

CASPER: DESIGN AND DEVELOPMENT OF A CASE-BASED POKER PLAYER

by

Jonathan Rubin

A thesis submitted in partial fulfilment of the requirements
for the degree of Master of Science in Computer Science,

The University of Auckland, 2007.

Abstract

Poker provides a challenging domain for Artificial Intelligence research due to the

game’s properties such as hidden information (the other player’s cards) and non-

determinism (random shuffling of the deck). Recent approaches to Poker research have

required intensive knowledge engineering efforts. This thesis discusses the design and

development of a CASe-based Poker playER (CASPER) that uses the Case-Based

Reasoning methodology to make betting decisions at the poker table. The results

suggest it is possible to record instances of games played between strong poker players

and then reuse these to obtain a similar performance therefore bypassing the need for

the initial, intensive knowledge engineering process. An investigation into deriving

optimal feature weights using evolutionary algorithms has also been conducted. Casper

has been extensively evaluated by challenging various sets of opponents, including both

computerised opponents and real opponents.

 ii

Acknowledgements

Thank you to my supervisor, Ian Watson, for the opportunities you provided for me and

the time and effort you devoted to me. I also need to thank the University of Alberta

Computer Poker Research Group. Without their past research and tools this thesis could

never have been completed. Lastly, thank you to all my friends and family who

encouraged and supported me along the way.

 iii

Contents

1 Introduction 1
 1.1 AI and Games .. 1
 1.2 AI and Poker .. 2
 1.2.1 CBR and Poker .. 3
 1.3 The Game of Poker .. 3
 1.3.1 Betting .. 3
 1.3.2 5-Card Draw .. 4
 1.3.3 Tournament Play .. 4
 1.3.4 Ring Games .. 5
 1.3.5 Texas Hold’em ... 5
 1.4 Case-Based Reasoning ... 7
 1.4.1 The CBR Cycle .. 7
 1.4.2 Illustrative Example ... 8
 1.4.3 Case Retrieval .. 11
 1.4.3.1 K-Nearest Neighbour 11
 1.4.3.2 Inductive Retrieval 12
 1.5 Research Goals / Thesis Contributions 13

2 Related Work 14
 2.1 Games and AI .. 14
 2.1.1 Chess .. 14
 2.1.2 Checkers ... 15
 2.1.3 Other Games .. 17
 2.2 Poker and AI .. 18
 2.2.1 Early Poker Research ... 18
 2.2.2 Heuristic-based Systems .. 19
 2.2.3 Simulation-Based Approaches 20
 2.2.4 Game Theory and Poker .. 22
 2.2.5 Case-Based Reasoning and Poker 25

3 CASPER: Developing a Case-Based Poker Player 27
 3.1 Case-base Construction .. 27
 3.2 Case Representation ... 28
 3.2.1 Preflop Cases ... 29
 3.2.2 Postflop Cases .. 30
 3.3 Similarity Metrics .. 32
 3.3.1 Number of Players (preflop only) 32
 3.3.2 Relative position, Players in current hand, Players

yet to act, Number of players (postflop only), Small
bets in pot and Pot Odds .. 32

 3.3.3 Bets committed, Bets to Call and Previous Round
Total Bets ... 34

 3.3.4 Hand Ranking .. 36
 3.3.5 Immediate Hand Strength, Positive Potential and

Negative Potential .. 37
 3.4 Case Retrieval .. 40
 3.5 Implementation .. 42

 iv

 3.5.1 Casebase Construction ... 42
 3.5.2 Computer Opponents ... 43
 3.5.3 Self-play Experiments .. 43
 3.5.4 Real Opponents .. 43

4 Improving CASPER: Investigating Optimal Feature Weights 44
 4.1 Hand Picked Weights ... 44
 4.2 Self-play Experiments .. 46
 4.2.1 Selection ... 46
 4.2.2 Crossover ... 48
 4.2.3 Mutation ... 49
 4.2.4 Implementation .. 49
 4.2.5 Derived Weights .. 51
 4.2.6 Convergence .. 52
 4.2.6.1 Variance .. 52
 4.3 Opponent-Based Experiments ... 55
 4.3.1 Selection ... 56
 4.3.2 Crossover ... 56
 4.3.3 Mutation ... 56
 4.3.4 Implementation .. 56
 4.3.5 Derived Weights .. 58
 4.3.6 Convergence .. 59
 4.3.6.1 Average Profit ... 59

5 Results 63
 5.1 Hand-picked Weights .. 63
 5.1.1 Strong/Adaptive Competition 64
 5.1.2 Aggressive/Non-Adaptive Competition 65
 5.2 Evolutionary Derived Weights .. 67
 5.2.1 Strong/Adaptive Competition 67
 5.2.2 Aggressive/Non-Adaptive Competition 68
 5.3 Real Opponents .. 69
 5.3.1 Play Money .. 70
 5.3.2 Real Money .. 71
 5.4 Case Similarity and Retrieval .. 72
 5.5 Results Summary ... 74

6 Conclusions 75
 6.1 Future Work ... 77

A Investigating the Effectiveness of Applying Case-Based

Reasoning to the game of Texas Hold’em 79

B Preflop Hand Rankings 86

C Glossary of Poker Terms 88

D Sample Target Cases 91

Bibliography 97

 v

List of Tables

3.1 Casebase totals for Casper version 1 ... 28
3.2 Casebase totals for Casper version 2 ... 28
3.3 Representation of a preflop case, made up of 5 unindexed

features, 8 indexed features and 1 outcome 29
3.4 Representation of the postflop cases .. 31
3.5 Equivalent groups .. 32

5.1 Average similarity and number of retrieved cases (shown in

brackets) for the different sets of opponents that Casper
challenged .. 73

 vi

List of Figures

1.1 The CBR Cycle. Image sourced from (Watson 2003) 8
1.2 Jimmy’s opponent data. The black dots indicate games Jimmy

won, whereas the yellow dots are games that he lost 9
1.3 Jimmy’s opponent data. The blue square represents an opponent

Jimmy has not played before ... 10
1.4 Similar problems have similar solutions. Image sourced from

(Leake 1996) .. 11

3.1 Similarity values for the ‘players in current hand’ feature 34
3.2 Similarity values for the ‘bets committed’ feature 35
3.3 Immediate hand strength algorithm. Image sourced from

(Davidson 2002) .. 38
3.4 Positive and Negative potential. Image sourced from (Davidson

2002) .. 39
3.5 Representation of a probability triple. A bet/raise decision is

being made ... 42

4.1 Casper’s initial feature weight values .. 45
4.2 Hand-picked weights hypothesis ... 46
4.3 Proportional bar graph representing probability of selection 47
4.4 Pie chart with selection probabilities ... 47
4.5 Pictorial representation of GA design .. 50
4.6 Casper’s feature weights derived using a genetic algorithm 51
4.7 Bankroll variance recorded for each generation for a subset of

four GA’s ... 53
4.8 Average bankroll variance across all GA’s. The data indicates a

downward trend ... 53
4.9 Bankroll variance recorded for the final invocation of the

genetic algorithm ... 54
4.10 Pictorial representation of GA design .. 57
4.11 Casper’s opponent-based feature weights derived using a

genetic algorithm ... 58
4.12 Average profit for a subset of GA’s recorded over each

generation ... 60
4.13 Overall average profit for all initial GA’s recorded over each

generation ... 60
4.14 Average profit recorded for each generation for the final GA 61

5.1 Results obtained at the Strong/Adaptive Table 64
5.2 Results obtained at the Aggressive/Non-Adaptive Table 65
5.3 University of Alberta bots tested at the Aggressive/Non-

Adaptive Table ... 66
5.4 Results obtained at the Strong/Adaptive Table 68
5.5 Results obtained at the Aggressive/Non-Adaptive Table 69

 vii

5.6 Casper vs. Real Opponents at the Play Money tables 70
5.7 Casper vs. Real Opponents at the Real Money tables 72

 viii

Chapter 1

Introduction

1.1 AI and Games

Games offer a well suited domain for Artificial Intelligence (AI) investigation

and experimentation due to the fact that a game is usually composed of several well-

defined rules which players must adhere to. Most games have precise goals and

objectives which players must meet to succeed. For a large majority of games the rules

imposed are quite simple, yet the game play itself involves a large number of very

complex strategies. Furthermore, a performance metric is naturally embedded into the

game itself. Success can therefore easily be measured by factors such as the amount of

games won or the ability to beat certain opponents.

 Games are often classified by the amount of information available to the players.

If a player has access to all the information they require about the game during play then

the game can be classified as having perfect information. However, if some of that

information is hidden from the player the game is known as having imperfect

information. Take for example the game of chess. Chess is a game of perfect

information because each player can look down upon the board and obtain all the

information necessary to make their playing decisions. On the other hand, the game of

poker is a game of imperfect information. In poker players are given cards which only

they can see, therefore players now have to make decisions based on hidden information

because they cannot see their opponents’ cards.

 Games can be further classified as either deterministic or stochastic. If a game

contains chance elements, such as the roll of a dice, this introduces randomness into the

game. These types of games are known as stochastic games and examples include

bridge, backgammon and poker. The absence of these chance elements ensures the game

is deterministic. Games such as chess, checkers and go are examples of deterministic

games.

 1

 Until recently the main focus of AI related research has been on deterministic

games with perfect information such as chess (Campbell, et al. 2002) and checkers

(Schaeffer, et al. 1996). Success for these types of games has mainly come about

through the use of brute-force search techniques and increases in hardware processing

speeds (Schaeffer, et al. 1992). However, these approaches have been criticized for a

lack of applicability to real world problems. It is hoped that by studying stochastic

games with imperfect information results obtained may be more applicable to real world

domains. Stochastic, imperfect information games make it necessary to handle uncertain

knowledge and issues such as dealing with chance and deception (Davidson 2002),

issues that are closer to the reality that we live in.

1.2 AI and Poker

Poker is a stochastic game with imperfect information. It is stochastic because

the shuffling of cards introduces randomness into the game. It is a game of imperfect

information because players cannot see their opponent’s cards, therefore players need to

make decisions based on hidden information. Given the relatively simple rules of the

game there are an enormous amount of subtle and sophisticated scenarios that can occur

during a hand of play (this is particularly true of the Texas Hold’em variation). Poker

ensures that issues such as probabilistic reasoning and opponent modelling needs to be

considered. Poker is an inherently psychological game. It is crucial to have an

understanding of your opponent and how they think to be able to play well. All these

factors make poker a challenging domain for AI related research where advances are

likely to be beneficial outside the realm of poker itself.

The University of Alberta Poker Research Group1 has been extensively

researching computer poker for several years. The result of their efforts have been the

production of systems such as Poki (Davidson 2002) and PsOpti (Billings, et al. 2003).

PsOpti was designed to challenge only one opponent at the poker table, whereas Poki is

more suited to play at a full table, i.e. consisting of 10 players. Poki has been

extensively tested against real opponents using “play-money” and the results indicate

that Poki consistently makes profit against its competition. Poki has been rated as

having intermediate playing strength at a full poker table (Davidson 2002).

1 http://www.cs.ualberta.ca/~games/poker/

 2

1.2.1 CBR and Poker

 While there has been much focus on AI and poker related research in the recent

past, especially from the University of Alberta Poker Research Group, there has been

little effort in applying the tools and techniques of Case-Based Reasoning (CBR) to the

area of computer poker. CBR is an AI methodology (Mántaras, et al. 2005) that adapts

and uses solutions to past problems to resolve current problems. It is often true that

poker players act in a way that has proven to be successful in similar, past situations. An

introduction to CBR is given in section 1.4.

1.3 The game of Poker

There are numerous variations of the game of poker available. The games differ

by various aspects such as the number of hole cards dealt (cards which only one player

can see and use to make their best hand), the number of community cards dealt (cards

which all players can see and use to make their best hand), the order in which players

bet and the limits imposed on a player’s bet.

1.3.1 Betting

There are two variations which control the amount that a player may bet: limit

and no limit. In a limit game player’s bets are restricted to a certain amount. Conversely,

in no limit there is no restriction on the amount that a player can bet. A player’s betting

decision can be to fold, check, call, bet or raise. These are described below:

Fold: A player can fold their cards if they are facing a bet by another player,

but they don’t wish to match the bet. Once a player folds they are no

longer involved in the current hand, but can still participate in any future

hands.

Check/Call: When it comes time for a player to make his/her decision they can check

if there have been no bets made by other players. Checking means the

player does not need to invest any of their money into the pot to stay in

the current hand. If, however, an opponent has made a bet then a player

 3

can call the bet by adding to the pot the exact value of the current bet. By

contributing their own money to the pot they are able to stay in the

current hand.

Bet/Raise: A player can add their own money to the pot over and above what is

needed to stay in the current round. If the player is able to check, but they

decide to add money to the pot this is called a bet. If a player is facing a

bet from an opponent, but instead of deciding to just call the bet they

decide to add more money to the pot, this is called a raise.

1.3.2 5-Card Draw

In the past the most popular poker variation was 5-card draw. In 5-card draw

money enters the pot by way of each player’s ante, i.e. a forced bet by each player

before any cards are dealt. This ensures that there is something in the pot to play for.

Players are each then dealt five hole cards. No community cards are used. A round of

betting occurs where each player decides how they wish to play using the above betting

decisions (fold, call, bet, etc…). After the first round of betting, players can exchange

any number of their five cards for new cards from the un-dealt portion of the deck. After

a final round of betting, if there are still at least two players in the hand, a showdown

occurs where all players that are left reveal which cards they were actually holding. The

player with the best hand wins all of the money in the pot.

The use of no community cards in 5-card draw poker ensures that all players’

cards are hidden. The only information available to a player to help inform their

decision is their opponents’ betting strategy and the number of cards they choose to

discard. 5-card draw no longer remains the most popular poker variation. Texas hold’em

is now by far the most popular and most played variation of the game2. It is also the

variation used to determine the annual World Series of Poker Champion.

1.3.3 Tournament Play

The World Series Champion is determined via a no limit Texas hold’em

tournament structure. In tournament play, all players begin with the exact same amount

2 http://en.wikipedia.org/wiki/Texas_hold_'em

 4

of chips. Forced bets, known as the blinds, are imposed on two players during each

hand. The big blind acts as the minimum bet amount a player must make to stay in a

hand. Initial betting usually occurs as multiples of the big blind. During each round of

play one player at the table is assigned the status of dealer. This determines the betting

order. The player to the immediate left of the dealer is known as the small blind. This

means that player must make a forced bet of half of the current big blind. The player to

the left of the small blind is known as the big blind. This player must make a forced bet

of one full big blind. These forced bets occur before any cards have been dealt and

ensure that there is something in the pot to play for. As the tournament proceeds the

small blind/big blind values increase. The time taken for the blinds to increase normally

varies between about twenty minutes to two hours. For example, the blinds may

increase as follows: 10/20, 15/30, 20/40, 30/60, 40/80, 50/100. This means that the big

blind is initially $20 worth of chips and the small blind is $10 worth of chips. After a

certain time period the blinds are then raised to $30 for the big blind and $15 for the

small blind. The raising of the blinds continues until all players are knocked out of the

tournament, except for one player who holds all of the chips. This player is the winner

of the tournament.

1.3.4 Ring Games

Poker can also be played as a ring game (or a cash game). Ring games differ

from tournaments in a few areas. Firstly, in ring games players gamble with real money

in the form of chips. Players can play with any amount of money up to a specified limit.

Another difference is that the blinds do not increase. These are fixed, normally at a

value much lower than a players chip stack (the amount the player has to play with).

Ring games can be played as limit or no limit games. A ring game is normally composed

of 8 – 10 players. Players can leave the game at any time with their winnings (or losses)

and they can continue to play as long as they can pay the blinds. All results obtained for

this thesis are for limit, ring games.

1.3.5 Texas Hold’em

In the game of Texas hold’em players are dealt two hole cards and five

community cards are used in total. This strikes the right balance in terms of information

availability (Harrington and Robertie 2004) and offers opportunities for better strategic

 5

play than other poker variations allow for. Texas hold’em also offers a better skill-to-

luck ratio than is offered by other forms of poker. An expert hold ‘em player has more

of an advantage because the best hand holds up more often than in any other poker

variation (Sklansky and Malmuth 1994). Play in hold ‘em proceeds in the following four

stages: preflop, flop, turn and the river. These are described below:

Preflop: The game of Texas hold’em begins with each player being dealt two hole

cards which only they can see. The player to the immediate left of the

big blind is the first player to act. Once a player has made their decision

play continues in a clockwise fashion round the table. If a player, who

has not made a forced bet, wishes to play then they must pay at least the

big blind value into the pot. The small blind and big blind only have to

match the current bet value to stay in the game. As long as there are at

least two players left then play continues to the next stage. During any

stage of the game if all players, except one, fold their hands then the

player who did not fold his/her hand wins the pot and the hand is over.

Flop: Once the preflop betting has completed three community cards are dealt.

Players use their hole cards along with the community cards to make

their best hand. Another round of betting occurs. During this round and

all future rounds the small blind player is the first to act (if the small

blind player is no longer in the hand then the first active player to the left

of the small blind becomes the first to act). The player classified as

dealer is always the last to act (once again, if the dealer is no longer in

the hand the first active player to the right of the dealer becomes the last

player to act). As long as there are at least two players left then play

continues to the next stage.

Turn: The turn involves the drawing of one more community card. Once again

players use any combination of their hole cards and the community cards

to make their best hand. Another round of betting occurs and as long as

there are at least two players left then play continues to the next stage.

River: During the river the final community card is dealt proceeded by a final

round of betting. If at least two players are still active in the hand a

showdown occurs in which both players reveal their hole cards and the

 6

player with the highest ranking hand wins the entire pot (if both players

hold hands of the same value then the pot is split between both players).

1.4 Case-Based Reasoning

1.4.1 The CBR Cycle

Case-based reasoning is an AI methodology which stores past problems and

solutions and uses these to handle novel situations (Riesbeck and Schank 1989). Past

cases are stored in a case-base and when a new problem is encountered the most similar

cases are retrieved and evaluated. Case-based reasoning is a cyclical process and is

typically composed of the six-REs (Watson 2003).

1. REtrieve the most similar case(s).

2. REuse the case(s) to attempt to solve the problem.

3. REvise the proposed solution if necessary.

4. REview the proposed solution to determine whether it is worth retaining.

5. REtain the new solution (if need be) as part of a new case.

6. REfine the case-base over time.

 This process is illustrated pictorially in Figure 1.1.

 7

Figure 1.1: The CBR-cycle. Image sourced from (Watson, 2003).

1.4.2 Illustrative Example

Case-based reasoning is probably best explained using an example. The scene

for this example is an online poker server where players can play poker for real money

against opponents from all around the world. Imagine Jimmy is an average online poker

player who specialises in heads-up Texas hold’em tournaments. Heads-up tournaments

involve two players who begin with even amounts of chips and play until one player

holds all the chips and the other player holds none. Before the tournament begins both

players pay a fee to enter the tournament. Jimmy normally pays $10 to enter into a

tournament. The player with all the chips at the end of the match is the winner and they

are rewarded $20 (their original $10 to enter the tournament plus their opponent’s $10).

On the online poker server records are kept for each player specifying how long

they have been playing for and how many heads-up games they have won. Assume

Jimmy wishes to use this information to establish whether playing a particular opponent

will be profitable or not. To do so Jimmy decides to record this information before

playing a match along with the outcome of the match. Figure 1.2 shows Jimmy’s

 8

records after a few months of play. The black dots are games that Jimmy eventually won

and the yellow dots are games Jimmy lost.

Figure 1.2: Jimmy’s opponent data. The black dots indicate games Jimmy won, whereas the
yellow dots are games that he lost.

Now, before Jimmy decides to play a particular opponent in a game of heads-up

poker he first finds out how long that opponent has been playing for and how many

games the opponent has won and he plots this information on his graph. In Figure 1.3

this opponent is represented as the blue square. Once Jimmy has plotted the information

on his graph he needs to decide whether or not to challenge this opponent. To do so

Jimmy compares how close this opponent’s attributes are to previous opponents Jimmy

has played against. If these values are similar to opponents that Jimmy played in the past

and won against then Jimmy decides to challenge the opponent, however if they are

more similar to opponents that Jimmy lost against in the past then Jimmy decides to

keep his $10 instead. In this example Jimmy’s opponent is closer in proximity to players

that Jimmy has won against in the past, so Jimmy decides to challenge the opponent.

 9

Figure 1.3: Jimmy’s opponent data. The blue square represents an opponent Jimmy has not
played before.

The above example, while simplistic, illustrates the idea of using past

experiences and their solutions to make decisions about novel situations. Each previous

experience is stored as a case in the case-base and each case consists of a number of

attributes with associated values and the final solution. In the above example, the

attributes that made up each case was:

1) the opponent’s experience (days, weeks, months… playing on the server)

and,

2) the amount of games they had won.

These attributes are known as indexed attributes, i.e. their values are used to find

similar cases in the case-base. However, a case can also be composed of other non-

indexed attributes which simply record useful information about the case. In this

example a non-indexed attribute may be the opponent’s name. The solution for each

case was whether Jimmy had won or lost the match. Case-based reasoning assumes that

similar problems have similar solutions (Leake 1996). This is represented pictorially in

Figure 1.4.

 10

Figure 1.4: Similar problems have similar solutions. Image sourced from (Leake 1996).

1.4.3 Case Retrieval

There are two common methods for the retrieval of similar cases from the case-

base. One involves using the k-nearest neighbour algorithm and the other inductive

retrieval.

1.4.3.1 K-Nearest Neighbour

The k-nearest neighbour algorithm involves positioning a target case (T) in an n-

dimensional search space of source cases (S). Each dimension in the space records the

value for one of the indexed attributes which makes up the case. Similarity between the

target and source cases individual attributes is calculated using a distance metric. For

example, the absolute difference between two numeric attributes |Ti - Si | where i refers

to the specific attribute in the case.

 11

The target case must be compared to every case in the case-base and similarity

computed for each attribute in the case. Global similarity between two cases is

computed as follows:

 Similarity(T, S) = ∑ (1.1)

=

×
n

i
iii wSTf

1
),(

Here, f refers to a similarity function, i refers to each individual attribute in the

case, n refers to the number of cases in the case-base and wi refers to a weighting for

attribute i to indicate its importance in the similarity measure.

The above equation simply states that global similarity is the sum of the local

similarities between attributes. Similarity values are often normalised to fall in the range

of 0 to 1, where 0 refers to least similarity and 1 refers to an exact match.

Of the n cases in the case-base, k cases with the highest similarity are retrieved.

1.4.3.2 Inductive Retrieval

Inductive retrieval is another method which has been used for case retrieval.

Instead of summing similarity between separate attributes inductive retrieval works by

examining cases in the case-base and building a decision tree. The ID3 induction

algorithm is generally used to build the tree. The attributes that make up the case are

examined and the information gain heuristic is used to order the attributes position in

the decision tree. Attributes which do a good job of partitioning cases in the case-base

are favored and are selected earlier, resulting in placing their nodes higher in the tree.

Inductive retrieval has not been used in this thesis and is merely mentioned for

completeness. For a more in-depth discussion of inductive retrieval and ID3 see

(Watson 1997) or (Mitchell 1997).

 12

1.5 Research Goals / Thesis Contributions

The work completed in this thesis has focused solely on the area of limit Texas

Hold’em. Particular interest has been given for making betting decisions at a full poker

table, i.e. one consisting of approximately 8 – 10 players. Successful strategies differ

markedly at a full table compared to games with fewer players e.g. heads-up - where

there are only two players in total.

A major goal of the research was to investigate the application of case-based

reasoning tools and techniques to make betting decisions for the game of Texas hold’em

and the quality of performance that was possible using this approach. This required the

design and development of appropriate case-representations for encoding poker

knowledge, investigating appropriate case comparison methods and extensive

performance testing. By investigating the above problems it was intended to add to and

improve upon the modest CBR related approaches to the game of poker that were found

in the literature.

A case-based poker player, nicknamed Casper (CASe-based Poker playER), was

successfully developed and tested. Casper was shown to be able to record games from

strong players and then reuse these to obtain a similar performance. This bypassed the

need for any initial, intensive knowledge engineering effort required of other poker-

bots.

The rest of this thesis proceeds as follows:

• Chapter 2 discusses past research related to AI and games. Historic and

recent approaches to the game of poker are extensively discussed and

examined.

• Chapter 3 details the design and development decisions made during the

construction of the Casper system.

• Chapter 4 describes various attempts at improving the performance of the

system through the use of evolutionary algorithms.

• Chapter 5 summarises all results obtained for the Casper system.

• Chapter 6 discuses conclusions and possible future work.

 13

Chapter 2

Related Work

Games provide a well suited domain for AI research. This is due to the fact that

a game is usually composed of several well defined rules which players must adhere to.

For a large majority of games the rules imposed are quite simple, yet the game play

itself involves a large number of very complex strategies. This is especially true of

games such as chess and checkers which offer opportunities to make very sophisticated

and intricate plays. This statement is also true of the game of Texas hold’em and is

nicely summed up by a popular quote coined by Mike Sexton which states “Poker takes

a minute to learn and a lifetime to master”3. Another reason why games offer a

beneficial environment for AI research is the fact that goals and objectives of the game

are clearly defined. This is advantageous to research as a performance metric is

implicitly embedded in the game. Success can easily be measured by factors such as the

amount of games won, the ability to beat certain opponents or, as in the game of poker,

the amount of money won.

2.1 Games and AI

2.1.1 Chess

Up until recently AI research has mainly focused on games such as chess and

checkers. Successes like Deep Thought, Deep Blue and Chinook are usually the first to

come to mind when contemplating AI and games. The chess automaton, Deep Thought,

evolved through work started by Hsu in 1985. It was the first machine to achieve

Grandmaster level performance over 25 consecutive rated games in 1988. For this

achievement it won the second Fredkin Intermediate Prize (Hsu, et al. 1995). The next

3 http://www.pokerlistings.com/poker-beginner-guide

 14

year in October 1989 saw the first exhibition match between Deep Thought and Gary

Kasparov, the then World Chess Champion. Kasparov won the match-up. Deep

Thought’s successor, Deep Thought 2, was completed in 1991 and had reached close to

Super Grandmaster strength by 1995 (Hsu, et al. 1995). Deep Thought 2 was effectively

a prototype for IBM’s Deep Blue computer chess system. Deep Blue 1 played 6 games

against Gary Kasparov in February of 1996. Once again Kasparov was the victor. The

final score being 4-2. After this loss to Kasparov development of Deep Blue 2

commenced. Various improvements were made to Deep Blue 1. The evaluation

function, i.e. the weighted sum of features which indicates the strength of a particular

board, was significantly improved. Deep Blue 2 now used an evaluation function which

consisted of 8000 individual features. The search speed was improved to on average 250

million positions per second (Campbell, et al. 2002) and the selective search aspect of

the system, which meant that resources were dedicated to search interesting lines of play

and dead ends in play were quickly abandoned, also underwent various modifications

and improvements. The result of these efforts saw Deep Blue 2 defeat Garry Kasparov

in 1997 by a score of 3.5 – 2.5. For the victory Deep Blue 2 was awarded the Fredkin

prize.

A case-based reasoning approach to chess was conducted by (Sinclair 1998).

Sinclair used a collection of 16,728 chess games played by grandmasters with varying

styles of play. The database of chess games was then analysed using a multivariate

technique known as principal component analysis to build a case-base for each of the

board positions and the corresponding move made was recorded. Future board positions

encountered are matched against the case-base and the most similar cases retrieved.

Sinclair reported that when the similarity measure is high the quality of the solutions

returned is very good, but recall is low, whereas if the degree of similarity was reduced

the quality of returned solutions is lowered, but recall improves (Sinclair 1998).

2.1.2 Checkers

The main contributor to the success of chess programs such as Deep Blue was

the use of brute-force search techniques along with improvements to hardware

processing speeds. A lot of the same techniques that were used for the game of chess

have also been successful when applied to checkers. Checkers is less strategically

complex than chess. In checkers there are only two types of pieces to play with, while in

 15

chess there are 6. There is also a reduction in the amount of legal squares on the board.

In checkers there are 32 legal squares as opposed to twice that amount in chess. These

simplifications can actually be more beneficial when it comes to AI research (Schaeffer,

et al. 1992). Many of the same research questions are still being addressed as in chess,

but without the undue complexity. In August 1990, a checkers program called Chinook

competed in the U.S. National Open. Work on Chinook had begun in June 1989 at the

University of Alberta (Schaeffer, et al. 1991). Chinook ended up coming second in the

National Open, after the then World Champion, Dr. Marion Tinsley. By coming second

to Dr. Tinsley Chinook had earned the right to challenge him in a 40 game match for the

World Championship title. Unfortunately, the American Checker Federation (A.C.F)

and English Draughts Association (E.D.A) refused to sanction the match on the grounds

that they did not want a computer vying for a human title. Instead a new “Man-

Machine” World Championship was created. Chinook commenced playing Tinsley in

August 1992 - the final outcome saw Tinsley as the victor winning four of the matches,

losing two and drawing 33 matches (Schaeffer, et al. 1996). Two years later Chinook

was set to challenge Dr. Tinsley again. Chinook had undergone significant

improvements in the two years, including additions to the endgame database and

improvements to the evaluation function. The first 6 matches all resulted in draws. The

seventh match was never to be played. Unfortunately, due to health reasons, Dr. Tinsley

resigned the match and Chinook became the Man-Machine World Champion by forfeit.

As with Deep Blue in chess, Chinook’s success was related to its deep search

capabilities as well as a strong evaluation function. Chinook also employed use of an

end-game database which was able to supply perfect information for all board positions

for 6 pieces or less remaining. At the time of writing this thesis Chinook had extended

the endgame databases to provide perfect information for all checker positions involving

8 or fewer pieces on the board.

A different approach to the game of checkers which is noteworthy is the work of

Fogel (2000). Fogel’s approach consisted of evolving neural networks to play the game

of checkers. Initially a set of random neural networks competed against each other for

survival. The only human knowledge that was provided to the networks was the piece

differential, i.e. the difference between the number of one player’s pieces versus the

other player’s pieces. After a certain number of games were completed the networks

were given a number associated with how well they were playing. The best networks

were kept and offspring created from them. After 250 such generations the best evolved

 16

neural network was used as an evaluation function and combined with standard

minimax search to play games against actual human opponents. Although Fogel’s

program is no match for Chinook his work is impressive due to the lack of human

expertise involved in creating an expert checkers player.

CBR has also been applied to the game of checkers (Powell, et al. 2004). The

result was a system called CHEBR (CHEckers case-Based Reasoner). In traditional

case-based reasoning systems case-bases are often constructed manually, for example

via interaction with a domain expert who can supply prototypical scenarios. CHEBR

differs from conventional case-based reasoning in that it actually acquires knowledge in

real-time by playing checkers, i.e. CHEBR begins with an empty case-base and adds

cases as it plays the game. This is known as automatic case elicitation. Initially,

CHEBR has no knowledge of the game whatsoever; this includes the difference between

legal and illegal moves. It begins by randomly selecting moves it has not tried in the

past until a legal move is found. Once a legal move is found CHEBR records how

successful the move was. As the system encounters similar situations it retrieves the

most similar successful cases from its case-base and takes the appropriate action, if the

situation encountered does not match previously stored cases or only unsuccessful cases

are present then the system generates a new action either randomly or by combining

actions from other successful cases. Results indicate that extra experience (gained

through playing many games of checkers) can compensate for a lack of predefined

knowledge.

2.1.3 Other Games

Apart from chess and checkers there have also been attempts to create programs

to play games such as Backgammon, Go and Bridge. Gerald Tesauro’s TD-Gammon is a

neural network that trains itself to be an evaluation function for the game of

backgammon by playing itself and learning from the outcome (Tesauro 1995; Tesauro

2002). GIB, developed by Matthew L. Ginsberg, has achieved success in the game of

Bridge (Ginsberg 1999; Ginsberg 2001). And in Othello, Michael Buro’s Logistello

challenged and defeated the World-Champion Takeshi Murakami (Buro 1997).

 17

2.2 Poker and AI

Games such as chess, checkers and backgammon are classified as two-person,

zero-sum games with perfect information. This means that there is one winner and one

loser (zero-sum) and the entire state of the game is accessible by both players at any

point in the game (perfect information), i.e. both players can look down upon the board

and see all the information they need to make their playing decisions. These types of

games have achieved their success through the use of fast hardware processing speeds,

selective search, effective evaluation functions and better opening books and endgame

databases. While these achievements are impressive, their scope is rather limited. They

offer little insight into other areas where AI techniques may be useful.

Games such as poker on the other hand are classified as stochastic, imperfect

information games. The game involves elements of chance, the actual cards which are

dealt, and hidden information in the form of other player’s hole cards (cards which only

they can see). This ensures that players now need to make decisions with uncertain

information present. This is still an open research question in the AI community and

research efforts are likely to be beneficial outside the realm of poker itself. For AI to be

useful for most real world problems, challenges that imperfect information and a

stochastic environment offers need to be addressed.

There have been a small number of early machine learning attempts made in the

domain of five-card draw poker. More recent approaches to poker research can be

classified into three broad categories: the investigation of game-theoretic optimal

solutions, heuristic rule-based systems and simulation/enumeration-based systems.

2.2.1 Early Poker Research

Nicholas Findler is credited with the earliest attempts to apply machine learning

principles to the game of 5-card draw poker (Billings 1995). In the 1970s Findler

created programs to play 5-card draw poker which used various playing strategies

(Findler 1977). Findler’s machine players were classified as either static players, which

did not take their opponents’ behaviour into account, or learning players, that adapted

their style of play according to the game conditions. Findler’s analysis of these machine

players quality of play and rate of improvement has been questioned (Billings 1995) due

 18

to its subjective nature and lack of scientific rigor. Although the machine players

developed by Findler produced weak to mediocre poker players this was not the main

concern of the research. Rather, the game of poker was used as an environment in which

to study theories of decision making, human behaviour and cognition in a risk-taking

environment.

Another early researcher who used 5-card draw as a research test-bed was

Waterman (1970). Waterman investigated the machine learning of heuristics

(represented as production rules) to make a betting decision given information such as

the amount of money currently in the pot, the belief measure that an opponent could be

susceptible to a bluff, the number of cards the opponent replaced (used in deducing

which possible hand the opponent may hold) and a measure of how conservative the

opponent is believed to be. Waterman reported that the use of a small set of production

rules “produces play at roughly the same level of skill as an experienced human player”

(Waterman 1970).

2.2.2 Heuristic-Based Systems

A heuristic/rule-based system approach to computer poker uses various pieces of

information to inform a betting strategy. For example, information such as a player’s

hole cards, the current community cards, the player’s current position at the table and

the previous betting history of the hand may form part of some heuristic which dictates

whether the player should fold, check/call or bet/raise when it is their turn to act.

As mentioned previously, an earlier attempt at an heuristic based system was

made by Waterman (1970) who attempted the machine learning of heuristics using the

poker variation of five-card draw. Sklansky and Malmuth have detailed various

heuristics for different stages of play (preflop, flop, turn and river) in the game of Texas

hold‘em (Sklansky 1994; Sklansky and Malmuth 1994). In particular detailed guidelines

for preflop play, given a player’s relative betting position at the table, are provided. As

well as the grouping of various hole cards into eight separate equivalence classes

ordered on the strength of the hand (Sklansky and Malmuth 1994). The purpose of

these rules, however, has been to guide human players who are looking to improve their

game rather than the construction of a computerised expert system. Nevertheless, a

poker playing program that used to play on Internet Relay Chat (IRC) called r00lbot

 19

developed by hobbyist Greg Wohletz used Sklansky and Malmuth’s recommendations

to determine its preflop play (Papp 1998).

The University of Alberta Poker Research Group’s formula based version of

Poki uses ad hoc rules and formulas defined by a domain expert to generate a fold,

check/call and bet/raise probability distribution which specifies a betting decision

(Billings, et al. 2002). The distribution is represented as a probability triple whose

components sum to 1.0. For example, given the probability triple (0.0, 0.2, 0.8) a player

should fold 0% of the time, check/call 20% of the time and bet/raise the remaining 80%

of the time.

 Information such as a player’s effective hand strength (the probability that the

player currently has the best hand or can improve to make the best hand), relative

betting position and the model of an opponent’s play all contribute to the generation of

the probability triple. The exact details of the expert system have not been specified

(Billings, et al. 2002).

Poki’s performance was tested by playing both real and machine opponents. The

formula-based version of Poki played in both low limit and higher limit games on the

IRC poker server. Poki was a consistent winner in the lower limit games as well as in

the higher limit games where it faced tougher opposition (Billings, et al. 2002).

 While expert defined rule-based systems can produce poker programs of

reasonable quality (Billings, et al. 2002), various limitations are also present. As with

any knowledge-based system a domain expert is required to provide the rules for the

system. In a strategically complex game such as Texas hold’em it becomes impractical

to write rules for all the scenarios which can occur. Moreover, given the dynamic,

nondeterministic structure of the game any rigid rule-based system is unable to exploit

weak opposition and is likely to be exploited by any opposition with a reasonable degree

of strength. Finally, any additions to a rule-based system of moderate size become

difficult to implement and test (Billings, et al. 1999).

2.2.3 Simulation-Based Approaches

A simulation-based betting strategy is analogous to selective search in perfect

information games such as chess and checkers. Rather than expanding all nodes in the

game-tree with equal probability, biases towards expanding certain nodes are introduced

 20

in the hope of obtaining better information in less time by initially examining important

nodes.

 In poker a simulation-based betting strategy consists of playing out many

scenarios from a certain point in the hand and obtaining the expected value (EV) of

different decisions. The simulations occur when it is time for the program to make a

betting decision. The amount of money won or lost for each betting decision is

determined and the average of this becomes the EV for that decision. The EV of a fold

decision is always 0 because no money can be won if the hand is folded. The EV of a

check/call or a bet/raise decision is obtained by playing out the hand to the end using a

certain number of trials. Each trial begins by assigning each opponent possible hole

cards and then simulating how the opponent might play the hand.

During the simulation it becomes necessary to make future betting decisions as

well as predict an opponent’s betting decisions along the way. The University of Alberta

Poker Research Group’s implementation of Loki (Billings, et al. 1999) and simulation-

based version of Poki (Billings, et al. 2002) use probability triples as the main data

structure to handle these decisions. A probability triple (f, c, r) is generated which

specifies how often the program and the opponent would fold, call or raise at a

particular point in the game. The use of probability triples allows elements such as

game-specific information, expert defined rules and knowledge of human behaviour to

effectively be treated as a ‘black box’. These ‘messy’ elements are constrained to the

construction of the probability triple (Billings, et al. 1999).

Simulation based approaches have been combined with opponent modeling

methods in both Loki and Poki (Billings, et al. 1999; Billings, et al. 2002). At the

beginning of a simulation trial opponents need to be assigned two hole cards to inform

their possible future actions. Rather than assigning hole cards to different opponents

with uniform probability a weight table is maintained for each opponent which lists all

possible two card holdings and the likelihood that those cards would have been played

to the current stage in the game. After observing a betting action from an opponent the

weights are updated using a probability triple generated by the current opponent model.

The use of the weight table allows the assignment of hole cards to an opponent to be

biased towards certain cards, rather than assuming equal probability. For example, if an

opponent has consistently been raising in a hand it is more likely that the opponent has a

good hand rather than a random one.

 21

Results for the simulation based versions of Poki and Loki were somewhat

mixed (Billings, et al. 2002). While they performed better than their formula-based

counterparts in the lower level games on the IRC poker server, they were only able to

break even on the more advanced level games whereas the formula-based versions

would routinely win.

2.2.4 Game Theory and Poker

The game of Texas hold’em consists of multiple players, with conflicting goals,

making decisions given the information they have access to. Game theory provides the

tools to model and analyse situations such as this and allows “rational” strategies to be

developed for different players (Rasmusen, 2001).

There have been various manual applications of game theory to simplified

versions of poker (Kuhn 1950; Nash and Shapley 1950). While game-theoretic

approaches are manageable for games with perfect information, the introduction of

imperfect information greatly increases the computational costs and the complexity of

the problem. A consequence of this was that game-theoretic analysis could only be

performed manually on over-simplified versions of poker and as such any results

obtained from studying these simple versions of the game do not transfer well to full-

scale poker (Koller and Pfeffer 1997).

Koller and Pfeffer have investigated the application of game theory to large

imperfect information games, such as poker, in their Gala system (Koller and Pfeffer

1997). The Gala system is made up of two distinct sections. The first section involves

the ability to describe a game using a special language to specify the rules that make up

the game. Once the game has been specified a tree is constructed which is very similar

to the “standard” AI game tree in which states are represented as nodes in the tree and

an agents possible decisions are represented as arcs. This tree is known to game

theorists as the extensive form representation of the game. The extensive form

representation extends the standard game tree by adding information about a player’s

information state at particular nodes (Koller and Pfeffer 1997).

The second component of the Gala system performs analysis on the game tree

and finds randomised optimal strategies for the game. Randomised strategies involve

some proportion of random decisions being made, for example how often to bluff, with

random cards, in a game of poker. Randomised strategies are employed by the Gala

 22

system for games with imperfect information as any deterministic strategy is liable to be

exposed and exploited. An optimal strategy is one in which a player cannot do any

better by changing his or her strategy provided that their opponents are also using an

optimal strategy, moreover a player can reveal their optimal strategy yet not be

vulnerable to exploitation by their opponent (Koller and Pfeffer 1997). These concepts

have been illustrated using the game of rock-paper-scissors (Billings, et al. 2002;

Davidson 2002; Billings, et al. 2003).

The game of rock-paper-scissors (or RoShamBo) is played by two people. Each

person simultaneously chooses rock, paper or scissors. Players make their choices

known to each other at the same time, usually via hand signals. The winner of the game

is determined as follows: rock beats scissors, scissors beats paper and paper beats rock.

So as an example if player 1 chooses rock and player 2 chooses scissors then player 1 is

the winner of that round. If both players choose the same item then the outcome is a

draw. The skill in the game of rock-paper-scissors comes from a player knowing their

opponent so well that they are able to predict which option their opponent will choose

i.e. they know their opponents’ strategy. Now, in the game of rock-paper-scissors there

exists an optimal strategy which says to randomly pick rock, paper or scissors with

equal probability. If a weak player deviates from this strategy a strong player is liable to

outplay the weak player by finding out and exploiting their sub-optimal strategy.

However, if the weak player just uses the optimal strategy and chooses rock, paper or

scissors, each with a probability of
3
1 , then the strong player no longer can exploit the

weak player by predicting what they will choose. By choosing the optimal strategy the

weak player ensures a breakeven result rather than a losing result. In fact, the weak

player can even tell the strong player their strategy and still not do any worse.

The Gala system was applied to a simplified version of two-player poker. An

eight card deck was used in which the lowest card was a 6 and the highest card was a

King. Each player is dealt one card and has to make a forced bet of one dollar. Each

player also has one extra dollar with which to bet. Players then have the option to check

and not wager their remaining dollar or to bet their remaining dollar or to fold their

hand. If either player folds the other player automatically wins the forced bets. The

game consists of up to three rounds. In the first round player 1 decides whether they

wish to check or bet. In round two player 2 now makes their decision. If player 1

checked in the first round then player 2 now has the option of either checking or betting.

 23

If player 1 bet in the first round player 2 can now either fold or call. The third round

only takes place if player 1 checked in the first round and player 2 bet in the second,

now player 1 can decide to fold or to also bet. Once betting is complete the cards are

revealed and the player with the highest card wins the pot. The rules for this simplified

game of poker were input into the Gala system and the game tree was generated and an

optimal strategy derived. The results of the analysis show that bluffing is game-

theoretically optimal in poker. While this simplified 8 card poker variation was able to

be solved using the Gala system the authors note that they are nowhere near being able

to solve full-scale poker due to the size of the game trees generated (Koller and Pfeffer

1997).

 The University of Alberta Computer Poker Research Group have attempted to

apply game-theoretic analysis to full-scale 2-player poker (Billings, et al. 2003). The

poker variation that they investigated was limit Texas hold’em. The group attempts to

overcome the computational complexities associated with full-scale poker by using

various abstraction techniques to reduce the search space while still retaining the key

properties and structure of Texas hold’em. By using abstractions such as limiting the

number of bets a player is allowed per round, eliminating some betting rounds (for

instance the river) and the grouping of hands into equivalence classes the group are able

to determine “pseudo-optimal” strategies. The result is a class of programs known as

PsOpti (PsOpti1, PsOpti2 …) which are “able to defeat strong human players and be

competitive against world-class opponents” (Billings, et al. 2003).

The outcome of applying game-theoretic solutions to games produces optimal

strategies, rather than maximal strategies. An optimal strategy assumes an opponent will

play optimally. It gives no consideration to exploiting any weaknesses of an opponent

and is only concerned with not losing rather than winning. A maximal strategy, on the

other hand, will try to win by exploiting sub-optimal play to maximise gains. This

implies that while game-theoretic approaches may not lose against very strong

opponents, they also may not win against weak opponents. Consider once again the

example of rock-paper-scissors. Imagine a very weak player whose strategy is to only

ever play rock. A maximal strategy will eventually detect this weakness and play paper

ensuring a win every time. Whereas, an optimal strategy will not consider the opponents

play and will continue to play rock, paper or scissors with equal probability, ensuring a

breakeven result. To overcome these constraints opponent modeling needs to be

addressed (Billings, et al. 2003).

 24

2.2.5 Case-Based Reasoning and Poker

Relatively few attempts to apply the principles and techniques of CBR to the

game of poker have been undertaken. A case-based learner for Texas Hold’em, called

Casey, was constructed by (Sandven and Tessem 2006). Casey recorded information

from poker hands and used these to make future betting decisions. Each case was made

up of several attributes including hand strength, relative position, number of opponents

and number of bets to call. The solution offered by a case is a strategy which consists of

an action to be taken and a follow up response if applicable. For example a strategy may

consist of one action such as fold or multiple actions such as checking to an opponent

and raising if the opponent bets (this is known as a check-raise in poker and is

considered to be a sign of strong hand strength).

Initially, Casey began with an empty case-base and therefore had to begin by

employing random strategies (i.e. making random decisions) to build up the case-base.

The decisions made by Casey were then evaluated by the outcome of the hand and this

was recorded in the case-base. As play proceeded more similar scenarios where

encountered and the need for random strategies decreased.

Sandven and Tessem tested Casey by playing in poker games of 4, 6 and 8

players through the University of Alberta Poker Research Group’s commercial product

known as Poker Academy4. Casey’s opponents were instances of another poker-bot

known as RuleBot. RuleBot, as its name suggests, is a rule-based system which was

provided with the Poker Academy software. As Casey begins by never folding and

playing randomly to generate a sufficient case-base the initial results are obviously quite

poor. As more cases are added to the case-base slight improvement is shown in the

results. Sandven and Tessem report that Casey plays on a par with RuleBot in 4-handed

play.

The Casper system, which is the focus of this thesis, improves upon Casey’s

results (Rubin and Watson 2007)5. No other systems that used case-based reasoning to

make betting decisions at the poker table could be found in the literature.

An attempt to apply CBR specifically to the area of opponent modeling was

made by (Salim and Rohwer 2005). Opponent modeling attempts to predict the hand

strength of an opponent given how that opponent has been observed playing in the past.

4 http://www.poker-academy.com
5 See Appendix A for a full re-print of this paper

 25

In poker it is imperative to know how ones opponents play, for instance are they

aggressive or conservative players? Does one opponent bluff too much? This

information is used to exploit weak opposition and to reduce the chances of being

exploited by stronger opposition. This insures that accurate opponent modeling is

critical to the success of any computerised poker player (Billings, et al. 1998; Billings,

et al. 1999; Davidson 2002). CBR seems to be an obvious candidate to handle this

aspect of the game, i.e. by recording cases of how a particular opponent has played in

the past and using the most similar cases in the case-base when faced with a new

decision. Salim and Rohwer attempted to use CBR to predict an opponent’s future play

given how they played their last 100 hands. Each opponent had their own individual

case-base which recorded their average hand strength and variance. The results show

that the predictions made using CBR did not achieve great success and were inferior to

results obtained by simply recording long-term average statistics for opponents (Salim

and Rohwer 2005).

 26

Chapter 3

CASPER: Developing a Case-Based
Poker Player

For this thesis a poker player was developed that used the CBR methodology.

The design and implementation of this CASe-based Poker playER, or CASPER,

involved the identification and experimentation of various aspects such as case

representation; feature usage, significance and similarity; and case retrieval. The design

decisions employed are detailed in this chapter.

3.1 Case-base Construction

Casper uses the CBR methodology to make a betting decision. This means that

when it is Casper’s turn to act it evaluates the current state of the game and then

consults its case-base (i.e. its knowledge of past poker experiences) to try and find

similar scenarios which may have been encountered. These past experiences dictate how

Casper should play the hand. Initially, Casper’s case-base was constructed by analysing

approximately 7000 poker hands played between two types of poker bots developed by

the Computer Poker Research Group at the University of Alberta6. The two bots used

were the well known Pokibot and the simulation based Simbot. Both Pokibot and

Simbot were the result of an intensive knowledge engineering process. Both bots have

proven to be profitable against human competition in the past (Davidson 2002) so it is

believed that the data obtained is of greater quality then it might be from other sources,

such as free money games on the internet composed of real players. Every decision

made during each hand was recorded as one case in Casper’s case-base. Casper then

reuses these recorded instances to make decisions at the poker table and therefore

bypasses the intensive knowledge engineering effort required of other poker-bots.

6 http://www.cs.ualberta.ca/~games/poker/

 27

For each stage of the game (preflop, flop, turn and river) a separate case-base is

used. Table 3.1 records how many cases were collected for each of the separate case-

bases. This became known as the first version of Casper, or Casper01. After observing

preliminary results it was decided to improve Casper01 by using a larger case-base.

Another 13,000 poker hands were played and recorded as cases in Casper02’s case-base.

Table 3.2 records the total number of cases recorded for each of Casper02’s separate

case-bases.

Stage Total cases

Preflop 28,224

Flop 9,998

Turn 7,023

River 5,691

Table 3.1: Casebase totals for Casper version 1.

Stage Total cases

Preflop 167,540

Flop 50,948

Turn 34,634

River 27,507

Table 3.2: Casebase totals for Casper version 2.

As can be seen above Casper02 uses substantially more cases then Casper01 to make a

betting decision.

3.2 Case Representation

The features that make up each case differ slightly depending on the current

stage. The features used for each stage are described below.

 28

3.2.1 Preflop Cases

Feature: Type: Range: Explanation:

Case number int 1 - 150000 A unique number identifying the case

Game number int 1 - 20000 The game number from which this case
was derived

Player name String {a – z} The name of the player who made the
decision

Hole cards7 String "27o" -
"AAo"

One of 169 different groups of hole
cards that a player could be dealt. Made
up of each card’s rank and whether they
are the same suit ‘s’ or offsuit ‘o’.

Absolute position int 1 - 10
What order the player acts. 1 represents
the small blind, 2 the big blind and 10 is
the button.

Number of players int 1 - 10 Number of players that were dealt
cards.

Relative position double 0.0 - 1.0
What order the player acts relative to
other players at the table. 0.0 means the
small blind and 1.0 is the button.

Players in current
hand int 0 - 9

The number of players that are currently
in the hand, i.e. players that have called
or raised.

Players yet to act int 0 - 9 The number of players that still need to
make a future betting decision.

Small bets
committed double 0.0 - 5.0 A multiple of the small bets the player

has committed to the pot.

Small bets to call double 0.0 - 5.0
A multiple of the small bets the player
has to commit to the pot to stay in the
hand.

Pot Odds double 0.0 - 0.5 (Bets to call) / (Bets to Call + Pot total),
i.e. is a risk reward measure.

Hand ranking int 1 - 169

A number indicating the rank of the
players hole cards. 1 indicates AAo (the
best preflop hand) whereas 169
indicates 27o (the worst preflop hand)

Action char {f, k, c, r}
A character representing the decision
which was made. f = fold, k = check,
c = call, r = raise.

Table 3.3: Representation of a preflop case, made up of 5 unindexed features, 8 indexed
features and 1 outcome.

7 All 169 preflop hand groupings are listed and ranked in Appendix B.

 29

Each preflop case is made up of five unindexed features, eight indexed features

and one outcome. Table 3.3 lists each of these features. The first five features in table

3.3 are unindexed, i.e. they are not used in the retrieval process, but merely provide

important contextual information. The eight features that follow are indexed features

and are believed to be predictive of a case’s outcome.

The above indexed features were chosen by the author to represent a preflop

case because they are believed to capture important information needed to make a

preflop betting decision. Because all of the above indexed features are quantitative this

becomes advantageous when computing case similarity and during case retrieval.

3.2.2 Postflop Cases

Once again the first 5 features in the postflop cases are unindexed and therefore

they are not used in the retrieval process. Cases for the flop and the turn consist of 12

indexed features and cases for the river consist of 10 indexed features. Each case has

one outcome. Table 3.4 lists all features and their range of values.

As with the preflop case, these postflop features were chosen by the author

because they are believed to provide important information that must be assessed before

making a betting decision postflop. Once again, all indexed features are quantitative and

are easily comparable.

During casebase construction values were calculated and assigned to all case

features for all preflop, flop, turn and river cases. This was achieved by recording

instances of games played between both Pokibot and Simbot and then extracting and

calculating the appropriate information from these instances.

 30

Features: Type: Range: Explanation:
Case number int 1 - 50000 A unique number identifying the case.

Game number int 1 - 20000 The game number from which this case was derived.

Player name String {a – z} The name of the player who made the decision.

Hole cards String "27o" - "AAo" One of 169 different groups of hole cards that a player
could be dealt.

Board cards String "{2 - A},
{s,c,d,h}"

The set of community cards which have currently been
dealt. Each card is described by its rank {2 – A} and
suit {s,c,d,h} where s = spades, c = clubs,
d = diamonds and h = hearts.

Number of
players int 1 – 10 Number of active players at the beginning of the round

(flop, turn or river).

Relative
position double 0.0 - 1.0

What order the player acts relative to other players at
the table. 0.0 means the player is first to act in the
round, 1.0 means the player is last to act.

Previous round
total bets

int 0 - 5 How many bets or raises occurred during the previous
round of betting.

Players in
current hand

int 0 - 9 The number of players that are currently in the hand,
i.e. players that have checked, bet, called or raised.

Players yet
to act

int 0 - 9 The number of players that still need to make a future
betting decision.

Bets committed double 0.0 - 5.0
A multiple of the current bet size the player has
committed to the pot. Small bets are used during the
flop and big bets are used during the turn and river.

Bets to call double 0.0 - 5.0 A multiple of the current bet size the player has to
commit to the pot to stay in the hand.

Small bets
in pot

double 0.0 - 300.0 The total amount in the pot divided by the value of the
small bet size.

Pot Odds double 0.0 - 0.5 (Bets to call) / (Bets to Call + Pot total), i.e. is a risk
reward measure.

Immediate hand
strength (IHS) double 0.0 - 1.0

A numerical measure of the strength of a player's
postflop hand. 0.0 represents the worst possible hand
whereas 1.0 represents an unbeatable hand ("the
nuts").

Positive
potential
(PPOT)8

double 0.0 - ~0.40
A numerical measure which represents the chance that
a player who does not currently hold the best hand will
improve to the best hand after future cards are dealt.

Negative
potential
(NPOT)8

double 0.0 - ~0.30

A numerical measure which represents the chance that
a player currently holding the best hand no longer
holds the best hand after future community cards are
dealt.

Action char {f, k, c, b, r}
A character representing the decision which was made.

Table 3.4: Representation of the postflop cases.
f = fold, k = check, c = call, b = bet, r = raise.

8 These features are not used for river cases because no future community cards are dealt.

 31

3.3 Similarity Metrics

Each of the above indexed case features was assigned a local similarity metric

which computes how similar its value is to another instance. Recall that when it is time

to make a betting decision a target case is constructed and all features are assigned

particular values. The target case is then compared to the cases stored in the case-base,

known as the source cases. This comparison is performed by computing the local

similarity for each of the indexed features. The local similarity metric tells us how

similar the target case’s feature value is to each source case’s feature value.

In general two main similarity metrics were used to compute local similarity

between individual features. These included the standard 1-dimensional Euclidean

distance and an exponential decay function. The similarity metric used for all preflop

and postflop case features are explained below.

3.3.1 Number of Players (preflop only)

Similarity for the number of players was measured by grouping different

numbers of players into equivalence classes and assigning a similarity measure of 1.0 if

they were assigned to the same group. Otherwise a similarity value of 0.0 was assigned

for values in separate groups. The groups used are displayed in Table 3.5.

Group Number of players

1 8, 9, 10

2 5, 6, 7

3 3, 4

4 2

Table 3.5: Equivalent groups

3.3.2 Relative position, Players in current hand, Players yet to
act, Number of players (postflop only), Small bets in pot and
Pot Odds

The similarity measure for the preflop and postflop features including:

 32

1) relative position,

2) players in current hand,

3) players yet to act, and

4) pot odds

as well as the postflop features:

5) number of players, and

6) small bets in pot,

were calculated by computing the absolute difference between the target case’s feature

value and the source case’s feature value and then dividing this difference by the

maximum possible difference (given by the range for each feature in Table 3.3 and 3.4).

This gives a value between 0.0 and 1.0 where 0.0 indicates an exact match and 1.0

indicates completely different values. The inverse of this value was then taken by

subtracting it from 1.0. This ensures exact matches now have a similarity of 1.0 and

entirely different values have a similarity of 0.0. The following is summarised

mathematically below:

 si = ⎟
⎠

⎞
⎜
⎝

⎛ −− DIFFMAX
xx

_1 21 , (3.1)

where x1 refers to the target value and x2 refers to the source case value and MAX_DIFF

is the greatest difference in values obtained from Table 3.3 and Table 3.4.

This metric was used because it generates a smoothly varying, continuous

function. Figure 3.1 shows an example of how similarity values change based on the

difference between a target case and a source case’s value for the ‘players in current

hand’ feature. This feature records the number of players who have willingly committed

chips to the pot during the preflop. The x-axis (Difference in value) represents |x1 – x2|

in equation 3.1, whereas the y-axis represents the value si.

 33

Figure 3.1: Similarity values for the ‘players in current hand’ feature.

So for example, when the target and source case values are exactly the same then local

similarity is calculated to be 1.0. When the target and source cases values differ by 1

then similarity is calculated to be 0.89.

3.3.3 Bets committed, Bets to Call and Previous Round Total
Bets

Both the preflop case-base and the postflop case-bases record how many bets

have been committed during the round (‘bets committed’) and the minimum number of

bets that need to be called to stay in (‘bets to call’). All postflop case-bases also record

the total number of bets or raises that occurred during the previous betting round

(‘previous round total bets’). During the preflop and flop stages bets are in increments of

the small bet and during the turn and river bets are in increments of the big bet. The

similarity metric used for ‘bets committed’, ‘bets to call’ and ‘previous round bets’

differed from the previously mentioned features as differences between their values

were believed to have greater significance. For these reasons an exponential decay

function was used to compute similarity:

 34

 si = e xxk)(
21

−− , (3.2)

where, x1 refers to the target value and x2 refers to the source value and k is a constant

that controls the rate of decay. If x1 has the same value as x2 similarity is 1.0, indicating

an exact match, whereas as the difference between x1 and x2 increases the value of si

rapidly decreases. This is represented pictorially in figure 3.2 below. As can be seen the

greater the exponential constant, k, the faster similarity decreases.

Figure 3.2: Similarity values for the ‘bets committed’ feature.

Figure 3.2 plots the similarity computed for the ‘bets committed’ feature using

the exponential decay function. Once again the x-axis (Difference in value) represents

the absolute difference between the target value and the source value, |x1 – x2| in

equation 3.2.

Consider an example case where a player has committed no bets to the pot yet.

All cases in the case-base which have a value of 0 for the feature ‘bets committed’

would be given a local similarity measure of 1.0, whereas all cases where a player had

already committed one bet would have a similarity of 0.368 (assuming a value of k = 1),

 35

whereas if the above Euclidean distance measure from section 3.3.2 was used this would

result in a local similarity value of 0.8. This dramatic drop in similarity is desirable as

scenarios where a player is making their first betting decision are normally quite

different from those encountered when a player has already contributed money to the

pot.

For the ‘bets committed’ and ‘previous round total bets’ features k was assigned

the default value of 1.0, whereas ‘bets to call’ used k = 4.0.

3.3.4 Hand Ranking

The most important preflop feature is hand ranking; a numeric value assigned to

the pair of hole cards a player has been dealt. During the preflop stage there are =

1326 different combinations of cards a player could be dealt, however a lot of these

combinations are effectively equal. For example, the exact suit of a card is no longer

important as no community cards are yet to be revealed, therefore a hand like A♥- K♥
can be considered equivalent to A♣-K♣ and can be classified as AKs, where s stands

for suited (meaning the same suit). Furthermore a hand such as T♥-J♦ can be

considered equivalent to T♥-J♠ and can be classified as TJo, where o stands for off-suit

(meaning separate suits). This means that there are in fact only 169 distinct groups that a

preflop hand can fall into. Each of these distinct hands can be ranked by assigning it a

number between 1 and 169 where 1 indicates the best possible preflop hand (i.e. AAo,

followed by KKo, QQo…) and 169 indicates the worst preflop hand (i.e. 27o). A

complete listing of all preflop hand ranks can be found in Appendix A.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

52

These hand rankings were used in an exponentially decaying similarity metric

given by the following formula:

 si = e DIFFMAX
xxk ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −
− _

21

, (3.3)

where x1 refers to the target case’s hand ranking value and x2 refers to the source case’s

hand ranking value. Equation (3.3) only differs from equation (3.2) through the use of

MAX_DIFF which represents the difference between the highest hand ranking value and

 36

the lowest, given by 169 – 1 = 168. An exponential decay constant of k = 4 was chosen.

These values were chosen so that cards that were close in rank did not produce a

similarity measure that was too close.

Initially similarity for hand ranking was computed using a Euclidean distance

measure, however it was soon discovered that using this measure produced too high a

similarity measure when there were differences between hole card groups. Once again a

function was needed to ensure similarity dramatically decreased as soon as any

difference between the target and source value occurred. This effectively represented the

importance of giving preference to cases in the case-base that had the exact same hand

rank value.

3.3.5 Immediate Hand Strength, Positive Potential and Negative
Potential

During the preflop it is only necessary to consider 169 different rankings to get

an idea of preflop hand strength. However, the use of community cards during and after

the flop ensures that a lot more calculations are needed to compute postflop hand

strength. Immediate hand strength (IHS) can be computed by calculating all the hands

which are currently better than ours as well as all the hands which are currently worse

and those that are equal (Davidson, 2002). Using these values the probability of having

the best hand against one opponent with random hole cards, i.e. IHS, can be determined.

The algorithm for computing immediate hand strength is given in Figure 3.3. By

assigning all combinations of possible hole cards (the initial 52 cards in the deck minus

our two hole cards minus three community cards gives = 1081 combinations) to

one opponent and determining how many of these combinations we can beat, draw or

lose to, immediate hand strength is given by the amount we can beat plus half of the

draws divided by the total.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

47

 37

Figure 3.3: Immediate hand strength algorithm. Image sourced from (Davidson 2002).

This gives the hand strength against one opponent, however if more than one

opponent is still active in the hand the probability of holding the best hand decreases.

Therefore, immediate hand strength when against multiple opponents is computed as

follows:

 IHS = IHSn, (3.4)

where n is the number of active opponents.

Apart from immediate hand strength it is also useful to know the probability of

currently having a worse hand which improves to a winning hand after extra community

cards have been dealt. This is known as positive potential or ppot (Davidson 2002). In

contrast to positive potential there also exists negative potential, npot, which is the

probability of currently having the best hand, but after extra community cards are dealt

this hand is no longer the best. Figure 3.4 shows the algorithm used for computing ppot

and npot.

 38

Figure 3.4: Positive and Negative potential. Image sourced from (Davidson 2002).

In the final version of Casper immediate hand strength was used in all postflop

case-bases, and positive potential and negative potential were used as features in the

flop and turn case-bases. However initially, experimentation was performed where both

the flop and turn cases used effective hand strength and negative potential as indexed

features instead. Effective hand strength combines immediate hand strength and positive

potential into one value. Effective hand strength is calculated as follows:

 EHS = IHSn + (1 – IHSn) x PPOT (3.5)

 39

Equation (3.5) states that effective hand strength is given by the probability of

having the best hand against n opponents and the probability of not having the best hand

multiplied by the probability of that hand improving to the best hand. The use of

effective hand strength ensures that hands will be bet aggressively even if the chance is

high that an opponent will make a better hand with future community cards to come.

This is desirable as it forces opponents to pay the highest price for drawing hands

(Billings, et al. 2002).

Similarity for both immediate and effective hand strength was measured using

the standard 1-dimensional Euclidean distance given by equation (3.1), where

MAX_DIFF is equal to 1.0. No noticeable differences were found using this similarity

measure as opposed to the exponential decay function of equation (3.2). The final

version of Casper used immediate hand strength, rather than effective hand strength as

this appeared to improve the performance of the system.

Similarity for PPOT and NPOT was computed using the exponential decay

function with a value of k = 1. Once again this was done to avoid situations where

distinct cases were treated as very similar, when in fact there may have been

considerable differences.

3.4 Case Retrieval

When it is Casper’s turn to make a betting decision a target case is constructed

by assigning each feature its required value. Once a target case has been constructed

Casper needs to locate and retrieve the most similar cases it has stored in its case-base.

The k-nearest neighbour algorithm is used to compute a similarity value for all cases in

the case-base. Global similarity for all cases in the appropriate case-base is computed as

a weighted linear combination of local similarity using the following equation:

 sj = ∑∑
==

n

i
i

n

i
ii wxw

11

, (3.6)

where sj refers to the similarity value calculated for case j, xi refers to the ith local

similarity metric in the range 0.0 to 1.0 and wi is its associated weight, in the range 0 –

100. Initially, all weights were hand-picked. A default value of 5 was used for most

 40

features, while features believed to hold more importance were assigned much higher

values in the approximate range 50 – 80. The more salient features included items such

as ‘hand strength’ and ‘positive and negative potential’. All hand-picked weights for the

preflop, flop, turn and river case-bases are listed in Chapter 4 of this thesis. Later, an

attempt to derive optimal feature weights was performed using evolutionary algorithms

(also described in Chapter 4).

After computing a similarity value for each case in the case-base a descending

quick sort of all cases is performed. The actions of all cases which exceed a similarity

threshold of 97% are recorded. Each action is summed and then divided by the total

number of similar cases which results in the construction of a probability triple (f, c, r)

which gives the probability of folding, checking/calling or betting/raising in the current

situation. If no cases exceed the similarity threshold then the top 20 similar cases are

used. As an example, assume Casper looks at its hole cards and sees A♥-A♠, after a

search of its preflop case-base Casper locates 30 cases that exceed the similarity

threshold of 97%. Of the 30 cases retrieved none record a fold action, 3 cases record a

check/call action and the remaining 27 cases all dictate a bet/raise action. Using the

above information the following probability triple is generated: (0.0, 0.1, 0.9). This

indicates that given the current situation Casper should never fold this hand, it should

just call the bet 10% of the time (note, the option to check is not available here) and it

should bet/raise 90% of the time.

A betting decision is then probabilistically made using the probability triple

which was generated. For example, consider another probability triple, (0.25, 0.25,

0.50). A betting decision is made probabilistically by generating a random number

between 0.0 and 1.0. For the triple above, if this random number is less than 0.25 then

the decision to fold is taken. If however, the random number is between 0.25 and 0.50

Casper will check, if the option is available, otherwise it will call the minimum bet.

Finally, if the random number generated was above 0.50 Casper will bet, if no other

players have bet, otherwise it will raise the current bet. Figure 3.5 pictorially represents

generating the random number 0.9, which results in the bet/raise action.

 41

Figure 3.5: Representation of a probability triple. A bet/raise decision is being made.

The use of a probability triple for decision making means that given similar

scenarios Casper will not always make the same betting decision. This has both positive

and negative consequences. On the positive side it makes Casper’s play less predictable

and hence harder for its opponents to adapt to. On the other hand it may result in Casper

making an ‘incorrect’ betting decision some of the time. As an example consider a

situation where the correct decision is to bet/raise. Imagine 10 cases are retrieved that

exceed the similarity threshold. If nine of these cases dictate a bet/raise decision and one

indicates a fold action then there is a 10% chance that Casper will fold and make an

incorrect decision. However, due to the nature of poker a ‘correct decision’ is often only

known once all hidden information has been revealed.

A further issue is encountered when no cases in the casebase exceed the

similarity threshold. This ensures that Casper now needs to make betting decisions

based on less similar situations.

3.5 Implementation

Casper was designed to challenge several different types of opponents, including

computer opponents such as the University of Alberta bots (Pokibot and Simbot) as well

as real opponents on the internet. Casper was also required to challenge itself during

self-play experiments (see Chapter 4). This required separate implementations of Casper

to be performed.

3.5.1 Casebase Construction

Casper’s casebase was constructed using the Java programming language to

parse text files which contained instances of poker games played between Pokibot and

 42

Simbot. All relevant feature information was then calculated and stored as cases in text

files.

3.5.2 Computer Opponents

Initially, Casper was implemented in Java using the commercially available

product Poker Academy Pro 2.59 and the Meerkat API which provides the appropriate

libraries to program poker-bots. Poker Academy Pro includes the University of Alberta

bots as well as other computer opponents who Casper was able to challenge. All testing

against computer opponents was performed using Poker Academy Pro.

3.5.3 Self-play Experiments

As mentioned previously, an attempt to derive optimal feature weightings was

performed as part of this thesis. This required the implementation of a genetic

algorithm. Once again this was implemented using the Java programming language and

the Meerkat API with Poker Academy Pro. Casper was able to perform self-play

experiments within Poker Academy Pro in an attempt to improve its performance. These

experiments are described in detail in Chapter 4.

3.5.4 Real Opponents

Finally, a separate implementation of Casper was required to be able to

challenge real opponents across the internet. This was achieved using a product known

as WinHoldEm10, which provides the capability to interface into online poker sites.

WinHoldEm allows programmers to write their own dynamically linked libraries using

the C/C++ programming language. All testing against real opponents was performed on

the Full Tilt Poker11 online poker site using the WinHoldEm software.

9 http://www.poker-academy.com/
10 http://www.winholdem.net/
11 http://www.fulltiltpoker.com/

 43

Chapter 4

Improving CASPER: Investigating
Optimal Feature Weights

The previous chapter described the design and implementation of Casper, where

feature weight values were hand picked based on how important they were believed to

be. This chapter examines the possibility of improving Casper by deriving optimal

feature weight values algorithmically. Two attempts to derive optimal weights were

investigated. The first involved the use of self-play experiments in an attempt to derive a

set of general feature weights suitable for use against any competition. Once this was

completed the derivation of weights directly suited to a specific set of opponents was

investigated.

4.1 Hand Picked Weights

Each indexed feature that Casper uses to retrieve similar cases needs to be

assigned a specific weight which indicates how much it contributes to the retrieval

process. Casper used weights in the range from 0 to 100 where 0 indicates that the

feature is not used in retrieval and 100 is the maximum possible value. Casper initially

used the feature weightings detailed in Figure 4.1.

The values given in Figure 4.1 are hand picked weights which are thought to

represent the importance of each particular feature. The greatest importance was

assigned to features that represent the strength of Casper’s hand. These features include

immediate hand strength, positive potential, negative potential and hand ranking.

All other features were then given much lower values and can roughly be classified into

two subsets:

(1) – Features that control how many bets Casper has made or needs to make e.g.

the bets committed and bets to call features, and

(2) – All other features.

 44

Preflop Weighting

Number of players 5

Relative position 10

Players in current hand 10

Players yet to act 5

Small bets committed 5

Small bets to call 10

Pot Odds 5

Hand ranking 50

Turn Weighting

Number of players 5

Relative position 5

Previous round total bets 5

Players in current hand 5

Players yet to act 5

Bets committed 20

Bets to call 20

Small bets in pot 5

Pot Odds 5

Immediate hand strength 80

Positive potential 80

Negative potential 80

Flop Weighting

Number of players 5

Relative position 10

Previous round total bets 5

Players in current hand 5

Players yet to act 5

Bets committed 10

Bets to call 10

Small bets in pot 5

Pot Odds 5

Immediate hand strength 80

Positive potential 80

Negative potential 80

River Weighting

Number of players 5

Relative position 5

Previous round total bets 5

Players in current hand 5

Players yet to act 5

Bets committed 10

Bets to call 10

Small bets in pot 15

Pot Odds 40

Immediate hand strength 80

Figure 4.1: Casper’s initial feature weight values.

All features in category (2) (excluding relative position) were given a default

weight value of 5. Features in category (1) were given slightly higher preference over

features in category (2).

 45

4.2 Self-play Experiments

Following the results obtained using the above hand picked feature weights an

investigation into obtaining more optimal feature weights was conducted. An

evolutionary computing approach was taken whereby a genetic algorithm was used

together with self-play experiments to evolve a population of general optimal weight

parameters. Each hypothesis in the search space was simply the concatenation of the

preflop, flop, turn and river weights, for example, the hypothesis that would be used to

represent the hand picked weights from the previous section would look as follows:

Figure 4.2: Hand-picked weights hypothesis.

The details of the genetic algorithm used are as follows:

- Each generation consisted of nine instances of Casper. The only difference

being the feature weights which were used.

- All nine instances of Casper play at the same table against each other and

their profits/losses are recorded.

- Initially the first generation were each assigned random weight values for

each feature.

- A fitness function was used to probabilistically select members of the

current generation. The fitness function was simply the amount of money

that each version of Casper had won or lost during the self-play experiments.

- Each generation consisted of playing approximately 5000 hands at the poker

table.

- Selection, crossover and mutation were used to derive the next generation

(explained below).

4.2.1 Selection

Rank selection was used to probabilistically select a number of instances from

the current population to be used in the successor population.

 46

After the completion of approximately 5000 hands all instances of Casper were

ranked based on the profit which they had accumulated. Each instance was then given a

number from 1 to 9 indicating their probability of selection. The instance that incurred

the least profit (greatest loss) was assigned the value 1. The instance that achieved the

second greatest loss was assigned the value 2 and so on, up until the instance that

achieved the greatest profit was assigned the value 9. This generates a proportional bar

graph as follows:

Figure 4.3: Proportional bar graph representing probability of selection.

The horizontal area in the graph above represents the probability of selection

into the next population. As can be seen the instance that achieved the least profit

(instance 1) has little probability of surviving to the next generation, whereas the better

each instance did the higher the probability they will survive. The exact selection

probabilities used are displayed in the follow pie chart:

Selection probability

2% 4%
7%

9%

11%

13%
16%

18%

20%
1
2
3
4
5
6
7
8
9

Figure 4.4: Pie chart with selection probabilities.

During initial experiments five instances were chosen for selection to be used in

the next generation. Instances were chosen with replacement, meaning that multiple of

the same instance could be carried forward to the next generation. Early investigation

into this approach seemed to suggest a problem with crowding where instances that

 47

initially achieved a greater fitness value quickly began to dominate the population,

leading to a lack of diversity (Mitchell 1997). The number of instances used in selection

was then dropped down to three, which had the result of improving the crowding

problem. Once again replacement was allowed.

4.2.2 Crossover

During selection hypotheses are selected from the current population and placed

into the next generation unchanged. Crossover, however, attempts to select members of

the current population to produce offspring and use these new hypotheses in the next

generation. Once again rank selection is used to probabilistically select pairs of parent

hypotheses from the current population. These parent hypotheses are then combined

using a crossover mask to produce two new offspring. A crossover mask is simply a bit

string composed entirely of 1’s and 0’s which are used to control which parent

contributes which bit to each offspring. Single-point crossover was used for each stage

of play (preflop, flop, turn and river) and the result is concatenated together to form a

new hypothesis. As an example, consider combining the hand-picked weights from

Figure 4.2 and another parent hypothesis given below (note: only the preflop stage is

considered here).

Preflop weights for parent 1.

Weight 5 10 10 5 5 10 5 50

Index 0 1 2 3 4 5 6 7

Preflop weights for parent 2.

Weight 30 5 15 5 20 80 5 100

Index 0 1 2 3 4 5 6 7

A random number is generated between 1 and 7 (inclusive) to indicate the

crossover point, e.g. using a value of 4 would produce the following crossover mask:

11110000. This crossover mask now controls which parent contributes which bit to each

offspring and would produce the following output:

 48

Preflop weights for offspring 1.

Weight 5 10 10 5 20 80 5 100

Index 0 1 2 3 4 5 6 7

Preflop weights for offspring 2.

Weight 30 5 15 5 5 10 5 50

Index 0 1 2 3 4 5 6 7

The same procedure is also separately applied to the flop, turn and river weights

and the concatenation of the output produces two new offspring hypotheses. Three pairs

of parents were used in the final version of the genetic algorithm to produce a total of

six offspring. Parent hypotheses were allowed to be selected multiple times, but they

were not allowed to crossover with themselves.

4.2.3 Mutation

Finally, once a new generation of nine hypotheses had been constructed, using

selection and crossover, a single hypothesis was chosen at random and one of its

weights replaced by generating a random number between 0 and 100.

4.2.4 Implementation

The genetic algorithm described above was implemented in Java and used the

Meerkat API to interface into Poker Academy Pro 2.512 which allowed different poker

bots to challenge each other at the poker table. As the table was limited to nine players

each generation consisted of nine separate hypotheses. As stated above 5000 hands were

played and then operations such as selection, crossover and mutation were performed to

produce the next generation of nine players. After experimenting with various

parameters such as the selection and crossover rates improvements were made to the

crowding problem (described above). However, it was noticed that crowding still

seemed to take place after approximately 7 – 9 generations into the algorithm. To

overcome this problem it was decided to run several genetic algorithms and to combine

the results, in an attempt to better search the hypothesis space. Nine separate GA’s were

run, each consisting of ten generations. Each GA began by generating random

12 http://www.poker-academy.com/

 49

hypotheses. After ten generations had completed (50,000 poker hands) the final

generation normally consisted of very similar hypotheses. Each of the best hypotheses

(i.e. the hypothesis that maximised the fitness function) from the nine genetic algorithms

run were collected and used as initial hypotheses in a final genetic algorithm. The final

GA once again consisted of ten generations. After ten generations had completed the

hypothesis with the highest fitness was once again chosen. This hypothesis was used as

an approximation to the optimal feature weights desired. In total 500,000 poker hands

were played over 100 generations to derive this set of weights. Figure 4.5 shows a

pictorial representation of the genetic algorithm’s design.

Figure 4.5: Pictorial representation of GA design.

 50

4.2.5 Derived Weights

Figure 4.6 lists the optimal feature weights produced by the genetic algorithm

for each separate stage of play. The hand picked weights are replicated in brackets for

convenience.

Preflop Weighting

Number of players 15 (5)

Relative position 61 (10)

Players in current hand 54 (10)

Players yet to act 62 (5)

Small bets committed 53 (5)

Small bets to call 83 (10)

Pot Odds 93 (5)

Hand ranking 94 (50)

Turn Weighting

Number of players 26 (5)

Relative position 14 (5)

Previous round total bets 22 (5)

Players in current hand 15 (5)

Players yet to act 16 (5)

Bets committed 55 (20)

Bets to call 7 (20)

Small bets in pot 35 (5)

Pot Odds 32 (5)

Immediate hand strength 96 (80)

Positive potential 72 (80)

Negative potential 71 (80)

Flop Weighting

Number of players 9 (5)

Relative position 23 (10)

Previous round total bets 62 (5)

Players in current hand 45 (5)

Players yet to act 54 (5)

Bets committed 82 (10)

Bets to call 70 (10)

Small bets in pot 52 (5)

Pot Odds 39 (5)

Immediate hand strength 99 (80)

Positive potential 74 (80)

Negative potential 51 (80)

River Weighting

Number of players 38 (5)

Relative position 1 (5)

Previous round total bets 55 (5)

Players in current hand 37 (5)

Players yet to act 6 (5)

Bets committed 98 (10)

Bets to call 99 (10)

Small bets in pot 1 (15)

Pot Odds 26 (40)

Immediate hand strength 98 (80)

Figure 4.6: Casper’s feature weights derived using a genetic algorithm.

 51

Perhaps what stands out most is that relatively high weights are assigned to

features that refer to the strength of Casper’s hand. For example, preflop hand ranking

is given a value of 94 and flop, turn and river immediate hand strength are given

values of 99, 96 and 98 respectively. Recall that features that control how many bets

Casper has made or needs to make such as bets committed and bets to call were

thought to have less significance than features that refer to Casper’s hand strength, but

were thought more important than other features such as relative position. The above

weights appear to agree with this assumption, assigning values of 98 and 99 to bets

committed and bets to call respectively during the river stage, as well as 82 and 70

during the flop stage. However, this is not the case for the values assigned during the

turn, where bets committed was given a value of 55 and bets to call assigned a value of

only 7.

4.2.6 Convergence

Perhaps an explanation for the discrepancies in weights described above is that

the genetic algorithm has not converged upon the optimal solution. Due to the nature of

the problem it is difficult to determine exactly whether the algorithm has converged or

not, however we can possibly gain some insight into the results of the GA by examining

the difference in player’s profits over successive generations, also known as the

variance.

4.2.6.1 Variance

Recall that each generation is made up of nine players. The only difference

between each player are the weights they have assigned to each feature. At the

beginning of a generation all individuals begin with $0 profit/loss. Once 5000 hands

have been completed all individuals in the population have their profit/loss recorded.

The difference between the highest profit earned and the greatest loss incurred during

the generation is known as the variance. The variance was recorded over successive

generations in an attempt to monitor possible convergence and track the progress of the

genetic algorithm. Figure 4.7 below shows a plot of the variance for each generation for

four of the ten genetic algorithm invocations that were conducted (only four GA’s are

shown to help improve the clarity, however their behaviour is relatively typical of the

remaining GA’s).

 52

Figure 4.7: Bankroll variance recorded for each generation for a subset of four GA’s.

Figure 4.8: Average bankroll variance across all GA’s. The data indicates a downward trend.

 53

While the data represented in Figure 4.7 indicates a lot of variability it does

appear as though the variance is decreasing over successive generations. To examine

this further the average variance over the first nine GA invocations were recorded. This

information is displayed graphically in Figure 4.8.

Figure 4.8 seems to support the fact that as the number of generations increases

the average variance decreases, in general. After the first generation, where all

individuals in the population have been assigned random weights, the average bankroll

variance is $9,655.95. This figure decreases to $6,518.19 after the last generation, where

the weights should have now converged to some local minima.

Finally, the changes in variance observed for the final invocation of the genetic

algorithm are displayed in Figure 4.9. Recall, that generation 1 was made up of the 9

best hypotheses obtained from the previous 9 GA’s. While the variance values have

decreased the overall downward trend remains the same.

Figure 4.9: Bankroll variance recorded for the final invocation of the genetic algorithm.

From these observations it appears as though the overall genetic algorithm is

possibly converging. One possible explanation for the decreasing trend is as follows:

 54

Recall that the population that comprises each first generation is made up of random

hypotheses, i.e. random weight vectors. Now, some of these hypotheses will be close to

optimal solutions and others will be further away in the search space or, equivalently,

some individuals in the population will be good players and others will be bad. It would

be expected that after 5000 poker hands were played the better players will have

extracted more money from the worse players than from other individuals. Therefore,

the good players should have earned a considerable profit and the bad players incurred a

considerable loss. As each generation progresses and operations such as selection and

crossover are performed it becomes more likely that the bad players will be

extinguished from the population and the better players will proceed into the next

generation. So, overall the individuals in future generations should become better

players and therefore it becomes harder to substantially increase profits (because bad

players are no longer giving their money away to better players). As a result, the

variance tends to decrease. In this sense the variance could possibly act as an

approximate measure of the quality of the individuals that make up a generation.

4.3 Opponent-Based Experiments

The genetic algorithm described above attempted to derive a set of general

optimal feature weights for use against all types of opponents. Further to this a separate

genetic algorithm was designed to specifically take into account the opponents it was

challenging. The opponents chosen were the University of Alberta Pokibots. Rather than

conducting self-play experiments as in section 4.2, opponent-based experiments were

performed where Casper was evolved by directly competing against a population of

Pokibots. The aim of the genetic algorithm described below was to incorporate

opponent modeling capabilities directly into the derivation of the feature weights.

Once again each generation consisted of playing 5000 poker hands, however as

Casper had to challenge separate opponents the population size had to decrease. It was

decided to use a population of three instances of Casper and six Pokibots. Profits/losses

were recorded for all versions of Casper and this information used to influence selection

and crossover operations.

 55

4.3.1 Selection

Once again, rank selection was used to determine which hypotheses would

proceed to the next generation. As the population size was so small, it was decided that

only one hypothesis would be selected. Hypotheses were ranked by the amount of profit

they had accumulated. The hypothesis that had achieved the greatest profit (or least loss)

had a 50% probability of being selected for the next generation. This was followed by a

33% probability for the second best hypothesis and a 17% probability for the worst

hypothesis in the population.

4.3.2 Crossover

Rank selection was again used to probabilistically select one distinct pair of

parent hypotheses from the current population to be used for crossover. Single-point

crossover was used for each stage of play (preflop, flop, turn and river) and the result

concatenated together to form two new hypotheses.

4.3.3 Mutation

Once selection and crossover had completed each hypothesis in the new

generation had a 1% chance of mutation. Mutation involved selecting a random weight

within the hypothesis and replacing its value with a random number between 0 and 100.

4.3.4 Implementation

As stated above, the design of the opponent-based GA differed from the general GA in

that each table no longer consisted of nine instances of Casper. Each table now

consisted of six Pokibots and three instances of Casper. Once again the first generation

began by initialising all instances of Casper with random weights. After 5000 hands

were completed selection, crossover and mutation operations (described above) were

performed and a new generation created. Due to the decrease in population size it took

fewer generations before crowding became an issue, therefore only five generations

were conducted rather than ten. After five generations were completed the hypothesis

which maximized the fitness function was recorded.

 56

Figure 4.10: Pictorial representation of GA design.

Once again multiple invocations of the genetic algorithm were performed in an

attempt to fully explore the hypothesis space. Initially nine invocations were performed

(GA1 – GA9) which resulted in nine separate hypotheses being generated. These

hypotheses were split into three groups of three and used as the weights in the first

generation for a further three invocations (GA1.1 – GA1.3). Once again, after five

generations the best hypothesis was retained for each invocation. This resulted in a final

 57

three hypotheses which were used as the initial weights in a final run of the genetic

algorithm (FinalGA) to produce one set of opponent-based feature weights. In total

325,000 poker hands were played over 65 generations to produce this set of weights.

This design is represented pictorially in Figure 4.10.

4.3.5 Derived Weights

Preflop Weighting

Number of players 97 (15)

Relative position 62 (61)

Players in current hand 82 (54)

Players yet to act 78 (62)

Small bets committed 49 (53)

Small bets to call 3 (83)

Pot Odds 42 (93)

Hand ranking 73 (94)

Flop Weighting

Number of players 71 (9)

Relative position 56 (23)

Previous round total
bets 32 (62)

Players in current hand 93 (45)

Players yet to act 53 (54)

Bets committed 5 (82)

Bets to call 34 (70)

Small bets in pot 85 (52)

Pot Odds 3 (39)

Immediate hand
strength 39 (99)

Positive potential 45 (74)

Negative potential 18 (51)

Turn Weighting

Number of players 46 (26)

Relative position 1 (14)

Previous round total
bets 73 (22)

Players in current hand 22 (15)

Players yet to act 41 (16)

Bets committed 55 (55)

Bets to call 100 (7)

Small bets in pot 93 (35)

Pot Odds 27 (32)

Immediate hand
strength 32 (96)

Positive potential 33 (72)

Negative potential 13 (71)

River Weighting

Number of players 36 (38)

Relative position 7 (1)

Previous round total
bets 6 (55)

Players in current hand 4 (37)

Players yet to act 79 (6)

Bets committed 94 (98)

Bets to call 98 (99)

Small bets in pot 55 (1)

Pot Odds 52 (26)

Immediate hand
strength 69 (98)

Figure 4.11: Casper’s opponent-based feature
weights derived using a genetic algorithm.

 58

 Figure 4.11 highlights some significant differences between the weights derived

for the first, general genetic algorithm (listed in brackets) compared to the opponent-

based genetic algorithm. Most notably, features that relate to Casper’s hand strength and

potential, such as immediate hand strength, positive potential and negative potential

have been assigned relatively lower values when compared to the other available

features. Once again, there are discrepancies between salient features during the flop and

the turn. According to the derived weights the most important features during the flop

appear to be the amount of opponents also in the hand. Features such as bets committed

and bets to call have had their values significantly reduced. However, the turn seems to

indicate that bets to call is the most important feature (as does the river).

4.3.6 Convergence

Once again we would like to gain some insight into whether the genetic

algorithm described above is actually converging or whether it is just producing random

weight vectors. As the population in the opponent-based GA experiments consisted of

competition from Pokibots it is possible to track the profits/losses recorded of the

hypotheses in the population over successive generations in an attempt to try and

establish whether the population is improving over time or not.

4.3.6.1 Average Profit

Recall that each generation consisted of three hypotheses and six instances of

Pokibots. In order to establish whether the population is improving over time, the

average profit for each of the three hypotheses was recorded for each generation. This

information is graphed in Figure 4.12 for four out of the original nine genetic algorithms

used. Only four instances are plotted to help improve clarity, however their behaviour is

believed to be representative of the entire population.

While some of the GA’s represented do exhibit improvements in profit over

successive generations no obvious trend is evident in the data represented in Figure

4.12.

Next, the average for all of the GA’s (GA1 – GA9) was computed to try and

determine the overall behaviour of the genetic algorithms. (Note: this is actually the

average of the average for each individual GA). Figure 4.13 depicts this overall average

profit for all initial GA’s.

 59

Figure 4.12: Average profit for a subset of GA’s recorded over each generation.

Figure 4.13: Overall average profit for all initial GA’s recorded over each generation.

 60

Now the trend is much more apparent, over each successive generation the

overall average profit appears to improve, or more correctly, the average loss steadily

decreases. This appears to indicate that the overall pattern for each of the initial nine

GA’s is an increase in profits (or decrease in losses). While each generation may be

improving upon the preceding generation it is far from clear whether the GA is

converging towards an optimal solution.

The final invocation of the GA (FinalGA) involved establishing a population of

three of the best hypotheses obtained from GA1.1, GA1.2 and GA1.3 (see Figure 4.10).

This formed the initial generation for one final run of the GA, where once again another

5 generations were processed. After 5 generations were completed the hypothesis which

maximized the fitness function (i.e. obtained the greatest profit) was chosen as the

derived set of weights. Figure 4.14 tracks the changes in average profit for all three

hypotheses in the population over all 5 generations.

Figure 4.14: Average profit recorded for each generation for the final GA.

 61

Apart from the first generation, Figure 4.14 suggests an overall increase in

profits (decrease in losses). After an initial, relatively high average profit (generation 1)

then profit seems to steadily increase over generations 2 – 5, with the final ‘average

profit’ being calculated at just under $0 (i.e. breaking even).

It should also be mentioned that one of Pokibots main abilities is its opponent

modelling capabilities. When Pokibot meets a new opponent it has no information about

that opponent’s strengths or weaknesses or style of play. However, as the number of

hands played increases Pokibot consistently gathers data about its opponent to try and

model their style of play. This information is then used to inform Pokibot’s betting

strategy against that particular opponent. This aspect of Pokibots play needs to be kept

in mind when analysing the results of the genetic algorithm, as it becomes much harder

to increase profits after playing a large number of hands against Pokibot. At the start of

Generation 1 Pokibot has no information about Casper’s style of play, so no opponent

modelling is possible. However, after approximately 10,000 hands (Generation 3)

Pokibot would have gathered a large amount of data on modelling Casper’s play and

would be using this data to determine how to act in certain situations. Therefore,

Pokibot would most likely be playing differently then it was at the beginning of the GA.

Casper has no such dynamic opponent modelling capabilities, rather the only thing that

changes during the execution of the GA are Casper’s relative weights.

 62

Chapter 5

Results

Casper has been evaluated by challenging many different opponents on various

poker tables. To begin with Casper was evaluated by playing other poker bots provided

through the commercial software product Poker Academy 2.5. Initially Casper was

tested at two separate poker tables on Poker Academy 2.5. The first table was made up

of the University of Alberta Pokibots and Simbots. This table consisted of strong,

adaptive poker bots that model their opponents and try to exploit weaknesses. As Casper

has no adaptive qualities of its own it was also tested against non-adaptive, but

loose/aggressive opponents. A loose opponent is one that plays a lot more hands,

whereas aggressive means that they tend to bet and raise more than other players.

Finally, Casper was also tested against real opponents on the internet, offering a range

of wildly differing styles of play. In total, three separate versions of Casper were

evaluated. The first version of Casper used the hand-picked feature weights. The next

version of Casper used the derived set of general weights from self-play experiments

and the final version used the opponent-based feature weights specifically tailored for

challenging the University of Alberta Pokibots. Each of these are presented below.

5.1 Hand-picked Weights

This section will describe the results obtained for Casper, using hand-picked

weights, challenging computerised opponents. Recall that initially two separate versions

of Casper were investigated that used the hand-picked weights: Casper01 and Casper02.

Casper02 improved upon Casper01 by using a larger case-base generated from

approximately 20,000 hands. A poker bot that makes totally random betting decisions

was also tested separately against the same opponents as a baseline comparison. All

games were $10/$20 limit games which consisted of 9 players. All players began with a

starting bankroll of $100,000.

 63

5.1.1 Strong/Adaptive Competition

As stated above, the strong/adaptive competition was composed of various

Pokibots and Simbots provided by the University of Alberta. Figure 5.1 plots the amount

of small bets won for Casper01, Casper02 and the Random poker bot, over a period of

approximately 20,000 hands. The small bet in this case is $10, therefore if a player has

won one small bet they have made a profit of $10. Also listed are the amount of small

bets won per hand (sb/h), this is a measure of how (un)profitable a particular player is.

If a player makes +0.5 sb/h this means that they make a profit of half the small bet for

every hand that they play. If the small bet is $10 this means they make $5 for every

hand played. Say that player plays 40 hands per hour; this works out to be a profit of

$200 per hour.

Figure 5.1: Results obtained at the Strong/Adaptive Table.

While Casper01 concludes with a slight loss and Casper02 concludes with a slight

profit, Figure 5.1 suggests that both versions approximately break even against strong

competition, whereas the random player exhausted its bankroll of $100,000 after

 64

approximately 6,000 hands13. Casper01’s small bets per hand (sb/h) value is -0.009

which indicates that Casper01 loses about $0.09 with every hand played. Casper02

slightly improves upon this by winning approximately $0.04 for every hand played.

Random play against the same opponents produces a loss of $16.70 for every hand

played.

5.1.2 Aggressive/Non-Adaptive Competition

The next table that Casper was tested on consisted of different versions of another

computerised opponent known as Jagbot (also available with Poker Academy 2.5).

Jagbot is a loose/aggressive rule-based player. Its style of play is very different than that

of Pokibot and Simbot in that it will play a lot more hands and bet very aggressively,

this requires that Casper make a lot more decisions than previously.

Figure 5.2 records the amount of small bets won over a period of approximately

20,000 hands. Once again, a bot which makes completely random decisions was also

tested separately against the same competition as a baseline comparison for Casper.

Figure 5.2: Results obtained at the Aggressive/Non-Adaptive Table.

13 Not all data points are shown to improve clarity.

 65

Figure 5.2 indicates that the first version of Casper tested is unprofitable against the

aggressive/non-adaptive players. Casper01 loses approximately $0.90 for each hand

played. Casper02, however, shows a considerable improvement in performance

compared to Casper01. The addition of extra cases sees Casper02 produce a profit of

+0.03 sb/h, or $0.30 for each hand played. Once again, the random player exhausted its

initial bankroll after approximately 7000 hands, losing on average $14.90 for each hand

played.

It is also of interest to compare how Casper performs against the aggressive/non-

adaptive opponents compared to how the University of Alberta Pokibots and Simbots

perform. Therefore, one Pokibot was selected to be tested against a table of Jagbots. As

was one Simbot, tested against a separate table of Jagbots. The results obtained are

presented in Figure 5.3.

Figure 5.3: University of Alberta bots tested at the Aggressive/Non-Adaptive Table.

 Figure 5.3 indicates a dramatic difference between the results obtained for the

Pokibots and for the Simbots. The Pokibot tested makes a consistent profit of +0.08

sb/h, compare this to Casper02 from Figure 5.2 which achieves a slightly lesser profit of

 66

+0.03 sb/h. However, Simbot is unprofitable against the aggressive competition losing at

a rate slightly less than the first version of Casper (i.e. Casper01). Therefore, while the

final version of Casper (Casper02) is not as profitable as Pokibot is against aggressive

competition, it appears as though it out performs Simbot against this particular set of

opponents.

5.2 Evolutionary Derived Weights

 This section describes the results obtained against computerised opponents for

the versions of Casper that used evolutionary derived weights. CasperGeneral refers to

the use of general weights derived using self-play experiments, whereas

CasperOppBased refers to the opponent-based set of weights. Finally, a version of

Casper that used random weights, CasperRandom, was also tested in an attempt to

determine whether there were any real performance differences between the separate

sets of weights. Once again all games were $10/$20 limit games which consisted of 9

players and all players began with a starting bankroll of $100,000.

5.2.1 Strong/Adaptive Competition

 The results obtained against the University of Alberta bots are recorded below in

Figure 5.4. Using the weights derived for challenging general opponents Casper

achieves a consistent loss against the strong/adaptive competition of -0.06 sb/h or -

$0.60 per hand. Using random weights Casper consistently loses -0.11 sb/h or -$1.10

per hand. If we compare this with the results obtained using hand-picked weights from

section 5.1.1 we notice that using the derived weights for general competition has not

improved Casper’s performance. Recall that using hand-picked weights Casper achieved

a slight profit of +0.004 sb/h.

 CasperOppBased on the other hand does appear to improve upon CasperGeneral.

CasperOppBased uses weights that were derived specifically for this type of

competition. While the results show a lot of variability, CasperOppBased concludes

with a slight profit of +0.006 sb/h, marginally improving upon the hand-picked weights.

 67

Figure 5.4: Results obtained at the Strong/Adaptive Table.

5.2.2 Aggressive/Non-Adaptive Competition

 Figure 5.5 displays the results of CasperGeneral and CasperRandom at the

aggressive/non-adaptive table. CasperRandom was used as a baseline comparison for

CasperGeneral.

 68

Figure 5.5: Results obtained at the Aggressive/Non-Adaptive Table.

 Figure 5.5 shows that the derived set of general weights has not improved upon

the performance of using the initial hand-picked weights. Recall from section 5.1.2 that

using hand-picked weights Casper achieved a profit of +0.03 sb/h, whereas

CasperGeneral now achieves a loss of -0.02 sb/h, or $0.20 lost for each hand played.

On the other hand it does appear that the evolutionary generated weights do actually

perform better than randomly chosen weights. Using random weights Casper only

managed to achieve -0.11 sb/h, or a loss of $1.10 for each hand played. Therefore, it

would appear that while the evolutionary generated weights have not converged upon an

optimal solution their performance is better than a random solution.

5.3 Real Opponents

Sections 5.1 and 5.2 above only discuss results obtained when Casper challenged

various computerised opponents. However, Casper was also tested against real

 69

opponents on the internet. All instances of Casper now used the entire case-base to

make their betting decisions. The results obtained are detailed below.

5.3.1 Play money

Casper was initially tested against real opponents by playing on the ‘play

money’ tables of internet poker websites. Here players from all over the world can

participate in a game of poker using a bankroll of play money. Initially all players begin

with a starting bankroll of $1000. In the event that this bankroll is exhausted, a player

can top their bankroll back up to a maximum of $1000. All games played at the ‘play

money’ table were $10/$20 limit games. At each table a minimum of two players and a

maximum of nine players could participate in a game of poker. Casper was tested by

playing anywhere between one opponent all the way up to eight opponents. Figure 5.6

displays the results recorded at ‘play money’ tables for Casper (using hand picked

weights) and CasperGeneral (using the derived general weights) as well as a random

opponent which makes random decisions (used as a baseline comparison).

Figure 5.6: Casper vs. Real Opponents at the Play Money tables.

 70

 Both Casper and CasperGeneral earn consistent profit at the ‘play money’ tables.

The results suggest that the use of Casper with hand picked weights outperforms

CasperGeneral, which uses the evolutionary derived weights. Casper earns a profit of

$2.90 for every hand played, followed by CasperGeneral with a profit of $2.20 for each

hand. Random decisions resulted in exhausting the initial $1000 bankroll in just over 30

hands, losing approximately -$30.80 for each hand played.

Both Pokibot and Simbot have also been tested against real opponents by playing

on Internet Relay Chat (IRC). The IRC server allows bots and humans to challenge each

other online using “play money”. Results reported by (Davidson 2002) indicate that

Pokibot achieves a profit of +0.22 sb/h, i.e. a profit of $2.20 per hand, and Simbot

achieves a profit of +0.19 sb/h or $1.90 profit per hand. These results are very similar to

those obtained by Casper, when challenging real opponents for play money. As Casper

used Pokibot and Simbots playing style to build its casebase this result would be

expected.

 Because Casper was playing against real opponents the time taken to record the

results is longer than when challenging computerised opponents. For this reason, fewer

hands were able to be played against real opponents. Casper is also mainly suited to

playing poker at a full table, i.e. with nine or ten players present, however the results

recorded above consist of anywhere between two and nine players at a table. While we

need to take caution in analysing the above results, it is safe to say that Casper is

consistently profitable at the ‘play money’ tables.

5.3.2 Real money

 Because there is normally a substantial difference in the type of play at the ‘play

money’ tables compared to the ‘real money’ tables it was decided to attempt to get an

idea of how Casper would perform using real money against real opponents. Only one

instance of Casper was tested. Because using hand-picked weights had achieved the best

performance at the ‘play money’ tables it was decided to test this instance of Casper at

the ‘real money’ tables. The betting limit used was $0.25/$0.50, i.e. a small bet of $0.25

and a big bet of $0.50. The results are given in Figure 5.7.

 Casper achieves a small bet per hand value of -0.07. Therefore, Casper now

loses on average $0.02 per hand. The results indicate that while Casper loses money

very slowly it is now, nonetheless, unprofitable against this set of opponents. Due to the

 71

fact that real money was being used, much fewer hands were able to be recorded.

Unfortunately, no results exist for Pokibot or Simbot challenging real opponents using

real money. Therefore, it is not possible to evaluate how Casper performs using real

money compared to Pokibot or Simbot.

Figure 5.7: Casper vs. Real Opponents at the Real Money tables.

5.4 Case Similarity and Retrieval

From the results presented above it appears as though Casper’s final outcome is

quite different depending on the type of opponents being challenged. The strength of a

particular set of opponents would most likely be the main factor that influences how

Casper achieves against these opponents. Another factor that would affect Casper’s

overall results would be the particular playing style of the opposition. Casper may have

 72

encountered very dissimilar scenarios at the different tables that it played on because the

playing style of the opponents is different.

 For these reasons it was decided to investigate the effect that challenging

separate sets of opponents had on Casper’s case retrieval and similarity. Table 5.1

summarises the average number of retrieved cases used to make a betting decision and

the average similarity value for these retrieved cases14. The average number of retrieved

cases is shown in parenthesis beside the average similarity.

Strong/Adaptive Aggressive/Non-

Adaptive
Real Opponents
Play Money

Real Opponents
Real Money

Preflop 0.98850364 (92.4) 0.98845772 (90.1) 0.976867 (69.5) 0.917778 (46.4)

Flop 0.98220273 (94.7) 0.98166614 (85.3) 0.979374 (59.0) 0.971213 (44.4)

Turn 0.97887567 (89.3) 0.97826279 (88.7) 0.971135 (62.6) 0.964151 (49.2)

River 0.98286971 (93.2) 0.98237579 (90.2) 0.982322 (63.4) 0.980000 (69.0)

Table 5.1: Average similarity and number of retrieved cases (shown in brackets) for the

different sets of opponents that Casper challenged.

Table 5.1 indicates high similarity and retrieval rates at the Strong/Adaptive

table. As Casper’s casebase was constructed by recording instances of games played at

this table this result is to be expected. While similarity and retrieval values drop slightly

at the Aggressive/Non-Adaptive table they are, nonetheless, still quite high. At the Real

Opponents – Play Money table average similarity is still over the similarity threshold

value, but case retrieval has dropped considerably. Finally, at the real money table the

number of retrieved cases has fallen again and for the preflop and turn stages average

similarity is now below the similarity threshold.

 Therefore, it appears as though the different playing style of the various sets of

opponents does have an effect on Casper’s decision making and therefore final result at

that table. Take for example the preflop stage at the Real Money table. Casper now

needs to make betting decisions based on fewer more dissimilar cases that it has stored

in its casebase

Appendix D lists several sample target cases at each table as well as the number

of retrieved cases and their average similarity.

14 Recall that the similarity threshold was 97% and that at most 100 cases could be used for retrieval and
when no cases exceeded the similarity threshold the top 20 cases were used regardless of their similarity
value.

 73

5.5 Results Summary

 In summary, Casper manages to approximately breakeven when challenging the

University of Alberta poker-bots and Casper achieves a profit comparable to Pokibot

and Simbot when challenging real opponents using play money. As Casper used data

obtained from Pokibot and Simbot to build its casebase these results would be expected.

Casper was also profitable when challenging a separate set of aggressive, computerised

opponents. However, Casper failed to make a profit when challenging real opponents

using real money.

 Results using the evolutionary generated weights were somewhat mixed. While

a slight improvement was made using the opponent-specific weights, using the general

weights usually resulted in degradation in performance compared to hand-picked values.

However, all evolutionary generated weights performed better than the use of random

weights.

 74

Chapter 6

Conclusions

In the past little research has been presented on applying the tools and

techniques of Case-Based Reasoning to the game of Texas Hold’em. One instance of a

case based poker player was described in (Sandven and Tessem 2006) which used case-

based learning to play poker. The results of this research indicated a lot of room for

improvement. Other attempts at applying CBR to Poker have mainly focused on one

particular aspect of the game e.g. (Salim and Rohwer 2005) which attempted to use

CBR for opponent modelling purposes. This thesis has tried to add to and improve

current research in the area of applying CBR principles to the game of Texas Hold’em.

 A case-based poker player was developed, nicknamed Casper, that uses CBR to

make all of it’s betting decisions. The results of the Casper system suggest that it is

possible to record instances of poker games played between strong players and then

reuse these to obtain a similar performance. This approach bypasses the need for any

initial, intensive knowledge engineering effort, such as that required for both Pokibot

and Simbot.

 A further outcome of this work was the investigation of improving feature

weights by deriving weights algorithmically, rather than relying on hand-picked values.

The results for this, reported in Chapter 5, were somewhat mixed. In total, two separate

genetic algorithms were designed and implemented. The first focused on deriving a set

of general weights that Casper could use against any type of competition. While the

second algorithm focused on specifically tailoring Casper’s weights for use against a

specific set of opponents (in this case the University of Alberta Pokibots). The results

represented suggest that using the Opponent-Specific weights slightly improved

performance compared to using hand-picked weights (Figures 5.1 and 5.4). The overall

results for the set of general opponent weights show that performance actually degraded

compared to using hand-picked weights. This suggests that the algorithm used has not

converged upon an ‘optimal’ solution. One possible reason for this may come down to

 75

the actual design of the genetic algorithm or the fact that more generations may have

been needed. On the other hand, using algorithmically generated weights always

outperformed the use of random weights (Figures 5.4 and 5.5). So, even though an

optimal set of weights may not have been derived, it appears as though some

improvement is taking place.

The results represented in this thesis show that by using a case-based approach

Casper is able to play evenly against the University of Alberta poker-bots and profitably

against other computerised opponents and real opponents using ‘play’ money. Casper

was not, however, profitable against real opponents when using real money. In fact, a

substantial difference was observed when Casper challenged real opponents using real

money, compared to using play money. Casper makes consistent profit when playing

with play money, however using real money Casper only manages to slowly lose. This

difference is mainly thought to occur due to the change in opponent strength. It is

believed that opponents play quite differently when real money is at stake as opposed to

play money. In general, players at the real money table seem to normally only play their

better hands. It was observed that when Casper won a pot its winnings would be a lot

less at the real money table than at the play money table, indicating that players at the

real money table had a better idea of the actual strength of Casper’s hand.

Another possible cause for the difference in performance may be because of an

overall decrease in similarity of retrieved cases at the real money tables. As an example,

when examining similarity for the preflop case-base it was discovered that against

computerised opponents Casper does not exceed the similarity threshold (97%) for

approximately 2% of total target cases. However, when compared to real opponents

using real money this amount increases to approximately 37% of total target cases.

Hence, there is a dramatic increase in the number of times that Casper fails to retrieve

similar cases during the preflop stage at the real money tables, resulting in Casper

having to make betting decisions based on less similar cases. The reason for this drop in

similarity may be because the case-base is not complete and fails to describe many of

the scenarios that can occur at the poker table.

Finally, it should be noted that due to the high variance of the game of Texas

Hold’em it is normally common for at least 10,000 hands to be played to get an accurate

indication of performance. However, this was not possible for the results obtained at the

real money table. In total, approximately 2200 hands were played using real money. So

any results reported from this data needs to be interpreted with caution.

 76

6.1 Future Work

 While Casper does well using play money against both computerised and real

opponents, it is evident that improvements need to be made for Casper to be profitable

when real money is at stake. Listed below are a few improvements that may aid in this

goal.

• Recall that Casper’s case-base is derived by recording actions observed

during play between both Pokibot and Simbot. While these two poker-

bots have proven to be profitable in the past (once again using play

money), they are far from expert players. If expert data were available it

would most likely improve Casper’s case-base and hence its level of

play. At the present there is no known source for this expert data,

however another option may be to build Casper’s case-base by recording

actions observed at real money tables. It seems likely that by recording

this data and then playing at these same tables would result in an

improvement in performance compared to using data obtained at

separate poker tables. A problem with this approach is that the hole

cards of a player need to be known before a case can be entered into the

case-base. Therefore, it would only be possible to record a case when a

particular hand has reached a showdown and the hole cards have been

revealed. This would drastically slow down the generation of the case-

base.

• At the present Casper simply reuses the cases stored in its case-base. A

possible improvement would be to allow Casper to learn by recording

and storing new cases observed during play. This approach may allow

Casper to adapt better to separate poker tables where the type of

opponents may vary.

• Casper’s betting decision is currently made by recording all the actions

for all the retrieved cases which exceed a similarity threshold of 97%.

This strategy simply reuses these decisions and doesn’t consider the

actual outcome of each decision. Therefore, at present Casper is simply

making the most popular decision recorded by Pokibot and Simbot. It

 77

seems a more beneficial approach would be to actually allow Casper to

evaluate the outcome of these decisions (based on losses incurred or

profits made) and then choose the most effective action.

• Finally, Casper currently has no opponent modelling capabilities. A key

skill in the game of poker is being able to read your opponents and

attempt to determine the actual strength of their hand. Adding the ability

to infer the hand strength of a particular opponent based on how that

opponent has been playing in the past would most likely improve

Casper’s performance at the poker table.

 78

Appendix A

Investigating the Effectiveness of
Applying Case-Based Reasoning to the
game of Texas Hold’em

The following paper was published in the proceedings of the 20th Florida Artificial

Intelligence Research Society Conference (FLAIRS), Key West, Florida, May 2007.

AAAI Press.

http://www.cise.ufl.edu/~ddd/FLAIRS/flairs2007/

 79

http://www.cise.ufl.edu/%7Eddd/FLAIRS/flairs2007/

80

Investigating the Effectiveness of Applying Case-Based
Reasoning to the game of Texas Hold’em

Jonathan Rubin1 and Ian Watson2

Department of Computer Science, University of Auckland, New Zealand

1jrub001@ec.auckland.ac.nz
2ian@cs.auckland.ac.nz

Abstract

This paper investigates the use of the case-based reasoning
methodology applied to the game of Texas hold’em. The
development of a CASe-based Poker playER (CASPER) is
discussed. CASPER uses knowledge of previous poker
scenarios to inform a betting decision. CASPER improves
upon previous case-based reasoning approaches to poker
and is able to play evenly against the University of
Alberta’s Pokibots and Simbots and profitably against other
competition.

1. Introduction
The game of poker provides an interesting environment to
investigate how to handle uncertain knowledge and issues
such as dealing with chance and deception in a hostile
environment. Games in general offer a well suited domain
for investigation and experimentation due to the fact that a
game is usually composed of several well defined rules
which players must adhere to. Most games have precise
goals and objectives which players must meet to succeed.
For a large majority of games the rules imposed are quite
simple, yet the game play itself involves a large number of
very complex strategies. Success can easily be measured
by factors such as the amount of games won, the ability to
beat certain opponents or, as in the game of poker, the
amount of money won.
 Up until recently AI research has mainly focused on
games such as chess, checkers and backgammon. These are
examples of games which contain perfect information. The
entire state of the game is accessible by both players at any
point in the game, e.g. both players can look down upon
the board and see all the information they need to make
their playing decisions. These types of games have
achieved their success through the use of fast hardware
processing speeds, selective search and effective
evaluation functions (Schaeffer, Culberson et al. 1992).
 Games such as poker on the other hand are classified as
stochastic, imperfect information games. The game
involves elements of chance (the actual cards which are
dealt) and hidden information in the form of other player’s

Compilation copyright © 2007, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

* With special thanks to the University of Alberta Computer Poker
Research Group.

hole cards (cards which only they can see). This ensures
that players now need to make decisions with uncertain
information present.
 The focus of this paper is to investigate the application
of CBR to the game of poker. We have developed a poker
playing robot, nicknamed CASPER (CASe-based Poker
playER), that attempts to use knowledge about past poker
experiences to make betting decisions. CASPER plays the
variation of the game known as limit Texas Hold’em and
has been tested against other poker bots.
 The remainder of this paper is structured as follows,
section two will detail related previous research, section
three gives a brief introduction to the game of Texas
hold’em. Sections four, five and six describe the design
and implementation of CASPER. This is followed by the
experimental results obtained (section seven) and a
conclusion and discussion of future work in section eight.

2. Related Work
Over the last few years there has been a dramatic increase
in the popularity of the game of Texas hold’em. This
growing popularity has also sparked an interest in the AI
community with increased attempts to construct poker
robots (or bots), i.e. computerised poker players who play
the game based on various algorithms or heuristics. Recent
approaches to poker research can be classified into three
broad categories:

Heuristic rule-based systems: which use various pieces
of information, such as the cards a player holds and the
amount of money being wagered, to inform a betting
strategy.
Simulation/Enumeration-based approaches: which
consist of playing out many scenarios from a certain point
in the hand and obtaining the expected value of different
decisions.
Game-theoretic solutions: which attempt to produce
optimal strategies by constructing the game tree in which
game states are represented as nodes and an agents
possible decisions are represented as arcs.

81

The University of Alberta Computer Poker Research
Group1 are currently leading the way with poker related
research, having investigated all of the above approaches.
Perhaps the most well known outcome of their efforts are
the poker bots nicknamed Loki/Poki (Schaeffer, Billings et
al. 1999; Billings, Davidson et al. 2002).
 Loki originally used expert defined rules to inform a
betting decision. While expert defined rule-based systems
can produce poker programs of reasonable quality
(Billings, Davidson et al. 2002), various limitations are
also present. As with any knowledge-based system a
domain expert is required to provide the rules for the
system. In a strategically complex game such as Texas
hold’em it becomes impossible to write rules for all the
scenarios which can occur. Moreover, given the dynamic,
nondeterministic structure of the game any rigid rule-based
system is unable to exploit weak opposition and is likely to
be exploited by any opposition with a reasonable degree of
strength. Finally, any additions to a rule-based system of
moderate size become difficult to implement and test
(Billings, Peña et al. 1999).
 Loki was later rewritten and renamed Poki (Davidson
2002). A simulation-based betting strategy was developed
which consisted of playing out many scenarios from a
certain point in the hand and obtaining the expected value
(EV) of different decisions. A simulation-based betting
strategy is analogous to selective search in perfect
information games.
 Both rule-based and simulation-based versions of Poki
have been tested by playing real opponents on an IRC
poker server. Poki played in both low limit and higher limit
games. Poki was a consistent winner in the lower limit
games and also performed well in the higher limit games
where it faced tougher opposition (Billings, Davidson et al.
2002). More recently the use of game theory has been
investigated in the construction of a poker playing bot. The
University of Alberta Computer Poker Research Group
have attempted to apply game-theoretic analysis to full-
scale, two-player poker. The result is a poker bot known as
PsOpti that is:

able to defeat strong human players and be
competitive against world-class opponents (Billings,
Burch et al. 2003).

 There have also been numerous other contributions to
poker research outside the University of Alberta Poker
Research Group. Sklansky and Malmuth have detailed
various heuristics for different stages of play in the game
of Texas hold‘em (Sklansky 1994; Sklansky and Malmuth
1994). The purpose of these rules, however, has been to
guide human players who are looking to improve their
game rather than the construction of a computerised expert
system. (Korb, Nicholson et al. 1999) have produced a
Bayesian Poker Program (BPP) which makes use of
Bayesian networks to play five-card stud poker. (Dahl
2001) investigated the use of reinforcement learning for

1 http://www.cs.ualberta.ca/~games/poker/

neural net-based agents playing a simplified version of
Texas hold’em.
 Finally, we have encountered relatively few attempts to
apply the principles and techniques of CBR to the game of
poker. (Sandven and Tessem 2006) constructed a case-
based learner for Texas hold’em which they nicknamed
Casey. Casey began with no poker knowledge and builds
up a case-base for all hands that it plays. Sandven and
Tessem report that Casey plays on a par with a simple rule-
based system against three opponents, but loses when it
faces more opponents. (Salim and Rohwer 2005) have
attempted to apply CBR to the area of opponent modeling,
i.e. trying to predict the hand strength of an opponent given
how that opponent has been observed playing in the past.
While CBR seems inherently suited to this particular type
of task they report better performance by simply relying on
long-term averages.

3. Texas Hold’em
Texas hold’em is the variation used to determine the
annual World Champion at the World Series of Poker. This
version of the game is the most strategically complex and
provides a better skill-to-luck ratio than other versions of
the game (Sklansky 1994).
 The game of Texas hold’em is played in four stages,
these include the preflop, flop, turn and the river. During
each round all active players need to make a betting
decision. Each betting decision is summarised below:

Fold: A player discards their hand and contributes no
money to the pot. Once a player folds they are no longer
involved in the current hand, but can still participate in any
future hands.
Check/Call: A player contributes the least amount
possible to stay in the hand. A check means that the player
invests nothing, whereas a call means the player invests the
least amount required greater than $0.
 Bet/Raise: A player can invest their own money to
the pot over and above what is needed to stay in the current
round. If the player is able to check, but they decide to add
money to the pot this is called a bet. If a player is able to
call, but decides to add more money to the pot this is called
a raise.

 All betting is controlled by two imposed limits known as
the small bet and the big bet. For example, in a $10/$20
game the small bet is $10 and all betting that occurs during
the preflop and the flop are in increments of the small bet.
During the turn and the river all betting is in increments of
the big bet, $20. The number of bets made within each
stage of the game is capped at a maximum of 5. All results
detailed in this paper refer to a $10/$20 limit game2.
Before the hand begins two forced bets are made, known
as the small blind (half the small bet) and the big blind
(one full small bet), to ensure that there is something in the

2 In no limit there is no restriction on the amount a player can bet.

82

pot to begin with. Each of the four game stages are
summarised below:

Preflop: The game of Texas hold’em begins with each
player being dealt two hole cards which only they can see.
A round of betting occurs. Once a player has made their
decision play continues in a clockwise fashion round the
table. As long as there are at least two players left then
play continues to the next stage. During any stage of the
game if all players, except one, fold their hand then the
player who did not fold their hand wins the pot and the
hand is over.
Flop: Once the preflop betting has completed three
community cards are dealt. Community cards are shared by
all players at the table. Players use their hole cards along
with the community cards to make their best hand. Another
round of betting occurs.
Turn: The turn involves the drawing of one more
community card. Once again players use any combination
of their hole cards and the community cards to make their
best hand. Another round of betting occurs and as long as
there are at least two players left then play continues to the
final stage.
River: During the river the final community card is dealt
proceeded by a final round of betting. If at least two
players are still active in the hand a showdown occurs in
which all players reveal their hole cards and the player
with the highest ranking hand wins the entire pot (in the
event that more than one player holds the winning hand
then the pot is split evenly between these players).

4. Casper System Overview
CASPER uses CBR to make a betting decision. This
means that when it is CASPER’s turn to act he evaluates
the current state of the game and constructs a target case to
represent this information. A target case is composed of a
number of features. These features record important game
information such as CASPER’s hand strength, how many
opponents are in the pot, how many opponents still need to
act and how much money is in the pot. Once a target case
has been constructed CASPER then consults his case-base
(i.e. his knowledge of past poker experiences) to try and
find similar scenarios which may have been encountered.
CASPER’s case-base is made up of a collection of cases
composed of their own feature values and the action which
was taken, i.e. fold, check/call or bet/raise. CASPER uses
the k-nearest neighbour algorithm to search the case-base
and find the most relevant cases, these are then used to
decide what action should be taken.
 Casper was implemented using the commercially
available product Poker Academy Pro 2.53 and the
Meerkat API. The University of Alberta Poker Research
Group provides various poker bots with the software
including instantiations of Pokibot and the simulation
based bot Simbot. Both Pokibot and Simbot are the result

3 http://www.poker-academy.com/

of an intensive knowledge engineering process. These
poker bots have been used to generate the training data for
CASPER. Approximately 7000 hands were played
between various poker bots and each decision witnessed
was recorded as a single case (or experience) in CASPER’s
case-base. Both bots have proven to be profitable against
human competition in the past (Davidson 2002) so it is
believed that the data obtained is of greater quality then it
might be from other sources, such as free money games on
the internet composed of real players. CASPER then reuses
these recorded instances to make decisions at the poker
table and therefore bypasses the intensive knowledge
engineering effort required of other poker-bots.

5. Case Features
CASPER searches a different case-base for each separate
stage of a poker hand (i.e. preflop, flop, turn and river).
The features that make up a case and describe the state of
the game at a particular time are listed and explained in
Table 1. The features listed were chosen by the authors
because they are believed to capture important information
needed to make a betting decision. These are the indexed
features, which means that they are believed to be
predictive of a case’s outcome and by computing local
similarity for each feature they are used to retrieve the
most similar cases in the case-base. The first eight features
are used in all case-bases, whereas the last four features are
only used during the postflop stages. Each case is also
composed of one outcome, which is the betting decision
that was made.
 The ‘hand strength’ feature, listed in table 1, differs
somewhat for preflop and postflop stages of the game.
During the preflop there exists 169 distinct card groups
that a player could be dealt. These card groups were
ordered from 1 to 169 based on their hand ranking, where 1
indicates pocket Aces (the best preflop hand) and 169
indicates a 2 and a 7 of different suits (the worst preflop
hand). Preflop hand strength was then based on this
ordering, whereas postflop hand strength refers to a
calculation of immediate hand strength based on the hole
cards a player has and the current community cards that are
present. This value is calculated by enumerating all
possible hole cards for a single opponent and recording
how many of these hands are better, worse or equal to the
current player’s hand. Positive potential and negative
potential are also calculated in this way with the addition
that all possible future community cards are considered as
well. For more details on hand strength and potential
consult (Billings, Davidson et al. 2002; Davidson 2002).

6. Case Retrieval
Once a target case has been constructed CASPER needs to
locate and retrieve the most similar cases it has stored in its
case-base. The k-nearest neighbour algorithm is used to
compute a similarity value for all cases in the case-base.

Each feature has a local similarity metric associated with it
that evaluates how similar its value is to a separate case’s
value, where 1.0 indicates an exact match and 0.0 indicates
entirely dissimilar.
 Two separate similarity metrics are used depending on
the type of feature. The first is the standard Euclidean
distance function given by the following equation:

 ⎟
⎠

⎞
⎜
⎝

⎛ −−= DIFFMAX
xxsi _1 21 (1)

where x1 refers to the target value, x2 refers to the case
value and MAX_DIFF is the greatest difference in values,
given by the range in table 1.

Table 1. Preflop and postflop case features.

The above Euclidean similarity metric produces smooth,
continuous changes in similarity, however, for some
features, minor differences in their values produce major
changes in actual similarity, e.g. the ‘Bets to call’ feature.
For this reason an exponential decay function, given by
equation (2), has also been used for some features:

 si = e xxk)(
21

−− , (2)

where, x1 refers to the target value and x2 refers to the
source value and k is a constant that controls the rate of
decay.

83

Feature: Type: Range: Explanation:

Number of players int 2 - 10 Number of active players at the beginning of the round
(preflop, flop, turn or river).

Relative position double 0.0 - 1.0
What order the player acts relative to other players at the table.
0.0 means the player is first to act in the round, 1.0 means the
player is last to act.

Players in current hand int 0 - 9
The number of players that have already acted and are still
currently in the hand, i.e. players that have checked, bet,
called or raised.

Players yet to act int 0 - 9 The number of players that still need to make a future
betting decision.

Bets committed double 0.0 - 5.0

A multiple of the current bet size a certain player has
committed to the pot. Small bets are used during the
preflop and flop and big bets are used during the turn
and river.

Bets to call double 0.0 - 5.0

A multiple of the current bet size a certain player has to
commit to the pot to stay in the hand. Small bets are used
during the preflop and flop and big bets are used during
the turn and river.

Pot Odds double 0.0 - 0.5 The amount to call divided by the amount currently in the
pot plus the amount needing to be called, a risk/reward measure.

Hand strength double 0.0 - 1.0
A numerical measure of the strength of a player's hand.
0.0 represents the worst possible hand whereas 1.0
represents an unbeatable hand ("the nuts").

Positive potential4 double 0.0 - ~0.40
A numerical measure which represents the chance that a player
who does not currently hold the best hand will improve to the
best hand after future community cards are dealt.

Negative potential4 double 0.0 - ~0.30
A numerical measure which represents the chance that
a player currently holding the best hand no longer holds
the best hand after future community cards are dealt.

Small bets in pot double 0.0 - ~300.0 The total amount in the pot divided by the value of the
small bet size.

Previous round bets int 0 - 5 How many bets or raises occurred during the previous
betting round.

Action char {f, k, c, b, r} A character representing the decision which was made.
f = fold, k = check, c = call, b = bet, r = raise.

4 Not used during the river as there are no further betting rounds.

 Global similarity is computed as a weighted linear
combination of local similarity, where higher weights are
given to features that refer to a player’s hand strength as
well as positive and negative potential. All weights were
hand picked by the authors and fell in the range of 0 – 100.
A default value of 5 was used for most features, while
features we felt were more salient, such as ‘hand strength’
and ‘positive and negative potential’, were assigned values
in the approximate range of 50 - 80. The following
equation is used to compute the final similarity value for
each case in the case-base:

 ∑∑
==

n

i
i

n

i
ii wxw

11

, (3)

where xi refers to the ith local similarity metric in the range
0.0 to 1.0 and wi is its associated weight, in the range 0 –
100.
 After computing a similarity value for each case in the
case-base a descending quick sort of all cases is performed.
The actions of all cases which exceed a similarity threshold
of 97% are recorded. Each action is summed and then
divided by the total number of similar cases which results
in the construction of a probability triple (f, c, r) which
gives the probability of folding, checking/calling or
betting/raising in the current situation. If no cases exceed
the similarity threshold then the top 20 similar cases are
used. As an example, assume CASPER looks at his hole
cards and sees A♥-A♠. After a search of his preflop case-
base the following probability triple is generated:
(0.0, 0.1, 0.9). This indicates that given the current
situation CASPER should never fold this hand, he should
just call the small bet 10% of the time and he should raise
90% of the time. A betting decision is then
probabilistically made using the triple which was
generated.

7. Results
CASPER was evaluated by playing other poker bots
provided through the commercial software product Poker
Academy Pro 2.5. CASPER was tested at two separate
poker tables. The first table consisted of strong, adaptive
poker bots that model their opponents and try to exploit
weaknesses. As CASPER has no adaptive qualities of his
own he was also tested against non-adaptive, but
loose/aggressive opponents. A loose opponent is one that
plays a lot more hands, whereas aggressive means that they
tend to bet and raise more than other players. All games
were $10/$20 limit games which consisted of 9 players. All
players began with a starting bankroll of $100,000.
 The adaptive table consisted of different versions of the
University of Alberta’s poker bots: Pokibot and Simbot.
Figure 1 records the amount of small bets won at the
adaptive table over a period of approximately 20,000

hands. Two separate versions of CASPER were tested
separately against the same competition. Casper02
improves upon Casper01 by using a larger case-base,
generated from approximately 13,000 poker hands. A
poker bot that makes totally random betting decisions was
also tested separately against the same opponents as a
baseline comparison.

Strong/Adaptive Table Results

-5000

-4000

-3000

-2000

-1000

0

1000

0 5000 10000 15000 20000

Hands played

Random -1.67 sb/h
Casper01 - 0.009 sb/h
Casper02 +0.004 sb/h

Figure 1: Casper’s results at the adaptive table.

 While Casper01 concludes with a slight loss and
Casper02 concludes with a slight profit, figure 1 suggests
that both versions approximately break even against strong
competition, whereas the random player exhausted its
bankroll of $100,000 after approximately 6,000 hands5.
Casper01’s small bets per hand (sb/h) value is -0.009
which indicates that Casper01 loses about $0.09 with every
hand played. Casper02 slightly improves upon this by
winning approximately $0.04 for every hand played.
Random play against the same opponents produces a loss
of $16.70 for every hand played.
 The second table consisted of different versions of
Jagbot, a non-adaptive, loose/aggressive rule-based player.
Figure 2 records the amount of small bets won over a
period of approximately 20,000 hands. Once again a bot
which makes random decisions was also tested separately
against the same competition as a baseline comparison for
CASPER.

Aggressive/Non-adaptive
Table Results

-5000

-4000

-3000

-2000

-1000

0

1000

0 5000 10000 15000 20000

Hands played

Random -1.49 sb/h
Casper01 - 0.09 sb/h
Casper02 +0.03 sb/h

Figure 2: Casper’s results at the non-adaptive table.

5 Not all data points are shown to improve clarity.

84

 Figure 2 indicates that the first version of Casper is
unprofitable against the non-adaptive players, losing
approximately $0.90 for each hand played. Casper02
shows a considerable improvement in performance
compared to Casper01. With more cases added to the case-
base, Casper02 produces a profit of +0.03 sb/h, or $0.30
for each hand played. Once again the random player
exhausted its initial bankroll after approximately 7000
hands, losing on average $14.90 for each hand played.

References
Billings, D., N. Burch, et al. 2003. Approximating game-
theoretic optimal strategies for full-scale poker.
Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence.

Billings, D., A. Davidson, et al. 2002. The challenge of
poker. Artificial Intelligence 134(1-2): 201-240.

Billings, D., L. Peña, et al. 1999. Using probabilistic
knowledge and simulation to play poker. Proceedings of
the sixteenth national conference on Artificial intelligence
and the eleventh Innovative applications of artificial
intelligence conference innovative applications of artificial
intelligence: 697-703.

8. Conclusions and Future Work
In conclusion, CASPER, a case-based poker player has
been developed that plays evenly against strong, adaptive
competition and plays profitably against non-adaptive
opponents. The results suggest that it is possible to record
instances of games from strong players and reuse these to
obtain similar performance without the need for an
intensive knowledge engineering effort.

Dahl, F. A. 2001. A Reinforcement Learning Algorithm
Applied to Simplified Two-Player Texas Hold'em Poker.
Proceedings of the 12th European Conference on Machine
Learning Springer-Verlag.
 Two separate versions of CASPER were tested and the

addition of extra cases to the case-base was shown to result
in improvements in overall performance. It is interesting to
note that CASPER was initially unprofitable against the
non-adaptive, aggressive opposition. One possible reason
for this is that as CASPER was trained using data from
players at the adaptive table it perhaps makes sense that
they would play evenly, whereas players at the non-
adaptive table tend to play much more loosely and
aggressively. This means that while CASPER has
extensive knowledge about the type of scenarios that often
occur at the advanced table, this knowledge is weaker at
the non-adaptive table as CASPER runs into situations
which he is not familiar with. For example, for a random
sample of 10,000 hands there were 86 occurrences where
Casper01 didn’t exceed the similarity threshold during the
preflop stage at the adaptive table, whereas this figure
increases to 222 occurrences at the non-adaptive table.
CASPER must therefore make a betting decision at the
non-adaptive table using less similar scenarios. With the
addition of extra cases these values drop to 38 and 45 for
the preflop stage at the adaptive and non-adaptive table
respectively.

Davidson, A. 2002. Opponent modeling in poker: Learning
and acting in a hostile and uncertain environment.
Master's thesis, University of Alberta.

Korb, K. B., A. E. Nicholson, et al. 1999. Bayesian poker.
UAI'99 - Proceedings of the 15th International Conference
on Uncertainty in Artificial Intelligence, Sweden: 343-350.

Salim, M. and P. Rohwer 2005. Poker Opponent Modeling.
Indiana University: Personal communication.

Riesbeck, C. and R. Schank 1989. Inside Case-Based
Reasoning. Hillsdale, NJ.: Lawrence Erlbaum.

Sandven, A. and B. Tessem 2006. A Case-Based Learner
for Poker. The Ninth Scandinavian Conference on
Artificial Intelligence (SCAI 2006), Helsinki, Finland.

Schaeffer, J., D. Billings, et al. 1999. Learning to play
strong poker. Proceedings of the ICML-99 Workshop on
Machine Learning in Game Playing.

Schaeffer, J., J. Culberson, et al. 1992. A world
championship caliber checkers program. Artificial
Intelligence 53(2-3): 273-289. While CASPER does achieve slight profits against

various opposition, it appears as though there are still many
improvements necessary to ensure that CASPER improves
its profitability. Some areas of possible future work are:

Sklansky, D. 1994. The Theory of Poker. Las Vegas, NV.:
Two Plus Two Publishing.

Sklansky, D. and M. Malmuth 1994. Hold'em Poker for
Advanced Players. Las Vegas, NV.: Two Plus Two
Publishing.

 • Investigating optimal feature weightings using a
genetic algorithm and self play experiments.

 • Further investigation of CASPER’s level of play based
on the size of its case-base.

Watson, I. 1997. Applying case-based reasoning:
techniques for enterprise systems. San Francisco, CA.:
Morgan Kaufmann Publishers Inc.

 • Improving the case-representation by considering the
actual outcome that occurred rather than simply the
action that was taken.

 • Testing CASPER against real opponents.
 • Adding opponent modeling capabilities.

85

Appendix B

Preflop Hand Rankings

The following list was used to determine a ‘hand ranking’ feature value during preflop

play. It lists the preflop hand rankings from highest to lowest. A preflop hand is made

up of two cards and is described by three characters. The first two characters consist of

each card’s rank. This is followed by either an ‘o’ for offsuit (meaning both cards are of

different suits) or an ‘s’ for suited (meaning both cards have the same suit).

1. AAo 31. 7As 61. 8Ao
2. KKo 32. 5As 62. 55o
3. QQo 33. TKo 63. 9Jo
4. JJo 34. 4As 64. 9Qo
5. KAs 35. 6As 65. 2Ks
6. QAs 36. TQo 66. 67s
7. TTo 37. 3As 67. 5Qs
8. QKs 38. 8Ks 68. 68s
9. JAs 39. TJo 69. 4Qs

10. KAo 40. 77o 70. 7Ao
11. JKs 41. 2As 71. 44o
12. TAs 42. 8Ts 72. 56s
13. JQs 43. 8Qs 73. 69s
14. TKs 44. 7Ks 74. 5Ao
15. QAo 45. 8Js 75. 6Ts
16. 99o 46. 89s 76. 6Js
17. TQs 47. 6Ks 77. 3Qs
18. TJs 48. 66o 78. 2Qs
19. QKo 49. 5Ks 79. 57s
20. 9As 50. 9Ao 80. 4Ao
21. JAo 51. 78s 81. 45s
22. 9Ks 52. 4Ks 82. 5Js
23. 88o 53. 7Qs 83. 6Ao
24. JKo 54. 7Ts 84. 8Ko
25. 8As 55. 79s 85. 33o
26. 9Qs 56. 9Ko 86. 8To
27. 9Ts 57. 7Js 87. 58s
28. JQo 58. 3Ks 88. 4Js
29. 9Js 59. 9To 89. 3Ao
30. TAo 60. 6Qs 90. 89o

 86

91. 22o 121. 29s 151. 47o
92. 46s 122. 24s 152. 4To
93. 8Jo 123. 67o 153. 2Jo
94. 8Qo 124. 3Ko 154. 34o
95. 3Js 125. 38s 155. 3To
96. 59s 126. 6Qo 156. 48o
97. 7Ko 127. 26s 157. 36o
98. 5Ts 128. 68o 158. 2To
99. 2Js 129. 23s 159. 49o

100. 35s 130. 28s 160. 25o
101. 2Ao 131. 2Ko 161. 39o
102. 4Ts 132. 56o 162. 37o
103. 47s 133. 5Qo 163. 24o
104. 3Ts 134. 69o 164. 29o
105. 34s 135. 27s 165. 38o
106. 6Ko 136. 6To 166. 26o
107. 48s 137. 4Qo 167. 23o
108. 78o 138. 45o 168. 28o
109. 2Ts 139. 57o 169. 27o
110. 36s 140. 6Jo
111. 5Ko 141. 3Qo
112. 79o 142. 5Jo
113. 49s 143. 58o
114. 7To 144. 46o
115. 25s 145. 2Qo
116. 7Qo 146. 4Jo
117. 39s 147. 59o
118. 7Jo 148. 35o
119. 4Ko 149. 3Jo
120. 37s 150. 5To

 87

Appendix C

Glossary of Poker Terms

The following is a brief glossary of the poker terms used throughout this thesis.

For a more detailed list of poker terms consult:

http://www.pokertips.org/glossary/glossary.php

Or,

http://www.worldseriesofpoker.com/learn/terms.asp

5-card draw: A poker variation where each player is given five cards which they keep

hidden and no community cards are dealt. Players have one chance to replace any

number of their five cards with cards from the undealt portion of the deck.

Ante: Each player is forced to contribute a certain amount of chips/cash to the pot.

Bet: When a player bets they willingly add chips/cash to the current pot total.

Big Blind: A forced bet made by one player each round to ensure there is something in

the pot to play for. The big blind amount is equal to the amount of one small bet.

Blinds: A general term that covers the big and small blinds, which are forced bets.

Call: When a player calls a bet they invest the least amount possible to stay in the

current hand.

Cash game: A game where players wager with their own funds during each hand, as

opposed to a tournament where players wager with chips that don’t represent their

 88

http://www.pokertips.org/glossary/glossary.php
http://www.worldseriesofpoker.com/learn/terms.asp

actual cash value. The blind values don’t change and are usually much lower than the

average stack of each player. Players may leave the table any time with their

winnings/losses.

Check: When a player checks they do not invest any funds into the pot, but they are

still active in the hand.

Chip stack: The amount of chips/cash that a certain player has to wager with at the

poker table.

Chips: Tokens that represent monetary value. The usual form of currency used for

betting at the poker table.

Community cards: Cards which are visible to all and all active players share to make

their best poker hand.

Dealer: During each round one player takes on the status of the dealer. The position of

the dealer controls the betting order around the table. The dealer is the last player to act

for all postflop stages in Texas Hold’em.

Flop: The flop is the second stage in the game of Texas Hold’em. During the flop three

community cards are dealt face up on the table and players combine these cards with

their two hole cards to make their best five hand combination. This is then followed by

a round of betting.

Fold: When a player folds they discard their hand and are no longer active in the round.

Heads up: A term used to describe a game of poker where there are only two players.

Hole cards: A player’s private cards which only they can see.

Limit: A term used to indicate that betting is limited to certain amounts.

 89

No Limit: In no limit there are no betting restrictions. A player can bet up to the total

amount they have in their current chip stack.

Postflop: In Texas Hold’em the game is broken up into four stages: the preflop, flop,

turn and river. Postflop refers to the three stages after the preflop, where community

cards are drawn during each stage.

Pot: The total amount of chips/cash that is being contested by each active player.

Preflop: The first stage in the game of Texas Hold’em where each player is dealt two

hole cards and a round of betting occurs.

Raise: When a player raises they invest over and above what is required to stay in the

hand. All other active players must now match the amount that was raised to continue to

play.

Ring game: see Cash game

River: The final stage in Texas Hold’em where one final community card is drawn

followed by a final round of betting.

Showdown: After all betting has ceased all players that are still active in the hand

reveal their private cards and the player with the highest ranking hand wins the entire

contents of the pot. If players have equal ranking hands then the pot is split between

those players.

Small blind: A forced bet made by one player each round to ensure there is something

in the pot to play for. The small blind amount is equal to half the amount of one small

bet.

Stack: See chip stack.

Turn: The third stage in the game of Texas Hold’em where one community card is

dealt followed by a round of betting.

 90

Appendix D

Sample Target Cases

This appendix provides a collection of target cases that were constructed for

various hands played by Casper against different types of opponents. Each case lists all

indexed features and their values as well as the probability triple that was constructed,

the action taken, the number of cases retrieved and the average similarity of the

retrieved cases.

D.1 Computerised Opponents

D.1.1 Strong/Adaptive Competition

Stage: PREFLOP Stage: PREFLOP
Number of players: 9 Number of players: 9
Relative position: 1.0 Relative position: 0.375
Players in pot: 2 Players in pot: 0
Players to act: 3 Players to act: 7
Small bets committed: 0.0 Small bets committed: 0.0
Small bets to call: 3.0 Small bets to call: 1.0
Pot Odds: 0.315789474 Pot Odds: 0.4
Hand ranking: 106 (6Ko) Hand ranking: 70 (7Ao)
Probability Triple: (1.0, 0.0, 0.0) Probability Triple: (0.65, 0.34, 0.01)
Action: Fold Action: Call
Cases retrieved: 83 Cases retrieved: 100
Average Similarity: 0.975320915 Average Similarity: 1.0

 91

Stage: PREFLOP Stage: FLOP
Number of players: 9 Number of players: 2
Relative position: 0.375 Relative position: 0.0
Players in pot: 1 Preflop bets: 3
Players to act: 0 Players in pot: 0
Small bets committed: 1.0 Players to act: 1
Small bets to call: 1.0 Bets committed: 0.0
Pot Odds: 0.181818182 Bets to call: 0.0
Hand ranking: 70 (7Ao) Small bets in pot: 7.5
Probability Triple: (0.0, 0.876, 0.12) Pot Odds: 0.0
Action: Raise Hand strength: 0.692414431
Cases retrieved: 97 Positive potential: 0.070175439
Average Similarity: 0.980626787 Negative potential: 0.143754175
 Probability Triple: (0.0, 0.51, 0.49)
 Action: Bet
 Cases retrieved: 100
 Average Similarity: 0.993235666

Stage: TURN Stage: RIVER

Number of players: 2 Number of players: 2
Relative position: 0.0 Relative position: 0.0
Flop bets: 1 Turn bets: 1
Players in pot: 0 Players in pot: 0
Players to act: 1 Players to act: 1
Bets committed: 0.0 Bets committed: 0.0
Bets to call: 0.0 Bets to call: 0.0
Small bets in pot: 9.5 Small bets in pot: 13.5
Pot Odds: 0.0 Pot Odds: 0.0
Hand strength: 0.576328502 Hand strength: 0.584343434
Positive potential: 0.109697315 Probability Triple: (0.0, 0.82, 0.18)
Negative potential: 0.171569001 Action: Check
Probability Triple: (0.0, 0.46, 0.54) Cases retrieved: 100
Action: Bet Average Similarity: 0.997685402
Cases retrieved: 100
Average Similarity: 0.996149977

Stage: PREFLOP

Number of players: 9
Relative position: 0.875
Players in pot: 2
Players to act: 4
Small bets committed: 0.0
Small bets to call: 2.0
Pot Odds: 0.307692308
Hand ranking: 152 (4To)
Probability Triple: (1.0, 0.0, 0.0)
Action: Fold
Cases retrieved: 100
Average Similarity: 0.993812552

 92

D.1.2 Aggressive/Non-Adaptive Competition

Stage: PREFLOP Stage: FLOP
Number of players: 9 Number of players: 4
Relative position: 0.875 Relative position: 0.667
Players in pot: 1 Preflop bets: 2
Players to act: 3 Players in pot: 2
Small bets committed: 0.0 Players to act: 1
Small bets to call: 2.0 Bets committed: 0.0
Pot Odds: 0.363636364 Bets to call: 1.0
Hand ranking: 10 (KAo) Small bets in pot: 10.5
Probability Triple: (0.22, 0.45, 0.33) Pot Odds: 0.086956522
Action: Call Hand strength: 0.400018667
Cases retrieved: 100 Positive potential: 0.080843585
Average Similarity: 0.99660311 Negative potential: 0.128395062
 Probability Triple: (0.46, 0.46, 0.08)
 Action: Call
 Cases retrieved: 100
 Average Similarity: 0.979265465

Stage: TURN Stage: TURN

Number of players: 4 Number of players: 4
Relative position: 0.667 Relative position: 0.667
Flop bets: 1 Flop bets: 1
Players in pot: 2 Players in pot: 2
Players to act: 2 Players to act: 0
Bets committed: 0.0 Bets committed: 1.0
Bets to call: 1.0 Bets to call: 1.0
Small bets in pot: 14.5 Small bets in pot: 22.5
Pot Odds: 0.121212121 Pot Odds: 0.081632653
Hand strength: 0.241461401 Hand strength: 0.387761908
Positive potential: 0.093760913 Positive potential: 0.093760913
Negative potential: 0.147048452 Negative potential: 0.147048452
Probability Triple: (0.44, 0.48, 0.08) Probability Triple: (0.14, 0.84, 0.02)
Action: Call Action: Call
Cases retrieved: 100 Cases retrieved: 45
Average Similarity: 0.978368517 Average Similarity: 0.975647445

Stage: RIVER Stage: RIVER

Number of players: 4 Number of players: 4
Relative position: 1.0 Relative position: 1.0
Turn bets: 2 Turn bets: 2
Players in pot: 2 Players in pot: 2
Players to act: 1 Players to act: 0
Bets committed: 0.0 Bets committed: 1.0
Bets to call: 1.0 Bets to call: 1.0
Small bets in pot: 26.5 Small bets in pot: 34.5
Pot Odds: 0.070175439 Pot Odds: 0.054794521
Hand strength: 0.263822314 Hand strength: 0.263822314
Probability Triple: (0.18, 0.77, 0.05) Probability Triple: (0.25, 0.75, 0.0)
Action: Call Action: Call
Cases retrieved: 44 Cases retrieved: 4
Average Similarity: 0.975160008 Average Similarity: 0.974936377

 93

D.2 Real Opponents

D.2.1 Play Money

Stage: PREFLOP Stage: PREFLOP
Number of players: 8 Number of players: 8
Relative position: 1.0 Relative position: 1.0
Players in pot: 2 Players in pot: 4
Players to act: 2 Players to act: 0
Small bets committed: 0.0 Small bets committed: 1.0
Small bets to call: 1.0 Small bets to call: 1.0
Pot Odds: 0.222222222 Pot Odds: 0.1
Hand ranking: 21 (JAo) Hand ranking: 21 (JAo)
Probability Triple: (0.07, 0.27, 0.66) Probability Triple: (0.0, 1.0, 0.0)
Action: Call Action: Call
Cases retrieved: 91 Cases retrieved: 1
Average Similarity: 0.976823051 Average Similarity: 0.971734645

Stage: FLOP

Number of players: 5
Relative position: 1.0
Preflop bets: 2
Players in pot: 4
Players to act: 1
Bets committed: 0.0
Bets to call: 1.0
Small bets in pot: 13.0
Pot Odds: 0.071428571
Hand strength: 0.117203166
Positive potential: 0.093249102
Negative potential: 0.150092227
Probability Triple: (0.54, 0.45, 0.0)
Action: Fold
Cases retrieved: 11
Average Similarity: 0.978143700

 94

D.2.2 Real Money

Stage: PREFLOP Stage: FLOP
Number of players: 6 Number of players: 5
Relative position: 1.0 Relative position: 1.0
Players in pot: 3 Preflop bets: 2
Players to act: 2 Players in pot: 4
Small bets committed: 0.0 Players to act: 0
Small bets to call: 2.0 Bets committed: 0.0
Pot Odds: 0.210526316 Bets to call: 1.0
Hand ranking: 62 (55o) Small bets in pot: 16.0
Probability Triple: (0.06, 0.35, 0.05) Pot Odds: 0.058823529
Action: Call Hand strength: 0.444177014
Cases retrieved: 20 Positive potential: 0.046011755
Average Similarity: 0.836749143 Negative potential: 0.115127479
 Probability Triple: (0.0, 0.0, 1.0)
 Action: Raise
 Cases retrieved: 1
 Average Similarity: 0.975627976

Stage: TURN Stage: PREFLOP

Number of players: 5 Number of players: 8
Relative position: 1.0 Relative position: 0.714
Flop bets: 2 Players in pot: 2
Players in pot: 4 Players to act: 4
Players to act: 0 Small bets committed: 0.0
Bets committed: 0.0 Small bets to call: 2.0
Bets to call: 1.0 Pot Odds: 0.266666667
Small bets in pot: 30.0 Hand ranking: 5 (KAs)
Pot Odds: 0.0625 Probability Triple: (0.0, 0.18, 0.82)
Hand strength: 0.23745975 Action: Raise
Positive potential: 0.046909091 Cases retrieved: 65
Negative potential: 0.135136835 Average Similarity: 0.978264896
Probability Triple: (1.0, 0.0, 0.0)
Action: Fold
Cases retrieved: 1
Average Similarity: 0.975157071

 95

Stage: PREFLOP Stage: FLOP
Number of players: 8 Number of players: 5
Relative position: 0.714 Relative position: 0.75
Players in pot: 4 Preflop bets: 4
Players to act: 0 Players in pot: 3
Small bets committed: 3.0 Players to act: 2
Small bets to call: 1.0 Bets committed: 0.0
Pot Odds: 0.047619048 Bets to call: 1.0
Hand ranking: 5 (KAs) Small bets in pot: 23.0
Probability Triple: (0.0, 0.1, 0.0) Pot Odds: 0.041666667
Action: Call Hand strength: 0.294740859
Cases retrieved: 3 Positive potential: 0.083655536
Average Similarity: 0.977896181 Negative potential: 0.129734254
 Probability Triple: (0.2, 0.8, 0.0)
 Action: Fold
 Cases retrieved: 5
 Average Similarity: 0.974186519

 96

Bibliography

Billings, D. (1995). Computer Poker. Master's thesis, University of Alberta.

Billings, D., N. Burch, A. Davidson, R. Holte, J. Schaeffer, T. Schauenberg, D. Szafron
(2003). Approximating game-theoretic optimal strategies for full-scale poker.
Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence.

Billings, D., A. Davidson, J. Schaeffer, D. Szafron (2002). The challenge of poker.
Artificial Intelligence Journal 134(1-2): 201-240.

Billings, D., D. Papp, J. Schaeffer, D. Szafron (1998). Opponent modeling in poker. In
AAAI National Conference: 493-499.

Billings, D., L. Peña, J. Schaeffer, D. Szafron (1999). Using probabilistic knowledge
and simulation to play poker. Proceedings of the sixteenth national conference on
Artificial intelligence and the eleventh Innovative applications of artificial intelligence
conference innovative applications of artificial intelligence: 697-703.

Buro, M. (1997). The Othello match of the year: Takeshi Murakami vs. Logistello.
International Computer Chess Association Journal 20(3): 189-193.

Campbell, M., J. A. J. Hoane, F. Hsu (2002). Deep Blue. Artificial Intelligence Journal
134(1-2): 57-83.

Dahl, F. A. (2001). A Reinforcement Learning Algorithm Applied to Simplified Two-
Player Texas Hold'em Poker. Proceedings of the 12th European Conference on
Machine Learning Springer-Verlag.

Davidson, A. (2002). Opponent modeling in poker: Learning and acting in a hostile and
uncertain environment. Master's thesis, University of Alberta.

Findler, N. V. (1977). Studies in machine cognition using the game of poker.
Communications of the ACM 20(4): 230-245.

Fogel, D. B. (2000). Evolving a checkers player without relying on human experience.
intelligence Journal 11(2): 20-27.

Ginsberg, M. L. (1999). Steps Toward an Expert-Level Bridge-Playing Program.
Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence:
584-593.

Ginsberg, M. L. (2001). GIB: Imperfect information in a computationally challenging
game. Journal of Artificial Intelligence Research 14: 303-358.

Harrington, D. and B. Robertie (2004). Harrington on Hold'em: Expert Strategy for No-
Limit Tournaments. Volume 1: Strategic Play. Las Vegas, Nevada, Two Plus Two
Publishing.

 97

Hsu, F., M. S. Campbell, J. A. Hoane (1995). Deep Blue system overview. Proceedings
of the 9th international conference on Supercomputing: 240-244.

Koller, D. and A. Pfeffer (1997). Representations and solutions for game-theoretic
problems. Artificial Intelligence Journal 94(1-2): 167-215.

Korb, K. B., A. E. Nicholson, N. Jitnah (1999). Bayesian poker. UAI'99 - Proceedings
of the 15th International Conference on Uncertainty in Artificial Intelligence, Sweden:
343-350.

Kuhn, H. W. (1950). A simplified two-person poker. Contributions to the Theory of
Games I Princeton University Press: 97-103.

Leake, D. B. (1996). Case-Based Reasoning: Experiences, Lessons, & Future
Directions. Cambridge, MA, AAAI Press / MIT Press.

Ramon López de Mántaras, David McSherry, Derek Bridge, David Leake, Barry
Smyth, Susan Craw, Boi Faltings, Mary Lou Maher, Michael Cox, Kenneth Forbus,
Mark Keane, Agnar Aamodt, and Ian Watson (2005). Retrieval, reuse, revision, and
retention in case-based reasoning. The Knowledge Engineering Review 20(03): 215 -
240.

Mitchell, T. M. (1997). Machine Learning. New York, McGraw-Hill Higher
Education.

Nash, J. F. and L. S. Shapley (1950). A simple three-person poker game. Contributions
to the Theory of Games I Princeton University Press: 105-116.

Papp, D. (1998). Dealing with Imperfect Information in Poker. Master's Thesis,
University of Alberta.

Powell, J. H., B. M. Hauff, J. D. Hastings (2004). Utilizing Case-Based Reasoning and
Automatic Case Elicitation to Develop a Self-Taught Knowledgeable Agent.
Proceedings of the Workshop on Challenges in Game AI, Nineteenth National
Conference on Artificial Intelligence.

Rasmusen, E. (2001). Games and information : an introduction to game theory.
Malden, MA : Blackwell(3rd ed).

Riesbeck, C. and R. Schank (1989). Inside Case-Based Reasoning. Hillsdale, NJ,
Lawrence Erlbaum.

Rubin, J. and I. Watson (2007). Investigating the Effectiveness of Applying Case-Based
Reasoning to Texas Hold'em. FLAIRS-20: The 20th International FLAIRS Conference.
Key West, Florida.

Salim, M. and P. Rohwer (2005). Poker Opponent Modeling. Indiana University:
Personal communication.

 98

Sandven, A. and B. Tessem (2006). A Case-Based Learner for Poker. The Ninth
Scandinavian Conference on Artificial Intelligence (SCAI 2006), Helsinki, Finland.

Schaeffer, J., D. Billings, L. Peña, D. Szafron (1999). Learning to play strong poker.
Proceedings of the ICML-99 Workshop on Machine Learning in Game Playing.

Schaeffer, J., J. Culberson, N. Treloar, B. Knight, P. Lu, D. Szafron (1991). Reviving
the Game of Checkers. Programming in Artificial Intelligence; The Second Computer
Olympiad 119-136.

Schaeffer, J., J. Culberson, N. Treloar, B. Knight, P. Lu, D. Szafron (1992). A world
championship caliber checkers program. Artificial Intelligence Journal 53(2-3): 273-
289.

Schaeffer, J., R. Lake, P. Lu, M. Bryant (1996). Chinook: The World Man-Machine
Checkers Champion. AI Magazine 17(1): 21-29.

Schauenberg, T. (2006). Opponent Modelling and Search in Poker. Master's thesis,
University of Alberta.

Shih, J. (2001). Sequential instance-based learning for planning in the context of an
imperfect information game. Fourth International Conference on Case-Based
Reasoning (ICCBR-01): 483–501.

Sinclair, D. (1998). Using example-based reasoning for selective move generation in
two player adversarial games. Proceedings of the Fourth European Workshop on Case-
Based Reasoning (EWCBR-98): 126–135.

Sklansky, D. (1994). The Theory of Poker. Two Plus Two Publishing Las Vegas, NV,
1994 3rd ed.

Sklansky, D. and M. Malmuth (1994). Hold'em Poker for Advanced Players. Two Plus
Two Publishing, Las Vegas, NV, 2nd ed.

Tesauro, G. (1995). Temporal difference learning and TD-Gammon. Communications
of the ACM 38(3): 58-68.

Tesauro, G. (2002). Programming backgammon using self-teaching neural nets.
Artificial Intelligence Journal 134(1-2): 181-199.

Waterman, D. A. (1970). Generalization learning techniques for automating the learning
of heuristics. Artificial Intelligence Journal 1(1-2): 121-170.

Watson, I. (1997). Applying case-based reasoning: techniques for enterprise systems.
San Francisco, CA, Morgan Kaufmann Publishers Inc.

Watson, I. D. (2003). Applying knowledge management: techniques for building
corporate memories. Amsterdam ; Boston, Morgan Kaufmann, c2003.

 99

	
	
	1.1 AI and Games
	1.2 AI and Poker
	1.2.1 CBR and Poker

	1.3 The game of Poker
	1.3.1 Betting
	1.3.2 5-Card Draw
	1.3.3 Tournament Play
	1.3.4 Ring Games
	1.3.5 Texas Hold’em

	1.4 Case-Based Reasoning
	1.4.1 The CBR Cycle
	1.4.2 Illustrative Example
	1.4.3 Case Retrieval
	1.4.3.1 K-Nearest Neighbour
	1.4.3.2 Inductive Retrieval

	1.5 Research Goals / Thesis Contributions
	2.1 Games and AI
	2.1.1 Chess
	2.1.2 Checkers
	2.1.3 Other Games

	
	2.2 Poker and AI
	2.2.1 Early Poker Research
	2.2.2 Heuristic-Based Systems
	2.2.3 Simulation-Based Approaches
	2.2.4 Game Theory and Poker
	2.2.5 Case-Based Reasoning and Poker
	CASPER: Developing a Case-Based Poker Player

	3.1 Case-base Construction
	3.2 Case Representation
	3.2.1 Preflop Cases
	3.2.2 Postflop Cases

	3.3 Similarity Metrics
	3.3.1 Number of Players (preflop only)
	3.3.2 Relative position, Players in current hand, Players yet to act, Number of players (postflop only), Small bets in pot and Pot Odds
	3.3.3 Bets committed, Bets to Call and Previous Round Total Bets
	3.3.4 Hand Ranking
	3.3.5 Immediate Hand Strength, Positive Potential and Negative Potential

	3.4 Case Retrieval
	3.5 Implementation
	3.5.1 Casebase Construction
	3.5.2 Computer Opponents
	3.5.3 Self-play Experiments
	3.5.4 Real Opponents
	Improving CASPER: Investigating Optimal Feature Weights

	4.1 Hand Picked Weights
	4.2 Self-play Experiments
	4.2.1 Selection
	4.2.2 Crossover
	4.2.3 Mutation
	4.2.4 Implementation
	4.2.5 Derived Weights
	4.2.6 Convergence
	4.2.6.1 Variance

	4.3 Opponent-Based Experiments
	4.3.1 Selection
	4.3.2 Crossover
	4.3.3 Mutation
	4.3.4 Implementation
	4.3.5 Derived Weights
	4.3.6 Convergence
	4.3.6.1 Average Profit

	5.1 Hand-picked Weights
	5.1.1 Strong/Adaptive Competition
	5.1.2 Aggressive/Non-Adaptive Competition

	5.2 Evolutionary Derived Weights
	5.2.1 Strong/Adaptive Competition
	5.2.2 Aggressive/Non-Adaptive Competition

	5.3 Real Opponents
	5.3.1 Play money
	5.3.2 Real money

	5.4 Case Similarity and Retrieval
	5.5 Results Summary
	6.1 Future Work
	D.1 Computerised Opponents
	D.1.1 Strong/Adaptive Competition
	D.1.2 Aggressive/Non-Adaptive Competition

	D.2 Real Opponents
	D.2.1 Play Money
	
	D.2.2 Real Money

