423 279 490 519 478 410 478 908 577 553 458 414 517 468 481 498 550 478
534 243 512 262 450 510 490 481 469 450 207 659 577 512 430 414 385 490 481 498 498 460 784 577 505 273 450 517 269 490 505 608 480 909 577 553 470 414 488 490 481 511 550 295
535 535 459 513 379 510 490 225 498 385 485 660 577 456 471 442 517 490 481 511 498 485 785 577 379 505 355 393 497 526 498 330 478 910 577 470 499 414 510 384 481 498 550 485
536 282 512 499 457 510 490 488 430 450 384 661 276 476 450 457 358 490 481 498 498 413 786 300 470 402 414 517 392 490 511 550 478 911 577 553 499 414 510 490 481 452 550 348
537 599 233 478 393 510 425 434 505 267 498 662 599 379 507 384 510 490 481 511 498 485 787 599 512 499 449 359 490 526 317 511 478 912 577 467 499 414 510 490 481 498 550 478
538 577 470 403 450 510 490 488 403 450 422 663 577 470 464 414 509 490 481 498 498 442 788 365 512 499 457 539 298 490 511 608 386 913 535 553 499 414 510 490 481 508 329 284
539 577 450 507 387 328 379 342 505 289 478 664 577 205 471 413 539 490 481 511 498 485 789 577 512 499 416 466 490 526 476 450 478 914 577 369 499 414 510 490 481 498 537 498
540 577 505 428 421 510 490 481 243 450 401 665 577 505 427 421 518 490 432 498 497 478 790 468 512 499 421 510 278 490 505 544 421 915 442 553 499 247 510 490 425 391 450 198
541 577 524 478 437 344 393 435 498 456 478 666 577 470 478 387 552 490 488 373 446 478 791 577 512 499 414 510 490 442 343 504 485 916 577 477 499 443 510 490 495 505 608 478
542 577 470 427 457 517 490 488 413 421 478 667 577 512 402 457 414 445 403 498 499 478 792 355 512 499 414 539 421 512 505 608 478 917 429 553 453 451 510 490 393 479 493 485
543 577 460 478 421 384 401 345 498 421 478 668 419 512 507 421 539 468 481 457 498 478 793 535 512 499 414 510 445 460 437 550 478 918 584 509 499 421 488 490 488 498 492 478
544 577 512 431 414 517 445 488 429 421 478 669 535 512 290 414 489 490 293 505 420 478 794 304 512 499 414 510 256 526 505 550 478 919 584 549 334 384 510 490 282 544 464 478
545 432 504 478 207 395 437 431 511 421 478 670 233 512 471 414 510 493 481 401 446 478 795 584 512 456 414 510 490 319 373 550 478 920 584 299 470 414 309 490 460 511 608 478
546 577 512 290 457 510 490 488 404 421 478 671 599 512 478 414 510 445 458 511 384 478 796 233 512 470 414 510 439 512 505 550 478 921 403 553 373 443 517 243 348 422 225 478
547 476 437 471 421 423 490 481 498 421 478 672 397 512 478 414 510 499 481 443 498 431 797 599 512 451 414 510 445 490 498 550 478 922 535 438 470 421 415 490 481 505 544 478
548 542 512 478 414 517 503 481 372 421 478 673 599 512 234 414 510 445 462 505 346 478 798 577 408 492 414 510 426 526 511 443 478 923 469 553 406 458 510 464 298 498 516 478
549 542 432 478 443 412 282 481 505 421 356 674 291 512 478 414 510 448 481 253 498 400 799 577 512 469 414 510 503 483 498 608 300 924 542 553 470 457 452 490 481 511 608 262
550 577 470 478 421 510 497 481 512 421 478 675 584 457 478 414 510 445 497 505 383 478 800 577 393 499 348 510 393 526 511 381 485 925 577 553 551 421 539 260 205 498 544 478
551 450 499 478 414 480 355 481 498 421 427 676 278 505 478 414 510 319 495 347 462 434 801 577 512 391 414 510 490 424 498 608 393 926 577 553 499 414 459 490 488 511 550 395
552 599 512 478 414 510 445 481 511 455 478 677 599 473 478 464 510 503 451 498 334 485 802 577 423 470 197 376 490 506 511 401 485 927 577 553 430 414 539 461 481 498 608 478
553 535 512 478 414 489 269 481 498 456 403 678 356 470 478 421 510 457 481 270 469 405 803 233 470 499 414 552 490 490 498 550 478 928 577 553 470 414 510 490 481 511 544 444
554 577 512 478 414 539 490 481 511 426 485 679 535 422 478 479 510 490 481 498 232 485 804 599 421 499 368 463 490 526 511 213 478 929 577 553 499 414 510 297 481 498 550 485
555 467 512 478 414 510 486 481 498 450 321 680 328 470 478 421 429 407 481 225 462 444 805 282 505 441 414 539 490 490 498 550 471 930 491 553 499 414 510 490 481 511 608 403
556 584 512 478 414 510 445 385 511 350 478 681 584 499 478 414 517 490 481 505 469 478 806 535 428 499 404 254 490 526 443 402 485 931 535 553 499 414 510 385 481 498 544 485
557 584 512 478 414 510 488 481 498 450 311 682 584 512 478 414 380 361 481 498 498 478 807 434 476 440 457 517 490 490 469 608 434 932 476 553 499 414 510 503 481 472 346 265
558 584 512 478 472 510 490 295 511 416 478 683 584 476 478 404 510 490 481 511 498 478 808 584 412 505 381 361 490 526 191 426 485 933 577 553 499 414 510 487 481 498 608 478
559 584 512 485 421 510 490 488 384 450 325 684 584 505 478 457 404 289 481 498 498 478 809 383 512 499 457 539 490 490 476 550 449 934 401 553 499 414 510 490 481 254 401 384
560 584 233 478 247 510 490 410 498 378 485 685 584 421 478 381 539 490 481 511 498 478 810 584 524 499 479 536 490 226 347 455 478 935 584 315 499 414 510 451 481 498 544 485
561 584 470 405 443 510 490 460 505 450 313 686 584 512 446 457 379 490 481 498 498 478 811 542 553 499 457 510 490 512 476 550 478 936 460 549 309 414 510 445 345 488 421 478
562 584 334 507 442 466 490 341 498 325 485 687 584 347 478 432 517 490 481 511 498 478 812 577 553 499 483 510 490 483 243 550 478 937 584 387 492 414 405 503 481 498 608 478
563 584 512 478 421 510 490 488 452 456 275 688 584 470 379 457 320 490 226 498 532 478 813 429 553 499 457 510 365 481 505 550 478 938 384 546 401 529 539 490 386 384 373 478
564 584 459 478 414 510 490 167 511 499 485 689 584 292 507 349 539 490 488 548 475 490 814 584 553 499 442 510 445 422 225 550 478 939 535 446 470 421 376 490 488 498 608 478
565 584 512 404 414 510 490 488 383 456 478 690 584 470 329 414 382 490 247 498 426 478 815 584 553 499 421 510 262 495 505 550 478 940 577 553 257 397 510 490 363 411 507 478
566 319 273 471 414 510 490 404 469 481 478 691 490 512 513 254 510 490 488 450 475 461 816 584 553 235 414 510 490 405 291 550 478 941 577 465 492 421 480 490 488 498 608 478
567 584 505 373 414 510 490 488 291 456 478 692 584 512 197 457 320 490 448 498 273 478 817 584 553 470 414 510 407 488 505 368 478 942 577 553 460 291 510 490 385 354 522 478
568 478 469 507 414 510 278 392 505 275 478 693 475 512 513 421 517 490 495 375 498 396 818 584 553 296 414 510 445 410 498 544 254 943 577 437 470 421 364 490 481 498 550 478
569 605 512 206 283 320 490 481 498 450 478 694 584 512 478 414 539 490 405 469 527 485 819 584 553 470 414 299 465 488 511 332 478 944 577 546 450 413 517 490 427 442 608 478
570 490 297 513 450 510 490 269 511 479 356 695 439 512 478 414 510 419 481 494 498 388 820 584 553 373 414 517 497 429 498 550 463 945 535 412 492 457 251 490 481 498 544 207
571 584 476 478 376 539 490 488 176 456 498 696 577 512 442 414 510 445 481 505 332 478 821 584 553 492 414 510 269 481 511 375 478 946 577 553 457 356 517 490 536 511 550 485
572 447 392 478 421 510 490 481 498 421 421 697 319 512 478 414 510 477 495 488 498 260 822 584 553 279 414 517 497 481 498 544 422 947 577 355 492 457 455 490 488 498 608 480
573 599 505 430 329 264 490 481 511 421 478 698 605 512 475 414 510 445 393 505 456 478 823 584 553 492 414 354 490 481 511 289 478 948 577 549 501 253 510 432 481 511 544 478
574 439 450 471 457 517 490 481 498 421 490 699 456 512 478 414 510 411 488 249 498 347 824 584 553 393 414 517 445 481 498 550 420 949 351 517 492 443 510 445 481 498 550 504
575 584 505 453 481 409 490 481 272 421 478 700 535 506 448 414 510 445 481 498 498 478 825 584 553 492 410 539 497 481 511 260 498 950 599 553 499 414 510 497 481 511 608 478
576 438 470 478 450 510 490 481 498 421 449 701 406 470 471 414 327 357 481 404 498 478 826 605 553 359 457 510 499 481 498 550 421 951 569 553 499 414 510 445 481 498 355 406
577 605 512 450 330 510 490 481 511 421 498 702 584 477 392 326 510 445 481 505 498 478 827 584 524 499 234 442 442 481 225 550 478 952 584 553 499 414 510 514 481 511 544 478
578 535 512 507 421 517 490 481 498 421 480 703 354 512 478 421 245 468 481 426 498 478 828 577 553 473 457 510 521 481 505 550 478 953 448 553 499 414 510 503 481 498 404 478
579 577 512 478 384 363 487 400 511 445 478 704 584 464 478 408 539 490 481 498 498 478 829 584 382 499 307 469 499 481 493 550 478 954 599 553 499 414 510 160 481 511 537 478
580 419 512 478 457 517 490 488 498 450 478 705 289 512 478 421 409 319 481 404 498 478 830 403 553 546 457 510 528 481 498 550 478 955 577 553 499 414 510 503 481 243 289 478
581 584 512 478 469 205 445 457 511 346 478 706 599 432 478 408 510 490 481 498 498 478 831 535 267 499 391 510 499 362 423 550 478 956 577 553 499 414 354 326 481 498 544 478
582 502 512 478 421 552 490 495 498 450 478 707 577 512 478 421 371 362 419 372 498 478 832 278 546 499 457 510 499 488 498 455 478 957 577 553 524 414 539 490 414 511 260 478
583 542 512 478 412 376 404 430 511 478 478 708 577 458 478 399 510 503 488 505 498 226 833 599 244 499 260 510 557 226 414 608 478 958 577 553 470 414 320 179 488 498 544 478
584 577 512 478 421 552 490 460 347 456 478 709 577 470 478 421 401 499 347 498 521 478 834 360 546 499 457 510 557 488 498 411 478 959 577 553 502 353 539 490 291 225 341 478
585 577 334 478 373 510 280 495 498 410 254 710 577 427 478 358 510 445 488 511 498 326 835 599 466 499 404 510 557 384 393 550 206 960 577 553 492 457 471 490 481 505 544 396
586 577 512 478 450 510 490 481 551 450 478 711 577 470 478 421 463 503 226 498 608 478 836 453 553 499 457 510 445 481 505 321 485 961 577 553 499 445 510 490 374 384 468 478
587 577 397 478 199 510 375 480 511 455 419 712 429 480 478 426 539 490 488 511 550 463 837 535 422 499 326 510 503 384 451 544 483 962 395 553 499 457 327 490 488 476 537 431
588 577 470 478 457 510 503 467 498 450 485 713 584 505 471 421 402 355 497 498 408 478 838 577 553 499 421 416 490 481 498 486 498 963 584 553 340 463 552 490 328 505 550 485
589 442 393 478 234 510 487 448 511 363 478 714 490 296 499 387 539 503 490 511 550 167 839 577 401 263 414 510 490 427 511 550 553 964 335 427 492 421 328 490 488 498 608 499
590 577 470 355 457 539 490 460 420 450 478 715 584 470 355 421 510 503 391 498 395 478 840 577 553 505 414 558 337 481 498 477 485 965 584 553 499 341 510 490 490 511 544 478
591 577 483 471 421 510 404 384 498 392 478 716 444 512 470 414 510 490 483 511 492 347 841 577 421 418 414 510 445 419 511 550 520 966 360 493 499 414 344 490 444 498 550 533
592 577 512 536 414 251 445 481 433 450 360 717 584 512 263 414 510 490 319 498 468 478 842 577 546 492 414 395 484 488 498 455 478 967 599 553 451 462 517 490 481 511 608 478
593 577 512 471 414 517 443 391 498 352 478 718 233 512 505 414 510 490 526 443 550 485 843 282 553 405 414 510 445 481 511 492 478 968 356 524 492 421 539 490 453 498 544 454
594 577 512 478 414 340 503 460 317 320 469 719 535 512 494 414 510 490 278 469 506 478 844 535 553 492 414 292 290 481 498 608 478 969 535 553 499 470 510 490 453 511 550 478
595 577 396 478 414 552 439 374 440 456 478 720 599 512 470 414 510 490 512 439 608 478 845 535 553 347 414 546 490 481 511 550 478 970 243 398 499 421 510 490 453 498 378 471
596 423 470 456 414 510 490 348 505 308 378 721 577 512 434 414 510 490 490 505 550 478 846 577 553 470 414 402 573 481 419 550 478 971 535 553 499 414 510 399 571 511 544 471
597 584 353 478 414 510 487 481 451 450 485 722 442 512 470 414 322 490 526 516 550 478 847 319 553 487 414 539 445 481 505 550 478 972 577 290 499 414 510 445 571 498 319 471
598 392 509 427 414 240 445 308 498 395 467 723 577 512 372 414 510 490 490 511 550 478 848 535 553 470 414 309 319 481 411 550 306 973 577 546 499 414 510 407 571 511 544 471
599 535 476 478 414 552 263 460 511 450 478 724 429 512 470 414 364 490 526 423 550 478 849 381 553 536 414 552 503 481 498 356 478 974 577 384 499 414 510 503 478 498 499 471
600 460 499 273 294 299 503 468 498 503 338 725 584 214 355 414 517 490 490 498 550 431 850 605 553 470 515 394 457 282 450 608 364 975 577 517 499 414 440 479 571 511 608 471
601 577 512 444 414 517 490 488 383 456 478 726 584 470 470 414 356 329 526 461 289 478 851 326 553 499 421 539 490 488 498 487 478 976 577 335 383 414 517 490 441 443 430 471
602 298 553 507 452 539 465 312 469 441 485 727 584 449 370 254 517 445 490 498 550 244 852 535 553 499 573 510 407 481 349 550 397 977 406 553 505 414 292 475 485 469 537 328
603 599 470 478 421 510 445 488 461 456 478 728 584 505 470 457 494 328 282 401 327 485 853 391 553 499 421 510 490 481 505 359 478 978 584 372 376 414 510 445 189 191 415 506
604 519 355 478 435 354 375 440 498 449 458 729 584 358 499 479 510 490 483 505 608 497 854 599 553 499 475 510 490 335 487 550 260 979 319 553 499 414 465 440 471 476 608 497
605 535 505 411 421 539 445 481 404 456 485 730 584 470 499 421 556 392 253 437 321 478 855 584 553 499 421 510 490 488 498 550 485 980 535 553 516 392 539 490 347 347 544 471
606 367 475 471 506 431 372 481 505 466 478 731 584 429 499 414 510 490 512 498 544 368 856 584 348 499 417 510 490 362 478 608 496 981 319 553 499 414 309 459 471 476 550 454
607 599 512 258 450 539 445 481 260 456 478 732 584 505 499 414 372 419 341 511 395 478 857 584 553 499 421 510 490 488 505 407 478 982 535 553 370 468 552 445 321 336 608 471
608 577 441 507 430 510 413 481 505 421 478 733 271 376 499 403 517 445 506 498 550 501 858 584 488 357 439 510 490 319 498 608 319 983 271 553 470 421 491 468 507 505 544 471
609 577 476 478 414 510 503 481 498 421 478 734 535 476 499 457 329 512 483 511 355 478 859 584 553 499 457 385 490 460 511 439 478 984 599 553 244 487 510 445 431 225 550 471
610 577 267 478 357 510 506 481 511 421 478 735 321 488 499 450 510 445 490 498 608 478 860 584 506 488 487 510 490 382 498 608 478 985 412 553 505 421 262 503 478 505 608 253
611 577 505 473 421 510 445 481 498 421 478 736 584 512 334 421 510 411 312 511 454 478 861 584 553 470 421 420 490 488 511 550 478 986 535 553 499 459 517 490 262 498 544 513
612 577 512 478 492 510 437 481 511 421 478 737 571 525 499 319 510 445 512 498 608 478 862 584 498 354 414 510 490 481 498 550 478 987 577 553 499 421 510 490 478 511 439 253
613 332 512 347 421 510 503 481 498 421 410 738 577 476 345 457 510 386 469 511 304 478 863 584 553 470 414 520 437 481 511 550 478 988 577 553 499 247 510 490 478 498 544 471
614 535 512 478 410 510 234 481 511 421 478 739 365 512 470 505 510 445 490 169 550 478 864 584 442 470 414 517 490 481 498 550 478 989 577 553 499 443 510 490 478 511 441 471
615 298 512 431 457 443 490 451 498 423 349 740 535 512 354 421 510 439 340 498 550 478 865 584 553 499 414 385 490 481 511 550 478 990 577 553 499 423 510 490 478 498 608 471
616 584 512 471 421 546 225 481 394 456 478 741 372 512 470 414 348 490 519 260 550 478 866 384 479 449 414 517 445 481 498 360 478 991 577 285 499 421 510 490 478 511 426 471
617 419 512 478 414 539 490 390 498 275 318 742 584 512 349 414 539 319 490 505 550 473 867 535 553 499 414 329 490 481 511 544 377 992 440 546 499 414 510 490 478 498 544 471
618 535 512 478 414 510 269 460 298 450 498 743 480 512 499 414 424 490 526 498 550 478 868 364 438 328 414 510 490 481 498 528 478 993 535 327 327 414 510 490 478 511 463 471
619 388 512 478 414 460 503 469 498 291 442 744 577 512 471 414 510 362 490 511 550 422 869 577 553 492 443 480 282 481 383 608 365 994 319 546 470 414 461 490 478 498 550 471
620 599 512 478 414 539 420 481 291 450 485 745 577 512 499 414 233 503 526 500 459 478 870 250 427 448 421 539 503 481 469 482 478 995 605 392 392 414 510 490 397 370 412 471
621 577 431 478 414 481 490 481 505 449 478 746 577 512 356 414 539 490 490 498 608 401 871 599 553 470 472 510 468 399 505 544 424 996 278 549 505 414 549 357 571 498 544 207
622 577 470 478 414 517 355 481 372 456 478 747 577 512 492 414 328 490 526 197 463 478 872 613 553 499 421 510 490 495 498 499 485 997 535 327 327 414 510 490 385 336 608 506
623 450 469 478 414 542 445 347 505 457 431 748 577 512 499 414 510 490 490 476 550 461 873 584 553 499 426 510 384 452 375 608 347 998 410 553 470 414 466 356 485 469 544 233
624 577 470 478 414 510 450 488 376 456 478 749 577 512 499 414 551 490 473 505 356 478 874 420 553 499 421 510 490 460 476 378 485 999 599 412 418 414 539 445 236 462 550 506

Appendix C

RLState class

class CvRLState
{

public :
struct CvCityPos
{

int iX ;
int iY ;
int iCityRank ;

} ;

protected :

// the e x i s t i n g c i t i e s in t h i s s t a t e
CvCityPos∗ m_paCities ;
//number o f c i t i e s o f the current p l ayer in t h i s s t a t e
int m_iNumCities ;
//number o f s t a t e s t ha t succeed t h i s s t a t e d i r e c t l y
int m_iNumSubStates ;
// the current Q−va lue
float m_fStateVal ;
// the preced ing s t a t e
CvRLState∗ m_pPrevState ;
// the f o l l ow i n g s t a t e s
CvRLState∗ m_paSubStates ;
//when was the l a s t c i t y founded
int m_iFoundTurn ;
//does t h i s s t a t e use pre− i n i t i a l i s e d va lue s
bool m_bPreInit ;
//what was the game score be f o r e the l a s t c i t y was founded
int m_iPrevScoreScore ;
// i f the current a lgor i thm uses e l i g i b i l i t y t races , i t s va lue i s s to red here
float m_fE l i g i b i l i t y ;

} ;

Listing C.1: CvRLState.h

95

References

Aha, D. W. and Molineaux, M. (2004). Integrating Learning in Interactive Gaming Simulators.
Technical report, Intelligent Decision Aids Group; Navy Center for Applied Research in
Artificial Intelligence.

Aha, D. W. and Molineaux, M. (2008). Learning Continuous Action Models in a Real-Time
Strategy Environment.

Andrade, G., Ramalho, G., Santana, H., and Corruble, V. (2005). Automatic Computer
Game Balancing: A Reinforcement Learning Approach. In AAMAS ’05: Proceedings of the
fourth international joint conference on Autonomous agents and multiagent systems, pages
1111–1112, New York, NY, USA. ACM.

Auslander, B., Lee-Urban, S., Hogg, C., and Muñoz-Avila, H. (2008). Recognizing the En-
emy: Combining Reinforcement Learning with Strategy Selection using Case-Based Reason-
ing. In Proceedings of the 9th European Conference on Advances in Case-Based Reasoning
(ECCBR-08). Springer.

Bellman, R. (1957a). A Markov Decision Process. Journal of Mathematical Mechanics, 6:679–
684.

Bellman, R. (1957b). Dynamic Programming. Princeton University Press, Princeton, NJ.

BetterAI Project (2007). Civilization IV Better AI. URL: http://sourceforge.net/

projects/civ4betterai/ [last checked: 20/02/2009].

Billings, D., Pena, L., Schaeffer, J., and Szafron, D. (1999). Using Probabilistic Knowledge
and Simulation to Play Poker. In Proceedings of the National Conference on Artificial
Intelligence.

Campbell, M., Jr., A. H., and Hsu, F.-H. (2002). Deep Blue. Artificial Intelligence, 134 no.
1-2:57–83.

Champandard, A. (2003). AI Game Development: Synthetic Creatures with Learning and
Reactive Behavior. New Riders Games.

97

http://sourceforge.net/projects/civ4betterai/
http://sourceforge.net/projects/civ4betterai/

References

Chellapilla, K. and Fogel, D. (1999). Evolving Neural Networks to Play Checkers without
Relying on Expert Knowledge. IEEE Trans. Neural Networks, 10(6):1382–1391.

Dahl, F. A. (2001). A Reinforcement Learning Algorithm Applied to Simplified Two-Player
Texas Hold’em Poker. In Proceedings of the 12th European Conference on Machine Learning.
Springer-Verlag.

Farley, B. and Clark, W. (Sep 1954). Simulation of Self-Organizing Systems by Digital Com-
puter. Information Theory, IEEE Transactions on, 4(4):76–84.

Firaxis Games (2005). Civilization IV. URL: http://www.2kgames.com/civ4/home.htm [last
checked: 20/02/2009].

Freeciv Project (2008). FreeCiv. URL: http://freeciv.wikia.com/ [last checked:
20/02/2009].

Fuernkranz, J. (2001). Machine Learning in Games: A Survey, pages 11–59. Nova Biomedical.

Gasser, R. (1996). Solving Nine MenŠs Morris, pages 101–113. Cambridge University Press,
Cambridge, MA.

Gerlach, S. (2008). C-evo: Empire Building Game. URL: http://c-evo.org/ [last checked:
20/02/2009].

Gold, A. (2005). Academic AI and Video Games: A Case Study of Incorporating Innova-
tive Academic Research into a Video Game Prototype. In Proceedings of the IEEE 2005
Symposium on Computational Intelligence and Games. IEEE.

Graepel, T., Herbrich, R., and Gold, J. (2004). Learning to Fight. In Proceedings of the In-
ternational Conference on Computer Games: Artificial Intelligence, Design and Education.

Gundevia, U. (2006). Integrating War Game Simulations with AI Testbeds: Integrating Call
To Power 2 with TIELT. Master’s thesis, Lehigh University.

Hammond, K. (1989). Case-Based Planning: Viewing Planning as a Memory Task. Academic
Press, Boston, MA.

Houk, P. A. (2004). A Strategic Game Playing Agent for FreeCiv. Technical Report NWU-
CS-04-29, Northwestern University, Evanston, IL.

Karpov, I., D’Silva, T., Varrichio, C., Stanley, K., and Miikkulainen, R. (May 2006). Integra-
tion and Evaluation of Exploration-Based Learning in Games. Computational Intelligence
and Games, 2006 IEEE Symposium on, 1:39–44.

98

http://www.2kgames.com/civ4/home.htm
http://freeciv.wikia.com/
http://c-evo.org/

References

Kolodner, J. (1992). Case-Based Reasoning. Morgan Kaufmann.

Korb, K. B. and Nicholson, A. (1999). Bayesian Poker. In UAI’99 - Proceedings of the 15th
International Conference on Uncertainty in Artificial Intelligence, pages 343–350.

Krulwich, B. L. (1993). Flexible Learning in a Multi-Component Planning System. PhD thesis,
The institute for the Learning Sciences, Northwestern University, Evanston, IL.

Laird, J. and van Lent, M. (2001). Human-level AI’s Killer Application: Interactive Computer
Games. AI Magazine, Summer 2001:1171–1178.

Lee, K.-F. and Mahajan, S. (1990). The Development of a World Class Othello Program.
Artificial Intelligence, 43(1):21–36.

McPartland, M. and Gallagher, M. (2008a). Creating a Multi-Purpose First Person Shooter
Bot with Reinforcement Learning. In Proceedings of the 2008 IEEE Symposium on Com-
putational Intelligence and Games (CIG’08) (to appear), pages 143–150.

McPartland, M. and Gallagher, M. (2008b). Learning to be a Bot: Reinforcement Learning in
Shooter Games. In Proceedings of the Fourth Artificial Intelligence and Interactive Digital
Entertainment Conference (AIIDE), Stanford, California. AAAI, AAAI Press.

Merrick, K. E. (2007). Modeling Motivation for Adaptive Nonplayer Characters in Dynamic
Computer Game Worlds. Comput. Entertain., 5(4):1–32.

Merrick, K. E. and Maher, M. L. (2006). Motivated Reinforcement Learning for Non-Player
Characters in Persistent Computer Game Worlds. In ACE ’06: Proceedings of the 2006
ACM SIGCHI international conference on Advances in computer entertainment technology,
page 3, New York, NY, USA. ACM.

Merrick, K. E. and Maher, M. L. (2007). Motivated Reinforcement Learning for Adaptive
Characters in Open-Ended Simulation Games. In ACE ’07: Proceedings of the international
conference on Advances in computer entertainment technology, pages 127–134, New York,
NY, USA. ACM.

Miikkulainen, R., Bryant, B., Cornelius, R., Karpov, I., Stanley, K., and Yong, C. H. (2006).
Computational Intelligence in Games. IEEE Computational Intelligence Society, Piscat-
away, NJ.

Mitchell, T., Keller, R., and Kedar-Cabelli, S. (1986). Explanation-Bbased Generalization: A
Unifying View. Machine Learning, 1(1):47–80.

Mueller, M. (2000). Generalized Thermography: A New Approach to Evaluation in Computer
Go, pages 203–219. Universiteit Maastricht, Maastricht.

99

References

Muggleton, S. (1990). Inductive Acquisition of Expert Knowledge. Turing Institute Press,
Addison Wesley.

Nareyek, A. (2004). Computer Games - Boon or Bane for AI Research? Künstliche Intelligenz,
18(1):43–44.

Nareyek, A. (2007). Game AI is Dead. Long Live Game AI! Intelligent Systems, 22(1):9–11.

Peng, J. andWilliams, R. J. (1994). Incremental Multi-Step Q-Learning. InMachine Learning,
pages 226–232. Morgan Kaufmann.

Ponsen, M., Muñoz-Avila, H., Spronck, P., and Aha, D. (2006). Automatically Generating
Game Tactics through Evolutionary Learning. AI Magazine.

Quinlan, J. R. (1983). Learning Efficient Classification Procedures, pages 463–482. Tioga,
Palo Alto.

Rubin, J. and Watson, I. (2007). Investigating the Effectiveness of Applying Case-Based
Reasoning to the Game of Texas Hold’em. In Proc. of the 20th. Florida Artificial Intelligence
Research Society Conference (FLAIRS). AAAI Press.

Rummery, G. A. and Niranjan, M. (1994). On-Line Q-Learning Using Connectionist Sys-
tems. Technical Report CUED/F-INFENG/TR 166, Cambridge University Engineering
Department. URL: citeseer.ist.psu.edu/rummery94line.html.

Russell, S. and Norvig, P. (2003). Artificial Intelligence: A Modern Approach. Prentice-Hall.

Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of Checkers. IBM
Journal of Research and Development, 3(3):211–229.

Samuel, A. L. (1967). Some Studies in Machine Learning Using the Game of Checkers.ii -
Recent Progress. IBM Journal of Research and Development, 11(6):601–617.

Sánchez-Pelegrín, R., Gómez-Martín, M. A., and Díaz-Agud, B. (2005). A CBR Module
for a Strategy Videogame. In Aha, D. and Wilson, D., editors, 1st Workshop on Computer
Gaming and Simulation Environments, at 6th International Conference on Case-Based Rea-
soning (ICCBR).

Sánchez-Ruiz, A., Lee-Urban, S., Muñoz-Avila, H., Díaz-Agudoy, B., and González-Caleroy,
P. (2007). Game AI for a Turn-Based Strategy Game with Plan Adaptation and Ontology-
based Retrieval. In Proceedings of the ICAPS 2007 Workshop on Planning in Games.

Schaeffer, J. (2000). The Games Computer (and People) Play. Academic Press, 50:189–266.

100

citeseer.ist.psu.edu/rummery94line.html

References

Schaeffer, J. (2007). Checkmate for Checkers. URL: http://www.nature.com/news/2007/
070719/full/news070716-13.html [last checked: 20/02/2009].

Schaeffer, J., Culberson, J., Treloar, N., Knight, B., Lu, P., and Szafron, D. (1992). A World
Championship Caliber Checkers Program. Artificial Intelligence, 53 no. 2-3:273–290.

Schmidt, M. (1994). Temporal-Difference Learning and Chess. Technical report, University
of Aarhus, Aarhus, Denmark.

Shannon, C. E. (1950). Programming a Computer for Playing Chess. Philosophical Magazine,
41:265–275.

Sharma, M., Holmes, M., Santamaría, J. C., Irani, A., Jr., C. L. I., and Ram, A. (2007). Trans-
fer Learning in Real-Time Strategy Games Using Hybrid CBR/RL. In Veloso, M. M., editor,
IJCAI, pages 1041–1046. URL: http://dblp.uni-trier.de/db/conf/ijcai/ijcai2007.
html#SharmaHSIIR07.

Sheppard, B. (2002). World-Championship-Caliber Scrabble. Artificial Intelligence, 134:241–
275.

Smith, M., Lee-Urban, S., and Muñoz-Avila, H. (2007). RETALIATE: Learning Winning
Policies in First-Person Shooter Games. In Proceedings of the Seventeenth Innovative Ap-
plications of Artifcial Intelligence Conference (IAAI-07), pages 1801–1806. AAAI Press.

Souto, J. H. (2007). A Turn-Based Strategy Game Testbed for Artificial Intelligence. Master’s
thesis, Lehigh University.

Spohrer, J. (1985). Learning Plans through Experience: A First Pass in the Chess Domain.
In Intelligent Robots and Computer Vision, Volume 579 of Proceedings of the SPIE - The
International Society of Optical Engineering, pages 518–527.

Spronck, P., Ponsen, M., Sprinkhuizen-Kuyper, I., and Postma, E. (2006). Adaptive Game
AI with Dynamic Scripting. Machine Learning, 63(3):217–248.

Stanley, K., Bryant, B., and Miikkulainen, R. (Dec. 2005). Real-Time Neuroevolution in the
NERO Video Game. Evolutionary Computation, IEEE Transactions on, 9(6):653–668.

Stanley, K. O. and Miikkulainen, R. (2002). Evolving Neural Networks through Augmenting
Topologies. Evolutionary Computation, 10:99–127.

Stone, P., Sutton, R. S., and Kuhlmann, G. (2005). Reinforcement Learning for RoboCup
Soccer Keepaway. Adaptive Behavior, 13(3):165–188.

101

http://www.nature.com/news/2007/070719/full/news070716-13.html
http://www.nature.com/news/2007/070719/full/news070716-13.html
http://dblp.uni-trier.de/db/conf/ijcai/ijcai2007.html#SharmaHSIIR07
http://dblp.uni-trier.de/db/conf/ijcai/ijcai2007.html#SharmaHSIIR07

References

Sutton, R. S. (1988). Learning to Predict by the Methods of Temporal Differences. Machine
Learning, 3(1):9–44.

Sutton, R. S. (2000). The Right Way to do Reinforcement Learning with Function Approxi-
mation. Talk at Neural Information Processing Systems 2000 (NIPS00).

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press.

Tesauro, G. (1992). Temporal Difference Learning of Backgammon Strategy. In Proceedings
of the 9th International Conference on Machine Learning 8, pages 451–457.

Thorndike, E. (1911). Animal Intelligence. Hafner, Darien.

Tozour, P. (2002). The Evolution of Game AI, pages 3–15. Charles River Media, Hingham,
MA.

Truscott, T. (1978). The Duke Checkers Program.

Tunstall-Pedoe, W. (1991). Genetic Algorithms Optimizing Evaluation Functions. ICCA
Journal, 14(3):119–128.

Ulam, P., Goel, A., and Jones, J. (2004). Reflection in Action: Model-Based Self-Adaptation
in Game Playing Agents. In Proceedings of the Nineteenth National Conference on Artificial
Intelligence American Association for Artificial Intelligence (AAAI).

van Tiggelen, A. and van den Herik, H. J. (1991). ALEXS: An Optimization Approach for
the Endgame KNNKP(h), pages 161–177. Ellis Horwood, Chichester.

Watkins, C. (1989). Learning from Delayed Rewards. PhD thesis, University of Cambridge,
England.

Wender, S. and Watson, I. (2008). Using Reinforcement Learning for City Site Selection in the
Turn-Based Strategy Game Civilization IV. In Proceedings of the 2008 IEEE Symposium
on Computational Intelligence and Games (CIG’08) (to appear), pages 372–377.

Whiteson, S. and Stone, P. (2006). Evolutionary Function Approximation for Reinforcement
Learning. J. Mach. Learn. Res., 7:877–917.

Witten, I. H. (1977). An Adaptive Optimal Controller for Discrete-Time Markov Environ-
ments. Information and Control, 34:286–295.

102

Abbreviations

A-life Artificial Life
AI Artificial Intelligence

CBR Case-Based Reasoning
CTP2 Call to Power 2

FPS First-Person Shooter

GA Genetic Algorithm

MDP Markov Decision Process
MMOG Massively Multiplayer Online Game
MRL Motivated Reinforcement Learning

NEAT NeuroEvolution of Augmented Topologies
NERO Neuroevolving Robotic Operatives
NPC Non-Player Character

RETALIATE Reinforced Tactic Learning in Agent-Team Environ-
ments

RL Reinforcement Learning
RPG Role-Playing Game
RTS Real-Time Strategy

SMDP Semi-Markov Decision Process

TD Temporal Difference
TIELT Testbed for Integrating and Evaluating Learning

Techniques

103

	List of Tables
	List of Figures
	List of Algorithms
	Introduction, Motivation and Objectives
	Thesis Outline
	Background
	Machine Learning in Games
	Evolution of Computer Game AI
	Origins of Reinforcement Learning
	Related Work
	Q-Learning
	Sarsa
	Reinforcement Learning and Case-Based Reasoning
	Neuroevolution
	Dynamic Scripting
	Motivated Reinforcement Learning
	Civilization Games as Testbed for Academic Research

	Algorithms
	The Markov Property
	Markov Decision Processes
	Temporal-Difference Learning
	The Q-Learning Algorithm
	The Sarsa Algorithm
	Eligibility Traces

	Testbed
	Selection Criteria
	Testbed Selection
	The Civilization Game
	Existing Civilization IV Game AI
	City Placement Task
	Existing Procedure for City Foundation

	Design and Implementation
	Policies
	Greedy Policies
	e-Soft Policies
	e-Greedy Policies
	Softmax Policies

	Reinforcement Learning Model
	States
	Actions
	The Transition Probabilities
	The Reward Signal

	Implementation of the Reinforcement Learning Algorithms
	Integration of the Algorithms
	Implementation of Eligibility Traces

	Accelerating Convergence
	Reduction of the State Space
	Pre-Initialised Q-Values

	Evaluation
	Experimental Setup
	Algorithm Parameters
	Game Settings

	Parameter Selection for the Reinforcement Learning Algorithms
	Aim of Parameter Selection
	Preliminary Test Runs
	Test Runs with Full Discount
	Test Runs with Pre-Initialised Q-Values
	Test Runs with a Reduced Number of Turns

	Comparison of Reinforcement Learning Algorithm Performance
	Comparison of the Standard Game AI with Reinforcement Learning
	Optimising the Learning Rate a

	Discussion and Future Work
	Conclusion
	Paper Presented at the 2008 IEEE Symposium on Computational Intelligence and Games (CIG'08)
	Results for 1000 Episodes of Length 60 Turns using Sarsa with Declining e-Greedy Policy
	RLState class
	References
	Abbreviations

