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Abstract

The present thesis describes the design and implementation of a machine learning agent
based on four different reinforcement learning algorithms. The reinforcement learning agent
is integrated into the commercial computer game Civilization IV. Civilization IV is a turn-
based empire building game from the Civilization series. The reinforcement learning agent
is applied to the city placement selection task. The city placement selection determines the
founding sites for a player’s cities.
The four reinforcement learning algorithms that are evaluated are the off-policy algorithms

one-step Q-learning and Q(λ) and the on-policy algorithms one-step Sarsa and Sarsa(λ). The
aim of the research presented in this thesis is the creation of an adaptive machine learning
approach for a task which is originally performed by a complex deterministic script. Since the
machine learning approach is nondeterministic, it results in a more challenging and dynamic
computer AI.
The thesis presents an empirical evaluation of the performance of the reinforcement learning

approach and compares the performance of the adaptive agent with the original deterministic
game AI. The comparison shows that the reinforcement learning approach outperforms the
deterministic game AI. Finally, the behaviour and performance of the reinforcement learn-
ing algorithms are elaborated on and the algorithms are further improved by analysing and
revising their parameters. The performance of the four algorithms is compared using their
identified optimal parameter settings and Sarsa(λ) is shown to perform best at the task of
city site selection.
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Chapter 1

Introduction, Motivation and Objectives

Despite the fact that commercial computer games still suffer by and large from the shortcom-
ings in artificial intelligence (AI) that John Laird mentioned in his keynote address at the
AAAI 2000 conference (Laird and van Lent, 2001) there have been tremendous developments
in the area of using commercial computer games as testbeds for AI research. This develop-
ment has been made possible by substantial improvements in game technology in recent years.

While learning computer game AI in commercial games is still almost non-existent, the
graphics in the games today are closer than ever to photorealism. Laird predicted this peak in
graphics as a turning point. After reaching perfection in terms of graphics, he assumed, focus
in computer game development would shift away from visuals and towards more captivating
gameplay, including game AI.
Computer games have changed from being the hobby of a small group of people to being

one of the mainstream entertainment industries. This transformation was already well un-
derway when Laird held his keynote address. However, the market for computer games was
still a lot smaller than today, when several publishers have turnovers of billions of dollars and
single games like Grand Theft Auto IV or World of Warcraft yield hundreds of millions of
dollars in return. The size of projects also implies that games have become far more complex
and extensive than before. Increasing game complexity also affects the development process:
The most recent commercial computer games go through a software life cycle that includes
thorough quality assurance. The source code of a game is now developed by large teams of
software engineers and thus has to be highly modular and of high quality to enable parallel
work with several people working on the same code. However, since nearly all commercial
games are closed source, the more recent trend of including extensive interfaces for modifica-
tions through users is very important for academics that want to use commercial games as
testbeds.
Publishers have started to realize that the length of the lifetime of a game largely depends

on how active the respective users, the community of that game, are involved with the game.
Therefore the publishers have started to create more and more powerful tools for community
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developers who want to extend and modify the game. What started with simple map editors
in games like Warcraft II or Doom has now evolved through very capable scenario editors
in games like Bioware’s Baldurs Gate series into entire scripting languages that allow the
community to create content of their own for their favourite game. The scripting language
Lua can be used to create powerful user interfaces in World of Warcraft and allows users
to specify the complete AI of their computer-controlled servants in Ragnarok Online. Some
developers even release the entire source code of their games, for example Id Software for
both their Quake and Doom series. This is an important development for academics who
want to use commercial games as testbeds for their research since the nature of their tasks
usually requires profound changes to integrate custom applications. One sign of researchers
using these new interfaces is that the number of projects using interactive computer games
for AI research has grown tremendously (see Section 3.4 for numerous examples). And while
some researchers used computer games as testbeds already a decade ago, they usually either
developed their own games as test environments or used simple older games. Today more and
more researchers apply machine learning techniques in recent commercial computer games.

Among the most popular commercial games, especially in terms of long-term gameplay, are
the games of the Civilization series. These turn-based strategy games achieve their high replay
value not through advanced adaptable AI techniques but through a high level of complexity in
the later stages of the game. The early stages, however, are mostly deterministic and therefore
not very challenging. This point will be elaborated on in Section 4.4. These characteristics
as well as the large number of tasks involved in playing the game make Civilization games
an ideal testbed for AI research. It is possible to replace one of the large number of tasks
by a machine learning agent, thus making the AI less predictable and improving the overall
gameplay experience.

This is one of the main incentives for integrating machine learning techniques into video
games: the potential the techniques have to make these games more interesting in the long
run through the creation of dynamic, human-like behaviour. The technique that probably
resembles the human learning process most closely is Reinforcement Learning. Reinforcement
learning in this thesis is used to do exactly what is described above: replace a deterministic
task, thus making the game AI more adaptable.

There are three major objectives that this thesis tries to achieve. The first aim is the
integration of machine learning into a professionally developed, complex computer game. The
aim is not to create a machine learning agent that controls every aspect of the whole game.
Since recent games are very intricate environments and Civilization games are especially
renowned for their complexity, this would not be possible. However, an important task in the
game will completely be taken over by reinforcement learning, namely the task of selecting the

2
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best position for a player’s cities. In order to perform this task efficiently, the reinforcement
learning agent should show a clear tendency to improve.
The next objective of this thesis is to show that machine learning techniques can on the one

hand provide a more versatile, adaptive computer game AI than standard techniques while
on the other hand performing at least as well as the standard AI. Therefore the performance
of the reinforcement learning agent will be compared to that of the current existing AI after
reinforcement learning has successfully been integrated into the game. The results of this
thesis in terms of these first two objectives have been published in (Wender and Watson,
2008) (see Appendix A). The second part of the empirical evaluation of this thesis further
improves and extends the findings in the paper.

A third objective is to optimise the applied technique. Reinforcement learning includes a
wide range of different algorithms that have different characteristics. Since some algorithms
are better suited for certain tasks than others, it is important to evaluate their performance
in the task of city site selection and select the algorithm that is suited the best for the
task. The reinforcement learning algorithms contain parameters that can be used to put
emphasis on different aspects of the reinforcement learning process. These parameters will
be evaluated in order to find an optimal setting.

This chapter illustrated the motivation behind the topic of this thesis, the integration of
reinforcement learning into a commercial computer game. It lists objectives of the thesis and
their order of priority.
The following chapter will give an overview of the background of this thesis. It includes
sections that elaborate on the historical background of machine learning in games and on the
evolution of computer game AI. Reinforcement learning and its origins are explained in detail
and research that is related to the topic of this thesis is mentioned. Finally, the reinforcement
learning algorithms that will be used in this thesis are presented in detail and the general
layout of a reinforcement learning environment as a Markov decision process is described.

3
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Chapter 2

Thesis Outline

This chapter gives overview on the outline of this thesis. The different chapters that this
thesis consists of are briefly mentioned and their content is explained.
The following chapter will give an overview on several topics that form the background of

this thesis. On the one hand these are computer games in general and computer game AI in
particular. On the other hand this is reinforcement learning, a set of unsupervised machine
learning techniques. The ‘Background’ chapter contains information both on the historical
background and development of these areas and on the research related to this thesis that
has been done in these areas. Finally, the reinforcement learning algorithms that will be used
throughout this thesis are explained in detail.

The chapter ‘Testbed’ explains the considerations behind the choice of Civilization IV as
the testbed for this thesis. It then goes on to elaborate on the game mechanics in Civilization
IV with focus on the existing game AI. Finally, the task of city site selection, that is taken
over by the reinforcement learner is further illustrated and the present procedure behind this
task is explained in detail.

The chapter ‘Design and Implementation’ contains information on how reinforcement
learning is integrated into Civilization IV. At first the choices that are made when designing
the reinforcement learning model are listed. The possible policies that can be used by
the reinforcement learning algorithms are explained in detail and the deliberations behind
choosing the ε-greedy policy are clarified. Then the integration of the algorithms into the
actual game is presented. Finally, several improvements are listed that were made in order
to speed up the convergence of the algorithms towards an optimal policy.

The subsequent chapter presents the empirical evaluation of the reinforcement learning
algorithms that have been integrated in Civilization IV. It starts by elaborating on the
reasoning behind the selection of the game settings and of the algorithm parameters. These
settings are then tested in experimental runs and further adapted until the algorithms

5
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prove that they are capable of developing efficient policies for selecting city sites. Then the
algorithms’ performance is compared compared with each others performance as well as with
taht of the standard game AI. Through additional changes of the algorithm parameters the
performance is further improved.

The chapter ‘Discussion and Future Work’ analyses the results of the experiments in
the preceding chapter. The performance of the single algorithms is explained in detail.
Furthermore possible extensions are listed and directions for future research are presented.

The conclusion sums up the results of this thesis. Furthermore, the overall contributions
are mentioned and the initial objectives are compared with the actual results.

6



Chapter 3

Background

This chapter gives a brief overview of the background of machine learning in games as well
as providing the background knowledge on the algorithms and techniques which are used
throughout this thesis.
Its first part is a short summary of the development of artificial intelligence (AI) in clas-

sic board games. This section draws on surveys by Schaeffer and Fuernkranz (Schaeffer,
2000)(Fuernkranz, 2001) and summarises the research done for some of the most influential
’classic’ games for AI research. The second part is about the evolution of AI in commercial
games. It is mainly based on Tozour (2002) and also briefly touches on the differences between
academic research and commercial applications. Finally the algorithms that are used in later
parts of this thesis are explained in detail.

3.1 Machine Learning in Games

Arthur L. Samuel was one of the first people to pursue the application of machine learning to
game AI. In 1947 he came up with the idea of creating a program that could play checkers. The
two main papers describing his research, that lasted over the next three decades, are landmark
papers for AI in general and for AI learning in particular. They introduce several techniques
and ideas for AI learning which are still in use today in one way or another (Samuel, 1959)
(Samuel, 1967). Samuel’s program was based on the principle of learning the game without
previously defined moves. This is in contrast to what became the common approach not only
for checkers but also for chess and most other classical games where the computer programs
have a certain amount of predefined game states in which they search for a solution.
In the late 1970s Samuel’s program was defeated by a checkers program which was developed

at Duke University (Truscott, 1978). This victory led to the assumption that the new program
could match just about any human player. The assumption was indirectly proven wrong with
the development of one of the most advanced checkers programs of the early 90s, Chinook,
at the University of Alberta. Chinook is based on the now common principles of an opening
book, an endgame database, previous knowledge, and extensive search through possible moves

7
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(Schaeffer et al., 1992). Its evaluation function is not based on learning but has been tuned
manually. Chinook won the ’world man-machine championship’ in 1994 against the world
champion checkers player Marion Tinsley and did not lose any game in the following years
before retiring in 1997. In 2007 the developers stated that they computed the weak solution
for checkers and thus Chinook cannot lose anymore (Schaeffer, 2007).

The history of computer AI playing checkers shows that even though Samuel started with
a machine learning approach, research soon switched to optimising brute force searching
programs which went on to become more effective and eventually unbeatable for human
players. Despite this, there are also approaches that use machine learning algorithms to play
checkers. Chellapilla and Fogel, for example, created a checkers program in the late 1990s,
which did not use expert domain knowledge but learned playing the game through co-evolution
(Chellapilla and Fogel, 1999).

One of the most researched areas in computer AI is the game of chess. Among the first
papers to be published on the topic of computer chess was a paper by Shannon (1950). The
author split algorithms applied to this problem into two types A and B. While both types
are based on searching for possible moves, Type A algorithms do this by brute-force while
Type B includes selective search. Type B algorithms search in a way that is similar to how
human chess players tend to think. Subsequently Type A algorithms gained popularity due
to their being easier to implement and to debug. Brute-force programs have managed to beat
human grand masters for quite some time now; most well known is the series of duels between
then world champion Gary Kasparov and chess programs made by IBMs Deep Blue team
(ChipTest, Deep Thought and the famous Deep Blue) (Campbell et al., 2002).

In a way similar to checkers, considerable research has been done in the area of machine
learning for chess. Probably the area most thoroughly studied is the induction of chess, that
is the classification into won/not won from a given endgame. Quinlan (1983), for example,
used the decision tree learning algorithm ID3 to acquire recognition rules. Muggleton (1990)
applied DUCE, a machine learning algorithm that suggests high-level concepts to the user.
The suggestions are based on recognized patterns in the rule database and the technique
reduces the complexity of the rule base and generates concepts that are meaningful for domain-
experts. Another machine learning technique which gained particular interest during the late
1980s is explanation-based learning (Mitchell et al., 1986). This approach was based on
the assumption, that the domain theory can be utilised to find an explanation for a certain
example. This example then can be generalized.

During the mid-90s a related approach called case-based reasoning (CBR) (Kolodner, 1992)
was developed and applied to computer chess. Case-based reasoning is a technique which is
quite similar to explanation-based learning and in principle ’Learning by Analogy’ (Campbell
et al., 2002). In order to solve a problem a CBR system looks for previously encountered
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similar problems in its case-base. It then tries to adjust the solution to these known problems
to fit the current one. The problem-solution pair it acquires in this way is then used to
extend the existing case-base. MAPLE (Spohrer, 1985) is an early system that is based on
CBR and learns whenever it makes a fatal mistake, that is when it reaches a point where
all moves lead to a loss. CASTLE (Krulwich, 1993) is a modular (threat detection module
and counterplanning module) system that also learns through mistakes. Whenever one of
its components fails, it performs a self-diagnosis to find out which module failed and then
uses explanation-based learning to extend its case-base by the missing case. Both CASTLE
and MAPLE rely heavily on case-based planning (Hammond, 1989) which itself is based on
explanation-based learning.

Another possibility to apply machine learning to computer chess programs is the design
of the evaluation function. The evaluation function is the method that evaluates how good
a certain move or a certain sequence of moves is. The tuning of this function has actually
become the most promising direction for the application of machine learning to computer chess
(Campbell et al., 2002). Tunstall-Pedoe (1991) used a genetic algorithm (GA) to optimize
the evaluation function. The fitness of a certain parameter was determined by comparing
the result of the function with the moves of a grandmaster. van Tiggelen and van den
Herik (1991) came to the conclusion that genetic algorithms are too inefficient for use in
a middle-game application and therefore used an artificial neural network (ANN or NN)
instead. According to the authors this resulted in a more efficient and at the same time more
accurate program. Schmidt (1994) was not satisfied with the results he got when he used a
neural network and used temporal difference learning (TD learning) instead. The idea of TD
learning had already been developed by Samuel (1959) for his checkers player but not really
been in use again until Tesauro (1992) achieved amazing results with this in his backgammon
program. In chess it is quite hard to evaluate effects of decisions made in the middle-game
since the game is only decided at the end. TD learning addresses this problem by trying to
minimise the differences between successive position evaluations. This means, for example,
that if the program discovers after a series of evaluations that the assumed outcome is wrong,
a previous assumption must have been wrong and the weights of the function have to be
changed accordingly.

While checkers and chess have received tremendous attention and research, there are lots of
other games for which computer players have been researched using plenty of different tech-
niques. The aforementioned Tesauro created a backgammon player TD-Gammon (Tesauro,
1992) capable of beating human players. TD-Gammon is based on neural networks which
are trained using TD learning. Bill is an Othello program written by Kai-Fu Lee and Sanjoy
Mahajan that was among the best during the early 1990s. Besides using deep search and
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extensive domain knowledge, it uses Bayesian learning in its evaluation function (Lee and
Mahajan, 1990).

The game of poker offers several attributes that make it very interesting for AI research:
it offers incomplete knowledge due to the hidden cards, it is played by several agents, and it
uses concepts such as agent modeling and deception. Therefore, a lot of interesting research
in the area of machine learning for poker has been produced. Loki, a program developed at
the University of Alberta, uses explicit learning by observing its opponents and constructing
models of these opponents. It then adapts to the play of these opponents (Billings et al., 1999).
Korb and Nicholson (1999) produced a poker program that is based on Bayesian networks.
The poker program of Dahl (2001) uses reinforcement learning (Russell and Norvig, 2003) to
play the poker variation ‘Texas Hold’em’. Rubin and Watson (2007) use case-based reasoning
for their poker program CASPER which plays Texas Hold’em evenly against strong, adaptive
competition. Other games that are popular with AI researchers include Go (Mueller, 2000),
which has an even larger search space than chess, Scrabble (Sheppard, 2002) and Nine-Men-
Morris (Gasser, 1996).

3.2 Evolution of Computer Game AI

Since the mid 1970s, computer games have been developed that allow a single player to com-
pete with the program itself. Seminal games like Pac-Man, Space Invaders or Donkey Kong
used, mostly due to restrictions of available resources, very simple techniques; these include
finite-state machines, decision trees and production rule systems together with some random
decision-making to add less predictable behavior. But while processing power increased in
the following decade and games grew more complex and better-looking, the AI techniques
remained by and large the same. Only in the 1990s were more complex techniques used.
One reason for this was the success of strategy games such as MicroProse’s Civilization or
Blizzard’s WarCraft II , since these games require AI as part of the central playing experi-
ence. Additionally, strategy games require a range of different AI techniques for unit-level
AI as well as for overall strategic and tactical AI. First Person Shooters (FPS) are another
game genre which led to the introduction of more complex AI into commercial games. While
there have been games which belong to this genre since the early 1990s, they mostly tried
to challenge the player by the sheer number of opponents or the amount of firepower he was
facing. Significant progress was made in Valve’s Half-Life which was praised for its tactical
AI and Epic Games’ Unreal Tournament which included bots that showed tactical behavior
and scalability. One computer games genre which is practically based on AI is that of sim
games/artificial life (A-Life) games.
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Maxis’ SimCity was one of the first games in this genre. Especially noteworthy for the
complexity of its agents is The Sims which uses fuzzy state machines and A-Life technologies.
The games of the Creatures series are basically A-Life simulators which make use of a wide
range of AI techniques to simulate the evolution of the ‘Norns’ that populate the game.
More recently Lionhead Studio’s Black&White games have been built around a complex
reinforcement learning approach that allows the player to train a ‘creature’. These games
show one of the most advanced game AIs to date.

While these games do use very advanced AI techniques, the most common technique still
remains the simpler and thus easier to create and debug rule-based systems. This gap between
academic research and the computer gaming industry has not gone unnoticed. Laird and van
Lent (2001) state that while there is significant room for academic research in computer
games, the computer games industry tends to go in its own direction. They then conclude
that it is up to academic researchers to close this gap by using computer games as testbeds
to develop AI methodologies which then can be used in commercial games. According to
Nareyek, the academic community has so far failed to achieve this (Nareyek, 2004) (Nareyek,
2007). He states that apart from the usage of a few common techniques, in particular the A*
algorithm for path finding, usually no academic research is used in commercial products. He
also claims that common academic research goes into a direction that is all but uninteresting
to the computer games industry.

On the other hand there have been quite a few attempts to bridge this gap between academia
and the industry. Champandard (2003) uses the open-source framework FEAR (Flexible
Embodied Animat ’Rchitecture) together with the commercial First Person Shooter Quake
2 to evaluate several AI techniques proposed by the academic community. He succeeds at
implementing these various techniques for different tasks of a non-player character (NPC), a
so-called bot. Gold (2005) does research using a commercial game engine as testbed to develop
a prototype game. He reaches the conclusion that it is indeed possible to mix commercial
game development and research. Miikkulainen et al. (2006) argue that the AI techniques
which are usually applied in modern games are in fact not appropriate at all for the purposes
they are used for. On the other hand machine learning techniques which are not used at all
in commercial products such as neuroevolution (neural networks in combination with genetic
algorithms) are particularly well suited for computer games.

3.3 Origins of Reinforcement Learning

This section points out the early origins of reinforcement learning and is based on Sutton’s and
Barto’s survey on reinforcement learning (Sutton and Barto, 1998). The specific reinforcement
learning algorithms that are used in this thesis are described in Section 3.5.
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The modern field of reinforcement learning was introduced in the late 1980s and evolved
mainly from two different branches of research: optimal control, and learning by trial and
error. A third branch which also played into the development to a smaller degree is TD
learning. A short explanation for all three areas is given below.

‘Optimal control’ is a term which is used to describe the search for a controller that mini-
mizes a specific variable in a dynamic system over time. One of the most prominent approaches
to this problem was developed by Richard Bellman in the 1950s, the so-called dynamic pro-
gramming (Bellman, 1957b). This technique is still used today to solve reinforcement learn-
ing problems. Bellman (1957a) also developed the notion of the Markovian decision process
(MDP) which is the discrete stochastic version of the optimal control problem. Both dynamic
programming and MDPs form a vital part of what is today known as reinforcement learning.

The other big branch of reinforcement learning, learning by trial and error, is based on the
‘Law of Effect’ in cognitive sciences: An action followed by a positive reward is remembered
in this context and thus more likely to be performed again in the same situation. An ac-
tion followed by a negative reward is remembered in a negative context and will be avoided
(Thorndike, 1911). The ‘Law of Effect’ is selectional, i.e. it tries several different options
and choses based on consequences. The law is also associative: the alternative found will
be associated with a particular situation. One of the first attempts at teaching a computer
program through trial and error learning was made by Farley and Clark (1954).

The third, quite recent branch which comes into play in modern reinforcement learning is
TD learning. The first application of a form of TD learning, by analyzing the difference of a
certain attribute between time-steps, was done by Samuel (1959). Witten (1977) was the first
to integrate optimal control and trial and error learning. He also made a significant contribu-
tion to TD learning, an area which had received little attention since its first developments
in the late 1950s.

The final step to create modern day reinforcement learning was the development of Q-
learning by Watkins (1989). His work integrated all three previously described branches
and extended the field of reinforcement learning in general. One of the first successful and
noteworthy applications of these techniques was performed by Tesauro (1992), who brought
further attention to the emerging field of reinforcement learning with his backgammon player
TD-Gammon.

3.4 Related Work

This section is concerned with previous research on reinforcement learning in computer games.
It is divided into subsections for research into different algorithms as well as their applications
in computer game AI. Furthermore there is an explanation of other reinforcement learning
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techniques such as motivated reinforcement learning (MRL) which address certain problem
areas of reinforcement learning. The specific algorithms that are applied in this thesis are
described in detail in Section 3.5. Also the previous usage of Civilization games as testbed
for AI research is described.

3.4.1 Q-Learning

An important breakthrough in the history of reinforcement learning was the development of
Q-learning (Watkins, 1989). Q-learning integrates, as stated in Section 3.3, different branches
of previous research such as dynamic programming and trial-and-error learning into reinforce-
ment learning.

Andrade et al. (2005) use a Q-learning algorithm to create an adaptive agent for a fighting
game Knock’em. The agent is initially trained offline to be able to adapt quickly in an online
environment. During the game it adjusts its play to the other players level of skill. The game
AI thus always presents a challenge but remains beatable regardless of the players level of
skill.

Smith et al. (2007) the authors introduce RETALIATE (for: Reinforced Tactic Learning in
Agent-Team Environments), an online Q-learning technique that creates strategies for teams
of computer agents in the commercial FPS game Unreal Tournament. The bots controlled by
RETALIATE were able to adapt and devise a winning strategy against the inbuilt game AI
in most cases in just one game.

Whiteson and Stone (2006) use a combination of Q-learning and the NEAT (NeuroEvolution
of Augmented Topologies) algorithm to perform on-line evolutionary function approximation.
They test this method with several standard reinforcement learning benchmarks and con-
clude that evolutionary function approximation can significantly improve standard temporal
difference learning.

3.4.2 Sarsa

Graepel et al. (2004) use the Sarsa algorithm to compute strategies in the commercial fighting
game Tao Feng to create a challenging computer opponent. Q-learning could not be used
because of the lack of information about possible actions in any given state. Sarsa does not
require this information. Stone et al. (2005) use the game RoboCup Soccer Keepaway as a
testbed. In the game a number of agents (the keepers) try to keep the ball in their possession
within a limited area while the opponents (the takers) try to capture the ball. The episodic
semi-Markov decision process (SMDP) version of a Sarsa(λ) algorithm is used to compute the
best strategy for the adaptive keepers against a set of predefined static takers. As a result

13



Chapter 3. Background

of empirical studies, the time it takes the takers to acquire the ball from the keepers rises
constantly with number of episodes that were played.

McPartland and Gallagher (2008b) use a tabular Sarsa(λ) algorithm to control a bot in
a first-person-shooter. Different techniques are combined with reinforcement learning (state
machine, rule based and hierarchical reinforcement learning) to control the bot. Hierarchical
and rule based reinforcement learning prove to be the most efficient combinations (McPartland
and Gallagher, 2008a).

3.4.3 Reinforcement Learning and Case-Based Reasoning

Several publications explore a combination of case-based reasoning (CBR) and reinforcement
learning for computer game AI.
Sharma et al. (2007) use a multi-layered agent to create strategies and tactics for an agent
that competes in the real-time strategy (RTS) game MadRTS. One of the main aims of
their research is to use transfer learning in an RTS environment. In order to achieve this,
a hybrid case-based reasoning and reinforcement learning algorithm is used. CARL (CAse-
Based Reinforcement Learner) consists of multiple layers, each of these layers being made up
of three modules: a planner, a controller and a learner. The planner selects from the actions
that are available in the state that the layer is currently in. The controller acts as an interface
for perceptions/actions to lower layers and the learner modifies the data/features used by the
planner.

For their experiments the authors use three layers, each consisting of the three modules
described above. The top layer is hand coded to select the overall strategy and the bottom
layer takes the orders from above and translates them into MadRTS specific orders. The
middle layer contains a hybrid case-based reasoner and reinforcement learner. The hybrid
CBR-RL Layer uses CBR as an instance-based function approximator to retrieve matching
cases from the case-base while a TD reinforcement learning algorithm is used to revise the
cases according to how the selected case performs. The performed experiments show that this
architecture works well for the given task of controlling combat in the selected RTS game.
Furthermore, transferring the gained knowledge to a slightly more complex task works as well:
the agent adapts much faster if it uses previous cases than if learns from scratch.

Auslander et al. (2008) use the reinforcement learning algorithm RETALIATE developed
by Smith et al. (2007). RETALIATE uses online Q-learning to create strategies for teams
of agents in the FPS Unreal Tournament. As an extension the authors introduce techniques
from CBR for the agent to adapt faster to a change in the strategy of its opponent. The
resulting technique, CBRetaliate, tries to obtain a better matching case whenever the collected
input reading shows that the opponent is outperforming it. The Q-table of the previously
computed policy is part of the stored/retrieved cases among other recorded data. As a result
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of the extension, the CBRetaliate agent is shown to significantly outperform the RETALIATE
agent when it comes to sudden changes in the opponent’s strategy.

Aha and Molineaux (2008) introduce the Continuous Action and State Space Learner
(CASSL) which uses CBR and reinforcement learning in the continuous action/state space
of the RTS game MadRTS. The integration of CBR and reinforcement learning has the ad-
ditional benefit of showing causal relations between different states, something which CBR
alone would not be able to do. The ensuing experiments show that this approach outperforms
the same algorithm which descretizes the state space. CASSL maintains two case-bases, one
for transitions, i.e. applying actions in certain states and another case-base for values, i.e.
estimates of the value of certain states using the current policy. Each of these case-bases sup-
ports a cycle of case retrieval, reuse, revision and retention. At the beginning both case-bases
are initialised to the empty set. By applying CASSL to a sequence of gameplay episodes the
case-bases are subsequently filled with new cases and revises. A nearest neighbor metric is
used to retrieve similar cases.

3.4.4 Neuroevolution

Neuroevolution algorithms use neural networks which are trained through genetic algo-
rithms.There is a distinction between neuroevolution algorithms that only calculate the
weights for the neural networks and algorithms that change the entire topology of the network.

Stanley et al. (2005) use a modification of the NEAT (NeuroEvolution of Augmented
Topologies) algorithm (Stanley and Miikkulainen, 2002), rtNEAT (real-time Neuroevolution
of Augmented Topologies) to build the Neuroevolving Robotic Operatives (NERO) game. In
this game teams of virtual robots are trained using the inbuilt machine learning techniques
to compete against other teams. A major contribution of rtNEAT is the fact that an evolu-
tionary algorithm, which is usually designed to run off-line, is trained during the game. In
the NERO game the player acts as an instructor for his team of robots which start the game
without any skills at all. The player can only influence the environment and thus force the
robots to perform certain actions.
Karpov et al. (2006) use NEAT to generate strategies for bots that play the FPS Unreal Tour-
nament. The authors perform their experiments in the test environment TIELT (Testbed for
Integrating and Evaluating Learning Techniques) (Aha and Molineaux, 2004) and also in-
clude an evaluation on the time and effort required to integrate a commercial game and use
it as testbed for AI research. As a test case the task of navigating through a level in Unreal
Tournament was used.
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3.4.5 Dynamic Scripting

Spronck et al. (2006) developed an online learning technique they called ‘dynamic scripting’
. Dynamic scripting enables the computer game AI to adapt itself to the player, either in
level of difficulty or in style of play. A rule base is used to create scripts which define the
performance of the AI. For each computer agent there exists a rule base of manually defined
domain specific rules. Each of these rules has a weight assigned to it that determines the
likelihood for this rule of being chosen into the script. The script defines the agent’s behavior
during the game. At the beginning of a new evaluation cycle such a script is composed for
every single agent according to the weights using a softmax procedure. After the end of a cycle
the weights of the rules involved are updated in the rule base. If the outcome was a success,
the weights for rules involved in the successful script are incremented, otherwise the weights
are decremented. The overall sum of weights is kept constant; an increment of one weight
results in all other weights being decremented. Dynamic scripting is comparable to actor-critic
reinforcement learning and Monte Carlo control. The authors use the commercial role-playing
game (RPG) Neverwinter Nights as a testbed for their research. They compose a scenario
where two teams of equally strong computer characters fight each other. The characters on
the one side are controlled by different versions of ingame AI rules. The characters on the
other side are controlled by dynamic scripting. The result showed that the opponent AI which
was based on dynamic scripting managed to adapt quite quickly ( 20-50 cycles on average)
depending on the strength of the inbuilt game AI.

Ponsen et al. (2006) improve the basic dynamic scripting by eliminating the shortcoming
of manually designed rule bases. The authors introduce the Evolutionary State-based Tactics
Generator (ESTG), which creates tactics fully automatically. An evolutionary algorithm is
used to fill the initial rule base with domain specific knowledge. A test against selected
manually created scripts shows that dynamic scripting with automatically generated rule
bases is able to adapt itself to changing strategies. After a certain amount of adaption, even
the most advanced manual script was beaten by dynamic scripting.

3.4.6 Motivated Reinforcement Learning

Motivated reinforcement learning (MRL) is reinforcement learning for which the reward signal
is computed through an additional motivation function. The motivation function uses domain
independent rules to calculate the motivation signal. Thus the development of the agent
relies more on environment and experiences rather than domain specific knowledge. The
motivational function relies heavily on research in cognitive sciences.

Merrick and Maher (2007) target the development of NPCs for open-ended virtual worlds
that adapt to changes in their environment. By adapting to changes in their environment,
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the NPCs provide an ongoing interesting experience for the players. The adaptable NPCs
are different to NPCs of recent commercial MMOGs (Massively Multiplayer Online Games)
which are controlled by static scripts and do not adapt to changes in the game world. The
authors describe an experiment in the game Second Life. The experiment uses a task which
is defined as a MDP. Virtual sheep are created and controlled by an MRL algorithm. Two
experiments show that the sheep adapt to changes in their previous environment.

Merrick and Maher (2006) also use a similar approach to create agents which act as support
characters for the player. It is shown through empirical evaluation how a virtual agent that is
controlled by an MRL algorithm can act as a vendor for goods produced by the player. The
virtual agent is unsupervised and adapts to changes in its environment following a behavioral
policy that has been previously defined. Merrick (2007) sums up previous research on creating
adaptive NPCs. Furthermore, two different models of MRL that are used to control NPCs
are compared.

3.4.7 Civilization Games as Testbed for Academic Research

Civilization is the name of a series of turn-based strategy games. Several variants of Civiliza-
tion have been used in academic research because of the broad spectrum of problems involved
in the games as well as the multitude of versions available, quite a few of them with open
source code.

Ulam et al. (2004) use the Civilization variant FreeCiv, an open source version of the
commercial game Civilization II, to show the effectiveness of model-based reflection and self
adaption. The comparably small but important task of managing the construction of defensive
units and buildings in a city is used as a testbed. Houk (2004) goes further and introduces
an agent that plays the complete early expansion phase of FreeCiv. The Lisp module which
was created to do this controls city management, unit management, and exploration.

Souto (2007) and Gundevia (2006) describe the integration of the commercial Civilization
game Call To Power 2 (CTP2) with the test environment TIELT (Aha and Molineaux,
2004). Their overall aim is transfer learning, but the test environment can also be used as an
integrated testbed for future research using CTP2. TIELT integrated with CTP2 is used by
Sánchez-Ruiz et al. (2007) as a testbed for adaptive game AI. In order to communicate with
the game an ontology for the domain is developed and case-based planning in combination
with CBR is used to create an adaptive AI.

Sánchez-Pelegrín et al. (2005) document the development of an AI module for the open
source Civilization clone C-Evo. This variant, which is closest related to Civilization II,
allows for the development of different AI modules which can then compete against each
other. The authors develop an AI module based on CBR that can perform simple combat
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actions. The modular architecture of C-Evo is then used to compare this module with a
non-learning version of itself.

3.5 Algorithms

This section which is based on (Sutton and Barto, 1998) describes the general algorithms and
concepts which are used throughout this thesis in detail. First the notions of the Markov
property and Markov decision processes are explained. These are important since they are
prerequisites for the efficient use of reinforcement learning techniques. The idea behind the
reinforcement learning technique temporal difference learning is described afterwards. Both
TD algorithms that are applied throughout this thesis are based on this technique. These
specific algorithms, Q-learning and Sarsa, are elaborated afterwards. After explaining the
simple, one-step versions of these algorithms, their more complex versions which include
eligibility traces are shown in detail.

The algorithms described in this section are not yet altered in any way to adjust them for
the specific area of application in this thesis. These alterations are described in Chapter 5.

3.5.1 The Markov Property

The agent in a reinforcement learning framework makes its decisions based on the information
it gets about the environment at any one time, the so called state. If this state signal contains
all the information of present and past sensations it is said to have the Markov Property. This
does not mean that single actions leading up to the present state have to be observable, only
the important parts for the current state have to be present. Mathematically the complete
probability distribution for the response of an environment at time t + 1 to an action taken
at time t looks as follows

Pr
{
st+1 = s

′
, rt+1 = r|st, at

}
.

If an environment has the Markov property this also means that given the current state
and action, it is possible to predict the next state and reward. Through iteration this allows
to predict all future states. Furthermore choosing a policy based on a Markov state is just
as effective as choosing a policy when knowing the complete history until that state. In
reinforcement learning Markov states are important since decision are only made based on
the current state. Even if a reinforcement learning environment does not have the Markov
property, the standard algorithms which assume this property can still be applied. However
these algorithms will usually only be as effective as far as the state signal resembles a Markov
state.
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3.5.2 Markov Decision Processes

If a reinforcement learning task presents the Markov property it is said to be aMarkov decision
process (MDP). If the task has a finite number of states and actions it is called a finite MDP.
A specific finite MDP is defined by a quadruple (S,A,Pa

ss
′ ,Ra

ss
′ ).

In this quadruple

• S represents the state space,

• A represents the action space,

• Pa
ss′

= Pr
{
st+1 = s

′ |st = s, at = a
}

represents the transition probabilities, i.e. the
probability of reaching state s′ from s after taking action a.

• Ra
ss′

= Pr
{
st+1 = s

′ |st = s, at = a
}

represents the expected reward, given a current
state s, an action a and the next state s′ .

The MDP is used to maximize a cumulative reward by deriving an optimal policy π according
to the given environment.

3.5.3 Temporal-Difference Learning

Temporal-difference (TD) learning is a reinforcement learning method which combines ideas
from dynamic programming with Monte Carlo methods (Sutton, 1988). Like Monte Carlo
methods it samples the environment to observe the current state without the need of a
complete model of this environment. Both methods update their estimated value V of a
visited state st based on the return after visiting the state while following a policy π. Just as
for dynamic programming the estimation is thus based on previous estimates, the so-called
’bootstrapping’. The pseudo code for the simple TD algorithm looks as in Algorithm 1.

Initialise V (s) arbitrarily and π to the policy to be evaluated
for (each episode) do

Initialise s
repeat for each step of episode

a←action given by π for s
Take action a; observe reward, r, and next state, s′

V (s)← V (s) + α
[
r + γV (s

′
)− V (s)

]

s← s
′

until s is terminal
Algorithm 1: A Simple TD Algorithm for Estimating V π
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3.5.4 The Q-Learning Algorithm

Q-learning is an off-policy TD algorithm, i.e. it calculates the values of policies not only based
on experimental results but also based on estimates about values of hypothetical actions, i.e.
actions which have not actually been tried.
The formula for simple one-step Q-learning is

Q(st, at)← Q(st, at) + α [rt+1 + γmaxaQ(st+1, at)−Q(st, at)] . (3.1)

Since Q-learning works independent of the policy being followed, the learned action value
Q function directly approximates the optimal action-value function Q∗. In contrast to simple
TD it does not assign a value to states, but to state-action pairs. The only prerequisite it has
to finding the optimal policy with probability 1 is just that all states are visited infinite times,
which is a basic requirement for all reinforcement learning methods that are guaranteed to
find the optimal behavior.
The procedural form of the Q-learning algorithm can be seen in Algorithm 2.

Initialise Q(s, a) arbitrarily
for (each episode) do

Initialise s
repeat for each step of episode

Choose a from s using the policy derived from Q
Take action a, observe r, s′

Q(st, at)← Q(st, at) + α [rt+1 + γmaxaQ(st+1, at)−Q(st, at)]
s← s

′

until s is terminal
Algorithm 2: Pseudocode for One-Step Q-Learning

3.5.5 The Sarsa Algorithm

Sarsa is an on-policy TD learning algorithm very similar to Q-learning (Rummery and Ni-
ranjan, 1994). The main difference is that it is not necessarily the action with the biggest
reward that is used for the next state but the action according to the same policy that led to
the present state. Sarsa stands for State-Action-Reward-State-Action, more specifically the
quintuple referred to here is (st, at, rt+1, st+1, at+1). This implies that to compute the update
for a Q-value the following information is needed:

• The current state st.

• The chosen action at according to a policy π.

• The reward rt+1 gained from executing this action.
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• The resulting new state st+1.

• The next at+1 action that is chosen the policy π.

Sarsa was developed as an alternative to the off-policy Q-learning which always chooses the
action yielding the maximum reward. Sarsa allows for a more controlled trade-off between
exploitation (taking the highest yielding action) and exploration (picking random/ unknown
actions). The update function for Q-values is

Q(st, at)← Q(st, at) + α [rt+1 + γQ(st+1, at+1)−Q(st, at)] . (3.2)

This function makes use of every element in the quintuple described above. In its general
form Sarsa looks as shown in Algorithm 3.

Initialise Q(s, a) arbitrarily
for (each episode) do

Initialise s
Choose a from s using the policy derived from Q
repeat for each step of episode

Take action a, observe r, s′

Choose a′ from s′ using the policy derived from Q
Q(st, at)← Q(st, at) + α [rt+1 + γQ(st+1, at+1)−Q(st, at)]
s← s

′

a← a
′

until s is terminal
Algorithm 3: Pseudocode for One-Step Sarsa
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3.5.6 Eligibility Traces

Eligibility traces are a basic mechanism of reinforcement learning that is used to assign tem-
poral credit. This means that it is not only the value for the most recently visited state or
state-action pair that is updated. Value for states or state-action pairs that have been visited
within a limited time in the past are also updated. The technique can be combined with any
TD technique and it speeds up the learning process. As future chapters will show, assigning
temporal credit is important for the task of city site selection that was chosen for this thesis.

TD(λ) is a popular TD algorithm that uses eligibility traces and was developed by Sutton
(1988). It was used by Tesauro (1992) for his famous backgammon agent which learned to play
on the same level as human players. The λ in TD(λ) is the so-called trace-decay parameter,
i.e. the parameter which determines how far rewards propagate back through a series of
states/actions. This parameter is used to compute the eligibility trace which is for state s at
time t

et(s) =




γλet−1(s) if s 6= st;

γλet−1(s) + 1 if s = st.

To guarantee convergence towards the optimal solution, the limits for lambda are 0 < λ < 1.
This is quite obvious since lambda has to decay in order to make future rewards less important
than present rewards. The pseudocode for TD(λ) can be seen in Algorithm 4.

Initialise V (s) arbitrarily and e(s) = 0 for all s ∈ S
for (each episode) do

Initialise s
repeat for each step of episode

a←action given by π for s
Take action a; observe reward, r, and next state, s′

δ ← r + γV (s
′
)− V (s)

e(s)← e(s) + 1
forall s do

V (s)← V (s) + αδe(s)
e(s)← γλe(s)

s← s
′

until s is terminal
Algorithm 4: Pseudocode for TD(λ)

For both Q-learning and Sarsa eligibility traces are not used to learn state values Vt(s) but
rather values for state-action pairs Qt(s, a), just as in the one-step versions of these algorithms.
The pseudocode for the eligibility trace version of Sarsa(λ) can be seen in Algorithm 5.

There are two different popular methods that combine Q-learning and eligibility traces.
They are called Peng’s Q(λ) (Peng and Williams, 1994) and Watkins’s Q(λ) (Watkins, 1989)
after the people that first proposed them. Empirically, it has been shown that Peng’s Q(λ)
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Initialise Q(s, a) arbitrarily and e(s) = 0 for all s ∈ S
for (each episode) do

Initialise s, a
repeat for each step of episode

a←action given by π for s
Take action a; observe reward, r, and next state, s′

Choose a′ from s
′ using policy derived from Q

δ ← r + γQ(s
′
, a
′
)−Q(s, a)

e(s, a)← e(s, a) + 1
forall s, a do

Q(s, a)← Q(s, a) + αδe(s, a)
e(s, a)← γλe(s, a)

s← s
′
; a← a

′

until s is terminal
Algorithm 5: Pseudocode for Sarsa(λ)

usually performs better and nearly as good as Sarsa(λ) (Sutton and Barto, 1998). However
Peng’s Q(λ) is far more complex to implement than Watkins’s Q(λ), has not yet been proven
to converge to the optimal function Q∗, and is basically a hybrid between Watkins’s Q(λ) and
Sarsa(λ). Therefore in this thesis only Watkins’s Q(λ) is used as Q-learning algorithm with
eligibility traces. The pseudocode for Watkins’s Q(λ) can be seen in the figure for Algorithm
6.

Initialise Q(s, a) arbitrarily and e(s) = 0 for all s, a
for (each episode) do

Initialise s, a
repeat for each step of episode

Take action a; observe reward, r, and next state, s′

Choose a′ from s
′ using policy derived from Q

a∗ ← argmaxbQ(s
′
, b) (if a′ then a∗ ← a

′)
δ ← r + γQ(s

′
, a∗)−Q(s, a)

e(s, a)← e(s, a) + 1
forall s, a do

Q(s, a)← Q(s, a) + αδe(s, a)
If a′ = a∗, then e(s, a)← γλe(s, a)
else e(s, a)← 0

s← s
′
; a← a

′

until s is terminal
Algorithm 6: Pseudocode for Watkins’s Q(λ)

This chapter gave an overview of the historical background of machine learning in games in
general and machine learning in computer games in particular. After illustrating the histori-
cal background of reinforcement learning, this chapter also looked at the use of reinforcement
learning in computer games. It illustrated the related work for the chosen testbed, the com-
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puter game Civilization IV. Finally, the specific reinforcement learning algorithms and their
applications in computer games were explained.
The next chapter deals with the computer game that will serve as a testbed in this thesis.
The selection of the testbed from a range of candidates will be elaborated on first. Then the
game mechanics as well as the specific task for which reinforcement learning is used will be
outlined.
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Testbed

This chapter gives an overview of the testbed that is used in this thesis, namely the computer
game Civilization IV. At first a comparison of the four Civilization games that were considered
as testbeds is given. The results of this comparison are the motive for using Civilization IV as
a testbed. After selecting the testbed, a general introduction to the games of the Civilization
series and their game mechanics is given. Then the way the existing Civilization IV AI works
is illustrated before the task the reinforcement learning algorithms will perform is explained
in detail.

4.1 Selection Criteria

As suggested in the previous section on related work, a general choice was made to use a
game of the Civilization series as a testbed. The next section describes the selection of the
Civilization game. The criteria according to which the game is chosen, are listed below.

• Code Availability: All important parts of the code have to be open source. These parts
must be easily accessible. This is an exclusion criterion.

• Ease of Use: This criterion includes several subitems.

– Quality of the Documentation: Even the smaller games contain an extensive code
base. It is therefore important that information exists on how to use the code.

– Quality of the Code: The quality of the code base is very important. The code
should be well structured and be developed according to standards that make
working in one part of the code similar to working in any other part.

– Programming Language: The programming language should be as capable as pos-
sible, i.e. contain high-level functionality. While low-level programming languages
offer more control over memory management and are usually faster, not speed but
functionality is the main focus of this thesis. A potent development environment
should exist for the programming language the code base is written in.
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• Modularity: Only a small part of the existing AI will be replaced. It is important that
this is easily possible and the rest of the existing AI remains completely functional.

• Quality of the Existing AI: Since only a small part of the overall AI will be replaced by
reinforcement learning, the rest of the standard AI will still be used in experiments. It
is therefore important that the existing AI is very capable and does not contain errors.
These errors could make experimental results worthless.

• Age and Popularity: These two criteria are signs of the effort that went into the devel-
opment of the game and of ongoing support. More recent programs usually underwent
a more complex development and thus is also more likely to have higher quality code.
If a commercial or open source game enjoys a high popularity the developers are more
likely to release patches and bug fixes for it than for a game with low popularity. Since
the results of young age and huge popularity are already covered by previous criteria,
age and popularity are only used as indicators for these previous criteria.

• Reusable Results: Ideally there exists code or documentation from similar projects that
can be reused.

4.2 Testbed Selection

Section 3.4.7 expands on related work that has been done on Civilization games. It lists
several of these games of the Civilization series. All three of the games mentioned in that
section have been used successfully as testbeds for academic research. A choice therefore
had to be made between these three versions of Civilization and the most recent commercial
version of the original game, Civilization IV. The criteria according to which this choice is
made have been listed in the previous section. Table 4.1 lists some basic characteristics of the
four games.

Release Open Source (OS)/ Programming Target Group
Commercial Language

C-Evo 1996 Open Source Delphi/Pascal Very Advanced
Players

FreeCiv 1999 Open Source C Medium to
Advanced Players

Call to Power 2 2000 Originally Commercial C++ All Levels
Completely OS Now of Experience

Civilization IV 2005 Originally Commercial C++/Python All Levels
Partly OS Now of Experience

Table 4.1: Comparison of Civilization Games
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A first choice can be made between the inherently open source versions C-Evo and FreeCiv
and the commercial versions CTP2 and Civilization IV which offer open source code but were
not designed to be released to the public. The two open source games offer complete access
to commented source code, they are smaller in scale and less complex than their commercial
counterparts. Since they are easier to access and have been available for a longer time, they
have been the preferred testbeds for research. Especially C-Evo offers great support for AI
because it has its own interface for complete AI modules (Gerlach, 2008).

However, the code base of the two community projects is of a very different quality than the
professionally developed commercial games. C-Evo’s core has been developed by one person
only. Consequently it has several shortcomings such as undocumented hidden dependencies
and missing documentation for certain parts of the code. FreeCiv, on the other hand, was
entirely developed as a community project. As a consequence, there are various inconsistencies
in its code base. Its AI in particular has been poorly documented and developed according to
the developers (Freeciv Project, 2008). For this thesis only a small part of the AI was to be
replaced by reinforcement learning while the standard game AI controls all remaining tasks.
The bad quality of its AI thus makes FreeCiv an unfavorable testbed.

A further disadvantage of the open source games is their programming languages. Since
the open source games are older than the commercial ones, they have been developed in
Delphi and C. The commercial games on the other hand both were developed using C++.
The most convincing argument in favor of CTP2 and Civilization IV is the fact that they
are commercial games: They have been developed by professional programmers, artists
and designers with a massive budget, they went through a software life cycle that included
thorough testing and reviewing and they have a huge user base. These two games represent
the testbeds that John Laird referred to in his keynote address at the AAAI 2000 conference
(Laird and van Lent, 2001) when he was talking about computer games being ideal testbeds
for academic research.

The choice between CTP2 and Civilization IV is more complicated than between commercial
and open source games. Both CTP2 and Civilization IV offer easily accessible interfaces
for sophisticated user-developed modifications (‘mods’) besides their published source code.
Furthermore, both games originally lacked documentation because the companies deleted all
comments from the source code prior to releasing it as open source. They did so in order to
avoid legal problems. All existing documentation has been added by the communities of the
respective games.
CTP2 has the advantage of offering complete access to the source, in contrast to Civilization
IV, which offers access only to the core. Thanks to prior work done by Souto (2007) and
Gundevia (2006), it would be an option to use TIELT in conjunction with CTP2 instead
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of working directly in the code. However, this integration with TIELT would offer only a
limited set of commands. Since these limited commands do not allow to completely control
the task of city site selection described in more detail in Section 4.5, it was decided not to
pursue this approach. Another setback of the use of CTP2 is the amount of code lines that
can be modified. If CTP2 is used, more than 2000 000 lines of code (LOC) are accessible and
subject to possible change. Another problem of CTP2 is that the developer Activision ceased
to support the game very soon after its initial release. Most of the large number of errors
that remained in the code at that time have since been fixed by the community. This meant,
however, that the development of other features like AI was neglected.

Civilization IV, on the other hand, is still in active development by the original developer
Firaxis. Parts of the code developed by the community have actually been included in the
commercial product (BetterAI Project, 2007). While the published source code for the core
of Civilization IV contains about 100000 LOC with the AI code consisting of roughly 25000
LOC, a quick analysis of the code showed that the chosen task can actually be performed by
replacing a single method. The information that is important for the task is contained in three
to four classes. A further advantage of Civilization VI over CTP2 is its age. Civilization IV
is about two computer game generations younger than CTP2 (Civilization IV’s predecessor
Civilization III was released one year after CTP2). The game thus contains more advanced
features. Since the AI in Civilization IV is strong, the success of a competing agent using
reinforcement learning for parts of its decision making process would be very impressive. For
the reasons stated above, Civilization IV was chosen as testbed.

4.3 The Civilization Game

Civilization is the name of a series of turn-based strategy games in which the player has to
lead a civilization of his choice from the beginnings (BC) to the present day. The games
involve building and managing cities and armies, advancing the own empire through research
and expansion as well as interacting with other, computer-controlled civilizations through
means of diplomacy or war in a turn-based environment. The popularity of the original game
has lead to a multitude of incarnations of the game, both commercial and open source. The
variant of the Civilization game which will be used as a testbed in this thesis is Civilization
IV (Firaxis Games, 2005). Civilization IV was developed by Firaxis Games and is the latest
version in the commercial series of the original game. Large parts of its code base, including
the part which controls the AI, have been released as open source. These parts can be modified
to allow machine learning algorithms to take over tasks of the existing AI.
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4.4 Existing Civilization IV Game AI

Since Civilization IV is a commercial game that aspires to provide enjoyable gameplay for all
levels of skill, the existing computer AI is already quite sophisticated. It has furthermore been
improved by the Better AI project (BetterAI Project, 2007). This is a community project
that modified the code base of the existing game to improve overall AI performance. The
performance of the computer AI players is therefore comparable to that of strong human
players with equal handicaps and can, through a number of modifiers, be scaled up or down
to several levels of difficulty. However, this scaling does not make the AI itself stronger or
weaker. It merely influences the conditions under which the AI operates (the game rules) and
makes them more or less favourable.
One of the AI’s major shortcomings (from a machine learning point of view) is that the

computer AI is almost completely deterministic: Only a very limited set of decisions and
events in the game are controlled by randomness. The situations in which the AI’s decisions
are controlled by randomness are limited to combat situations. This shortcoming can however
be used as an advantage when it comes to creating environments for empirical evaluation of
modifications. The computer can provide a challenging opponent in these experiments but
is still more or less completely normalized, i.e. deprived of randomness. Furthermore, an
improvement of the Civilization IV AI would show that research can be used to create a bigger
challenge for the player and thus offer a more enjoyable playing experience. Consequently, the
improvement of the existing computer AI through reinforcement learning would demonstrate
that scientific research can be used to improve commercial computer games.

4.5 City Placement Task

The most important asset in a game of Civilization IV are the cities. The three major resources
a city produces are food (used for growth and upkeep of a city), commerce (used among others
for research and income) and production (used to produce units and buildings). Furthermore,
special bonuses that grant additional basic resources or other benefits like accelerated building
speed can be gained. The playing field in Civilization IV is partitioned into ‘plots’ with each
plot producing a certain amount of the resources mentioned above. A city has access only to
the resources of a plot which is in a fixed shape of 21 plots surrounding the city (Figure 4.1).
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Figure 4.1: Civilization IV: Workable City Radius

In addition, the borders of an empire and thus the area of influence of its player are defined
by the connected borders of the cities of that empire. Therefore the placement of cities is
a crucial decision and influences the outcome of a game to a large degree. This is one of
the main reasons why we chose to apply reinforcement learning to the city site selection
task. Furthermore, city placement can be evaluated at a relatively early stage of the game
since according to the game mechanics, the founding of cities (and thus the creation of the
empires) takes place during the initial phase of the game. Depending on map size and number
of players, it takes between one fourth and one half of the complete game time to settle a whole
map. Once a whole map has been settled, the focus shifts from exploration and settlement
to consolidation and combat. This allows to focus the experiments on the first third of the
game, the settling phase. The first third of the game is also the fastest part of it because of
the low number of active units in this phase of the game. It thus allows for a high number
of runs in a relatively small period of time. Figure 4.2 shows an overview of an empire that
consists of two small cities. The cities as well as the border of the whole empire are marked.
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Figure 4.2: Civilization IV: The Border of an Empire

4.6 Existing Procedure for City Foundation

The existing procedure for building cities for a given civilization consists of several steps.
However, it is strictly sequential and only takes into account information from the moment
the plot is selected. This means, for instance, that possible locations for future cities or a
high-level plan for the layout of the empire are not taken into consideration.

It is with respect to this characteristic that the adaptable reinforcement learning algorithms
are to improve the existing AI. Since the reinforcement learning agent only replaces a small
part of the process of founding a new city, it is important to understand how the existing
process works. It is vital that the newly created process fits in seamlessly with the other parts
of the game to enable meaningful experimental comparison between the existing process and
the newly created process.

Creating Settlers

The founding of a new city is not determined by a direct decision of the AI that another city
is needed but by the creation of a new settler unit in one of the cities. The creation of a
new settler is a completely decentralized process. Every turn the best unit or building to be
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produced in each city is determined by evaluating the needs of the active player in general
and the needs of the specific city in particular.
Since the existing computer AI is programmed in a way that never lets a settler move

around on its own, i.e. without a fighting unit as an escort, the fact that settlers are easily
killed by any hostile fighting unit does not matter for the settlers controlled by computer
AI. Consequently, the reinforcement learning process does not have to take into account lost
settlers but can just assume that once the site for a new city has been chosen, that city will
be built. Human players on the other hand often take the risk of sending a settler out on his
own to save the time and resources it takes to build a defending escort.

Founding a City

Once a settler has been created, the computer AI computes a new command for this settler at
every turn. The computation consists of a sequence of checks for possible actions. Depending
on what the circumstances are the settler will usually be sent to a certain spot on the map
where it will found a city. Since settlers cannot defend themselves, the computation also
includes the check for a suitable escort. If such an escort is not available, the computer AI
will order the settler to return to a safe place.
Other possible actions include loading the settler onto a transport ship if a much better

founding spot has been discovered on a different continent or founding a city on the spot
where the settler is located if the game has just begun and every turn that a city can be
founded earlier is crucial.

The Selection of the Best Founding Sites

The most important method in the existing game AI with regard to this thesis is the method
that determines the value of a certain plot when it comes to founding a city on this specific
plot. The reinforcement learning approach will have to compete with the method the existing
AI uses to determine the value of a certain plot. Therefore the present section will analyse
the existing method of determining the value of a plot.
The existing method of selecting the best founding site computes an integer number for

every plot. The number represents the value of founding a city on this plot by a given player.
For the computation of the value a number of different factors are taken into account:

• Position of the plot in relation to water.

• Proximity of enemy settlements.

• Proximity of friendly (own) cities.

• Existing cities on the same continent (Team member’s/Enemies/Own).
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(a) Badly Distributed Cities (b) Well Distributed Cities

Figure 4.3: City Distribution

• Characteristics of the enclosed workable tiles for the possible city:

– Number of workable tiles.

– Number of workable tiles owned by enemies or team members.

– Number of workable tiles used by another one of the player’s cities.

– Yield of the workable tiles in terms of production, commerce, and especially food.

– Possible gain in special resources.

– Special resources that founding a city here will lock from access.

It is obvious from these characteristics that the selection of founding plots by the computer
AI is completely static and based on the time of the calculation. No planning for future city
placements or consideration of the bigger picture is done.
The actual effect of the use of reinforcement learning should therefore be twofold.

1. The already existing technique should be copied where it is useful. However, this should
not be done by using a static evaluation method but through reinforcement learning.
An example of a basic learnable strategy is optimising the distance between cities. Only
one city can use a plot at any one time. Therefore, if the distance between cities is
too small, their growth and the number of special resources they can access is limited
(Figure 4.3).
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2. Furthermore, the application of reinforcement learning should also lead to the develop-
ment of new, improved strategies where the old method is lacking. This would include
the founding of cities at sites that are neglected by the existing static evaluation
method. For example sites that will normally be occupied by an opponent is not an
obvious first choice as a founding site. However, settlement of some of these sites offers
access to important resources and/or strategically important areas and can thus be
decisive for a whole game.

The present chapter has given an overview of the chosen testbed, Civilization IV. The ex-
isting alternatives were pointed out and it was illustrated why Civilization IV was selected as
a testbed. The game mechanics and the existing game AI have been described. Finally, the
selected task, the selection of city sites, was elaborated on. The importance of this task as
well as the method that is used by the standard game AI were explained.
The following chapter will focus on the integration of the algorithms and methodology (de-
scribed in Chapter 3.5) into the game environment described in the present chapter. Both
the design decision and considerations in terms of implementation will be explained in detail.
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Design and Implementation

This chapter describes the integration of reinforcement learning into Civilization IV. It fur-
thermore elaborates on how the algorithms described in Section 3.5 have been adapted to the
task described in Section 4.5. The process of adaption includes modifications to the game in
order to produce a working system. Moreover, decisions on the design will be explained. Sec-
tion 5.4 shows the adjustments that were made to speed up convergence and thus to counter
the problem of a huge state space described in Section 5.2.1.

5.1 Policies

As stated in the section on algorithms (Section 3.5), while the overall aim of the agent is to
find an optimal policy π∗ for the given state space, it has to be provided with a standard policy
π which it can use to pick the next action while learning this optimal policy. The policy π
basically describes, given a state s, the probabilities of picking a ∈ A(s). That is, it describes
the probabilities of being picked for all actions that are available in a state s. The policy
provided can be one of several different types that have different levels of trade-off between
exploration (picking a random action) and exploitation (picking the action that leads to the
highest estimate). Depending on the purpose of an experiment, some policies are more useful
than others. The selection of a preliminary policy is crucial since it determines the speed of the
convergence. In theory, even with a completely random policy, convergence in the algorithms
discussed is guaranteed if every state is visited infinite times and the reinforcement learning
parameter are set to commonly used values. In practice however, convergence should of course
be as fast as possible.

5.1.1 Greedy Policies

A greedy policy is a policy which always selects the action that maximises the return. It
means that the agent will always pick the action with the best return according to the current
knowledge of the agent. On the down side, a greedy policy completely ignores exploration,
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i.e. no random and possibly better actions are picked. As for probabilities, a greedy policy
implies that the action with the maximal estimated value is chosen with probability 1. If
there are several actions that have the maximal value, it depends on the implementation if
the first or last action with a maximal estimated value or a random action from all actions
with maximal value is chosen.

5.1.2 ε-Soft Policies

ε-soft policies are all policies for which π(s, a) ≥ ε
|A(s)| for some ε > 0 for all states and actions.

This means that all states will eventually be visited. ε-soft policies are thus a superset of a
whole range of policies, including ε-greedy policies which are described in the next section.

5.1.3 ε-Greedy Policies

One of the most commonly applied strategies in reinforcement learning is the ε-greedy strategy.
The ε-greedy strategy implies that with probability 1 − ε, 0 < ε < 1 the agent will take an
explorative action in ε ∗ 100 percent of all choices and an exploiting action in (1 − ε) ∗ 100

percent of the cases. For the probabilities of the actions this implies that for all nongreedy
actions a the probability of the action being picked is π(s, a) = ε

|A(s)| . For the greedy action
the probability is the remainder, 1− ε

|A(s)| .

A special case of ε-greedy policies are declining ε-greedy policies. While the policy starts
out as a standard ε-greedy policy, ε will slowly decline with the number of episodes until the
policy is completely greedy.

5.1.4 Softmax Policies

A softmax policy can be used to counter the major drawback of ε-greedy methods, namely
that when it comes to exploration, all actions are picked with equal probability. This strategy
of picking actions implies that both the actions with the worst and with the second-best
estimated value are equally likely to be picked, which is undesirable. To counter this drawback
of ε-greedy methods, a parameter β > 0 is introduced into the probability equation. It is called
temperature. This parameter determines how peaked the distribution is around the greedy
action. The most widely used softmax method uses a Gibbs, or Boltzman, distribution:

π(s, a) =
e
Q(s,a)
β

∑
a′∈A(s) e

Q(s,a
′
)

β

.
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The higher the temperature is, the closer the actions get to being all equiprobable. On the
other hand for β → 0, the probability distribution approaches that of a greedy policy.

Depending on the area of application and human expertise, both policies, softmax and ε-
greedy, have their advantages. However while both policies have exactly one parameter that
has to be set, the effects of changes in ε are easy to track. A change of β, on the other hand,
requires knowledge of the possible estimated values for the actions. For this reason ε-greedy
and declining ε-greedy policies are used throughout the evaluation described in Chapter 6.

5.2 Reinforcement Learning Model

In order to apply reinforcement learning algorithms in an effective way, a model which con-
tains the modules of an MDP described in Section 3.5.2 has to be defined. The model should
furthermore fulfill the Markov property (Section 3.5.1) to enable efficient reinforcement learn-
ing. Therefore the reinforcement learning model for the city placement task consists of the
quadruple (S,A,Pa

ss′
,Ra

ss′
): the set of states S, the set of possible actions A, the transition

probabilities Pa
ss′

and the expected scalar reward signal Ra
ss′

. Ideally the chosen state and
action space are finite. If they are finite, it implies that the MDP is a finite MDP which
would simplify the reinforcement learning process. The following sections describe design and
selection of the individual modules of the MDP.

5.2.1 States

A state s ∈ S should contain all information at one point of the game that is important to
the reinforcement learner, i.e. that the agent needs to make a decision. In order to have the
Markov property, the state should also sum up all important information up to that point
in time so that no previous information is required. For the task of city site selection, the
important information at any one point in time is the information on all existing cities of the
active player. The recorded values for each city are

• its position as (x, y) coordinates, i.e. the plot this specific city was built on,

• its rank in the founding sequence, i.e. when the city was founded, in relation to the
other cities of this player.

The rank in the founding sequence is important to satisfy the Markov property: Without the
rank, previous states would be required to obtain all necessary information. In general the
rank of a city is crucial since a different order of founding can lead to very different results.
Thus a state s ∈ S can be described as a set of triples (X-Coordinate, Y-Coordinate, Rank in
the Founding Sequence) with each triple representing one city.
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This definition of a state suggests, that the set of all states S consists of all possible
combinations of the (X-Coordinate, Y-Coordinate, Rank in the Founding Sequence) triples
where cities can be built. They can be built on any plot p ∈ P where P is all plots on the
map. The resulting size of the state space is

|S| =
c∑

i=0

|P |!
(|P | − i)! , (5.1)

with c = |P | since every plot on the map could be a city.
Civilization IV offers several different standard map sizes for different numbers of players

and terrain settings. It also offers the option to create custom map scripts. Table 5.1 shows
the size of the standard maps in plots as well as the resulting number of possible states,
depending on the number of cities that have been built.

Duel Map Tiny Map Small Map Standard Map Large Map
(640 Plots) (960 Plots) (1664 Plots) (2560 Plots) (4368 Plots)

1 City 640 960 1664 2560 4368
2 Cities 409600 921600 2768896 6553600 19079424
3 Cities 261326080 882894720 4601908480 16764113920 83300773920
4 Cities 1.66465E+11 8.44931E+11 7.64377E+12 4.28658E+13 3.63608E+14
5 Cities 1.05872E+14 8.07755E+14 1.26887E+16 1.09565E+17 1.58678E+18
6 Cities 6.72289E+16 7.71407E+17 2.10505E+19 2.79939E+20 6.92314E+21

Table 5.1: Relationship between the Map Size and the Number of Possible States

It is obvious from Table 5.1 that a brute force approach with experiments that use the
biggest map size and run for a complete game with every player building a large number of
cities, will not result in noteworthy coverage of the state space. As stated in Section 3.5 in the
description of the algorithms, a convergence to the optimal policy π∗ is only guaranteed for
infinite visits to every single state. Convergence becomes more likely the more often all states
are visited. The large number of states, especially for the bigger maps, makes it unlikely that
all states are visited even once in the course of an experiment.
It is therefore necessary to keep the number of possible states to an absolute minimum and

to optimise the algorithms. Measures taken to achieve this goal are described in Section 5.4.
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5.2.2 Actions

The transition from one state to another is brought about by founding another city, thereby
extending the existing set of (X-Coordinate, Y-Coordinate, Rank in the Founding Sequence)
triples by another one. The set A of possible actions which can be taken when in a state
s ∈ S thus consists of founding a city on any of the plots (p ∈ P‖p /∈ s), i.e. on any plot
where there is no city of the active player yet.
This definition of the states and actions implies that the resulting state space will be like
a graph with no cycles, i.e. a tree. Figure 5.1 shows a part of such a tree with the nodes
representing the states and the branches representing the actions. Due to the structure of the
state space, no state can be reached more than once in one episode.

Figure 5.1: Excerpt of the State Space S including the Actions that lead to the Transition

The model above is a simplification of the game since it ignores cities which are lost to an
enemy as well as cities which are won from an enemy. However, for the purpose of the present
study, the simplification is acceptable because this approach focuses on the early expansion
phase in the game during which attacks on cities are rare.
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5.2.3 The Transition Probabilities

The algorithms that have been introduced in Section 3.5, Q-learning and Sarsa, compute
a state-action function Qπ and not a state-value function V π in contrast to standard TD-
learning. Therefore no model of the environment, i.e. of the transition probabilities Pa

ss′
, is

required.

5.2.4 The Reward Signal

Choosing the scalar reward signal rt ∈ Rass′ is one of the most important decisions for the
success of an agent that is based on reinforcement learning. The reward signal defines the
goal for the agent and if it is chosen incorrectly, the agent will not be able to learn how to
achieve its goal.

The Scalar Reward

The chosen reward signal for the task of selecting city sites is based on the score of a player.
In the normal game this score is used to compare the performance of the players with each
other and it is updated every turn for all players. The game score is determined by

• Population (in the cities),

• Territory (the cultural borders of the cities, see Figure 4.2),

• Technological advancement (developed with research output from the cities) and

• Wonders of the world (special buildings in the cities that provide particular benefits).

All the parts the game score is made up of are directly linked to the cities. The game score
does not include any points for military strength since military units are always only a means
to an end. A whole game can only be won through cities.

Attributing Rewards and the Problem of Delayed Reward

Since cities show their true potential only later in the game when they grow bigger and
become more advanced, reward can only be attributed with delay. Another problem is the
difficulty of attributing game score to a specific city since some information is not accessible
to the agent. For instance the reward signal measures the direct contribution of a city to
the score but it does not calculate the additional score if the city leads to the foundation
of another city and thus indirectly adds to the player’s total score. This problem arises
because the decision to build a new city lies with a different part of the AI and is still
controlled by the original game. Through the right choice of algorithm and parameters
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for this algorithm (see Section 5.3), reinforcement learning should however be able to at-
tribute the state-action pair which leads to this city being built an appropriately high Q-value.

Since cities are built only infrequently, states have to be decoupled from the normal game
turns. Going from one game turn to the next is unlike the transition from one state to
the next. A time step for the reinforcement learner is the time frame in which it has to
choose an action and receives a reward after performing that action. It is defined as the time
between founding one city and founding the next city. The update of the Q-value Q(st, at)

after taking an action at in state st happens immediately before executing the next action
at+1, i.e. founding the next city. The selection of the appropriate plot for the foundation of
a city, however, can happen several game turns before, with the settler unit moving to the
chosen plot afterwards. The scalar value which represents the actual reward is computed by
calculating the difference in game score between the founding turn of the last city and the
founding turn of the city about to be founded. The difference is then divided by the number
of game turns that have passed between the two foundations:

r ← (GameScorenew −GameScoreold)
(GameTurnsnew −GameTurnsold)
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Figure 5.2 shows the process of attributing reward for a computer agent that selects city
sites by using the method presented above.
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Figure 5.2: Computation of the Rewards

The downward arrows mark the game turns in which new cities are founded and the state is
changed. The time it takes the settler unit to move to the designated founding site is ignored
for the sake of a comprehensive view. If it was taken into account, it would not change the
actual reward computation since the turns counted would remain the same with the state
changing at a slightly earlier time. The ruled triangles mark the intervals which are taken
into account for the computation of a reward. The x-axis represents the game turns T while
the y-axis represents the game score Ω. The diagram shows that rewards are attributed in
retrospect, i.e. after the next city has been founded.
by default the TD algorithms described in Section 3.5 propagate rewards backwards if they
are run for several episodes. This feature is also very useful because it partly offsets the
problem of delayed score gains described at the beginning of this section. Another mechanism
to counter the problem of delayed reward even more effectively are eligibility traces (Section
3.5.6). Their integration is described in the Section 5.3.
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5.3 Implementation of the Reinforcement Learning Algorithms

This section explains how the algorithms described in Chapter 3.5 are integrated into Civi-
lization IV and how they are used to learn the task of city site selection.

Figure 5.3 shows a general view of how reinforcement learning is integrated with the game
environment. The integration is independent of the algorithm and parameters used.

t t

t

t+1

Figure 5.3: General View of the Algorithm Integration for City Site Selection

The diagram clearly shows that the algorithm works in an asynchronous way. While the
change from state st to state st+1 already occurs in step 3, the update of the estimated value
for the state-action pair Q(st, at) only occurs in step 6, after the game has created another
city with the next settler unit.

The following sections illustrate how the algorithms and techniques described in Section
3.5 are adapted to the specific task at hand.

5.3.1 Integration of the Algorithms

The implementation of the two algorithms as well as the implementation of certain variations
like eligibility traces and previously initialised states are similar for Q-learning and Sarsa.
Internally, they use a ‘linked tree’ of state objects to store the single states. Due to the
enormous size of the state space described previously, not all possible states are initialised
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at the start of a game. The data structure that has been created to store all the necessary
information of a single state is shown in Appendix C.

The reinforcement learning method completely replaces the method which is used to control
the settler in the original game. Every time a settler becomes active for the agent that uses
reinforcement learning, the reinforcement learning method is executed. Since settlers do not
choose the preferred city site, travel there and build a city all in one turn, this newly created
method can not only be a simple reinforcement learning method. It must also be able to move
a settler that has already chosen the best city site and to create a city with the settler once it
gets there. Furthermore it must be able to handle exceptions along the way, e.g. if the chosen
city site becomes unavailable because an opponent settles there first or if the path is blocked
by enemy territory.

The basic method or rather the basic set of methods into which the actual reinforcement
learning methods are embedded is a set of if-else statements. The flow-diagram for this part
of the logic can be seen in Figure 5.4.

Figure 5.4: Flow of Events for City Site Selection
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The actual algorithm is split into two parts. One part is the method that chooses the city
site. The execution of this method is highlighted by the dashed border in the flow chart in
Figure 5.4. The pseudocode for this method for one-step Q-learning can be seen in Listing 5.1.

if ( p o s s i b l e s t a t e s s
′

which f o l l ow tak ing ac t i on a ∈ A(s) are not yet i n i t i a l i s e d ){
Determine what p l o t s meet the c r i t e r i a for s e t t l ement .
Create s t a t e ob j e c t s for a l l o f the chosen p l o t s .

}

while ( no c i t y s i t e s e l e c t e d )
{

Compute random number α with 0 < α < 1 ;
if (α < 1− ε)
{

// f o l l ow e x p l o i t a t i v e po l i c y
Choose ac t i on a as the ac t i on with the h i ghe s t est imated Q−value Q(s, a) ;

}
else
{

// f o l l ow exp l o r a t i v e po l i c y
Compute random number φ with 0 ≤ φ < |A(s)| ;
Choose ac t i on a as the ac t i on at po s i t i o n φ in the array o f A(s) ;

}
if ( p l o t chosen through ac t i on a i s r eachab l e and s e t t l e a b l e )
{

break ;
}

}

Listing 5.1: Pseudocode for the Implementation of the Plot-Selection Method for Q-Learning

The other part, which updates the value function Q(s, a), is highlighted by the dotted
border and the pseudocode for one-step Q-learning can be seen in Listing 5.2. This method
is always executed when a new city is founded.

if ( the re i s a prev ious s t a t e st−1 for which Q(st−1, at−1) can be updated )
{

Determine number o f turns Tnew as Tnew = Tnow − Tlastcity which
have passed between the founding o f t h i s c i t y and the l a s t ;

Determine the gained s co r e Ωnew s i n c e the l a s t c i t y
was founded : Ωnew = Ωnow − Ωlastcity ;

Compute the reward rt as the s co r e gained per turn between founding
t h i s c i t y and the l a s t : rt ← Ωnew

Tnew
;

Update Q(st−1, at−1)← Q(st−1, at−1) + α [rt + γmaxaQ(st, at−1)−Q(st−1, at−1)] ;
}

Listing 5.2: Pseudocode for the Implementation of the Value-Update Method for Q-Learning
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The pseudocode in Listings 5.1 and 5.2 shows Q-learning in particular. However, the
methods for Sarsa look very similar. The major difference between Sarsa and Q-learning is
that for Sarsa the following state and action have to be taken into account as well. This means
that both methods, the one for choosing the city site and the one for updating the Q-values
require one more state and one more action to be recorded previous to the execution of the
method described above.

5.3.2 Implementation of Eligibility Traces

The introduction of eligibility traces (Section 3.5.6) into one-step Q-learning and one-step
Sarsa is vital for the given task of selecting optimal city sites. Usually eligibility traces in
reinforcement learning algorithms are used to speed up learning by propagating rewards back
through a number of states that led up to the current state.
As stated in Section 5.2.4, an issue specific to the given task is that it is problematic to

attribute game score to one city only. The approach taken uses the score gain per turn
between one city founding and the next city founding,which, in a way, is inaccurate. The
approach manages well to record the tangible benefits of improved territory and population,
but it ignores most long-term effects that occur after the next city founding. However, these
long-term effects are very important since cities develop to their full potential only after
they have been allowed to grow for a number of turns. This shortcoming can to a certain
degree be rectified by using eligibility traces. Eligibility traces assign temporal credit through
propagating rewards back through the sequence of states and actions that have led up to the
current state. eligibility traces therefore ensure, that cities are attributed with the score they
help achieve in the long term.
In terms of implementation, instead of the one-step versions of Q-learning and Sarsa, vari-

ations of these algorithms which use eligibility traces are used: Watkins Q(γ) and Sarsa(γ)

(Section 3.5.6).
Figure 5.5 illustrates again the method of attributing reward in retrospect, i.e. after the next

city has been founded, introduced in Section 5.2.4. Based on Figure 5.5, Figure 5.6 compares
the update of Q-values for the state-action pairs with a one-step Q-learning algorithm with
that of Watkins’ Q(λ).
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Figure 5.5: Computation of the Rewards
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Figure 5.6: Comparison of Value Updates between One-Step Q-Learning and Watkins’ Q(λ)

The diagram shows clearly that value updates through Q-learning (left side) are slower at
propagating rewards of later states backwards. The trace threshold, i.e. the value underneath
which the trace e(s, a) will simply be counted as 0, is set to (λγ)2. This implies that rewards
only propagate backwards two time steps, which is a relatively low value. Nevertheless, a
noticeably faster convergence towards the estimated values of future state-action pairs can be
observed.

For Watkins’ Q(λ) it is also notable that, in order to make the propagation viable with
Q(λ), the policy shown has to be the optimal policy since otherwise the backward propagation
would stop at the first non-optimal choice.
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5.4 Accelerating Convergence

This section discusses the modifications that were made to speed up the convergence of the
reinforcement learning algorithms and thus to handle the problem of computability described
in Section 5.2.1.

5.4.1 Reduction of the State Space

As shown in Table 5.1, the number of possible states grows exponentially with the map size.
Therefore, simply reducing the map size and thereby the number of plots alone will not solve
the problem, though this can contribute to solving the problem as well. A reduction in map
size would efficiently reduce the number of possible states in earlier iterations of the algorithm,
thus making these maps usable for evaluation.
Another option is to limit the plots that are considered for settling. Plots that can not be

used to found a city are ignored.
This includes

• plots that are completely covered in water (either inland lakes or oceans) and

• plots that contain high mountains.

Ignoring these plots effectively reduces the number of plots on a map by two thirds on average.
Since the reinforcement learning algorithms can not be influenced negatively or slowed down
in any way through ignoring these plots, the exclusion described above is part of all performed
experiments.

5.4.2 Pre-Initialised Q-Values

In order to accelerate convergence, previous knowledge can be used. Reinforcement learners
generally do not require any previous knowledge of the environment and acquire all informa-
tion through the learning process. However, previous information that is already available
can be useful to speed up this acquisition process.
The knowledge available about the best city sites in a game of Civilization IV is computed
by the standard city site selection method. This information is available to the standard
game AI and can be used to initialise the Q-values for state-action pairs of the reinforcement
learner. Usually these Q-values are all initialised to 0, which makes all actions equally likely
to be picked. Consequently every state has to be visited in order to determine its usefulness
for the exploitation part of the policy, often only to conclude that its usefulness is very low.
If the states were instead initialised to the precomputed ‘founding values’ that are used by
the standard game AI, these values could serve as indicators for the usefulness of a plot for
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the reinforcement learner. This process would not speed up the guaranteed convergence to
an optimal policy π∗ but it would generate better performance earlier on.
However, this strategy has two side effects that have to be considered. One of the side effects

is that the use of values computed by the standard AI could easily lead to a performance very
similar to that of the standard game AI. To prevent this, only the values that are computed
before the first cities are placed will be used to initialise both the first and later states. This
strategy will also avoid making the founding values dependent on city locations.
The second side effect is that the founding values are in a completely different range than the

values for rewards: Founding values usually range from 500 to 5000, whereas reward values,
i.e. score gain per turn, will be somewhere between 4 and 50 depending on the stage of the
game. Therefore, a pre-initialised Q-value will be changed completely after the particular
state has been visited the first time. If Q-values were not normalised after the first visit to a
state on that layer in the state-space, they keep the higher pre-initialised founding values. To
avoid this, all Q-values are normalised relative to the computed reward of the first state-action
pair to make the Q-value of all other states on the same layer of the state space comparable.
Possible negative effects of the initialisation with founding values computed by the standard
AI are evaluated in in the empirical evaluation in Section 6.
Besides the two techniques that are used in order to speed up convergence and reduce

run-time, several other decisions with the goal of speeding up convergence were made when
setting up the experiments to evaluate the algorithms. These decisions are all elaborated on
in the section on experimental setup in the following chapter.

The present chapter has described how the reinforcement learning algorithms from section
3.5 were adapted to Civilization IV. The implementation of the different parts of the Markov
model from section 3.5.2 in the game environment has been illustrated in detail as has the
integration of the algorithm into the overall system. The issues related to including this
machine learning technique into a commercial game environment have been described as well
as the measures taken to resolve these issues.
The following chapter will present experiments that are performed using the different rein-

forcement learning algorithms implemented in Civilization IV. The experiments are executed
using multiple sets of parameters on each algorithm. Each of the performed experiments
serves a certain purpose that is elaborated on in the appropriate section.
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Evaluation

This chapter describes the experiments that were run using the algorithms and the environ-
ment described in the previous chapters.

In the first section the experimental setup as well as the measures that are taken to improve
reliability of the experiments are described. The following section illustrates how the opti-
mal settings for the test runs are determined by analysing preliminary experimental results.
Subsequently the shortcomings in the experimental setup that can be identified from the re-
sults are eliminated. The third section elaborates on the performance of the four different
algorithms after a working setup has been found. The final section of this chapter uses the
knowledge acquired in previous sections to compare the performance of the four variations of
reinforcement learning algorithms with the approach of the standard game AI.

6.1 Experimental Setup

This section gives a description of the parameters which are used in the algorithms as well as
the settings which are chosen within the game for the subsequent experiments.

6.1.1 Algorithm Parameters

As stated in Section 5.3, several different parameters can be set for the algorithms. The
parameters that are shared by all algorithms are the following ones:

• The learning rate α. The learning rate 0 < α < 1 determines how much of the previous
estimate will be replaced with the new estimate. A value of 0 will prevent the agent
from learning anything while a value of 1 will completely replace any previous values.

• The discount factor γ. The discount factor 0 < γ < 1 determines the weight of future
rewards. For a value of 0 future rewards are ignored. A value of 1 will result in the
agent considering current and future reward as equally important.
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• The exploration rate ε. In the ε-greedy policy which is used the exploration rate deter-
mines the ratio between exploration and exploitation (see Section 5.1).

The parameters which are specific to the algorithms that use eligibility traces, Q(λ) and
Sarsa(λ), are the trace decay rate λ and a threshold Λ for trace decay. The trace decay rate
0 < λ < 1 determines how much of a reward propagates backwards to Q-values of state-action
pairs leading up to the current state. For the value 0, a future reward is only propagated
backwards once, namely to the Q-value of the state-action pair directly preceding the current
one. For the value 1, all Q-values leading up to the current one will receive the full reward.

The threshold Λ determines up to what value traces are taken into consideration. When
an eligibility trace is too small, the according Q-value will be ignored when updating future
estimates.

The actual values that the different parameters are set to are different from experiment to
experiment. They are given in the according sections.

6.1.2 Game Settings

Civilization IV offers a multitude of settings to customize the game environment. Most of the
settings serve the purpose to offer interesting game play for players of different skill levels or
with different preferences when it comes to the style of playing. When running experiments,
however, it is not the players’ needs that have to be taken into account. Rather, the settings
have to create an environment for experiments that provide reliable data. The requirements
for experiments to be carried out successfully are discussed below.

The game environment has to be fast. This is important because the more quickly one game
is over, the more games can be played in the course of one experiment. In order to shorten
the time it takes to play one game, the game is run with the lowest settings possible in terms
of graphics. Unfortunately, the parts of the game which have been released as open-source do
not include the code for the graphical interface. Therefore it is not possible to deactivate the
graphical front-end completely.

Furthermore, it is important to find the optimal length of a game. A game becomes in-
creasingly slow as history progresses, because the players acquire more cities and units as well
as more complex cities and units. Therefore, a low number of turns is beneficial for processing
speed and game time. Also, as stated in Section 6.1, state space increases exponentially as
numbers of cities increase.
However, in order to obtain meaningful results, a certain number of cities has to be built. A
minimum number of cities is also necessary to analyse how well rewards propagate backwards
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when using eligibility traces. The possible number of cities also depends on the map size and
the number of players. To obtain the maximum number of cities per player while keeping
the map size small, the experiments performed are duels between the reinforcement learning
agent and one standard computer AI. If only two players are in the game, both of them
will be able to found more cities than with a higher number of players. For two players the
smallest possible map size, Duel, is used. Despite the small map size both players can still
have up to five cities per player if they play optimally, i.e. greedy. The type of the map used
is called Pangaea. For a Pangaea type map, all land surface is linked in one big continent.
Other possible map types include islands. These are not used in the experiments because of
the ships that as a matter of transporting settler units would have to be considered by the
reinforcement learner. Thanks to the small map size and the fact that it only consists of
one continent, the number of turns in the experiments can be limited to the first 110 turns
1 and still encompass the complete settling phase. The settling phase is the phase during
which the area is divided between the players through their city founding. As for the length
of experiments, several test runs showed that for 110 turns played per game a viable number
of episodes would be 1500. One episode is one game that lasts 110 turns. After 110 turns the
environment is automatically reset and the game starts from the beginning again.
The limiting factor in terms of episodes is not time but memory, since all states are kept

in memory by the program (for a description of the state object class see Appendix C). The
memory needed for state objects created in 1500 episodes of length 110 turns amounts to
about one gigabyte. An alternative approach was tested as well: States were stored to and
retrieved from a database instead of being kept in memory. However, this approach was too
slow to be used while running the experiments in real-time.

1 a complete game lasts up to 400 turns
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Table 6.1 lists the settings that were chosen to make experiments fast yet meaningful.

Setting Value
Map Size Duel

Plot Number 640
Plot Number after Pre-Selection 214

Map Type Pangaea (One Continent)
Number of Turns 110 (4000BC - 375BC)

Number of Episodes 1500
Number of Opponents 1

Barbarians Off
Leader Hatsheput, Egyptian

Difficulty Noble (4/9)

Table 6.1: Game Settings

In order to obtain reliable results, normalisation of the experiments is even more important
than running them at the least amount of time possible. Normalisation is the process of
making results comparable. Among other things, normalisation implies that the random
factor is minimised. As stated in the description of the standard game AI in Section 4.4,
Civilization only contains few random events. Barbarians are one of these few random
events. Barbarians are basically another player who gets new units every turn and uses these
to attack all other players. Since the barbarians turn up randomly outside the field of view
of the players, they were switched off completely for the experiments.

When setting up the experiments, another prerequisite to make results comparable is that
the conditions for each player in the game have to be equal. The first setting that has to be
adjusted is the general level of difficulty. The difficulty setting can be used to control a set
of basic values (e.g. the cost for creating and maintaining units and buildings or researching
technologies) by which the AI and the human players have to play. By adjusting these values
it can be made harder or easier for the human player to compete against the computer. Since
the reinforcement learning agent replaces the human player, this setting has to be set to
Noble, the fourth from the bottom out of nine levels of difficulty, which means that the
computer AI and the reinforcement learning agent play by exactly the same set of rules.

Every player in Civilization IV represents a leader that the game assigns certain ‘traits
of character’ by the game. These traits determine the player’s style of play. For example,
computer players can be aggressive or non-aggressive and they can focus on different priorities,
e.g. expansion or research. In order to normalise experiments, the same leaders have to be
chosen for all games. Furthermore, choice of leaders can influence the number of cities that are
built during the first 110 turns since players expand faster if a leader that favours expansion is
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chosen. To this end the leader Hatshepsut of Egypt was chosen for both players. Her traits
of character allow cities to extend their borders fast. As an opponent she is not aggressive
but focuses on extending her empire.

6.2 Parameter Selection for the Reinforcement Learning

Algorithms

This section is concerned with preliminary experiments that identify a number of problem
areas. In order to be able to obtain meaningful results in section 6.4 where the reinforcement
learning algorithms are compared with the standard AI, it is important to know how the
algorithm parameters have to be configured. Several problems occur when the wrong set
of parameters for the algorithms is chosen. The problems and their possible solutions are
discussed in the following sections.

6.2.1 Aim of Parameter Selection

The aim of this section is to identify the settings that are most appropriate for obtaining
meaningful results in future tests. In order to approximate these settings, the following
method is used. A number of tests with different settings are run and evaluated. The main
criterion of evaluation is the ability of the algorithms to learn the task of selecting city sites
through reinforcement learning. Game score is used as a reward signal. Therefore, a clear
growth of game score over time is expected to indicate a successful learning process. Since an
ε-greedy policy is used throughout this section, the markedness of the increase in game score
is determined by the value of ε. The increase in game score is triggered by the detection of
better possible actions that can then be pursued when picking according to a greedy policy.
Nevertheless, a growth in game score should be observable for any ε < 1, i.e. for any policy
that contains some degree of greedy selection.

6.2.2 Preliminary Test Runs

The first runs were carried out with parameters set to common values as described by Sutton
and Barto (1998). The parameters are displayed in table 6.2. The values were slightly adjusted
to match the given task since its focus on future reward is stronger than usual (higher discount
rate γ) and its exploration rate ε is slightly higher than common because the large basic state
space has to be taken into account.
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Learning Rate α 0.2
Discount Rate γ 0.6

Exploration Rate ε 0.3
Trace Decay Rate λ 0.9

(for Sarsa(λ) and Q(λ))

Table 6.2: Parameter Settings for Preliminary Runs
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Figure 6.1: Results for Preliminary Tests using the One-Step Versions of the Algorithms
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Figure 6.2: Results for Preliminary Tests using the Eligibility Trace Versions of the Algorithms
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The results of test runs for 1500 episodes can be seen in Figures 6.1 and 6.2. The scores are
averages over 50 episodes to account for the large random proportion caused by exploration.
The different lines in the diagrams account for scores after 60 turns and after 110 turns. Each
algorithm was run 10 times for 1500 episodes with the diagrams displaying the average of
these runs. An example of the raw data that underlies these and subsequent diagrams is
shown in Appendix B. Appendix B shows 1000 episodes of the results of a test run in Section
6.4.

The diagrams in Figures 6.1 and 6.2 show that there is no observable tendency towards
a better policy that leads to a higher score. Furthermore, all algorithms seem to have
comparable performance and the only thing distinguishing the results of the test runs from
the results of a completely random policy is the comparably high score. There are several
reasons for this behaviour.

The underlying reason is the size of the state space as described in Section 5.2.1. Since for
the chosen game settings the number of cities averages about four per game, there are about
two billion possible states at the fourth level of the tree that maps the state space (Formula
5.1 and Figure 5.1). While the size of the state space was expected to keep the agent from
learning the optimal policy, the lack of an observable improvement has a different cause.

The reason for the lack of learning lies in the mechanics of the reinforcement learning
algorithms as well as in the chosen values for the parameters. All Q-values are initialised
at 0. This means that even for a greedy pick, the first selection will always be random. No
matter how bad this first selection is, if a greedy pick is made at the same point of the state
space in the next episode(a greedy pick happens in 80% of all cases due to ε being 0.2), the
action to settle the plot that was previously picked at random will be picked again. Through
the defined learning rate an algorithm will always replace about 20% of the old estimate by
a combination of immediate and future rewards. Therefore, the Q-value for this state-action
pair will not reach its full value at once but will reach it within a short time because of
the 80% greedy selection policy. The problem of this policy is that in order to achieve the
highest Q-value, randomly picked actions that lead to the founding of cities on better plots
would have to be picked as many times - randomly - as the action that was picked first.
Due to the bad ratio between possible states and episodes run, this is unlikely to happen.
Consequently, the agent that uses reinforcement learning algorithms with the values chosen
above will very likely pick a random policy and stick to it applying only minor variations.
Figure 6.9 illustrates this behaviour.

The four algorithms only show minor differences in their results. Sarsa is slightly less
influenced by the problem described here because it is an on-policy algorithm. It therefore has
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a random component when selecting actions for the future-reward-component of the algorithm
(Formula 3.2). Both Sarsa(λ) and Q(λ) slightly aggravate the problem described above, since
they increase the approximation of the Q-value after it has been selected through propagating
rewards backwards. However, the difference between algorithms is marginal.

There are several solutions to this problem. The first option is to change the parameters
of the algorithm. The first step is to set the learning rate α to 1. This effectively means that
only the estimate computed at a given point in time matters, i.e. no previous estimates will
be taken into account. This can be combined with setting the discount rate γ to 0 in order
to completely ignore the future rewards that could also influence Q-values.
The obvious downside of this approach is that it makes the whole learning process very
volatile since no bootstrapping takes place anymore. Single outliers in terms of reward could
influence the outcome of a complete experiment. Moreover, if future rewards are ignored,
one of the key components of the TD algorithms is taken away.

The second option is changing the Q-values initialisation as described in Section 5.4.2.
Instead of initialising them all to 0, they are set to the value of the plot that is settled in the
action leading up to the respective state. This value is estimated by the standard game AI
at the beginning of a game. This estimation is supposed to provide the reinforcement learner
with some basic ideas as to what plots are desirable to found a city on, i.e. what actions
should be selected when following a greedy policy.
The possible drawback of this approach is, that the developed policies might be very similar
to those of the standard game AI. Furthermore, the problem it tries to solve might continue
to exist albeit on a smaller scale: the reinforcement learning agent is still likely to pursue
most often the policy it picks first . To counter this behaviour, an attenuated version of the
first approach could be used. The learning rate α could be set very high and the discount
rate γ very low.

A third possible approach would be to increase ε, i.e. the exploration rate. A higher
exploration rate would increase randomly selected actions and thus the chances of finding and
properly estimating the value of a rewarding action. However, it would also increase the time
it takes to find good policies, which is undesirable.

Another very basic approach would be to reduce the number of turns, thus liming the
number of cities that are built and thereby reduce the size of the state space. If the number
of turns is limited, the underlying problem of inadequate state space coverage would also
be resolved. Reducing the number of turns consequently seems to be the most promising
strategy.

The following three sections show the results for tests applying the first two strategies as
well as the last one. The strategies are always combined with an increased exploration rate
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ε. An increased exploration rate will lead to a slightly lower average game score but also to
a faster traversal of the complete initial levels of the tree that represents the state space.

6.2.3 Test Runs with Full Discount

In this section the results of the experiments run according to the first option to solve the
problem of the agent never switching policies are illustrated. The parameters are set to ignore
previous estimates and to not take into account future rewards. The according algorithm
parameters are listed in table 6.3.

Learning Rate α 1
Discount Rate γ 0

Exploration Rate ε 0.4
Trace Decay Rate λ 0.8

(for Sarsa(λ) and Q(λ))

Table 6.3: Parameter Settings for Full Discount Runs

The results of the test run for these settings are displayed in the diagrams in figures 6.3
and 6.4.
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Figure 6.3: Results for Fully Discounted One-Step Versions of the Algorithms

As expected for the given parameter settings, the diagrams of the results testify to a higher
degree of variation in game score although the results are averages over a period of time
and a number of runs. This is especially noticeable for the algorithms based on Q-learning,
both for the one-step version and Q(λ). Usually the Q-learning algorithms should exhibit
a more consistent performance than Sarsa since they are off-policy while Sarsa is on-policy.
For the applied ε-greedy policy therefore Sarsa has an additional source of randomness (the
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Figure 6.4: Results for Fully Discounted Eligibility Trace Versions of the Algorithms

40% random actions when selecting future actions) whereas Q-learning always chooses the
best estimate according to a greedy policy. However, in the current setup no difference can
be observed since future rewards are ignored completely. Since none of the four algorithms
shows any noticeable trend of improving the game score, the chosen parameter settings are
deemed to be unsuccessful in overcoming the problem described in the previous section.

6.2.4 Test Runs with Pre-Initialised Q-Values

This section examines the results of tests run with the settings described in Section 5.4.2. The
Q-values for all state-action pairs are initialised to the values that the standard AI attributes
to them prior to the start of the game, i.e. before any city is built. The values are recorded
before the first city is founded and then used to initialise Q-values whenever new states are
created. The values have to be calculated before any city is built, because they afterwards
become dependent on the location of enemy and own cities. The parameter settings for the
tests run for this section are displayed in table 6.4.

Learning Rate α 0.2
Discount Rate γ 0.6

Exploration Rate ε 0.4
Trace Decay Rate λ 0.8

(for Sarsa(λ) and Q(λ))
Initial Q-Values Q(s, a) Initial Values of

Standard AI

Table 6.4: Parameter Settings for Tests with Pre-Initialised Q-Values
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The results of the test runs are displayed in figures 6.5 and 6.6.
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Figure 6.5: Results for Pre-Initialised Q-Values using the One-Step Versions of the Algorithms
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Figure 6.6: Results for Pre-Initialised Q-Values using the Eligibility Trace Versions of the
Algorithms

As the diagrams show, the use of pre-initialised Q-values does not have the desired effect
of leading to a reliable convergence towards a higher score. In fact, the opposite is the case.
After an initial high the score becomes either very volatile or declines to an average score that
is far worse than the initial score.
On the upside it is noteworthy that initially all algorithms start with a high average when

compared to previous test runs. This indicates that in the first few episodes the algorithms
perform exceptionally well. This performance implies that using pre-initialised states can
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speed up convergence. However, the reinforcement learning agent fails to maintain the strong
performance in the first few episodes and ultimately uses a policy which is worse than if
Q-values are not set previously.

As the test results presented above show, pre-initialised Q-values alone are not sufficient
to solve the general problem of finding an appropriate policy. Therefore the next section will
consider the approach of reducing the number of turns played to obtain a better state space
coverage.

6.2.5 Test Runs with a Reduced Number of Turns

Since both a variation of core algorithm parameters and the use of pre-initialised Q-values did
not produce the desired results, the approach of running experiments for a reduced number
of turns was taken. This approach automatically leads to less cities being founded, and thus
limits the state space. Furthermore, since this approach only takes into account the early
game, it tremendously speeds up the test runs and makes possible experiments with more
than double the number of episodes. On the other hand it also leads to the players having
lower scores on average. Consequently, it makes trends in the development of average score
less noticeable. The number of turns chosen for the tests was 60. Test runs of length 60
turns limit the observed phase in the game to half of the initial settling phase. The initial
settling phase is the phase during which the players divide the continent between them through
founding cities. The expected number of cities for games of length 60 turns is between two
and three. The number of episodes that is played per experiment was set to 3500, i.e. more
than double the number of episodes of previous experiments. Table 6.5 shows a summary of
these parameter settings.

Learning Rate α 0.2
Discount Rate γ 0.6

Exploration Rate ε 0.4
Trace Decay Rate λ 0.8

(for Sarsa(λ) and Q(λ))
Initial Q-Values Q(s, a) 0

Number of Turns 60 (4000BC - 1600BC)
Number of Episodes 3500

Table 6.5: Parameter Settings for Test Runs with Reduced Length

Figures 6.7 and 6.8 show the results of those test runs.
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Figure 6.7: Results for Short Runs using the One-Step Versions of the Algorithms
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Figure 6.8: Results for Short Runs using the Eligibility Trace Versions of the Algorithms

The diagrams show a clear tendency towards improving the game score. They therefore
improve the used policies for selecting city sites. All four algorithms exhibit a tendency of
improving the average score over time. However, their behaviour differs in the way and speed
of improving game score. The diagrams display the results of 10 separate runs over 3500
episodes each.
The performance of the four algorithms in this experiment is exemplary of how the al-

gorithms perform at the task of city site selection in general. Therefore the next section
compares the performance of the four different algorithms and elaborates on how the results
can be interpreted.
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6.3 Comparison of Reinforcement Learning Algorithm

Performance

This section elaborates on the results of the test runs of length 60 turns that are shown in
Figure 6.7 and Figure 6.8. The focus will be on measurable and observable features like the
speed of convergence towards higher scores, the average score throughout the experiments
and the range of variations of the score during the run of an experiment.

One-step Q-learning shows a consistent performance. Despite the high percentage of 40%
random decisions the average score rises by nearly 25% during the run of the experiment.
There are several distinct steep rises of the average score. They mark the points where one
of the contributing runs learned a noticeably improved greedy policy. The improvement thus
is not completely linear, but there is a continuous improvement over time.

Sarsa improves as well but it mostly does so through distinct rises at certain times. Between
these distinct improvements the average score declines since unlike Q-learning Sarsa does
not pick the maximum possible future reward but strictly follows its ε-greedy policy, i.e. it
sometimes picks future rewards at random. In this particular case this policy leads to a lower
score on average. The following section will explore if this is also the case when the agent
tries to play optimally.

Both of the algorithms that use eligibility traces, Q(λ) and Sarsa(λ), exhibit an even more
distinctive version of the same behaviour as Sarsa. Their major gains are distinctive rises in
average score. Unlike the one-step versions of the algorithms they show neither growth nor
decline between thee steep gains but only a volatile up and down around an average value.
It is noteworthy that the steep inclines (two in the case of Sarsa(λ), one nearly continuous
incline in the case of Q(λ)) are markedly steep despite the diagrams in Figure 6.8 being
an average of 10 runs. The inclines mark the discovery of a better greedy policy. Their
markedness in a diagram that shows an average over multiple runs implies that they always
happen at nearly the exact same point in time. This is due to the fact that apart from the
random exploration that Sarsa contains, the algorithms always behave in the way described
in Section 6.2.2. They pick a random policy at first and then slowly improve this policy. The
steep inclines in average score mark the points where such an improvement takes place.

A major characteristic of the performance of an algorithm is the number of episodes it
takes for the algorithm to overcome this initial random policy and replace it with a better
policy. An important factor influencing this characteristic is the quality of the initially chosen
random policy. However, it can be ignored in the test runs since all algorithms seem to be
performing at roughly the same levels initially (around a game score of 400 on average).
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The results of the phenomenon of algorithms being stuck with their initial policy have been
discussed in Section 6.2.2. If all actions are attributed with the same reward at the beginning,
it depends on the implementation which one is chosen. Since one aim of the test runs was to
compare algorithms actions were not picked at random from all actions leading to the same
reward but the last one that is found was picked. When comparing the Q-values of available
actions in a state s, the most recent action a with a Q(s, a) that ties for the highest value
will thus replace a previous action of the same value.

The problem of algorithms converging towards a non-optimal policy at the beginning is
illustrated in Figure 6.9. The figure shows the sequence of events that is described above with
some example reward values. At the bottom of the figure the probability of being chosen is
given for the different actions. With the current ε-greedy policy the probability for picking
an action a ∈ A that is available in the current state is

• ε
|A| for picking a random action, i.e. performing an explorative move and

• (1− ε) for picking the greedy action, i.e. performing an exploitative move.

In the current experiments ε = 0.4. The number of possible actions is equal to the number of
possible plots that can be settled, i.e. 214 for the initial level of the state space on the chosen
map. For the actual probabilities this means that any random action has the probability
0.4
214 ≈ 0.0019 to be picked. The greedy action is picked with probability 0.6 which means
that the greedy action is picked approximately 0.6/0.0019 = 316 times as often as any other
action. This leads to the conclusion that the estimate for the random action which is picked
first will approximate the actual reward it receives very quickly, regardless of the value of the
learning rate α is.

When computing a Q-value in a simplified version of the update function for Q-learning
where both future and current rewards are considered as one variable r this means that

Q(st, at) = Q(st, at) + α ∗ (r −Q(st, at)).

If the values are initialised at 0 and a value update is performed not only once but n times,
the Q-value will be

Q(st, at) = α ∗ r ∗
n∑

i=0

(1− α)i. (6.1)

This is a simplification of the usual case in which the reward signal varies between different
value updates. However this simplification allows to calculate how many episodes it will take
to replace the action a′ that was selected first and where the according Q-value approximated
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the reward. As an example it is assumed that there is a different action a∗ that yields 1.5
times the reward r of the action a′ that was chosen first. This is a comparably large value if
the action that was chosen first does not perform very bad. The currently used learning rate
is α = 0.2. The wanted value is the number of times n this action a∗ has to be chosen until
the according Q-value Q(st, a∗t ) becomes bigger than Q(st, a

′
t).

0.2 ∗ (1.5 ∗ r) ∗
n∑

i=0

(0.8)i > r

⇒
n∑

i=0

(0.8)i >
10
3

This equation can be resolved for n ≥ 4, i.e. including the update for n = 0, Q(st, a∗t ) would
have to be updated 5 times before Q(st, a∗t ) > Q(st, a

′
t). Considering the number of possible

actions |A| = 214 and the exploration rate of ε = 0.4, this would mean that on average
214
0.4 ∗ 5 = 2675 episodes would be required to replace the first, non-optimal action a′ with a∗

when following a greedy policy. This is despite the fact that a∗ yields a much higher reward
and despite ignoring future reward, which would further aggravate the problem.
The calculations above further illustrate why the initial test runs did not produce any viable
results. However, the calculation in equation 6.1 also shows how improvements to the algo-
rithm’s performance could be possible. If the value of the learning rate α was changed, this
would directly influence the number of episodes that are required until a non-optimal action
is replaced by an action that yields a higher reward. Through choosing a higher learning rate
it should thus be possible to speed up convergence towards the optimal policy. This approach
is evaluated in Section 6.5.

A comparison of the algorithms by speed of convergence shows that Q-learning is the most
continuous while not reaching the highest value. The average score of the Q-learning algorithm
starts to improve from the very beginning. Its curve only shows minor steep improvements.
One-step Sarsa is the algorithm second to overcome the initial random policy. However,
it does not manage to achieve the same average score level as one-step Q-learning. This
observation can be attributed to a second significant policy improvement that Q-learning
achieves while Sarsa uses a policy that has only improved once. Both of the algorithms that
use eligibility traces also show two clearly marked policy improvements. For Sarsa(λ) these
improvements happen roughly after one third and after two thirds of the number of episodes
played. For Q(λ) both improvements happen within a very short time after about two thirds
of the total number of episodes. The results section presented in this demonstrate that the
settings used in this section allow the reinforcement learning agent to effectively learn better
policies. The next section describes the comparison of the performance of the reinforcement
learning algorithms with the standard game AI.
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Figure 6.9: Illustration of Early Algorithm Conversion
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6.4 Comparison of the Standard Game AI with Reinforcement

Learning

In this section the performance of the reinforcement learning algorithms is compared with
the performance of the standard game AI. As demonstrated in the previous section, all four
reinforcement algorithms implemented are able to learn new policies for city site selection.
However, their performance was skewed because some actions were selected at random. Con-
sequently, random selections are eliminated to enable reliable comparison. In order to achieve
elimination of random selection, a declining ε-greedy policy (Section 5.1)instead of the stan-
dard ε-greedy policy is used to pick actions. The reinforcement learning agent starts at an
exploration rate ε of 60%. The exploration rate is subsequently reduced by 0.6/3500 in every
episode, i.e. after 3500 episodes the policy is completely greedy. Table 6.6 shows the settings
for these test runs.

Learning Rate α 0.2
Discount Rate γ 0.6

Exploration Rate ε Between 0.6 and 0.0
Declining by 0.6/3500 (0.017%) per Episode

Trace Decay Rate λ 0.8
(for Sarsa(λ) and Q(λ))
Initial Q-Values Q(s, a) 0

Number of Turns 60 (4000BC - 1600BC)
Number of Episodes 3500

Table 6.6: Parameter Settings for Comparison of Reinforcement Learning with the Standard
AI
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The results of running the four algorithms individually with these settings are shown in
Figure 6.10 and Figure 6.11.
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Figure 6.10: Results for Declining ε-Greedy using the One-Step Versions of the Algorithms
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Figure 6.11: Results for Declining ε-Greedy using the Eligibility Trace Versions of the Algo-
rithms

As expected the average score is even higher than the average score in the previous test
runs in Section 6.2.5. The random selection of actions is continually reduced as the number of
episodes increases. Thus the number of greedy selections increases. The curve of the average
game score shows a slight continuous growth for all four algorithms. Apart from the additional
growth, the algorithms exhibit the characteristics that have been described in Section 6.3. For
the one-step algorithms Q-learning shows a very consistent growth with nearly no observable
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steep increases in average game score while Sarsa has a slightly less marked growth but has
two distinctive increases. Both of the algorithms that use eligibility traces show two strong
increases in average game score. For Q(λ) the increases happen in close succession whereas
for Sarsa(λ) they are more distributed and hidden by a more consistent increase over time.
All four algorithms improve by about 25% over 3500 episodes.
The standard game AI always picks its city sites according to a greedy policy. If there is no

random event involved, standard game AI will always perform the same actions. As a result,
if two players controlled by the standard AI are playing each other and there are no crucial
battles (one of the few random events in Civilization IV) or attacks by randomly spawned
barbarians (switched off for the tests carried out), the course of the game will be exactly the
same for every single episode.
To obtain the average score of the standard game AI, it has to play under exactly the same
conditions as the reinforcement learning agent. If the standard AI plays under exactly the
same conditions as the reinforcement learning agent, the experiment shows that for games
with length 60 turns the AI will always gain the same score in every single game. Figure
6.12 shows the comparison of the performance of the standard AI with the results of the
reinforcement learning algorithms.
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Figure 6.12: Performance Comparison between Standard AI and Reinforcement Learning Al-
gorithms
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The difference between the achieved game score of the reinforcement learning algorithms
and the standard AI is remarkable. The reinforcement learning algorithms start at an average
score of about 400 and improve to an average score of about 500 with Q-learning achieving
slightly less.
The standard game AI, which follows a greedy policy from the very beginning, achieves

a score of 439. The reinforcement learning algorithms thus perform between 10% and 20%
(depending on the algorithm) better than the standard AI after learning for 3500 episodes.
However, this does not imply that the reinforcement learning algorithms have found the
optimal policy already. As shown in the previous section, the current parameter settings might
enable the reinforcement learning algorithms to learn better policies, but there is evidence
that they still can be improved.

6.5 Optimising the Learning Rate α

A change to the algorithm parameters that can possibly improve the results is an increase of
the learning rate α. This change is suggested by Equation (6.1) in Section 6.3. Experiments
were performed with α = 0.5 and α = 0.8. All other settings, including the declining ε-
greedy policy, remained the same. The results of these experiments are shown in figures 6.13
to 6.16. Each diagram compares the results for the different settings of α using one of the
reinforcement learning algorithms.
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Figure 6.13: Comparison of Different Learning Rates using One-Step Q-Learning
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Figure 6.14: Comparison of Different Learning Rates using One-Step Sarsa
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Figure 6.15: Comparison of Different Learning Rates using Q(λ)
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Figure 6.16: Comparison of Different Learning Rates using Sarsa(λ)

The diagrams exhibit several interesting features when comparing the results for a learning
rate of 0.2 with those of a learning rate of 0.5. None of the algorithms performs worse with
increased learning rate compared to the previous lower α when they are judged according to
the quality of the learned policy at the very end of a test run.
Both algorithms that are based on Q-learning end up with a similar final score for both

settings of α. The Sarsa-based algorithms on the other hand manage to improve their per-
formance by up to 50 score points, i.e. 10% of their overall average score. As predicted by
the findings in Section 6.3, the score improves the most during the first 500 episodes of the
experimental runs. While running with a setting of α = 0.2 all four algorithms show no
improvements or very little improvements in this phase. With a setting of α = 0.5 however,
there is a steady increase in average score right from the start. After the first 1000 episodes,
the performance of the algorithms that run with α = 0.5 is comparable to those running
with a setting of α = 0.2. It is noteworthy that despite the increased learning rate all four
algorithms show variations that are less marked than before. This behaviour is striking since
the Q-values were expected to fluctuate more due to larger changes in the values at every
update.

73



Chapter 6. Evaluation

The results for a setting of α = 0.8 differ again between the algorithms that are based on
Q-learning and those that are based on Sarsa. The average performance of one-step Sarsa
and Sarsa(λ) is nearly identical for α = 0.5 and α = 0.8 in terms of game score. However,
the average game score fluctuates a lot more for α = 0.8. Also the score that is achieved
when following the final policy that is found, i.e. the greedy policy after 3500 episodes,
is slightly worse for α = 0.8 for both algorithms. The fluctuation with α = 0.8 is also
worse than before for one-step Q-learning and Q(λ). However, it is less strong than for the
Sarsa-based algorithms. Furthermore, the algorithms based on Q-learning do perform far
better for α = 0.8. Both one-step Q-learning and Q(λ) perform up to 50 score points, i.e.
10% of their overall average score better with α = 0.8 than with α = 0.5. This increase of
10% is similar to what the Sarsa-based algorihms gained by increasing α from 0.2 to 0.5.
Consequently, on-policy and off-policy algorithms require different settings for α in order to
perform optimally.

This chapter started by elaborating on the experimental settings for the game environment
as well as for the parameters for the different reinforcement learning algorithms. These set-
tings were then tested and refined in preliminary test runs. The results of these test runs
were analysed and different improvements to the settings were made in order to improve the
learning process for the algorithms. Once settings were found that showed promising learn-
ing capabilities, the performance of the four reinforcement learning algorithms was compared
to the performance of the other reinforcement learning algorithms. In the final section the
performance of the reinforcement learning algorithms was compared to that of the standard
game AI.
In the following chapter the results of the experimental runs and of the whole thesis will be

discussed. Furthermore, possible future work building on the results of the research in this
thesis will be discussed.
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Discussion and Future Work

This chapter elaborates on the findings of the experiments discussed in the previous chapter.
Furthermore, the general results of this thesis are discussed and possible improvements are
mentioned.

The empirical evaluation carried out in Chapter 6 shows the potential of applying re-
inforcement learning to select the best plots for founding cities in Civilization IV. Several
adjustments to the preliminary settings had to be made before obtaining satisfactory results.
They were necessary because of the specific requirements of the chosen task and especially of
the chosen test environment. Particularly the memory constraints of Civilization IV as well
as the decreasing game speed in the later phases of the game make long-term evaluations time
consuming and impractical. Although this can partly be compensated for by choosing the
appropriate game settings, the attempts at finding settings that make it possible to evaluate
the complete settling phase were not successful.
The application of fully discounted reinforcement learning algorithms that completely ignore

previous estimates was not successful. Failure of fully discounted reinforcement learning
algorithms was to be expected because it ignores one of the core elements of TD learning.
No bootstrapping takes place in the application, i.e. previous estimates are no longer used to
create new estimates. Therefore, the reinforcement learning agent loses its ‘memory’.
The second attempt at adapting the settings for test runs by using pre-initialised Q-values

did not produce an improvement in developing new policies either. However it is promising
for future applications: The idea of using existing domain knowledge to initialise the Q-values
of state-action pairs can be used if the values that are used are adjusted to better fit the
purpose. For instance the current implementation does not consider an opponent’s territory
because the values that are used are computed before anybody has claimed any territory.
One possible approach would be to not completely rely on the pre-initialised value when
picking the next founding plot, but to only use these values when there is a draw between
two plots with equal value.
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The ensuing decision to reduce the number of turns that are played per episode makes the
learning process easier to observe. The reduction in game reduces the state space because
fewer cities are built. It also limits the number of possible actions of both the reinforcement
learning agent and the standard game AI. The reduction in average game score means that
it is easier to distinguish between a real improvement and a random event. It thus facilitates
evaluation of the true performance of an algorithm because it reduces the ‘noise’ hiding the
true performance of the algorithms. In the first three experiments the episodes are 110
turns long and the noise manifests itself in the strong variations in average game score. The
variations also occur in the 60-turn episodes but they are far less distinctive.

Although the reduction in length led to very good results, the extension of the time span
analysed is still part of future improvements. Since the ultimate goal is to create a reinforce-
ment learning agent that can play the complete settling phase, both the length of the games
and the number of episodes used for the experiments will have to be extended in the long
run. However, it would not be useful to extend the learning process to a whole game. In
later stages only few cities are founded but there is a large number of cities that is won or
lost through combat. The fluctuating number of cities would obscure the actual score that is
gained by newly founded cities and make learning according to the current reward signal all
but impossible. With the length of one episode adjusted to 60 turns, all four reinforcement
learning algorithms used improved their policies for selecting the best plots to found a city on
by up to 40% over the standard game AI. Considering the short playing time, this improve-
ment is very remarkable. As stated in Section 5.2.4 where the different components of the
game score are described, a higher score can result in a number of improvements for the rein-
forcement learning agent. Since the difference in score is big in the case of these experiments,
the reinforcement learning agent will have a number of advantages over his opponent.

• The reinforcement learning agent has more population or more cities than its opponent.

• The reinforcement learning agent has a larger territory than its opponent. This means
that the reinforcement learning agent has access to more special resources that increase
the yield in production, food and commerce.

• The reinforcement learning agent has more advanced technologies than its opponent,
leading to a number of benefits such as stronger combat units and higher yield from
plots.

• The reinforcement learning agent has more Wonders of the World (special, very expen-
sive buildings) that can have numerous effects that further benefit the reinforcement
learning agent’s empire.
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Figure 7.1 shows a summary of the best results of the four algorithms with their optimal
settings from the empirical evaluation.
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Figure 7.1: Performance Comparison between Standard AI and Reinforcement Learning Al-
gorithms with Optimal Settings

Both algorithms that use eligibility traces show a better performance than their one-step
counterparts. This was to be expected due to the nature of the task. City site selection
relies heavily on reward propagation. Due to this heavy reliance, even in games that only
last 60 turns the improvement through eligibility traces becomes apparent. The comparison
also shows that the on-policy Sarsa algorithms perform better than the off-policy Q-learning
algorithms. One-step Q-learning is the weakest algorithm in terms of final score and also
exhibits the strongest fluctuations in its average score during the learning process. One-step
Sarsa performs at about the same level as Q(λ) but Q(λ) has a stronger and more stable
performance earlier during the experiment. Sarsa(λ) shows the strongest performance by
a margin of about 3% when compared to Q(λ) and one-step Sarsa. Since Sarsa(λ), just
like Q(λ), also exhibits a consistent growth, with the current settings Sarsa(λ) is the best
algorithm for the task of city site selection in Civilization IV.
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Through a number of changes to the experimental setup further improvements could be
achieved. The first setting to be changed is the aforementioned extension of the number of
episodes. In several experiments the increase in average game score can be attributed to a
large degree to two distinct rises at two points in time. This principally means that the greedy
policy that an agent pursues was improved greatly at those two points in time. However, it
is unlikely that two improvements already lead to the optimal policy π∗. Therefore, given a
suitable number of episodes, it can be assumed that there will be additional improvement of
the score.
The second setting that could be changed in order to obtain better results is the number of
turns an episode takes. Since cities need time to develop their full potential, the gap in score
between good and mediocre cities widens with the number of turns played.

The mediocre performance of the standard game AI and especially the complete lack of
variation in its performance were additional interesting discoveries of the experimental runs.
These findings confirm a general premise of this thesis: Despite its apparently sophisticated
and critically acclaimed AI (BetterAI Project, 2007) Civilization IV has a very simplistic
and mostly static AI. If there is no human player to add randomness to the gameplay, the
game is close to being completely deterministic. In the final experiment the reinforcement
learning agent gradually approximates a completely greedy and thus deterministic policy. If
the reinforcement learning agent were to be integrated into the game the exploration rate ε
would have to be prevented from reaching 0 in order to keep the game more interesting and
versatile. However, for the experiments carried out in this thesis, using a completely greedy
policy does make sense since the optimal performances of the algorithms and the standard
AI were compared.

Possible extensions and additions to the reinforcement learning agent in Civilization IV can
be divided into four categories. These categories are the improvement of the four algorithms
which have been used, the evaluation of other reinforcement learning approaches, and the
combination of other machine learning techniques with reinforcement learning. Moreover, the
task in Civilization IV that is solved through reinforcement learning can be extended.

The results of the empirical evaluation show that the applied reinforcement learning
methods have the potential to outperform the static standard AI. However, learning becomes
computationally unfeasible when crossing a certain threshold of game complexity, either in
terms of game turns or of map plots. Consequently, the algorithms have to be optimised
further to extend the range of tasks for which the reinforcement learning agent can be used,
i.e. for longer games or larger maps. One way to optimise the algorithms is to speed up
the learning process to accelerate the convergence towards the optimal action-value function.
The two algorithms that use eligibility traces are a first step into this direction.
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They could further improved by changing the standard policy that is used to select actions
from an ε-greedy policy to a softmax policy (Section 5.1.4). If the policy is changed to a
softmax policy some issues arise. Softmax policies are a double-edged sword. On the one
hand they can remedy the problem that actions that eventually yield higher rewards are not
picked since another random action was picked first and now has become part of the greedy
policy (see Section 6.2.2). On the other hand a softmax policy could aggravate the exact
same problem since it less often choses actions that have not yet been yet. Consequently, a
softmax policy only improves the algorithm if an action that yields a higher reward than the
current greedy action has already been picked at least once. In spite of this problem, softmax
policies should be evaluated and their performance compared to that of the currently used
ε-greedy policy.

Apart from the extension of the existing methods, future research can be carried out in
the field of other reinforcement learning techniques: Monte Carlo methods or pure dynamic
programming can be evaluated as to how well they are suited for the city placement selection
task (Sutton and Barto, 1998).

The most promising technique when it comes to solving the problem of dimensional-
ity would be the use of function approximation. This form of generalisation is used in
several of the publications on reinforcement learning and it is particularly suitable to
handle problems of big state spaces. Function approximation was considered at the very
beginning of this thesis. However, function approximators are problematic when it comes
to convergence (Sutton, 2000). Therefore, a table-based approach was chosen to prove
the feasibility of using reinforcements learning algorithms to select city sites. Another
major drawback of function approximation is its dependency on an accurately chosen
representation (Sutton and Barto, 1998). Based on the knowledge gained in this thesis
and particularly in the empirical evaluation, function approximation could now be attempted.

An additional field for future research on reinforcement learning using Civilization IV as
a test bed is the combination of other machine learning methods with reinforcement learn-
ing. One particularly promising method is Case-Based Reasoning (CBR). The application
of CBR to the plot selection task would allow to solve the problem of experience learned on
one map being useless on another map because of the different topology. A combination of
reinforcement learning and CBR has successfully been applied to a similar problem before.
Auslander et al. (2008) solve the problem of transferring knowledge acquired through rein-
forcement learning from one type of behaviour of the opponents to a different behaviour in the
FPS Unreal Tournament. Their algorithm CBRetaliate manages a case-base of policies for a
number of agents that have been learned through Q-learning. The case-base is used to speed
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up the process of creating winning strategies through reinforcement learning in a changing
environment.
A possibility to improve the game play experience would be the application of Motivated

Reinforcement Learning (MRL). One of the game mechanics in Civilization IV is the
aforementioned ‘character traits’ (Section 6.1.2) of the different computer AIs. Certain
players by definition have advantages in certain areas of the game for example in the fields
of expansion, finance or combat. These advantages are hard coded numbers and are meant
to express certain character traits like aggressiveness or expansionism. Instead of hard
coded numbers the agents could use a reinforcement learning agent which is rewarded by a
motivational function as described by Merrick and Maher (2007). This could lead to more
interesting, human-like behaviour for AI players.

Another possibility to build on the research carried out for this thesis is to extend the
task for which these machine learning techniques are used. For the purpose of the present
thesis, the task of the reinforcement learning agent has been limited to the choice of site for
building a city. For future development, the task could be extended to include the choice of
the optimal number of cities and when to build them.

This chapter elaborated on the general results of the evaluation. The results of the experi-
ments experiments that were performed were discussed and the implications of their outcome
was illustrated. Possible future extensions were discussed for the test runs as well as for the
algorithms and the testbed integration. Furthermore, the application of other reinforcement
learning techniques for the overall task was considered as was the integration of reinforcement
learning with other machine learning techniques.
The next chapter will summarize the results of the thesis and draw a conclusion on its

achievements, success and and possible improvements of reinforcement learning agents in
Civilization IV.

80



Chapter 8

Conclusion

This section concludes the thesis. The premises as well as the design and implementation of
the reinforcement learning agent are summed up first. Then the results and contributions of
this thesis are summarized.

This thesis has presented the integration of reinforcement learning into the commercial
computer game Civilization IV. Civilization IV was chosen as a testbed because it is accessible,
recent and critically acclaimed as a commercial product. The task that was chosen for the
integrated reinforcement learning algorithms is the selection of the plots on the map that
are used to found cities on. The particular task was selected for being comparably easy to
observe while at the same time being crucial to the game. The reinforcement learning model,
i.e. the states, actions and the reward signal are defined to contain the Markov property.
They constitute a finite Markov decision process.

Four different reinforcement learning algorithms have been adapted to the task of city site
selection and have been integrated into the game environment. All four of them are based on
TD learning. Q-learning and Sarsa are one-step versions while Q(λ) and Sarsa(λ) work with
eligibility traces. By using Q-learning and Sarsa, both on-policy and off-policy algorithms are
tested.

After establishing proper settings for the test runs, algorithms were evaluated empirically.
The results of the empirical evaluation were promising. All four algorithms that were used
manage to learn city placement strategies for a specific map. After undergoing a training
process, the reinforcement learning agent outperforms the standard game AI in short matches
by up to 40%, depending on the algorithm used. The standard AI is comparatively weak in
its general performance. Moreover, it behaved in a completely deterministic way, which is one
of the major drawbacks that machine learning can improve upon in commercial games. The
integration of the reinforcement learning agent into Civilization IV thus extends the otherwise
deterministic early game by a non-deterministic, adaptable component that enhances the
game-playing experience.
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The findings of the initial experiments also point out possible shortcomings of the algo-
rithms. They thus lay the groundwork for future work. Several possible extensions that are
mentioned in Chapter 7 could further improve the performance of the algorithms and extend
the reinforcement learning agent’s capabilities and responsibilities.
Another contribution of this thesis to the field of computer game AI research is the use

of the commercial computer game Civilization IV as a testbed for AI research. Civilization
IV has great potential and can be used for other machine learning experiments in the future
because of the diversity of the tasks involved in the game and the relative ease with which
these deterministic tasks can be taken over by learning agents. The findings of experiments
that were run with Q-learning were published in (Wender and Watson, 2008) )(see Appendix
A). The second part of the empirical evaluation of this thesis is based on the findings in the
paper and further improved and extended the results by using different algorithms and better
settings.
As a general conclusion it can be said that the objectives that were defined in the beginning

have been achieved. The objectives were to integrate the reinforcement learning agent into
Civilization IV and to find settings for the agent that enable it to perform at or above the
level of the standard game AI. Furthermore these settings were to be optimised to allow the
reinforcement learning agent to perform at the highest level possible.
Since all these objectives have been achieved, the application of reinforcement learning to

select city sites in Civilization IV has been successful.
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Using Reinforcement Learning for City Site Selection in the
Turn-Based Strategy Game Civilization IV

Stefan Wender, Ian Watson

Abstract— This paper describes the design and implemen-
tation of a reinforcement learner based on Q-Learning. This
adaptive agent is applied to the city placement selection task
in the commercial computer game Civilization IV. The city
placement selection determines the founding sites for the cities
in this turn-based empire building game from the Civilization
series. Our aim is the creation of an adaptive machine learning
approach for a task which is originally performed by a complex
deterministic script. This machine learning approach results in
a more challenging and dynamic computer AI. We present the
preliminary findings on the performance of our reinforcement
learning approach and we make a comparison between the
performance of the adaptive agent and the original static game
AI. Both the comparison and the performance measurements
show encouraging results. Furthermore the behaviour and
performance of the learning algorithm are elaborated and ways
of extending our work are discussed.

I. INTRODUCTION

One of the main incentives for integrating machine learn-
ing techniques into video games is the ability of those
techniques to make those games more interesting in the long
run through the creation of dynamic, human-like behaviour
[1]. Among the most captivating games, especially in terms
of long-term gameplay, are the games of the Civilization
series. However these turn-based strategy games achieve
their high replay value not through advanced adaptable AI
techniques but through a high level of complexity in the later
stages of the game. The early stages however are, as we will
also see in this paper, mostly deterministic and therefore
not very challenging. These characteristics as well as the
large number of tasks involved in playing the game make
Civilization games an ideal test bed where one of those many
tasks can be replaced by a machine learning agent, thus
making the AI less predictable and improving the overall
game play experience.

II. RELATED WORK

The machine learning method we chose for our task is
Reinforcement Learning (RL) [2], a technique which allows
us to create an adaptive agent that will learn unsupervised
while playing the game. More specifically the Q-Learning
algorithm as introduced by [3] will be used to demonstrate
the applicability of reinforcement learning in the commercial
video game Civilization IV.

Because of the broad spectrum of problems involved in
Civilization video games as well as the multitude of versions
of the games that are available, several of them with open
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source code, multiple variants of the game have been used
in academic research. Perhaps most popular as a test bed
is the Civilization variant FreeCiv, an open source version
of the commercial game Civilization II. FreeCiv has been
used to show the effectiveness of model-based reflection and
self adaption [4]. Furthermore an agent for FreeCiv has been
developed that plays the complete early expansion phase of
the game [5].

The development of an AI module that is based on Case-
Based Reasoning (CBR) for the open source Civilization
clone C-Evo is documented in [6]. C-Evo is an open source
variant of Civilization, which is closest related to Civilization
II and allows for the development of different AI modules
which can compete against each other.

More directly related to this paper is research which
uses the commercial Civilization games as a test bed. The
commercial Civilization game Call To Power II (CTP2) is
used as a test bed for an adaptive game AI in [7]. In
order to communicate with the game an ontology for the
domain is developed and case-based planning in combination
with CBR is used to create an adaptive AI. CTP2 has also
been integrated with the test environment TIELT [8], thus
preparing a test bed for future research using CTP2.

In [9] a Q-Learning algorithm is used to create an adaptive
agent for the fighting game Knock’em. The agent is initially
trained offline to be able to adapt quickly to the oppo-
nent in an online environment. RETALIATE (Reinforced
Tactic Learning in Agent-Tam Environments), an online
Q-Learning algorithm that creates strategies for teams of
computer agents in the commercial First Person Shooter
(FPS) game Unreal Tournament is introduced in [10]. This
approach is extended in [11], where the authors use CBR
in order to get the original RETALIATE algorithm to adapt
more quickly to changes in the environment.

III. CIVILIZATION IV AS TEST BED FOR RESEARCH IN
COMPUTER GAME AI

The variant of the Civilization game which will be used
as a test bed in this paper is Civilization IV. Civilization
IV is the latest title in the commercial series of the original
game. Large parts of its code base, including the part which
controls the AI, have been released as open source. Also the
existing computer AI is already quite sophisticated and thus
can provide a challenging opponent in empirical experiments.
Furthermore an improvement of the existing AI would show
that research from academia can be used to create a bigger
challenge and thus offer a more enjoyable playing experience
which will in the end lead to better games in general.



However the use of Civilization IV as a test bed for
research also bears a challenge. The code base that was
released as open source consists of more than 100000 lines
of code, which mostly are very sparingly commented. Since
only parts of the source code have been released, several
major functions have to be emulated, most importantly the
automatic restarting of a game which is crucial when running
tests that are supposed to last for several thousand games.

A. The Game

Civilization is the name of a series of turn-based strategy
games. In these games the player has to lead a civilization
of his choice from the beginnings BC to the present day. It
involves building and managing cities and armies, advancing
the own empire through research and expansion as well
as interacting with other, computer-controlled civilizations
through means of diplomacy or war in a turn-based envi-
ronment. The popularity of the original game has lead to a
multitude of incarnations of the game, both commercial and
open source.

B. The City Placement Task

The most important asset in a game of Civilization IV
are the cities. The three major resources a city produces
are food (used for growth and upkeep of a city), commerce
(used among others for research and income) and production
(used to produce units and buildings). Furthermore special
bonuses which grant additional basic resources or other
benefits like accelerated building speed can be gained. The
playing field in Civilization IV is partitioned into ”plots”
with each plot producing a certain amount of the resources
mentioned above. A city can gain access only to the resources
of a plot which is in a fix shape of 21 plots surrounding the
city: Figure 1.

Fig. 1. Civilization IV: Workable City Radius

In addition the borders of an empire and thus the area of
influence of its player are defined by the summarized borders
of the cities of that empire. Therefore the placement of cities
is a crucial decision and influences the outcome of a game

to a large degree. This is the reason why we chose to apply
RL to the city site selection task.

Cities are founded by mobile settler units which can be
exchanged for a city on the plot they are located on. The
standard AI uses a strictly sequential method of determining
which are the best sites for building new cities. Each plot on
the map is assigned a ”founding value” which is based on
numerous attributes like the position of the plot in relation to
water, proximity of enemy settlements, proximity of friendly
cities and of course the resources that can be gained from
plots. We replace this sequential computation of founding
values with reinforcement learning.

At the current stage of our research the task of the
reinforcement learner is limited to choosing the best location
for an existing settler. The decision of when to build a settler
is still made by the original game AI.

IV. REINFORCEMENT LEARNING MODEL

Reinforcement learning is an unsupervised machine learn-
ing technique, in which an agent tries to maximise the reward
signal [2]. This agent tries to find an optimal policy, i.e. a
mapping from states to the probabilities of taking possible
actions in order to gain the maximum possible reward. The
reinforcement learning model for the city placement task
consisting of the set of states S, possible actions A and the
scalar reward signal r is defined as follows:

A. States

A state s ∈ S contains the coordinates of all existing cities
of the active player. The other important information besides
the position of a city is when this city was created. This
information is crucial since a different order of founding can
lead to very different results. Therefore, in order to satisfy the
Markov property (i.e. any state is as well qualified to predict
future states as a complete history of all past sensations up
to this state would be) and thus for the defined environment
to represent a Markov Decision Processes (MDP) each plot
also contains the information when, in relation to the other
cities, this city was founded.

A state s ∈ S can be described as a set of triples (X-
Coordinate, Y-Coordinate, Rank in the Founding Sequence)
and each triple is representing one city. This definition of the
states means that the resulting model will be a graph with no
cycles, i.e. a tree. Figure 2 shows a part of such a tree with
the nodes representing the states and branches representing
the actions. Because of this structure of the state space, no
state can be reached more than once in one episode.

The set of all states S consists therefore of all possible
combinations of the (X-Coordinate, Y-Coordinate, Rank in
the Founding Sequence) triples where cities can be built on
any plot p ∈ P .The resulting size of the state space is

|S| =
c∑

i=0

|P |!
(|P | − i)! (1)

With c = |P | since every plot on the map could be a city.



Fig. 2. Excerpt of the State Space S

B. Actions

The set A of possible actions which can be taken when in
a state s ∈ S consists of founding a city on any of the plots
(p ∈ P‖p /∈ s), i.e. any plot where there is no city of the
active player yet. Since the map size of a game varies and
for an average sized map there are |P | = 2560 plots already,
this results in a very large state space. One measure we took
to reduce this size significantly is to ignore ocean plots, as
cities can only be founded on land. This reduces the number
of possible plots to about one third of the map size.

C. Rewards

The reward signal is based on the score of a player. In the
original game this score is used to compare the performance
of the players with each other and it is updated every turn for
all players. The game score consists of points for population
in the cities, territory (the cultural borders of the cities added
up) and technological advancement (developed with research
output from the cities). Therefore, all the parts the game score
is made up of are connected to the cities. A time step, i.e.
the time frame in which the reinforcement learner has to
choose an action and receives a reward after performing that
action, is defined as the time between founding one city and
founding the next city. The update of the Q-value Q(si, ai)
after taking an action ai in state si happens immediately
before executing the next action ai+1, i.e. founding the next
city. The selection of the appropriate plot for this foundation
however can happen several game turns before that, with
the settler unit moving to the chosen plot afterwards. The
scalar value which represents the actual reward is computed
by calculating the difference in game score between the
founding turn of the last city and the founding turn of this
city. The difference is then divided by the number of game
turns that have passed between the two foundations:

r ← (GameScorenew −GameScoreold)
(GameTurnsnew −GameTurnsold)

V. ALGORITHM

The top-level algorithm which controls the overall city site
selection task can be seen in Figure 3.

Fig. 3. Top-level Algorithm for City Site Selection

The actual Q-Learning algorithm which is based on
One-step Q-Learning as described in [2] is shown below.

Initialise Q(s, a) to 0
Repeat for each episode:

Initialise s
Repeat for each step in this episode:

Determine possible actions Ai in si

Choose action ai ∈ Ai as
I) ai ← max Q(si, ai) with probability 1-ε
OR
II) ai ← random ai ∈ Ai with probability ε

Send settler unit to plot chosen in ai

r ← gameScoreGainPerTurn()
Q(si, ai)
←Q(si, ai)

+α
[
r + γ ∗maxai+1Q(si+1, ai+1)−Q(si, ai)

]

si ← si+1

until the number of steps is X

The setting of a fixed number of turns X is motivated by
the game mechanics. The size of X is directly related to the
size of the map and the number of opponents. The size is
usually defined in a way that after X turns, most of the map
has been divided between the different factions and the main
focus in the game shifts from expansion to consolidation of
acquired territory and conquest of enemy terrain and thus
away from the city placement task.

The discount factor γ in our experiments, which are
presented in section VI, is set to 0.1. The reason for this
rather low value lies in the large number of possible actions
in each state. All Q(s, a) values are initialised to zero
and the reward signal is always positive. Therefore, actions
which are pursued in earlier episodes are likely to be called



disproportionally more often if a policy different to complete
randomness is pursued. The learning rate α is set to 0.2
which proved to be high enough to lead to relatively fast
convergence while being low enough to protect the Q-values
from anomalies in the reward signal. Both γ and α values
have also been tested in trial runs and proven to work best
for our purposes with the values given above.

Since Q-Learning is by definition an off-policy algorithm,
the learned action-value function Q converges with prob-
ability one to the optimal action-value function Q∗ even
following a completely random policy. However, this requires
visiting every single state infinite times, which is computa-
tionally not feasible. The algorithm uses an ε-greedy policy.
Its general behavior can be modified by altering ε, depending
on whether the main aim is learning or performing optimally,
i.e. if the focus should be on exploration or exploitation.

It is noteworthy that all Q-values show a dependency on
the starting position on the map of the respective player.
Furthermore, since the usability of a plot as founding site
for a city completely depends on the geography of the
surroundings, the Q-values obviously are correlated to the
map which is used in the game. As soon as the geography
changes, the Q-values have to be computed from scratch.
This dependency and how we intend to deal with it is further
elaborated in section VII.

VI. EMPIRICAL EVALUATION

We ran several experiments to compare our adaptive
city plot selection algorithm to the existing deterministic
sequential approach. In order to be able to compare the
growing effectiveness of greater coverage over the state
space, several experiments with differing numbers of turns
as well as different settings for the ε-greedy policy were run.
Except for the method of choosing the best spot for its cities,
the original game AI was left unchanged.

The standard setup is one computer player that uses ex-
perience gained through Q-Learning against two other com-
puter players which use the standard method of determining
founding plots. The map used is the same in every game,
as well as the starting positions. All players have exactly
the same ”character traits” (a game mechanic which leads
to advantages in certain parts of the game like research or
combat) so they are starting under exactly the same premises.
The size of the chosen map is the second smallest in the
game and the map consists of about 300 plots which can be
settled. According to Equation (1) this leads to the number
of possible states

|S| =
c∑

i=0

300!
(300− i)! .

c is in this case equal to the number of cities that are ex-
pected to be built in the given number of turns. This basically
means that not the complete state-tree will be traversed but
only the tree up to a depth equal to the maximum number
of cities. The number of game turns differed between the
experiments and was decided according to the goal of the

respective test. Due to the low number of actions which are
taken in one episode, a large number of episodes had to be
played for every setup to get meaningful results.

One of our main aims was to find out how the reinforce-
ment learner performed compared to the standard game AI.
To achieve an adequate coverage of the state space, which is
necessary to reach comparable results to the static but quite
sophisticated standard game AI, the number of game turns
was set to 50 (12.5 % of the maximum length of a game).
This seems rather short but since the map on which the game
is played is small, the game phase during which the players
found new cities is usually very short as well. After 50 turns
on average about half of the map has been occupied by the
three players.

The limitation of the single episodes to a length of 50 turns
leads to an expected maximum number of cities of 2 for the
reinforcement player. This means that the possible states are
limited to about

2∑

i=0

300!
(300− i)! ≈ 90000.

Since despite the low number of cities the high branching
factor leads to this large state space, convergence is not
guaranteed, even though the Q-Learning algorithm is usually
able to cope through the ε-greedy policy which pursues the
maximum rewards with probability 1 − ε. ε was initialised
at 0.9, i.e. in 90% of all cases our algorithm would pick
a random action while selecting the action with the high-
est Q(s, a) value in the remaining 10%. This ratio was
subsequently slowly reverted, that means after 3000 played
episodes only 10% of all actions would be random while
90% were picked according to the highest Q(s, a) value.
This is necessary to draw a meaningful comparison between
the reinforcement learner and the standard AI when both try
to play optimal or close to optimal.
3050 episodes of length 50 turns were played by the com-
puter AI. After each episode the score of the players was
recorded. For the final evaluation, the score of the RL player
was averaged across the last 50 episodes to even out the
anomalies which occur because of the explorative policy. As
a reference value, the same experiment was performed with
a standard AI player instead of the reinforcement player, i.e.
three standard computer AI players compete against each
other on the same map with the same premises as in the
previous test. Figure 4 shows the results of both experiments.

The first thing that attracts attention is the performance of
the standard computer AI under these circumstances, which
results in the same score for every single game. This is due
to the fact that there is no randomness in the decisions of
the computer AI when it comes to city placement. There are
very few non-deterministic decisions in Civilization IV, most
of them in the combat algorithms, but those do not have any
effect until later in the game when players fight against each
other. Therefore, for the first 50 turns, the three standard AIs
always performed the exact same actions.

The diagram also shows that the reinforcement learner,
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while initially inferior in average score, ends up beating the
average score of the standard AI. On the downside it is
noteworthy that it took the reinforcement learner more than
2000 episodes of the game to reach that point. Since the
number of the episodes played is still a lot smaller than the
state space for the placement of two cities, there also remains
room for improvement by finding even better policies.
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Figure 5 shows the variance of the average of the scores for
the reinforcement learner. Its decline illustrates the change of
policy with increasing number of episodes.

Since the reinforcement learner performed very well for
short games and a large number of episodes, another exper-
iment was conducted to evaluate the convergence with less
episodes and more turns. The number of turns was doubled
to 100 turns per episode while the number of episodes was
reduced to 1500. The evaluation happened in the same way as
in the previous experiment through recording the game score
and averaging the score for 50 episodes. As an addition the
score was not only measured at the end of an episode, i.e.
after 100 turns but also after 50 turns like in the previous
experiment. Furthermore we performed another set of tests in
the same environment with an AI that follows a completely
random policy. This means that ε = 1, which results in the
player always picking actions at random.
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Figure 6 shows the results of these tests. As in the previous
test run with only 50 turns, the standard AI achieves the
same score for every single game at 50 turns. According to
the diagram it also seems as if this is the case at 100 turns.
However the standard AI achieves not the same score in every
game, but alternates between two different scores which
ultimately results in the same average over 50 episodes.
This alternation suggests that a probabilistic decision is made
during the second 50 turns. At the beginning when the RL
agent has no experience yet, both RL and random agent
have about the same average score. But while the score for
the player following a completely random policy shows as
expected no sign of long term growth or decline, the average
score of the reinforcement learner improves with the growing
number of episodes played.

The score for the reinforcement learner at 50 turns shows
the same upward tendency as the score for the RL agent
in the previous experiment (Figure 5). The average score is
still lower than that of the standard AI because of the smaller
number of episodes played. If growth of the average score
continues, this would very likely change within the next 1000
episodes. The average score for the reinforcement learner
after 100 turns shows the same tendency as the score at 50
turns even though the gap between the score. However the
gap between the average score for the standard AI and the
reinforcement learner is much bigger at 100 turns than at 50
turns. This can be explained through the significant difference
in size of the state spaces for 50 turns and 100 turns. While
during 50 turns players will get a maximum of two cities, 100
turns will allow building up to five cities which multiplies
the number of possible states by nearly 3003. Therefore it
is remarkable that there is already a visible increase in the
average score at 100 turns. This also means that there is
potentially a huge margin to be gained over the standard AI
through optimising the Q-values.

VII. FUTURE WORK

As previously stated, this paper presents the first results of
a work in progress, the application of reinforcement learning
to tasks in Civilization IV. Several extensions and additions
are planned for the near future and can be divided into



three categories. These categories are the improvement of
the Q-Learning algorithm which has been used throughout
this paper, the evaluation of other reinforcement learning
algorithms and the combination of other machine learning
techniques with RL. Furthermore the usage of Civilization IV
as a test bed for computer game AI research can be extended.

The results of the empirical evaluation show that while
the applied reinforcement learning method has potential to
outperform the static standard AI, in its current state learning
becomes computationally unfeasible when crossing a certain
threshold of game complexity, either in matters of game
turns or map plots. Therefore the optimisation of the Q-
Learning algorithm is crucial to extend the tasks for which
it can be used, i.e. longer games or larger maps. One way
to to do this is by speeding up the learning process and
as a result accelerating the convergence towards the optimal
action-value function. This can for instance be achieved
by using eligibility traces and thus having a multi-step
Q-Learning algorithm instead of the current one-step Q-
Learning. Another way to improve the speed of convergence
is the initialisation. At the moment all Q(s, a) values are
initialised to 0 at the beginning of the algorithm. This means
that every state has to be visited in order to determine its
usefulness for the exploitation part of the policy, often only
to conclude that its usefulness is very low. If the states were
instead initialised to the precomputed ”founding values” that
are used by the standard game AI, these values could serve as
indicators about the usefulness of a plot for the reinforcement
learner. This would not speed up the guaranteed convergence
to an optimal policy π∗ but generate better performance
earlier on, resulting in more challenging gameplay.

Besides extending the existing method, other reinforce-
ment learning algorithms and techniques such as the on-
policy temporal-difference algorithm SARSA or Monte Carlo
methods will be evaluated as to how well they are suited for
the city placement selection task [2].

Another field for future research on RL using Civilization
IV as a test bed is the combination of other machine learning
methods with RL. One particularly promising method is
Case-Based Reasoning (CBR). The application of CBR to
the plot selection task would allow to resolve the previously
mentioned problem with learned experience on one map be-
ing useless on another map because of the different topology.

Furthermore the application of Motivated Reinforcement
Learning (MRL) could improve the game play experience.
One of the game mechanics in Civilization IV are ”character
traits” of the different computer AIs. Certain players have
by definition advantages in certain areas of the game like
expansion, finance or combat. These advantages are hard
coded numbers and are meant to express certain character
traits like aggressiveness or expansionism. If those agents
would instead use a reinforcement learner which gets his
rewards through a motivational function as described in [12],
this could lead to very interesting behaviour for AI players.

Also the task for which these machine learning techniques
are used can be extended. While at the moment the task only

consists of determining where a city should be, in the future
this could also include the choice if the city is needed at all,
i.e. the optimal number of cities and when to build them.

VIII. CONCLUSIONS

This paper presents the design and implementation of a
reinforcement learner which is used to perform a city site
selection task in the turn-based strategy game Civilization IV.
The Q-Learning algorithm which was used, manages to learn
city placement strategies for specific maps. After sufficient
training the RL agent outperforms the standard game AI in
short matches. The reinforcement learner also shows promis-
ing results for longer and more complex games. The findings
from these experiments on the possible shortcomings of the
algorithm lay the groundwork for future work. Furthermore
the usage of the commercial video game Civilization IV as a
test bed for AI research demonstrates great potential because
of the diversity of the tasks involved in Civilization and
the relative ease with which these deterministic tasks can
be taken over by machine learning agents. The integration
of our RL agent into Civilization IV extends the otherwise
deterministic early game by a non-deterministic, adaptable
component which enhances the game-playing experience.
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0 595 476 392 469 476 413 439 451 469 447 125 475 420 478 406 292 445 412 375 392 403 250 481 392 478 407 553 469 481 459 435 478 375 503 314 470 342 369 490 460 459 458 485

1 493 419 420 405 426 426 290 405 417 462 126 432 431 456 406 546 401 431 472 449 390 251 439 371 499 406 510 490 438 459 391 478 376 353 413 478 421 552 490 448 308 458 312

2 441 420 479 435 400 392 397 215 406 361 127 363 378 438 301 402 445 349 488 435 262 252 531 420 478 366 384 469 460 459 392 478 377 439 335 387 350 510 490 481 459 458 478

3 458 371 438 406 481 478 425 370 445 397 128 432 216 421 392 539 459 481 459 362 368 253 531 371 387 406 546 445 495 459 456 384 378 531 371 484 421 510 490 481 478 402 405

4 463 442 421 529 400 363 390 386 435 397 129 482 413 429 400 460 490 293 278 392 390 254 356 420 478 412 469 497 481 411 435 485 379 531 335 478 227 510 490 481 459 458 485

5 465 420 492 406 354 398 335 392 476 397 130 439 484 456 406 539 490 453 459 399 478 255 439 371 478 406 539 445 481 459 326 427 380 441 413 478 457 510 490 481 430 484 347

6 465 441 456 383 407 363 397 343 435 493 131 410 371 471 267 510 490 386 459 406 493 256 385 420 478 406 405 357 481 442 399 478 381 531 464 434 313 510 490 481 459 458 478

7 465 407 471 392 491 420 393 370 435 397 132 481 424 456 370 510 490 481 459 494 485 257 439 371 478 406 552 445 481 459 456 500 382 256 371 478 414 377 298 481 461 455 468

8 278 261 456 490 400 363 397 378 435 458 133 378 413 411 443 510 490 412 459 435 478 258 434 420 478 406 510 232 481 385 406 485 383 439 471 251 387 510 490 481 459 406 478

9 465 413 456 406 262 439 465 370 494 361 134 439 379 421 406 510 490 453 459 346 478 259 439 403 471 421 510 490 481 459 428 330 384 304 420 471 421 478 376 481 375 308 478

10 465 407 450 456 378 403 397 497 435 397 135 302 413 336 437 510 490 311 459 406 471 260 397 371 471 392 510 269 451 414 406 485 385 531 483 442 414 510 445 385 472 392 478

11 465 371 329 406 405 260 495 392 399 397 136 439 349 450 406 382 490 495 459 414 485 261 481 469 442 346 510 503 481 459 464 471 386 531 371 478 450 283 500 481 424 401 478

12 465 298 456 437 442 403 397 360 435 480 137 382 420 197 450 539 490 375 459 435 431 262 351 420 478 406 510 407 481 339 458 478 387 531 420 443 450 552 490 469 459 435 478

13 465 413 384 406 403 335 404 370 399 397 138 531 493 450 392 386 490 481 355 399 478 263 439 456 449 450 382 445 481 459 468 413 388 531 371 507 421 466 490 481 461 442 478

14 465 457 421 445 400 410 397 392 435 176 139 531 371 471 439 552 196 481 472 435 439 264 272 420 478 392 510 465 282 225 435 478 389 531 420 327 401 510 490 453 459 399 469

15 571 371 373 406 462 346 397 392 328 368 140 531 401 456 412 320 503 481 428 278 478 265 432 394 327 215 320 497 488 459 399 322 390 531 371 513 457 437 449 481 327 320 478

16 458 510 421 297 400 410 397 392 435 260 141 531 420 337 227 517 355 481 459 435 478 266 433 371 513 457 517 450 412 414 406 485 391 364 420 448 421 539 445 434 459 435 500

17 372 413 442 406 404 503 397 190 205 390 142 462 371 405 406 362 445 481 404 527 478 267 439 379 448 425 193 490 481 459 435 478 392 432 371 471 414 369 353 467 358 347 485

18 471 446 479 385 407 490 397 399 392 438 143 439 420 421 412 517 441 481 466 435 478 268 327 413 471 421 517 490 328 308 399 478 393 426 420 478 414 510 490 368 459 441 330

19 449 378 462 399 372 490 397 256 435 397 144 462 371 405 406 383 490 481 406 314 478 269 481 450 478 414 233 445 488 459 435 478 394 439 431 507 414 402 272 460 459 234 485

20 465 379 450 421 413 490 397 370 399 354 145 503 420 421 406 552 442 481 459 441 478 270 429 407 478 414 539 497 481 459 399 478 395 375 371 447 414 517 503 495 459 435 225

21 365 378 370 406 520 490 397 423 435 390 146 354 371 405 357 261 490 481 260 435 384 271 531 440 478 335 328 445 481 459 435 478 396 439 252 478 414 539 416 481 459 378 478

22 465 444 456 397 400 490 397 392 399 253 147 439 408 421 406 539 437 481 459 399 498 272 531 413 478 443 510 503 445 459 399 431 397 233 413 478 414 510 490 312 459 435 448

23 389 413 421 406 469 490 397 272 435 368 148 531 407 405 492 254 445 410 298 435 478 273 531 348 478 389 551 490 481 459 435 485 398 439 393 478 414 510 372 488 459 304 478

24 458 355 405 328 400 490 495 399 493 393 149 531 470 421 406 517 250 488 459 399 478 274 531 413 478 421 510 490 350 459 346 433 399 531 470 478 414 510 490 387 459 441 322

25 279 413 421 406 322 490 397 422 399 397 150 432 371 405 517 358 490 480 499 435 478 275 345 421 478 414 377 490 481 459 435 485 400 577 400 478 368 510 319 488 459 435 485

26 458 261 405 406 400 347 490 392 440 396 151 439 380 421 392 546 326 481 459 399 478 276 481 378 478 414 517 490 415 459 343 468 401 243 470 478 414 510 445 442 459 399 444

27 367 442 421 406 400 490 397 254 435 390 152 407 413 405 354 377 445 481 329 435 412 277 400 283 478 415 539 490 460 459 435 485 402 535 285 478 291 510 376 481 459 435 478

28 471 366 494 406 400 405 481 399 450 397 153 439 475 421 406 517 327 481 459 372 478 278 439 413 405 457 510 490 478 459 448 440 403 338 470 478 421 270 445 481 406 399 323

29 345 378 456 406 400 503 397 488 399 397 154 449 420 456 360 395 503 481 262 441 431 279 453 371 507 421 423 441 481 450 441 485 404 542 422 478 313 539 503 481 459 435 485

30 465 389 441 406 400 544 449 392 486 397 155 439 376 456 406 510 393 481 459 479 478 280 439 420 353 414 517 445 384 466 372 431 405 577 470 478 421 412 490 481 260 399 478

31 460 413 456 450 400 445 397 384 406 450 156 406 407 434 176 423 490 481 449 399 384 281 400 371 507 414 539 426 488 260 392 485 406 577 315 344 401 539 490 481 459 435 478

32 458 371 451 392 400 440 485 399 349 361 157 439 421 405 406 517 468 481 459 205 485 282 439 420 471 414 510 490 481 459 440 186 407 577 470 507 414 465 490 481 298 432 478

33 288 420 456 408 400 445 397 478 392 300 158 531 442 429 329 539 445 363 430 441 427 283 476 371 507 414 510 486 481 401 406 485 408 577 433 464 376 539 490 481 459 435 478

34 465 371 458 406 386 403 479 392 449 361 159 531 446 421 406 510 310 488 459 383 478 284 531 420 378 414 510 445 481 459 382 449 409 577 512 478 457 385 490 481 392 472 478

35 450 420 456 403 400 490 397 458 435 375 160 531 371 422 406 510 503 253 488 392 427 285 432 371 478 414 510 439 481 283 392 485 410 344 462 574 394 510 490 460 459 399 504

36 458 371 524 406 240 407 311 370 428 361 161 400 421 450 406 444 442 481 459 186 498 286 531 437 405 414 476 490 481 466 308 372 411 599 512 478 421 491 490 481 329 399 478
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Appendix C

RLState class

class CvRLState
{

public :
struct CvCityPos
{

int iX ;
int iY ;
int iCityRank ;

} ;

protected :

// the e x i s t i n g c i t i e s in t h i s s t a t e
CvCityPos∗ m_paCities ;
//number o f c i t i e s o f the current p l ayer in t h i s s t a t e
int m_iNumCities ;
//number o f s t a t e s t ha t succeed t h i s s t a t e d i r e c t l y
int m_iNumSubStates ;
// the current Q−va lue
float m_fStateVal ;
// the preced ing s t a t e
CvRLState∗ m_pPrevState ;
// the f o l l ow i n g s t a t e s
CvRLState∗ m_paSubStates ;
//when was the l a s t c i t y founded
int m_iFoundTurn ;
//does t h i s s t a t e use pre− i n i t i a l i s e d va lue s
bool m_bPreInit ;
//what was the game score be f o r e the l a s t c i t y was founded
int m_iPrevScoreScore ;
// i f the current a lgor i thm uses e l i g i b i l i t y t races , i t s va lue i s s to red here
float m_fE l i g i b i l i t y ;

} ;

Listing C.1: CvRLState.h
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