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Abstract 
 
Opponent modeling strategies provide the ability to exploit weak players, but have the 

disadvantage of being exploitable to strong players. An approximate Nash equilibrium strategy 

on the other hand is difficult for opponents to exploit, but it is not able to exploit opponents. This 

dissertation examines the effects of combining an approximate Nash equilibrium strategy with an 

opponent based strategy. The system proposed in this dissertation uses a comprehensive 

frequency statistical opponent model and statistical exploits to provide opponent based actions. 

Statistical exploits were chosen because each individual exploit has few preconditions and it can 

easily be proven whether it applies to a given statistical model or not. This allows the system to 

only use opponent based actions when it is sure the action is not exploitable, ensuring the agent 

is difficult to exploit even while it exploits the opponent. For each opponent we build up a 

counter-strategy against them using all the exploits which apply to their statistical model. This 

counter-strategy is able to change during the match as the preconditions for new exploits are met 

and the preconditions for the exploits being used are no longer satisfied. This approach has 

shown promising results in our initial tests and could lead to a champion level player once the 

system is improved.  
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Glossary 
 
Weak player: A player who's strategy can be captured in a generalized opponent model, these 

are usually players whose strategy is static, who play predictably, and who don't react to their 

opposition. 

 

Strong player: A player whose strategy cannot be captured in generalized models, usually 

players who play non-static, unpredictable strategies and who react to their oppositions play 

style. 

 

Fully opponent based strategies: Strategies employed by poker bots in which each action is 

dependent on the opponent model. 

 

Partially opponent based strategies: Strategies employed by poker bots in which only some 

actions are dependent on the opponent model. 

 

Statistical exploits: Ways in which one can change their strategy to take advantage of a poor 

play from the opponent, which you deduce from the frequency statistic
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1 Introduction 
 

This dissertation proposes an improvement to current poker bots. The concept is based upon the 

game of Heads Up no  limit  Texas  Hold’em which is described briefly in section 2. Our concept 

looks  at  the  problem  of  creating  a  Heads  Up  no  limit  Texas  Hold’em  agent  which  is  able  to  

exploit opponents while being difficult to exploit. We approach this problem by using an 

approximate Nash equilibrium strategy as the underlying strategy for its attribute of being 

difficult to exploit. To this we then add an opponent based component which utilizes an 

opponent model and expert defined exploitations. This addition creates a partially opponent 

based strategy which is difficult to exploit and is able to exploit opponents without making itself 

more vulnerable to exploitation than the underlying strategy.  

 

We begin the dissertation by providing an overview of the field of opponent modeling, outlining 

several of the techniques that have been attempted in producing opponent based strategies and 

the challenges associated with opponent modeling. In this section we also present new 

terminology, as we feel the term opponent modeling is being used as an umbrella term. We 

define opponent based strategy and the components which are needed to make up a opponent 

based strategy, opponent modeling and opponent based action. Next we define our central 

research question and the motivation behind the approach taken. The motivation is split into two 

parts. Our initial motivation that prompted us to delve into the literature, and then the motivation 

we acquired after understanding the challenges and techniques explored in the fields of opponent 

modeling and computer poker to date. We then describe the implementation of the system, how 

the individual components operate independently and with one another. We describe our 

experimental methods and the results of our experiments. The dissertation ends with the 

conclusions that were reached, and possible future work to improve and extend the system.  
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2 No	  Limit	  Texas	  Hold’em 
 
We describe briefly  the  game  of  Texas  Hold’em focusing on two-player  no  limit  Hold’em as our 

system has been specialized for this domain. If a game consists of only two players, it is 

described as being a heads-up match. 

 

The game of heads-up  no  limit  Texas  Hold’em  consists  of  four  stages:  pre-flop, flop, turn and 

river. During the pre-flop stage each player is dealt two hole cards, which only they can see. Two 

forced bets are contributed to the pot, these being the small blind (SB) and the big blind (BB) 

before any betting takes place. The big blind is usually double the value of the small blind. In the 

game of heads-up  Texas  Hold’em  the  dealer  contributes  the  small  blind  and  the  non-dealer 

contributes the big blind. The dealer signifies the player who is first to act during the pre-flop 

stage of the game and last to act for each of the other stages of the game. The betting actions, 

which are common to all variations of poker, are described as follows: 

 

 Fold: When a player abandons their hand, no longer committing any chips to the pot and 

giving up any right to contest the chips that make up the pot. 

 Check/Call: When a player commits the minimum amount of chips with which he/she is 

able to continue to contest the pot. A check requires zero chips to be committed, and a 

call requires an amount greater than zero to be committed. 

 Bet/Raise: When a player commits a larger number of chips than the amount necessary 

to continue to contest the pot, this is known as a bet. If a player is in the position where 

he/she must call a bet to continue, but then decides to invest more than the call amount in 

the pot, this is known as a raise. 

 
In a no limit game a player may bet any amount they desire up to the total value of chips they 

possess. Once the betting in one stage of the game is complete and as long as no players have 

folded, play continues on to the next stage. Each further stage after the pre-flop stage involves 

the drawing of community cards from the shuffled deck of cards as follows: 

 Flop: 3 community cards 

 Turn: 1 community card 
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 River: 1 community card 

 

In a standard heads-up no-limit poker game the chip stacks of each player would fluctuate 

between hands depending on who won the previous hand. To reduce the variance of this 

structure  a  variation  known  as  Doyle’s  Game  is  played  in  this  dissertation  where  the  starting  

stacks of both players are reset to a specified amount at the beginning of every hand. 
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3 Literature Review 
 

 

When considering the attributes required for successful poker play as identified by Billings 

[2002], we see that poker research has progressed by leaps and bounds in all areas but opponent 

modeling.  Schauenberg [2006] "Of these required attributes, the one that remains the biggest 

obstacle to world-class play is opponent modeling", a similar sentiment was echoed by world-

class poker player Gautam Rao after testing PsOpti [Billings, 2003]. There have been a number 

of opponent modeling methods attempted over the years and though they have differed greatly in 

some respects they have all had one thing in common: They all used statistics on the opponent's 

action frequencies to create their models. We will begin by introducing a few suggested 

terminology alterations. From there we will discuss statistics in regards to the Texas Hold'em 

poker opponent modeling domain. We will then go over seven opponent modeling methods that 

have been tried, giving a brief overview and discussing the merits of each. After which we will 

describe the Polaris system, which took a game theory approach to altering a Nash equilibrium 

strategy such that it was able to exploit opponents. 

 

 

3.1 Opponent Modeling 
 

The term "Opponent Modeling" has been ambiguously used in the literature to mean playing an 

opponent based strategy. This is not intuitive; intuitively one would think that the opponent 

model would be the collection of information about the opponent that represents the way in 

which the opponent plays. From this definition opponent modeling would just be the creation of 

this model, but in the literature it has been used to also incorporate the way in which the models 

are used to play an opponent based strategy. I believe that for ease of understanding, the 

ambiguous usage of the term "Opponent Modeling" should be broken into three terms: 

 

1. Opponent Model: the set of information which represents the opponent's play style. 
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2. Opponent based actions: the way in which you use the given Opponent Model to 

determine actions that are suited towards the opponent you are facing. 

 

3. Opponent based strategy: The combination of creating an opponent model for your 

opponent and using this model to determine opponent based Actions. There are two types 

of opponent based strategies that can be employed: 

 
a. Fully opponent based strategy: The agent uses the opponent model to play an 

opponent based action for every action. 

b. Partially opponent based strategy: The agent plays opponent based actions only 

some of the time. 

 

 

3.2 Statistics 
 

Poker is an incomplete information game, as one does not have the ability to see the opponent's 

hole cards, it is also a stochastic game as players have no control over which cards are dealt. This 

makes it very difficult to know where you stand in the hand, what your opponent has, what they 

will do or how they will react to your actions. If you look at a poker game state in isolation the 

only information you have is your cards, the community cards and the size of the pot. This is not 

enough information to make a decision with any confidence about it being the correct decision. 

To make a better decision we need hindsight; what actions have occurred that led to this state? 

With this information we can already make a much better decision. What if we look even further 

back? What did the opponent do the last time they were in this situation? What are the 

opponent's action frequencies in this situation? This is the basis of opponent modeling, keeping 

statistics on the opponent for use in later similar situations to improve the quality of decision 

making, to maximize profit.  

 

The observations you make during your game play are the only indications you have about your 

opponent's play. Keeping statistics on your opponent's action frequencies gives you a much 

better idea of how your opponent will act and react in any given situation as you will have a 
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probability distribution for each action your opponent can make in each situation. Schauenberg 

[2006] describes an observation model as a statistical model based on all that is observed. He 

uses this type of model in [Schauenberg, 2006] and brings up the major concern with statistical 

models, that without enough observations of a situation the action distribution statistics can be 

nowhere near their true value. When one has observed a limited number of hands at a specific 

game state it is very likely that the frequencies observed are skewed and do not correlate with the 

opponent's true frequencies at that game state. Thus far there have been two main ways of 

dealing with this problem, using priors and waiting to use the frequencies of a game state to 

impact the action decision until that game state has been observed enough times to make the 

probability distribution statistically significant. We will discuss examples of these as we describe 

opponent modeling implementations in section 2.3. 

 

There is a second major problem with statistical models, the fact that opponents will 

often alter their strategies throughout the game, invalidating the statistics that have been 

observed. If the opponent's play does not match the frequencies we are using to make our 

decisions they will be exploiting our incorrect information and causing us to lose money. This is 

known  in  poker  as  “exploiting  your  image”:  for  example  you  play  very  tight  to  start  with,  only  

showing down big hands and very rarely bluffing, then once you believe the opposition has 

pegged you as a tight player you start bluffing to exploit the fact that they believe you only raise 

with big hands, giving you much more fold equity for your bluffs. This can also be done in the 

reverse, creating a loose image and then tightening up or on a smaller scale for example re-

raising pre-flop only with your high value hands and then later bluff re-raising pre-flop a lot of 

low  value  hands.  The  methods  for  dealing  with  this  problem  are  usually  “simple  methods such as 

decaying  histories  to  accommodate  opponent  drift” [Southey, 2005].  

 

Full observation models are rarely used in opponent modeling research. The statistics used are 

usually limited in number and simplistic in nature, each generalizing greatly over a large set of 

game states. Researchers are using only the simple statistics such as: raise, call, fold percentage 

per street, VPIP (voluntary put money in pot) how often you call or raise pre-flop, PFR(pre-flop 

raise) and aggression factor. Commercial heads  up  displays  or  HUD’s,  which  are  prevalent  these  

days in online poker, provide a full observation model and can provide one with any statistic that 
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can  be  thought  of  because  they  save  every  hand.  Online  players  have  been  using  HUD’s  for  

some time now and have discovered many more statistics that are very helpful for determining 

an opponent's play style.  

 

We believe opponent models can be greatly improved by adding some of the statistics that have 

become  popularized  in  online  play  through  the  HUD’s.  For  example 3bet, how often the 

opponent re raises a pre-flop raise, and fold to 3bet, cbet, how often an opponent bets the flop 

after raising pre-flop, and fold to cbet and various other statistics are now a staple for online 

player's  HUD’s  to  allow  them  to  get a better idea of opponent's play styles. Adding in more 

statistics, while possibly making opponent models more expressive and better at capturing the 

nuances of an opponent play style, will also increase either the computation or complexity or 

both of the program needed to extract relevant data from the statistics to make betting decisions. 

This leads to the tradeoff between program complexity and required computation verses 

opponent model expressivity.  

 

 

3.3 Opponent based play techniques 
 

 

In this section we will review a selection of Opponent based strategy techniques organized by 

bot. We will first go over each bot's opponent model, then the way in which the bot uses the 

opponent model to determine opponent based actions. We will end the review of each bot with 

an overview of the entire bot and a discussion about the opponent based strategy technique 

employed by the bot. 

 

Loki-1 
 

We begin by looking at the first iteration of the Loki bot to use specific opponent modeling as 

described by Billings [1998]. Specific meaning that the opponent model used for each opponent 

is unique and based on their action frequencies. 
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Opponent Model: 
The opponent model consists of 4 components:  

1. A weight table of each of the possible combination of hole cards. The table gives the 

probability that the opponent would have played the hand to the present point in the 

game. The weights are updated after each opponent action.  

2. A table of betting frequencies for various stages of a hand. This is computed by 

counting the number of times each player folded, called, raised in each of 12 contexts, 

the contexts being a combination of the betting round, and the number of bets to call.  

3. A threshold or median hand strength calculated using the betting frequencies after 

each opponent action. 

4. A posteriori probability of each possible holding, given its connection to the 

community cards. Calculated using the previously calculated threshold. 

 

 
 
How Opponent based actions were determined: 
 
A hand evaluator which is given the game state and the opponent model uses enumeration 

techniques to compute hand strength and hand potential for any hand. A hand assessment of the 

bots current hand provided by the Hand Evaluator is then fed into the Bettor which uses a set of 

expert-defined rules along with the hand assessment data provided and the public game state to 

determine whether to fold, call or raise. 

 

Overview of Loki-1: 
 

Loki-1 uses a weight table of each possible combination of hole cards which pre-flop is based on 

the opponent's call, raise, and fold frequencies. Once the flop has occurred re-weighting begins. 

After each opponent action the probabilities for all hands are updated in a process called re-

weighting. The opponent modeler calls the hand evaluator once for each possible hand and 

increases or decreases the weight for that case based on the new information. During this process 

the Hand Evaluator uses the Weight Table values to bias the calculation, giving greater weight to 
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the more likely hands. When the bot is at a decision point it has the Hand evaluator evaluate its 

hand and call the Bettor which uses this evaluation along with the set of expert defined betting 

rules to make a betting decision. Loki-1 plays a fully opponent based strategy since the Hand 

Evaluator is used to determine each action, and the hand evaluator uses the opponent model to 

determine its evaluation. 

  

 
Figure 1. The architecture of Loki-1 after Billings [1999]. 

 

Discussion about the opponent based strategy technique employed by Loki-1: 
 

Loki-1's general concept seems to be a very good idea. Narrowing down the range of hands an 

opponent  can  have  at  a  particular  game  stat  based  off  the  opponent’s  previous  actions  and  play  

style is popular among human players and is known as hand reading. However the individual 

components used to allow for opponent based play were very simplistic. [Billings, 1998] 

acknowledged themselves that the way in which they used and collected observed statistics was 

crude, and that "... much of the relevant context was ignored for simplicity". Billings [1999] said 

there were a number of problems with the original approach; these being: Loki was difficult to 

maintain and improve due to the use of expert knowledge in much of the bot. "The Bettor 

returned a single value (fold, call, raise), which does not reflect the probabilistic nature of betting 

decisions". Also the Opponent Modeler does not distinguish between the various actions that an 

opponent might take. [Davidson, 2000] adds that the framework was simplistic in the fact that it 
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did not account for many relevant details. These included the number of active opponents, and 

betting positions. These are all major concerns but many of them were rectified at least to a 

degree as the university of Alberta poker group improved Loki over the years. Bellow, I will be 

describing the various improvements to Loki-1 that produced the new bots Loki-2 and Poki. 

 

 

Loki-2 
 

Loki-2 described in [Billings, 1999] improved upon Loki-1's Opponent based action 

determination by introducing the probability triple and simulation with selective sampling to the 

Loki bot. I will give an overview of both improvements starting with the probability triple. 

 

 The probability triple has three values [f,c,r] which equate to the probability of choosing 

the fold, check/call and bet/raise actions. Each of the three actions has a value between 0 and 1 

and the triple together sums to 1. The probability triple has been incorporated in most aspects of 

Loki-2 and the Triple Generator is at the heart of  Loki-2. The triples are used by the Action 

Selector to choose a course of action, by the Simulator to choose actions for simulated opponent 

hands, and by the Opponent Modeler to update the opponent weight tables. To generate a triple 

the Triple Generator takes a two-card hand and calls the Hand Evaluator which evaluates the 

hand in the current context. The Triple Generator then uses the resulting hand value along with 

the current game state and expert-defined betting rules to compute the triple. To update the 

Weight Table using probability triples the Opponent Modeler calls the Triple Generator for each 

possible two-card hand. It then multiplies each weight by the entry in the probability triple that 

corresponds to the action the opponent just took.  

 

 Loki-2 uses a Simulator to enhance the quality of the actions selected. Every time Loki-2 

faces a decision it calls the Simulator to get an estimated expected value (EV) of each betting 

action. When the Simulator is used it replaces the Action Selector and the action chosen is the 

one with the highest EV. A simulation plays out a hand a number of times from the current state 

of the game through to the end. Two trials are considered, the first performing a check/calling 

action at the first decision point and the second bet/raising; it is not necessary to simulate folding 



11 
 

as it is considered to have an EV of 0 as the bot makes no future profit or loss. For each trial the 

hand is simulated to the end and the amount won or lost is determined. The average over all the 

trials is taken as the estimated EV of each action. Simulating each hand that each opponent might 

have is far too computationally expensive as the branching factor is extremely large due to there 

being multiple players, 3 action choices per decision point, many possibilities for community 

cards, etc. Loki-2 solves this problem by using Selective Sampling from the Weight Table to 

determine which of the possible opponent hands will be simulated. Using the Weight Table also 

allows  the  Triple  Generator,  which  determines  the  opponent’s  actions  during  the  simulation,  to  

compute actions which the opponent is likely to perform. The use of simulations in this way was 

shown, by Billings [1999], to greatly magnify the quality of the evaluation function of Loki and 

allowed higher performance to be gained with minimal expert knowledge. Loki-2 as Loki-1 

before it, plays a fully opponent based strategy since the opponent model impacts each action, 

meaning the action is always opponent based.  

 

 
Poki 
 

Davidson [2002] introduces the original Poki bot along with a number of later versions of Poki 

that improve upon the original. Poki_1 is a modular object-oriented reimplementation of the Loki 

AI which allows it to easily use different implementations of the major modules. Poki's later 

variants do just that, using different betting strategies and predictors. I will discuss the general 

updates that have been added to the Loki framework to create Poki and will then go over the 

various betting strategies and predictors available to Poki.  

 

Where  Loki’s  pre-flop  strategy  was  based  on  the  opponent’s  pre-flop  action  frequencies,  Poki’s  

pre-flop strategy is an expert based system built on a set of tables containing the expected 

income results for each hand. The reweighting process has also been updated; each value in the 

weight table is now updated by the probability that, given those cards, the opponent would have 

taken the action the opponent took. Poki also added a noise-factor to the reweighting process. 

The noise-factor represents the amount of uncertainty the bot has about the opponent’s actions 

reflecting the information about the cards they hold. Loki had a large source of error in multi-
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way pots as it used a field array as the weight table. This field array represented the average of 

all  opponents’ weight tables. Poki has replaced this method with computing the hand strength for 

each opponent and multiplying these values together. If this is too computationally expensive, 

Poki creates a field array which  is  the  combination  of  the  maximum  of  each  opponent’s  weight  

tables instead of the average.  

 

The first hint at Poki was in [Davidson, 2000] where Davidson described improvements upon 

Loki-2 through the addition of two features, these being previous action and previous amount to 

call and renamed the bot Poki. An artificial neural network (ANN) was created with the goal of 

predicting an opponent's next action. All information available to previous Loki bots was used as 

input for this neural network along with numerous new inputs that included previously unused 

contextual information. The network was trained and the weights for each of the various inputs 

were examined to determine which inputs affected the prediction the most. It was found that the 

statistics of previous action and previous amount to call were particularly strong features when 

determining opponents' actions. This lead to the addition of these new features into a new bot 

called Poki, which was shown to outperform Loki-2 significantly. As the Loki bots before them, 

the Poki bots play a fully opponent based strategy. 

 

 
Betting Strategies: 
 

Poki’s  basic  betting  strategy  is  a  formula-based system which uses the hand evaluation as input 

and outputs an appropriate betting action. It is sensitive to input accuracy; if the opponent 

modeling is poor the strength and potential will be badly estimated. It is not very different to the 

formula based system employed by Loki-2. 

 

Selective  sampling  and  Simulation  Betting  is  another  of  Poki’s  betting  strategy’s. The idea 

behind this strategy is to probe, to the leaves, for the most probable hands instead of doing a 

comprehensive but shallow search. At the time of simulation, Poki does not know the cards of 

the opponents, or the future board cards, so it probabilistically assigns cards to each opponent in 

each trial of the simulation. The weight table for each opponent is used to bias the selection of 
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cards to match the hands the opponent is likely to hold. Davidson [2002]  claims  that  “after  

simulating several hundred trials, the average amount won or lost by calling or raising will 

typically  converge  to  a  stable  estimate  of  the  expected  values  (EV’s)  of  each  action”  For  each  

trial the hand is simulated twice to determine the expected value of a check/call or a bet. Folding 

does not need to be simulated because folding gives an expected value of zero. This technique is 

beneficial as it is not a fixed strategy, it depends on the opponent model allowing it to shift 

dramatically and adapt to any mix of different opponents. It also saves computation in that 

properties such as implied pot-odds,  draw  odds  and  the  like  don’t  have  to  be  computed  as  the  

simulations uncover this information naturally, producing only a simple EV for each action. 

Simulations can uncover complex strategies without the need for any expert knowledge. The 

difficulty with this betting strategy is that it is entirely dependent on having a quality opponent 

model to ensure good results, but then so is the previous betting strategy. 

 

 
Predictors: 
 

The expert system predictor uses a set of rules to make rational choices on behalf of the 

opponent during simulation. This assumes the player will play somewhat according to the rules 

in the system, and is referred to as a "generic opponent model" as it is the same for all opponents. 

 

The statistical predictor uses the opponent's history of actions to make predictions, using 

opponent action frequencies like Loki-2, and is a "specific opponent model" as it is unique for 

each opponent. 

 

The neural network predictor takes 18 inputs which give it the contextual, mathematical and 

opponent based information it needs, from "Poki is in the hand" to "estimated Hand strength for 

the opponent" to  "immediate pot odds" and everything in between. A new neural network is 

trained for each opponent and it can either: remember opponents and continue to use the 

previously used neural net, or it can treat each session as different and start from random weights 

again.  

 



14 
 

The Meta-Predictor uses a combination of five different predictors, uses multi-predictor voting 

and selects the action which has the highest weighting. Each predictor in the Meta-Predictor has 

an accuracy which is dynamically tracked by Poki. The accuracy of the last n actions of a player 

are used to evaluate each predictor. The votes of each predictor are weighted based on the 

predictor's accuracy. The predictors used by the Meta-Predictor are as follows:  

 Statistics I: A statistical predictor which uses basic action frequencies as in Loki-2 but 

with enhanced context found in [Davidson, 2000] 

 Statistics II: Similar to Statistics I but is more sensitive in that it only keeps statistics for 

the last 40 observed actions in each context class 

 Expert Formula: Poki's formula based betting strategy 

 Neural Network I: A neural network predictor who's training data consists of all actions 

of the opponent that have ever been observed  

 Neural Network II: A neural network predictor who's training data consists of only the 

actions of the opponent that have been observed in the current session of play 

 
 
Discussion of the predictor results: 
 

 
Table 1. Poki, average predictor accuracy after Davidson [2002]. 

 

The experiments presented by Davidson [2002] show that the Meta-Predictor is able to predict 

the opponent's actions more accurately than the others. This is as one would expect, the use of a 

combination of various predictors and the marginalization of the inaccuracy found in them 
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through weighting should outperform any of the individual predictors. The results, however, 

conclude that the neural network predictor performs only slightly worse than the Meta-Predictor 

and this is somewhat surprising. In order for a neural network to produce relevant outputs it 

would have had to have seen a significant number of training examples. As the number of nodes 

and levels in a neural network increase, the number of training examples that need to be seen 

before the weights are distributed meaningfully also increases. The neural network predictor has 

18 input nodes 4 hidden nodes and 4 output nodes, due to this I would imagine that a rather large 

amount of training cases would have to be observed before the network returns any meaningful 

results. The paper, however, does not discuss how many training cases the network has seen 

from the opponent before the evaluation took place. The network's accuracy would most likely 

be far lower if the opponent was previously unseen.  

 

The results show that getting an accuracy of 57.4% is trivial as a bot that always predicts a call is 

able to do that. Only the Neural Network predictor is significantly better than the trivial amount. 

If this accuracy is suspect due to an incomplete description of the learning rate and amount of 

training data the neural network has received, then the accuracy of the Meta-Predictor is also 

suspect as in this example it would be weighting the neural networks votes much higher than the 

others. 

 

 

Bays Bluff 
 

Southey [2005] describes an opponent specific strategy technique based on Bayesian probability 

and the use of priors. This is the only opponent specific strategy discussed in this literature 

review that does not use frequency statistics. This distribution is similar to what can be found in 

the literature, the overwhelming majority of research on opponent based strategies use some 

form of statistics in the opponent model and or the opponent based actions. The opponent based 

strategy outlined by Southey [2005] highlights why this is the case. If one does not use statistics, 

it is necessary to have very good prior knowledge of the opponent, which is not feasible in the 

real world. 
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How the opponent specific strategy is carried out 
 

The opponent specific strategy has two key problems which it looks to solve. The first one being: 

"inferring a posterior over opponent strategies given a prior distribution and observations of their 

play" [Southey, 2005]. The posterior distribution summarizes the current state of knowledge 

about all the uncertain quantities in a Bayesian analysis, this is the opponent model. To do this a 

tuple was created which is able to denote any possible hand, it includes all hand information, the 

community cards, the betting and the opponent's cards if a showdown was reached. Using this 

tuple they came up with algorithms to calculate the probability of a particular showdown hand 

occurring given the opponent's strategy, and the probability of a particular fold hand occurring 

given the opponent's strategy. The opponent's strategy is given by the prior distribution. Given a 

set of observations they apply Bayes' rule to update the prior distribution using the previously 

mentioned algorithms to determine how each observation updates the prior distribution. The 

second problem the paper solves is "playing an appropriate response to that distribution" 

[Southey, 2005]. They give a number of options: Bayesian Best Response, Max A Posteriori 

Response, and Thompson's Response. The response is computed at the beginning of each hand 

and played for the entirety of the hand. We will only cover Tompson's Response as it is the only 

one they were able to  use  on  the  domain  of  Texas  Hold’em, due to it being the least 

computationally expensive. The rest were only used on the far smaller  domain  of  Leduc  Hold’em 

which is described in detail in [Southey, 2005]. Thompson's Response samples a strategy from 

the posterior distribution and plays a best response to that strategy. Sampling the posterior 

directly is indicated to be potentially difficult. To overcome this difficulty they "... sample a set 

of opponent strategies from the prior, compute their posterior probabilities, and then sample one 

strategy according to those probabilities" [Southey, 2005]. The best response is determined in 

regards to the selected opponent strategy, which determines the opponent specific actions. Since 

a best response is calculated and the played against the opponent, each action is an opponent 

based action, so this bot plays a fully opponent based strategy. 
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Prior's 
 

Bayesian approaches require priors, a prior should capture our beliefs of the opponent's strategy. 

The resulting performance and efficiency of a Bayesian approach depends on the choice of prior. 

Southey [2005] states that "The form of the prior also determines the tractability of (i) computing 

the posterior, and (ii) responding with the model". Due to this and the considerable size 

difference between the domains of Texas Hold'em and Leduc Hold'em they used a different prior 

for each domain. For Leduc Hold'em an Independent Dirichlet prior was used and for Texas 

Hold'em they used an Informed prior. Southey [2005] found that for opponents drawn from their 

priors the posterior captures them rapidly and the responses are able to exploit the opponent 

quickly in both Leduc and Texas Hold'em. The trouble with this is that a lot of prior knowledge 

is needed either in the form of accurate priors or many observed hands. This is unrealistic as one 

does not normally play against only known opponents in a poker game. 

 

 
Vexbot 
 

Vexbot is described in [Schauenberg, 2006], it is a poker bot built around a game tree, an 

expectimax search tree to be exact. An expectimax search tree can be thought of as a compacted 

imperfect information game tree. This is because the tree only considers the game from one 

player's perspective, allowing all nodes making up each of the player's information sets and the 

subtrees rooted at those nodes to be merged together, according to which information is 

observable. Each of the expectimax tree's nodes in essence represents a group of nodes in the 

imperfect information game tree that are indistinguishable to the player, and the edges represent 

a group of edges which are also indistinguishable. This merging creates an implicit probability 

distribution at each node over the information that occurred but has been kept hidden and 

remains unknown. 
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Opponent model 
 

Schauenberg [2006] states "For opponent models to be used within the expectimax action-

selection search ..., they have to be able to supply three different types of information as seen 

from the decision-maker's perspective: 

1. probability distribution over observed opponent actions at an opponent decision node, 

2. probability distribution over observed chance event outcomes at chance nodes, and 

3. probability of the decision-maker winning a showdown" 

 

The opponent model provides the first type of information by keeping count of each observed 

action at that decision node. These counts are then used to construct a probability distribution for 

observed opponent actions by dividing each possible actions count by the sum of all three. The 

second type of information needed is assumed to be uniform in frequency. Although this is not 

always the case against all opponents this assumption is stated to be "small compared to errors 

present in the opponent model" [Schauenberg, 2006]. To determine the third type of information 

counts are kept of which hands the opponent has revealed at the specified node in the past. The 

probability of wining is estimated by summing up the total number of observed hands that are 

worse than the player's current hand along with half of the observed hands that tie and then 

dividing this sum by the total number of hands observed. 

 
 
Generalization 
 

Schauenberg [2006] recognized that the number of distinct scenarios in which opponent 

modeling information is needed in Texas Hold'em is very large and that this would make it 

difficult to play an opponent based strategy early in the session as the opponent model would 

need many games to be played before it becomes effective at modeling the opponent. This would 

lead to possibly substantial losses until the opponent model got enough experience to be 

effective. This problem was combated through generalization of the data observed in one 

situation to other similar situations.  
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Generalization of action frequencies 
To calculate an approximate opponent's action frequency at a given opponent decision point a 

context tree was created. This tree is able to represent all possible betting strings, where a betting 

string is the sequence of actions that have occurred thus far in the game. Each node in the tree 

represents an action and the frequency of the various actions which can occur after it. To 

determine the action frequency one starts at the root of the tree and traverses it according to the 

current betting string, the node that you arrive on then has a count for the number of times each 

of the three actions have occurred after it and the frequency is calculated from these counts. This 

method disregards all board card information and is simplistic in that it does not allow for a high 

degree of generalization.  

 

 
Generalizing the estimation of winning at showdown 
To generalize the estimation of winning at showdown a histogram is kept for each possible 

unique betting string and position combination for the opponent that represents a show down. 

These histograms represent the hand strengths that the opponent has shown down in the past, 

given the betting string and positions. The player’s hand strength is computed and compared to 

this histogram to determine how often he would have won, lost or tied at this showdown in the 

past. A distance function was created to define how similar observations in one showdown 

context are to observations in another to allow for generalization of the data early on. To keep 

things simple only ten levels of similarity where defined. The bot combines show down 

observations by starting with the most similar observations and successively adding more distant 

ones until the total number of observations at a showdown reaches a predefined threshold. The 

data is then combined using weights, where the weight an observation is assigned depends on its 

similarity, with the highest similarity being given the most weight.  

 

 
Defaults 
Although there are generalization strategies in place, there is still going to be a period of time 

when there are very few or no observations. This is a large problem for this type of modeling 

which is overcome by using default opponent modeling information in these cases. Four 
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showdown hand rank distributions are defined, which are chosen depending on the amount of 

betting an opponent did leading to a particular showdown. A simple heuristic rule base is used to 

assign default observation probability triples when there is no data for observed opponent 

frequencies. Schauenberg [2006] focused on opponents that do not change their strategy, so 

opponents that switch strategies once vexbot has built up a model can easily exploit it. 

 

Using Expectimax trees to implement an opponent based strategy is a novel and interesting idea, 

but we believe it relies too much on the opponent model. Every action is based only on the 

opponent model and this is a problem they have recognized themselves, it greatly hampers the 

bots performance while it is building up enough information to create a meaningful opponent 

model and although the defaults help they are little more than a band aid on a gaping wound. 

Vexbot also required the opponents to have stationary strategies, which is unlikely when playing 

against humans. This could be fixed by information decay, but information decay without a 

strong strategy to fall back on weakens your opponent based strategy overall. This may still be 

the better option as strategies switching could exploit Vexbot tremendously once the bot has 

acquired enough history. Although Vexbot has a period of time where it is not playing an 

opponent based strategy while it populates its model, it still plays a fully opponent based strategy 

once it's model has been sufficiently populated. The goal of Vexbot it to play a fully opponent 

based strategy and the defaults are only there to help with the initial play when the opponent 

model is sparse. Due to this we classify Vexbot as playing a fully opponent based strategy. 

 

 

Game-Theory based opponent modeling 
 

Ganzfried [2011] describes an algorithm created to play opponent based strategies in large 

extensive-form games of imperfect information. They wanted to build an algorithm which could 

easily generalize to other settings and therefore relied on game-theoretic concepts such as Nash 

equilibrium and best response instead of game-specific information and features. Their algorithm 

assumes it has no prior knowledge of the opponent's strategy and operates online (in real time). 

The algorithm showcased in this paper is called Deviation-Based Best Response (DBBR). It 

creates an opponent model based on the deviations it finds between the opponent's strategy and a 
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pre-computed approximate equilibrium strategy. It then computes and plays a best response to 

this model in real time. The construction of the opponent model and the computation of a best 

response both take linear time in proportion to the size of the game tree, and they stated these 

processes "... can be performed quickly in practice" [Ganzfried, 2011].  

 

 
Computing the Opponent model, DBBR 
 

The first step in the DDBR algorithm is the creation of an approximate equilibrium of the game 

it will be used on, which is done offline. When the game begins, the opponent's action 

frequencies are recorded at various public history sets. These are then used to compute posterior 

action probabilities for the opponent, which are the probabilities the opponent chooses each 

action at each public history set. The probability the opponent is in each of the hand rank buckets 

at a given public history set is computed given the model of the opponents play so far, which 

consists of the opponents action frequencies and how they differ from the equilibrium strategies 

frequencies. These probabilities are referred to as the posterior bucket probabilities. The 

algorithm then computes the full opponent model by comparing the difference between the 

opponent's posterior action probabilities and those of the equilibrium strategy. It does this by 

iterating over all the hand rank buckets and based on the differences noted previously, shifting 

weight away from the action probabilities in the equilibrium associated with each bucket until a 

strategy is obtained that is consistent with the model of the opponent's action probabilities. The 

opponent model now also consists of the strategy which has been calculated for the opponent, 

which is in the same format as the equilibrium strategy.  

 

There are a number of algorithms for computing the opponent strategy which alter the weights 

for the buckets differently and are discussed in the paper, but the one that was selected is their 

own custom weight-shifting algorithm. It works by greedily adding or removing buckets to the 

equilibrium strategies range for performing each action in each public history set until the 

opponent's observed frequency is produced. Once an opponent model has been created the 

algorithm iterates over all the public history sets, and computes a best response to the opponent 

models strategy computed earlier.  
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In order to improve the speed of the algorithm they suggest it could be run only every k hands. 

Ganzfried [2011] also states "we  may  want  to  start  off  playing  the  equilibrium  σ*  for  several  

repetitions so that we can obtain a reasonable number of samples of the opponent's play, rather 

than trying to exploit him immediately”. 

 

 
Discussion 

 

It is difficult to comment on the algorithm because everything is given at a very high level and 

few details are discussed. What frequency statistics they are using to define the equilibrium and 

opponent strategies would be interesting, since they say they wish to stay away from any game 

specifics yet they must recorder game specific statistics. The way in which the individual 

statistical differences alter the strategy is also game specific and would be useful to know when 

attempting to compare this opponent based strategy to others. The paper however keeps 

everything very high level and Ganzfried [2011] remarks that their algorithm "... achieves 

significantly higher win rates against several opponents - including competitors from recent 

AAAI computer poker competitions - than an approximate equilibrium strategy does". So 

however they handled all the game specific considerations, it worked. The bot utilizes a fully 

opponent based strategy, since it plays a best response computed against the opponent model, 

which is the calculated opponent strategy. 

 
 

Opponent type adaptation 
 

 Rubin [2012], builds on earlier work where he describes the case based reasoning poker bot he 

built [Rubin, 2009]. He has updated it by adding in an opponent based strategy through the use 

of frequency statistics and adaptation. The opponent model is made up of 16 numerical values, 

one for the frequency of each of the four actions: fold, check, call, and bet, for each of the four 

betting rounds. This vector of 16 values represents the entirety of the opponent model. The 

opponent based play is created through adapting the solution vectors which are returned by the 
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case based reasoning (CBR) poker bot during the hand. The solution vectors are probabilistic 

action vectors, they are made up of three values (f, c, r) where f is the probability of performing 

the fold action, c is the probability of performing the check or call actions and r is the probability 

of performing the bet or raise actions. The adaptation shifts these values to make the solution 

vector more aggressive by increasing the probability to make aggressive actions or more 

defensive by increasing the probability to make more defensive actions.  

 

To determine how the solution vector should be altered based on the opponent model to produce 

the best outcomes, the paper introduces the concept of opponent types. Classifying opponent into 

various opponent types is a popular abstraction used by online poker players to determine how 

they should play against an opponent when they have little experience against the player. 

Opponent types are in essence generalized play styles which can be determined through some 

limited statistical information. A number of opponent type models are created for which the 

aggression response trends are known. The aggression response trends are models which 

describe the impact various levels of adaptation has on the performance against a particular 

opponent model. During game play the betting frequencies for the opponent are recorded and the 

opponent model is used to classify the opponent as a particular opponent type. Once the type is 

known, an aggression trend is associated with the opponent and an algorithm is used to 

determine the adaptation factor that will be used for each hand.  

 

The algorithm probabilistically selects the adaptation factors based on how much they were able 

to improve upon not applying adaptation at all. To make sure the bot is able to cope with 

opponents that shift their play styles only the latest M hands of play effect the frequencies. A 

learning period is also given to the bot, during the first M hands no adaptation occurs, to make 

sure the frequencies are statistically significant. With the addition of adaptation the bot plays a 

fully opponent based strategy. This is because once the initial M hands have been played it alters 

every action based on the aggression trend of the opponent type which the opponent model is 

most similar to, meaning it uses opponent based actions for every action thereafter.  

 

This is a novel idea, based upon the case based reasoning concept of abstraction which fits nicely 

with the rest of the bot. This implementation adds a very generalized opponent based strategy on 
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top of a strong poker bot. Due to its generalizations of opponents through the limited frequency 

statistics of the opponent model and the classification of opponent types it increases its win rate 

reasonably for the most part over all of the bots it tested against. It was not able to fully exploit 

the weak players and it was not able to guarantee a positive or neutral result against all 

opponents but then again such results would not have been expected as they are not possible with 

this degree of generalization. The results that were shown indicate that even generalized 

information can give good insights into how an opponent plays and simple adaptation can have a 

largely positive impact on win rate. 

 
 

3.4 Polaris 
 

Polaris incorporates a collection of four poker bots. The first uses an approximate Nash 

equilibrium strategy. The second computes an abstract best response against an opponent. The 

third is a compromise of the first two and the fourth is a team of agents consisting of several of 

the previous types of agent.  

 

 
Counterfactual Regret Minimization 
 

The approximate Nash equilibrium strategy is computed using a new technique described by 

Johanson [2007] called Counterfactual Regret Minimization. It is different from other 

equilibrium approximations in that it requires memory linear in the number of information sets 

not game states. This allows them to solve much larger abstractions than were possible with the 

previous methods, which allows them to produce equilibrium strategies that are closer to the real 

game's Nash equilibrium.  These strategies do not try to exploit opponents instead they try to 

minimize their own exploitability, making them robust in that they are difficult to defeat.  
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Frequentist Best Response 
 

The method for calculating an abstract best response used in [Johanson, 2007] is called 

Frequentist Best Response. It is a new technique created by Johanson et al. and it addresses the 

three drawbacks associated with calculating an abstract game best response, these being: 

1. Knowledge is required of the abstraction in which the opponent plays. 

2. The strategy of the opponent is required. 

3. The abstract game best response must be constructed in the same abstraction that the 

opponent plays in. 

The counter-strategies created by this method are brittle. Brittle meaning they perform well 

against the opponents they are designed to defeat, but can lose badly to others including 

opponents which are weak or similar to those trained against.  

 
 
Restricted Nash Response 
 

The first method for creating a poker agent creates an agent that is difficult to defeat but does not 

win very much. The second method creates and agent that can exploit specific opponents, but is 

easily defeated by opponents it is not designed to defeat. Regret Minimization is a technique 

created by Johanson [2007] which attempts to find a compromise between these two extremes, 

creating agents that exploit particular opponents or classes of opponents and still providing a 

bound on their exploitability. This strategy is constructed by finding a Nash equilibrium in a 

restricted game, where the opponent must play according to a fixed strategy with probability p. p 

is chosen when creating the strategy and determines the proportion of time the opponent must 

use the fixed strategy. p ranges between zero and one, a p of zero meaning the opponent never 

plays the fixed strategy so a Nash equilibrium is computed, and a p of one meaning the opponent 

only uses the fixed strategy so a best response is computed. All values for p in-between zero and 

one represent a tradeoff between exploitation and exploitability.  

 

Instead of constructing the usual two agents who play and adapt to one another for millions of 

hands to approach a Nash equilibrium, three agents are used for computing the Restricted Nash 
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Response strategy. One that will learn the Restricted Nash Response, and two for the opponent: a 

learning agent and a static agent. During the millions of games the RNR agent tries to minimize 

its regret against both the learning and the static components of the opponent. p is used to 

determine the amount of weight put on each part of the regret.  

 

 

A Team of agents 
 

In competitions the opponents will be unknown, so which of the previously discussed agents 

should be used against each opponent? Each of the previous agents have had their pros and cons, 

to get the benefits of each a team of agents is created, comprised of a number of agents of 

various types, creating a meta-agent. One of the problems faced by the meta-agent, which of the 

team of agents to choose when selecting an action, is solved by expert algorithms. In this case 

the algorithm UCB1 was chosen, it is designed to trade off exploration and exploitation when 

choosing which agent to use. Since there are various types of agents in the team, the UCB1 

algorithm should use different costs of exploration for different types. For example the cost of 

using a Frequency Best Response agent that was not designed for the opponent you are playing is 

very high whereas the cost of using a Restricted Nash Response that was not designed for the 

opponent you are playing is much lower and the cost of using the Nash equilibrium agent is the 

lowest. Johanson [2007] found that, using a team of agents provided better results than using 

only one of its parts. 

 

 

Discussion 
 

The attempt to incorporate exploitation into a Nash equilibrium strategy while still remaining 

difficult to exploit is the idea this dissertation is based on. Johanson [2007] addresses this 

through the creation of Restricted Nash Response (RNR) strategies. RNR strategies are static and 

so are only able to exploit opponents with similar strategies to the strategy they were trained 

against. Due to this, if you match an RNR strategy against an arbitrary opponent it is unlikely the 

RNR strategy will be able to exploit the opponent. An RNR strategy gives up some of its 
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difficulty to be exploited in order to be able to exploit opponents. If the strategy then plays an 

opponent whom it can’t exploit it is more exploitable to that opponent than a Nash equilibrium 

strategy would be. This coupled with the fact that a single RNR will not be able to exploit most 

of its opposition makes it worse to use an RNR strategy than a Nash equilibrium strategy.  

 

To address this problem Johanson [2007] created a team of agents. If the team consists of a Nash 

equilibrium strategy and a number of different RNR strategies it is able to exploit a larger subset 

of opponents than a single RNR, and against the opponents whom it can’t exploit it plays the 

Nash equilibrium strategy. The "coach" algorithm of the team must learn throughout a match 

which agent to use against the opponent it is playing. During this exploration stage there is a cost 

for each exploration which uses one of the agents that is not the best against the current 

opponent. RNR agents that were created with low p values will be difficult to distinguish from 

one another and from the Nash equilibrium strategy, prolonging the exploration period. This is 

bad because the longer it takes for the "coach" to find the best agent, the longer the meta-agent is 

not playing at its fullest potential.  

 

To be able to exploit the majority of opponents using this method would require a meta-agent 

which consisted of many RNR strategies. This would be difficult since each RNR requires a 

different opponent strategy to train on and the strategies take a relatively long time to compute. 

Johanson [2007] states "We estimate that competitive strategies that use larger abstractions with 

10 or 12 buckets can be computed in less than a month". Due to this it seems it would be difficult 

to use this technique to create a bot which is able to exploit a large percentage of opponents.  

 
 

3.5 Summary 
 

In this section the field of opponent modeling was examined, the terminology for opponent 

modeling was clarified, and the importance of frequency statistics to the idea of modeling an 

opponent was explained. The agent that make up Polaris were also covered, to show another 

technique which was used to add the ability to exploit while remaining difficult to exploit. In the 

following sections the research question and motivation for the research will be presented. 
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4 Research Question 
 

In  light  of  the  above  discussions,  this  dissertation’s  central  research  question  is: 

Is it possible to significantly increase the win rate of an equilibrium style poker bot 

against weaker players through the use of exploits, without decreasing the win rate 

against strong opponents?  
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5 Motivation 
 

5.1 Initial Motivation 
 

The idea of exploits and a complex statistical frequency model was derived from the way 

humans play online poker. People use Heads Up Displays or HUD's that store every hand in a 

database and use this information to provide statistics for any opponent you have played or are 

playing. The statistics that can be displayed are vast, practically anything that can be thought of, 

since all the hands were recorded there is no limit as to which statistics can be calculated. These 

are very popular among online players, the two most popular being Poker Tracker [Poker 

Tracker] and Hold'em Manager  [Hold’em  Manager]. Humans use these statistics to determine 

how to play against unseen or unremembered opponents and they use them quickly. This 

dissertation seeks to investigate if the numbers help a human gain an edge then will they give the 

computer a significant advantage since computers are much better at number crunching than 

humans.  

 

The difficulty is giving the statistics meaning to the computer. Human online players tend to 

classify people into opponent types and then make notes of any unexpected plays or tendencies.  

They start with the opponent type and quickly deviate based on the opponents play to create a 

specialized opponent model. This would be very difficult for computers to do. Humans are able 

to make intuitive leaps from only a few hands and restructure their entire model whereas 

computers would have to see enough hands to make a statistically significant difference.  

 

So instead of trying to have the computer play like an experienced online human player we 

thought what does a novice do? They play a generally static poker strategy and only step away 

from this strategy when they see significant statistics. For example they are playing an opponent 

and they notice that the opponent folds to a three bet (re-raise) 70% of the time pre-flop. Through 

this statistic they realize that if they re-raise the opponent pre-flop the opponent will fold the 

majority of the time. From this they begin to form what we have defined as statistical exploits, or 

ways in which you change your strategy to take advantage of poor play from the opponent which 

you deduced from the frequency statistics. The most obvious exploit to deduce here is, "I can 
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three bet bluff this opponent profitably since he will fold 70% of the time". One could also 

deduce "If I have a good hand I should not three bet since he will fold most of the time", and "If 

he calls my three bet he must have a good hand". The novice uses the information gained from 

the statistical exploit to alter their play and play a more opponent based strategy. Obvious 

statistical exploits will not be found as easily when looking at good players statistics, but being 

able to exploit obvious weaknesses greatly increases the novices win rate. A bot should be able 

to benefit equally from a similar reaction to statistical exploits. 

 
 

5.2 Motivation From the literature 
 

An approximate Nash equilibrium strategy is a static strategy that is minimally exploitable, 

where exploitability is defined as how much a player could take advantage of another player's 

strategy. This means that an agent playing a Nash equilibrium strategy has a guaranteed upper 

bound on its exploitability. Schnizlein [2009] states that one way of creating a champion level 

poker agent is by computing a Nash equilibrium in an abstract version of the poker game and 

using the resulting strategy to play the full game. Having an upper bound on the exploitability 

can create a champion level poker agent because, in essence, it means you should not loose. The 

agent may not win much or it may only tie but it will not lose. This is a very desirable trait to 

have, to create a champion level poker bot it must be difficult to exploit.  

 

The downside of using a static Nash equilibrium strategy is that it does not exploit weaknesses in 

the  opponent’s  play.  While  it  plays  not  to  lose, it does not play to win. A champion level poker 

agent should be able to exploit weak players. A novice human player is able to exploit an 

opponent who only calls but an approximate Nash equilibrium agent would not be able to. If the 

agent is not able to do something that novice human players are able to, how can it be considered 

a champion level player? 

 

Opponent based strategies on the other hand play to win. Fully opponent based strategies attempt 

to maximally exploit the opponent, examples of these are Loki and its variants, Poki and its 

variants, Vexbot, the Bayesian bot, DBBR, and SartreNL with adaptation, all discussed in the 
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literature review.  These bots play fully opponent based strategies where the opponent model 

impacts the action for every hand played. Playing to win is important as the goal of any game is 

to win. The more you can win from you opponent the better, and fully opponent based strategies 

are created to win as much as they can from weak players. The downside of this strategy is that it 

makes the bot exploitable to strong players.  

 

Each of the two approaches, Nash equilibrium and fully opponent based have a positive attribute 

and a negative attribute. To make a true champion poker agent, however, it would require the 

agent to have the positive aspects of both. The agent should be very difficult to exploit so that it 

does not loose against strong players and should be able to exploit weaknesses in opponents play 

so that it is able to win a large amount from weaker players. We feel the logical step here is to 

combine the two approaches to attempt to get the best of both worlds. Johanson [2007] combined 

a Nash equilibrium strategy with a best response strategy and had to face similar challenges. The 

difficulty with this approach is that you cannot keep both positives as strong as they were in their 

individual models. This means we have to choose which of the two attributes is most important 

and which we can sacrifice to a degree to keep the other as it was before the combination. To 

create a champion poker agent I believe it is most important not to lose.  Winning is the primary  

goal of the game,  and  you  can’t  win  if  you  lose, so it seems reasonable to decrease the win rate to 

a degree against weak opponents to ensure that you do not loose against strong opponents. We 

will still have the ability to exploit players but we are giving up maximal exploitation of 

opponents to ensure that we remain difficult to exploit.  

 

The statistical exploitation model is an approach to add an opponent based portion onto a Nash 

equilibrium strategy. It mixes the positive aspect of the Nash equilibrium strategy with that of the 

fully opponent based strategy with an emphasis on retaining difficulty to exploit over 

exploitation, creating a partially opponent based strategy. To ensure difficulty to exploit we only 

want to perform exploitative actions when we are sure that they will not be exploited by the 

opponent. This is very difficult for most approaches to do since their exploitation approaches are 

general, trying to exploit the opponents general play style, and cover every action, as seen in the 

approaches that were covered in the opponent based techniques literature review.  
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The statistical exploitation model, however, is a collection of exploitations which only apply to 

specific situations. This means the bot must only be sure of the small number of preconditions 

associated with each individual exploit in order to start applying it. Since the exploits are specific 

it is also possible to calculate the expected value of each exploit, making it possible to ensure 

that each exploitation has a positive expected value. Taking advantage of specific weaknesses 

makes it possible to perform exploitative actions while remaining difficult to exploit. Trying to 

remain difficult to exploit while  attempting  to  exploit  the  opponent’s  general  play  style  would  be  

far more difficult, if not impossible. The model also allows the exploitation of an opponent with 

a strong general play style but who has a few small weaknesses, for example the Hyperborean 

bots as shown in section 6.  

 

The new bot created from SartreNL and the statistical exploitation module incorporates a Nash 

equilibrium strategy and an opponent based strategy well, but it does have a downside, the 

exploitations are not easy to produce. The exploitations must be created using expert knowledge, 

this is a down side because it is time consuming to create exploitations by hand and it requires 

knowledge of poker, statistical frequencies in poker, and the ability to code. Automation of the 

identification and creation of exploitations would be highly beneficial but is also extremely non-

trivial. It requires a large amount of prior knowledge of poker, and the ability to make inferences 

about what statistics express about an opponent’s play style and what type of actions would be 

able to exploit that.  
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6 Statistics based opponent exploitation system design 
 

6.1 Overview 
 
We have created an addition to SartreNL [Rubin, 2011] that exploits weaker players through the 

use of statistical exploits. This significantly increases the bots win rate against them, without 

decreasing the bots win rate against strong players. We have done this by creating a statistical 

model that records detailed frequency statistics of an opponent in many contexts, and a number 

of exploits that provide highly profitable actions in the situation they apply to. The addition also 

has an opponent exploiter that keeps track of the exploits that apply to a given opponent model at 

any given time and provides the underlying bot with actions from the exploits when a situation 

arises in which one of the exploits applies. We have used SartreNL as the underlying agent but 

this addition could be applied to any underlying agent through minor changes to the opponent 

exploiter and the underlying agent chosen.  

 
Figure 2. Model of exploitation system design 

 

The above Figure depicts the way in which the individual parts work together to provide the 

addition of a partially opponent based strategy to SartreNL. Partially opponent based because the 
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actions determined by the bot/addition combination are not always dependent upon the opponent 

model, they are only dependent on the opponent model when an exploit applies to both the game 

state and opponent model. 

 

 

6.2 SartreNL 
 

Rubin [2011] describes the alterations applied to transform the Sartre limit poker bot into 

SartreNL; a case based reasoning bot for no limit Texas Hold'em. Rubin [2011]  states that the 

focus of this transformation was "... determining a suitable action abstraction and resulting 

state translation that is required to map real-value bet amount into a discrete set of abstract 

actions". The similarity metrics also had to be redefined to allow identification of similar 

scenarios between complicated no limit betting sequences accurately, through which 

generalization of decisions is possible.  

 

SartreNL uses four attribute-value pairs to depict the state of a match. Three of these (hand 

strength, betting sequence, board texture) are also used in the limit variant of Sartre [Rubin, 

2009]. The fourth attribute, stack commitment, is unique to the no limit variation of Sartre. Due 

to the bet amount being mapped into discrete categories proportional to the pot size, the 

information about the total amount a player has contributed to the pot relative to their starting 

stack is lost. However Rubin [2011] states "Once a player has contributed a large proportion of 

their stack to a pot, it becomes more important for that player to remain in the hand, rather than 

fold, i.e. they have become pot committed". The attribute stack commitment was added to allow 

the bot to account for being stack committed or not. 

 

In no limit Texas Hold'em were a raise can be of any value, action abstraction is required to help 

restrict the size of the state space. This was not necessary in the limit version of Sartre since in 

limit there are only three actions to choose from: fold, check/call, or bet/raise. SartreNL, 

however, uses the following action abstraction:  
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Table 2. The action abstraction used by SartreNL after ref. 

 

To map an action to one of the action abstractions listed in Table 1 requires a translation process. 

SartreNL uses translations in three areas:  

 

1. Case base construction - encoding hand history logs into cases 

2. During game play - observed actions during a hand are mapped to abstract actions 

3. Reverse translation - mapping a chosen abstract action into a real value to use during 

game play 

 

SartreNL uses two different translation approaches, which were originally formulized by 

Schnizlein [2009]: 

 

1. Hard translation - uses a distance metric to map unabstracted betting values it 

abstract actions. Given a unique unabstracted betting value it will always map into 

the same abstract action.  

2. Soft translation - uses normalized weights as a similarity measure to 

probabilistically map an unobstructed betting value into an abstract action. 

 

Which type of translation occurs depends on where the translation occurs in the system. 

SartreNL uses hard translation during case base construction, and soft translation during game 

play and reverse translation. 
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The new similarity metric formulas are given in [Rubin, 2011] along with some examples. I have 

not summarized this section as it should be read in full to gain full understanding.  

 

SartreNL is used as the underlying poker agent because it uses an approximate Nash equilibrium 

strategy which provides the trait of difficult to exploit, and is the only poker agent that was 

readily available to us. SartreNL plays the style of the player whom its case base was trained on. 

In this case the case base was trained on the Hyperborian bot’s  hand  histories  from  the  2011 

AAAI Heads-up No-Limit  Texas  Hold’em  competition.  This  bot  plays  an  approximate  Nash  

equilibrium strategy, so the equilibrium strategy should  emerge  in  SartreNL’s  play. 

 

 

6.3 Opponent Model 
 
The opponent model is a collection of counters that are updated after each hand is played out, as 

well as a variable for each statistic, which is also recalculated after each hand has been played 

out and all the counters have been updated. In the poker framework used in the AAAI 

competitions messages are passed to and from the bots. The messages sent to the bots include all 

of the contextual information from the game and the messages sent from the bots contain the 

actions they wish to make. The bulk of the code for the opponent model consists of methods 

which update the counters from the message sent from the server. The statistics which are used 

in the model are often context based and so to update the counters one has to check numerous 

conditions for each.  

 

I will illustrate how these counters are used to determine statistics and how the counters are 

updated with an example. This example is for statistics concerning a flop continuation bet. A 

flop continuation bet or flop cBet is when a player is the last to raise in the pre-flop betting round 

and is the first to raise in the flop round of betting. To calculate the statistics associated with flop 

continuation bets the model uses seven counters: 

 

1. Could cBet Total: couldcBetTotal 
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2. cBet Total: cBetTotal 

3. Where cBet Total: wherecBetTotal 

4. Fold to cBet Total: foldTocBetTotal 

5. Raise cBet Total: raisecBetTotal 

6. cBet Raised Total: flopcBetRaised 

7. Fold to cBet Raise Total foldTocBetRaiseF 

 

The method is a series of nested if statements which update counters as they apply. So if the 

player is the dealer and they were the last to raise before the flop and the non-dealer checks to 

them on the flop we can update the counter for could cBet total. If the player did raise after being 

checked to the cBet total counter is updated. If the cBet is then re-raised the flopcBetRaised 

counter is updated and if the response to the re-raise was to fold the foldTocBetRAiseF counter 

is updated. The full code for the updatecBet method can be found in appendix A. After these 

counters have been updated the statistics for cBet, fold to cBet, raise cBet and fold to cBet raise 

are calculated by dividing the number of times the action was performed by the number of times 

it was possible for the player to perform the action so for example: 

cBet = cBetTotal  / couldcBetTotal  * 100 

 

 

6.4 Exploit specifications 
 
Exploits are basically rule modules that adhere to the generic exploit template. The generic 

exploit template includes two methods: applysToStats and getAction. applysToStats is the same 

for every exploit, it takes a stats model object and returns whether the given exploit applies to the 

stats model. The getAction method is given the game context and returns an action if the exploit 

applies to the specified context. There are two versions of this method, one for pre-flop exploits 

and one for post-flop exploits. They differ in that the pre-flop exploits are given the two card 

hand ranking and the post-flop exploits are given a hand ranking calculated by SartreNL which 

takes into account the community cards. For getAction to be called applysToStats must have 

been called previously and must have returned true. To give a more complete overview of how 
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individual exploits work I will go over an example of an exploit, but first I will explain equity 

and expected value, which are used to determine the profitability of an exploit. 

 

 
Equity:  The chance that a hand will win the pot. 

 

Calculating the equity of a single hand against another single hand is relatively difficult in and of 

itself due to all the probabilistic calculations one would have to carry out and the numerous 

considerations one would have taken into account. For example, when calculating the equity of 

AdKc verses 5h5c you would have to calculate the chance you have of improving to the best 

hand after the five community cards have been shown minus the chance your opponent has of 

improving to a better hand. This may seem simple at first but when you break it down you can 

see that there are a large number of possibilities. If your hand is AdKc (i.e., Ace of Diamonds 

and King of Clubs) your hand improves if: 

 One of the community cards is an Ace or a King giving you a pair 

 One of the community cards is an Ace and one of them is a King giving you two pair 

 Two of the community cards are Aces or Kings giving you three of a kind 

 The community cards include a Queen, a Jack and a Ten giving you a strait 

 Four of the community cards have the suit diamonds or four have the suit clubs giving 

you a flush 

 Two of the community cards are Aces and one is a King, or two are Kings and one is an 

Ace, or there is a pair in the community cards that is not Aces or Kings and there are also 

two Aces or Kings, or there are three of a kind in the community cards and one of the 

community cards is an Ace or a King, all giving you a full house 

 Three of the community cards are Aces or Kings giving you four of a kind 

 

There are a lot of ways to improve to the best hand and the opponent also has many ways to 

improve to a better hand so for each of these cases one has to take into account the chance that 

the opponent improved to something better. This calculation becomes difficult quickly for only 

one specific hand against another specific hand and it becomes exponentially more complicated 

when considering a range of hands against another range of hands. To calculate equity easily 
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tools are used that run large numbers of simulations and then calculate the equity of a hand based 

on the number of times it won or tied compared to the number of outcomes considered. These 

tools are able to calculate the equity of a range of hands versus another range of hands by 

running simulations.  

 

We used Poker Stove [Poker Stove] to calculate the equities that were used in our expected value 

calculations used for calculating the profitability of exploits. The way in which Poker Stove 

[Poker Stove] calculated equity is described in their FAQ section as  “the fraction of the pot that a 

hand will win on average over many repeated trials, including split pots". 

 

  
Expected Value (EV): The long term expected outcome of a given hand or situation. 

 
Expected value is calculated using the following equation: 

 

EV = [Our Equity] * [What we win] - [Opponent's equity] * [What we lose] 

 

For example if we are playing 100/200 no limit, we have AdKc and we are in position, our 

opponent has 5h5c, and we go all in pre-folp knowing our opponent will call. We have already 

posted the small blind and our opponent has already posted the big blind so there is 300 in the 

pot, and we have bet 19,900. Using Poker Stove [Poker Stove] we know that our equity is 

45.382% and our opponent’s equity is 54.618%. If we win, we win the pot plus our opponents 

19,800 call, which is 20,100. If we lose. we lose the amount we are betting, 19900. So the 

calculation is: 

 

EV = 0.45382 * 20100 - 0.54618 * 19900 = -1747.2 

 

This shows that over the long term every time you go all in with AdKc against 5h5c you will 

lose 1,747.2, it’s a losing play and you don't want to be doing it. However, it is a very unusual 

circumstance in which you know exactly what cards your opponent has (for example, your 

opponent’s  hand  was  flipped  during  the  dealing), most of the time you will be calculating your 
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EV against a range of hands which you believe your opponent is most likely to have. In the case 

of the exploits that I have created I have never made them as specific as to only include one hand 

so the EV calculations are done between ranges of hands. This does not change the EV 

calculation, only the equity calculation. 

 

 
All in pre-flop exploit example 
 

The all in pre-flop exploit is an exploit that raises all in pre-flop if the statistics of the opponent 

are applicable and our hand rank is high enough. There are two thresholds for the hand rank, one 

for when the opponent is the dealer and one for when they are not, this is because it is possible 

for opponents to play vastly different hand ranges from different positions. For example some 

opponents may play close to all hands when they are the dealer and very few hands when they 

are not. The numerical values for these thresholds are determined during the applysToStats 

method. I will go through how the rank threshold is calculated for when the opponent is the 

dealer.  

 

 

//If the opponent has been raised all in at least 11 times 
if(model.whereRaisedAllinPre > 10){ 
    //if they have played at least 31 hands in position 
    if(model.vpipInPosition > 30){ 
        if(model.vpipD > 30 && model.vpipD < 50){ 
            if(model.folded2AllinPre < 10) 
                //lowest EV = + 3224 ~16BB 
                rankThresholdD = 25; 
            else if(model.folded2AllinPre < 30) 
                //lowest EV = +3346 ~16BB 
                rankThresholdD = 20; 
 
        }else if ... 
    } 
} 
 
The first thing checked in the appliesToStats method is whether the opponent has been raised all 

in pre-flop a significant number of times such that the frequency statistics are reasonably 
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accurate. At least 11 instances of the opponent being raised all in was chosen on the assumption 

that since going all in is such a big decision, players will not be doing it for deceptive purposes, 

and the statistics will be accurate within a small number of trials. If the opponent has been raised 

all in enough times before, the exploit looks at how often the opponent voluntarily puts money in 

the pot in position (VPIP dealer). First it checks that the opponent has voluntarily put money in 

the pot enough times such that the statistic is significant, if this is the case it then looks at the 

statistic to determine the threshold value. The value of in position VPIP tells us the range of 

hands the opponent plays in position. So if an opponent had an in position VPIP of 30% we 

would assume their range consisted of the top 30% of cards. If this was not the case it would 

only benefit us more since it would give our range of hands more equity. The value of 

folded2AllinPre tells us the percentage of times the opponent folded when raised all in pre-flop. 

When calculating their range this percentage of their range is removed, the hands removed are 

from the bottom of the opponents range.  

 

A number of different thresholds have been created which take effect depending on the 

frequency statistics of the opponent. For each threshold the minimum expected value of going all 

in pre-flop was calculated by using the smallest range of hands for the opponent that still applies. 

For example the minimum EV for the threshold 25 was calculated as follows: 

 Our hand range was set to the top 25 hands 

 The opponent's hand range was set to the top 27% of hands, since he plays 30% of all 

hands and folds 10% of these to a pre-flop all in 

 Using PokerStove [Poker Stove] our equity was 57.811% and our opponents was 

42.189% 

The calculation was then: 

 

EV = 0.57811 * 20100 - 0.42189 * 19900 = 3224.4 

 

The calculations for determining the non-dealer rank threshold are similar and can be viewed in 

appendix A. When creating the thresholds for the all in pre-flop exploit, we made sure that there 

was an expected value of at least +15 big blinds since the risk when going all in is your entire 
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stack. We wanted to make sure that there was a reasonably high expected value not just a 

marginal one.  

 

The getAction method evaluates the current context to determine whether the exploit applies to 

this context or not. In the all in pre-flop exploit it checks to see who the dealer is, if the bot is the 

dealer it uses the rankThreshold for non-dealer and if the opponent is the dealer it uses the 

rankThreshold for dealer. The hole card rank given in the context is then checked against the 

threshold which applies, if the hole cards are within the acceptable range getAction returns the 

string "a" for "all in action" otherwise it returns null. 

 

 

6.5 Opponent Exploiter 
 

The opponent exploiter is the module which provides the interaction between SartreNL, the 

statistical model and the exploits. The opponent exploiter has a statistical model associated with 

it and has four lists of exploits. Each list represents all the exploits that apply to the associated 

statistical model for each of the four betting rounds: pre-flop, flop, turn, and river. These lists are 

populated through the findApplicableExploits method which goes through each exploit, calling 

its applysToStats method, and supplying the statistical model the opponent exploiter is 

associated with as the parameter. If an exploit returns true it is added to the list of exploits for the 

betting round it applies to. The opponent exploiter also has a method for each betting round 

which takes the game state information and calls the getAction method for each exploit in the list 

for the given betting round. If an exploit returns a non-null value this is passed along to the bot 

which uses the action.  

 

 

6.6 Summary 
 

This section gave a brief overview of the statistical exploitation addition and how the 

components work together before delving into the implementation of each of the parts. It first 
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covered the underlying agent, which the statistical exploitation was added to. It then described 

the implementations for the opponent model, the exploits and the opponent exploiter.   
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7 Results 
 

7.1 Testing Methodology  
 

We required several opponents to challenge to evaluate the results of using exploits. Optimally 

we would evaluate exploitation against a variety of competences, ranging from easily exploitable 

to unexploitable.  The participants in the Annual Computer Poker Competition (ACPC) represent 

a good variety of computer players. While it is not possible to challenge the agents submitted to 

the competition directly, due to them not being publicly available, the hand history information is 

available for each agent that participated. Jonathan Rubin created expert imitator case bases for 

several of the no limit Texas Hold’em  participants from the 2011 ACPC that imitate and 

generalize the  opponent’s  style  of  play from their hand histories. Rubin created these to be used 

by the expert imitation based framework described in [Rubin, 2010], training each expert 

imitator on the decisions made by each particular agent in the competition. The agents that where 

imitated are shown in Table 3. These agents cover a variety of exploitability, ranging from very 

exploitable to difficult to exploit. Table 3 shows  the  author’s  views  on  the  exploitability  of  the  

various agents.  

 

Player Exploitability 
POMPEIA very exploitable 
Kappa very exploitable 
Hugh high-moderately 

exploitable 
Lucky7 moderately exploitable 
Hyperborean-iro difficult to exploit 
Hyperborean-tbr difficult to exploit 

Table 3. Exploitability of the opposition 

 

POMPEIA was categorized as very exploitable because it always calls no matter what. Kappa 

was also categorized as very exploitable because it raises all in with the majority of its hands. 

Lucky7 and Hugh do not have such glaring holes in their play, however Hugh has a very 

exploitable playing style in that it plays very aggressive. Both bots have numerous statistical 



45 
 

exploits that apply to them, but due to Hugh’s exploitable play style it was categorized as high to 

moderately exploitable and Lucky7 was categorized as moderately exploitable. The Hyperborean 

bots are approximate equilibrium distribution bots and are therefore categorized as difficult to 

exploit. They were not categorized as unexploitable because, as will been seen, exploits were 

successfully used against both showing there are some statistical exploits present in the 

Hyperborean bots. 

 

These six opponents were challenged against SartreNL without exploits, and SartreNL with the 

addition of exploits which will henceforth be denoted as SartreNLExp. Each of the six bots 

played two seeded duplicate matches against both SartreNL and SartreNLExp. A duplicate 

match consists of 20,000 hands in total. 10,000 hands are initially played, the players then switch 

seats and the same 10,000 hands are played again. This way each of the players receives the 

cards that their opponents received before. The duplicate match style was used to decrease the 

variance that is normally involved in poker. To decrease the overall variance further, the same 

seed value was used for each of the duplicate matches played between each of the variants of 

SartreNL and the various opponents. 

 

Overall 24 duplicate matches were played; SartreNL played two duplicate matches against each 

of the opponents and SartreNLExp also played two duplicate matches against each opponent. To 

determine the effectiveness of the addition of the partially opponent based strategy based on 

exploits on SartreNL the duplicate matches were split into two subsets: Run 1 and Run 2. Run 1 

consisted of the first duplicate match SartreNL played against each of the opponents and the first 

duplicate match SartreNLExp played against each opponent. Run 2 consisted of the second 

duplicate match that SartreNL and SartreNLExp ran against each of the opponents.  

 

In each run the match SartreNL played against a particular opponent is used as the base-line. The 

difference in performance between SartreNL and SartreNLExp can then be taken as the effect of 

the exploits. The final scores can be viewed in appendix B. However, looking at the final scores 

in each case is not going to give an accurate depiction of the effect of the exploitations. Some of 

the bots have some randomness associated with their strategies, so although the same hands and 

community cards come up in all matches this does not mean the bots will choose the same action 
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each time. Due to this it is likely that the scores will fluctuate between matches. There is also the 

fact that an exploit is not applied to every hand and SartreNL chooses the actions as it normally 

would for hands exploits are not applied to. This means that the situations can occur where 

exploitations are used and the overall  score  for  SarterNLExp  is  lower  than  SarterNL’s. This 

would not be due to the exploits loosing, since exploits always have a large positive expected 

value, and  they  all  but  in  the  rarest  cases  do  better  than  SarterNL’s  chosen  action.  It  would  be  

caused  by  the  fact  that  there  is  randomness  in  SarterNL’s  action  selection  process.  This  means  

that although the exploits had positive effects, SarterNLExp chose less profitable actions in the 

hands in which exploits where not used, causing  SarterNLExp’s  overall  score  to  be  lower  than  

SarterNL’s.   

 

To combat these problems we will only compare the resulting scores of the hands in which 

exploits were used. When a match is run a number of output files are produced along with a log 

of each of the hands. SartreNLExp notes, in an output file, every time it uses an exploit, and the 

corresponding hand numbers. From this output file we create a list of all the hand numbers in 

which exploits where used. In each run there exists a duplicate match between SartreNLExp and 

each opponent and a corresponding duplicate match between SartreNL and each opponent. The 

score for the exploited hands are found for both the SartreNL and SartreNLExp match by going 

through the log files and tallying up the result for each of the hands in which exploits were used. 

The difference between these two scores then shows the impact of the exploits much more 

accurately than the difference between the overall scores. 

 

7.2 Effect of exploitation 
 

In this section we will present the effects the exploits have on the hands they affected. To do this 

we will highlight the difference of the score for this subset of hands when played as SartreNL 

would and when exploits are used. The score is the amount that was won or lost by the bot over 

all the hands in the subset. We will present the finding for each opponent and then discuss the 

implications of the results. The findings are tabulated so the first row shows the number of hands 

that are present in the subset of the hands, which were exploited. The second row shows the 

score of this subset of hands when played by SartreNL with no exploits being used. The third 
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row shows the score of the subset of hands when exploits were used, and the fourth row shows 

the difference between the score when exploits were used and the score when exploits were not 

used. The first column labelled Run 1 represents the duplicate matches between 

SartreNL/SartreNLExp and the opponent in the first subset of duplicate matches. The second 

column Run 2 represents the matches in the second subset of matches. The opponents are 

addressed in the same order as Table 3, going from most exploitable to least exploitable.  

 

 
Table 4. POMPEIA exploited hand scores 

 

As seen in Table 4 POMPEIA is very exploitable, this is apparent in the results as well. In the 

first run we see an increase in winnings by a factor of 23 and in the second we see an increase by 

a factor of 22. This is an exaggerated case in that POMPEIA always calls, which is not 

something a human player would ever do, but it is a good example to shows just how much value 

an equilibrium approximation strategy can miss out on when dealing with an extremely weak 

player. Not only is SarteNL missing a lot of value in this case, it is missing a lot of easy value. 

By this we mean that even the weakest human player who is paired against an opponent who 

always calls will be able to easily exploit them. If one wishes to create a strong poker bot we feel 

it should not lack the ability to do what any human novice can.  

 

 
Table 5. Kappa exploited hand scores 
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The kappa bot raises all in with the majority of its hands and so is also very exploitable. The 

approximate equilibrium strategy does a much better job coping with this than with only calling. 

However it still often folds good hands against kappa due to its equilibrium strategy, decreasing 

its win rate.  Although the equilibrium strategy does relatively well against kappa, it still misses a 

lot of value. Like POMPEIA, kappa is not only missing value, but it is missing value which is 

very simple for human players to get.  

 

 
Table 6. Hugh exploited hand scores 

 

Hugh is an extremely aggressive bot. Although this is difficult for novice players to handle it is 

also a very exploitable strategy. Since Hugh is betting, raising and re-raising so often the average 

hand strength it has when it makes these actions is relatively low. The high aggression makes a 

number of statistical exploitations possible making Hugh high to moderately exploitable.   

 

 

 
Table 7. Lucky7 exploited hand scores 

 

Lucky7 does not have as obvious of an exploit as POMPEI or kappa or even Hugh, it has a 

number of statistical exploits that apply to it, but the one which is applied the majority of the 
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time is an exploit which bluff raises when Lucky7 calls pre-flop as the dealer. This exploit does 

not add a large amount of value every time it is used but it does add up. This exploit is why the 

number of exploited hands is so high yet the increased amount is less than for the previous 

opponents for Lucky7. 

 

 
Table 8. Hyperborean-iro exploited hand scores 

 

Hyperborean is a static bot produced through counterfactual regret minimization. This is a 

technique for solving large games to compute a Nash equilibrium and results in an approximate 

Nash equilibrium strategy. Nash equilibrium strategies are meant to be un-exploitable however 

this is not the case with approximate Nash equilibrium strategies as seen in the results.  

 

 
Table 9. Hyperborean-tbr exploited hand scores 

 

The difference between this version and the iro version of the Hyperborean bot is that this 

version does not perform actions which are performed less than 10% of the time, distributing the 

action percentage across other more frequently used actions.  

 
As we can see in each case the use of exploits significantly increases the score of SartreNL. In 

fact in some cases it massively increases it. This was expected as SartreNL plays an approximate 
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equilibrium strategy and so does not exploit players but instead attempts to be un-exploitable.  

Static equilibrium strategies acquire the ability to not lose by giving up the ability to exploit 

weak players. It is however not necessary to lose the ability to exploit weak play. Through the 

use of a partially opponent based strategy based on exploits, we are able to first identify if an 

opponent is exploitable and only exploit them if this is the case. Through the use of expert made 

exploits we are able to guarantee a positive EV as long as the opponent model is accurate. 

Through this we keep the quality of being difficult to exploit and are also able to exploit 

weaknesses in the opponents play. The opponent model may become inaccurate if an opponent 

switches strategies after a long period of playing one strategy. To deal with this decaying history 

is necessary and this is part of the future work.  

 

8 Conclusions 
 
The aim of this dissertation was to create an opponent based strategy that can be added to an 

underlying Nash equilibrium bot. This addition should be able to retain the attribute of being 

difficult to exploit, provided by the underlying strategy, while having the ability to safely exploit 

opponents. In this respect the exploitation system created is successful. The underlying strategy 

is used unless the bot is sure that an exploit is applicable without the possibility of being 

exploited, in which case the exploit is used.  

 

The system consists of three distinct parts, the opponent exploiter, the statistical model and the 

exploits. The opponent exploiter uses the information in the statistical model along with the 

exploits to provide the underlying system, SartreNL, with opponent based actions when they are 

applicable. The addition can however be used with any Nash equilibrium bot through changing 

the opponent exploiter such that it can communicate with the underlying system chosen. Expert 

designed exploits where used because they provide the ability to segment the exploitation of an 

opponent into small parts, each of which can easily be proven to apply to the statistical model or 

not. The fact that each exploit applies to a specific situation also allows you to calculate the 

expected value of each, to ensure that it has a positive expected value. 
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8.1 Comparison between the Polaris Meta-agent and our statistical exploitation Model 
 

Polaris’s  game  theory  approach  to  adding  exploitation  to  a  Nash  equilibrium  strategy  has  a  

number of down sides. The meta-agent comprised of a number of agents and a coach 

incorporates various RNR agents to add exploitation abilities against opponents. RNR strategies 

are only able to exploit opponents with a similar strategy to the strategy they were trained on. 

This means that to be able to exploit a large percentage of the opponents the meta-agent 

encounters the meta-agent must consist of many RNR agents. Creating all these agents is time 

consuming, each taking something near a month. Also the more agents added the longer it takes 

for  the  “coach”  algorithm  to  learn  which  one  is  best  against  the  opponent  it  is  currently  playing.  

RNR agents trade off their difficulty to exploit to gain the ability to exploit some opponents. Due 

to this they are easier to exploit than the Nash equilibrium strategy. During the exploration stage 

when  the  “coach”  is  learning  which  is  the best against an opponent it will be trying these more 

exploitable agents, costing it more than just playing a Nash equilibrium strategy. The RNR 

agents are created in an abstract game and so are not be able to exploit opponents fully as they 

will  not  have  the  full  nuances  of  Texas  Hold’em  during  training. Due to this they will play more 

generalized exploitation, not being able to pick up on very specific situations in which the 

opponent plays exploitable. In addition, the exploitation abilities are greatly hindered by the 

characteristics which make the RNR strategies difficult to exploit. If the goal is to create a meta-

agent which can exploit a high percentage of the opponents it encounters it would be slow to 

produce, not able to fully exploit opponents, and take a long time to learn which agent to use 

while it is playing an opponent, during which time it would be more exploitable then a Nash 

equilibrium strategy.  

 

The technique presented in this dissertation has problems similar to Polaris, but they are less 

severe. The statistical exploit approach plays the underlying Nash equilibrium strategy if no 

exploit pre-conditions are met and so does not have the exploitability problem faced by Polaris 

during its exploration phase. Instead of a large number of agents needed to exploit a high 
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percentage of opponents this technique requires a large number of exploits. Ss seen in the results, 

however, the number of exploits does not have to be that large to exploit a number of opponents 

with very different statistics, but the more that are added the more SartreNLExp can exploit the 

opponents it comes across. This seems  a  more  scalable  approach  than  Polaris’s  technique  due  to  

not needing expensive exploration stages. Fully exploiting most opponents would require a lot of 

exploits and would be difficult as someone would have to come up with all of them, but unlike 

Polaris SartreNLExp is still able to exploit most opponents to a degree because exploits apply to 

situations and therefore span opponent strategies. Creating exploits requires an expert and is 

somewhat time consuming but compared to creating an RNR agent it is far less time consuming. 

The statistical exploitation model also allows for exploitation of very specific scenarios which a 

generalized exploitation strategy created from an abstract game such as the one in Polaris would 

not be able to do. The fact that one can calculate exploitation’s expected values means every 

exploitative action can be guaranteed to have a positive expected value. This is not the case when 

using the exploitation from Polaris since it was created in an abstract game. In comparison the 

technique outlined in this dissertation is more scalable, faster to include more exploitation, does 

not suffer from costly exploration procedures, and spans opponents better than the Polaris meta-

agent. 
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9 Future Work 
 

There are several improvements that could be made to increase the performance of the current 

system and increase the scalability. The most obvious improvement is the addition of more 

exploits. The more exploits that are in the system the better it is at exploiting opponents, and the 

system currently does not have a large number of exploits. Currently the frequency statistics 

model does not use any form of decaying history and is unable to remember opponents. 

Decaying history is an important upgrade as the system is currently vulnerable to exploitation by 

players who play a strategy for a long period of time, saturating the opponent model, and then 

switch strategies to exploit the image they have built up. Another improvement would be to re-

implement the statistical model to store hand histories. This would improve the performance and 

scalability of the statistical model, by making it easy to include and compute further frequency 

statistics, and allowing the ability to recognize previously played opponents again. Decaying 

history would also be easier to implement for a system that stored hand histories than for the 

current system which has only counters. If one only has a counter, it is difficult to determine how 

to alter the counter to implement decaying history, if one had the hand histories stored it is 

simple to determine what the last M hands were and how they affected each counter. 

 

Currently the main limitation in the systems exploitative power is the number of exploits that are 

in the system. These exploits must currently be created by experts, which is time consuming. 

Also as more exploits are added to the system, assuming the easiest and most obvious exploits 

are added first, each following exploit will be more complex and difficult to come up with. So as 

the system is populated the quality of the experts required to create more exploits must also 

increase. Due to this it would be hugely beneficial if a way to automate the discovery of exploits 

was created. This is a very non-trivial task, since the discovery of exploits requires large amounts 

of poker knowledge and knowledge of what differences in frequency statistics mean about an 

opponent’s  play.  Exploit  are  mostly  created  through  intuition,  which  is  not something computers 

are particularly good at. Although it does not seem like an achievable goal it would be the best 

way to improve the system’s performance. 
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Appendix  
.1 Appendix A: Code 
 

Update cBet: 
 

private void updatecBet(final String preflopBetting, final String flopBetting, final boolean 
isDealer){ 
    if(isDealer){ 
        //the dealers last action preflop was a raise and the non-dealer called 
        if(preflopBetting.length() % 2 == 0 && preflopBetting.endsWith("rc")){ 
            // if nondealer check to dealer on flop 
            if(flopBetting.charAt(0) == 'c'){ 
                couldcBetTotal++; 
                //if dealer cbets flop 
                if(flopBetting.charAt(1) == 'r'){ 
                    cBetTotal++; 
                    //if dealer's cbet is raised 
                    if(flopBetting.charAt(2) == 'r'){ 
                        flopcBetRaised++; 
                        //if dealer fold to that raise 
                        if(flopBetting.charAt(3) == 'f'){ 
                            foldTocBetRaiseF++; 
                        } 
                    } 
                } 
            } 
        } 
        //the nondealers last action preflop was raise and the dealer called 
        if(preflopBetting.length() % 2 == 1 && preflopBetting.endsWith("rc")){ 
            //if nondealer cbets flop 
            if(flopBetting.charAt(0) == 'r'){    
                wherecBetTotal++; 
                //if dealer folds to cbet 
                if(flopBetting.charAt(1) == 'f'){ 
                    foldTocBetTotal++; 
                } 
                //if dealer raises the cbet 
                if(flopBetting.charAt(1) == 'r'){    
                    raisecBetFTotal++; 
                } 
            } 
        } 
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    } else { 
        //nondealers last action preflop was raise and the dealer called 
        if(preflopBetting.length() % 2 == 1 && preflopBetting.endsWith("rc")){ 
            couldcBetTotal++; 
            //nondealer cbets the flop 
            if(flopBetting.charAt(0) == 'r'){ 
                cBetTotal++; 
                //dealer raises the cbet 
                if(flopBetting.charAt(1) == 'r'){ 
                    flopcBetRaised++; 
                    //nondealer folds to cbet raise 
                    if(flopBetting.charAt(2) == 'f'){ 
                        foldTocBetRaiseF++; 
                    } 
                } 
            } 
        } 
         
        //dealers last action preflop was raise and nondealer called 
        if(preflopBetting.length() % 2 == 0 && preflopBetting.endsWith("rc")){ 
            //nondealer checks and dealer cbets flop 
            if(flopBetting.startsWith("cr")){ 
                wherecBetTotal++; 
                //nondealer folds to flop cbet 
                if(flopBetting.charAt(2) == 'f'){ 
                    foldTocBetTotal++; 
                } 
                //nondealer raises flop cbet 
                if(flopBetting.charAt(2) == 'r'){ 
                    raisecBetFTotal++; 
                } 
            } 
        } 
    } 
} 
 

Applies to Stats for All in pre-flop: 
 

public boolean appliesToStats(statsModel model){ 
    rankThresholdD = 0; 
    rankThresholdND = 0; 
 
    //Want to have an EV of at least +15BB always as we risk a lot with allin's 
    //If the opponent has been raised all in at least 11 times 
    if(model.whereRaisedAllinPre > 10){ 
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        //if they have played at least 31 hands in position 
        if(model.vpipInPosition > 30){ 
            if(model.vpipD > 30 && model.vpipD < 50){ 
                if(model.folded2AllinPre < 10) 
                    //lowest EV = + 3224 ~16BB 
                    rankThresholdD = 25; 
                else if(model.folded2AllinPre < 30) 
                    //lowest EV = +3346 ~16BB 
                    rankThresholdD = 20; 
 
            }else if(model.vpipD >= 50 && model.vpipD < 70){ 
                if(model.folded2AllinPre < 10) 
                    //lowest EV = +3483 ~17BB 
                    rankThresholdD = 35; 
                else if(model.folded2AllinPre < 30) 
                    //lowest EV = +3109 ~15BB 
                    rankThresholdD = 30; 
            }else if(model.vpipD >= 70){ 
                if(model.folded2AllinPre < 10) 
                    //lowest EV = +3654 ~18BB 
                    rankThresholdD = 45; 
                else if(model.folded2AllinPre < 30) 
                    //lowest EV = +3109 ~15BB 
                    rankThresholdD =40; 
            } 
        } 
        //if they have played at least 31 hands out of position 
        if(model.vpipOutOfPosition > 30){    
            if(model.vpipND > 30 && model.vpipND < 50){ 
                if(model.folded2AllinPre < 10) 
                    //lowest EV = + 3224 ~16BB 
                    rankThresholdND = 25; 
                else if(model.folded2AllinPre < 30) 
                    //lowest EV = +3346 ~16BB 
                    rankThresholdND = 20; 
 
            }else if(model.vpipND >= 50 && model.vpipND < 70){ 
                if(model.folded2AllinPre < 10) 
                    //lowest EV = +3483 ~17BB 
                    rankThresholdND = 35; 
                else if(model.folded2AllinPre < 30) 
                    //lowest EV = +3109 ~15BB 
                    rankThresholdND = 30; 
            }else if(model.vpipND >= 70){ 
                if(model.folded2AllinPre < 10) 
                    //lowest EV = +3654 ~18BB 
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                    rankThresholdND = 45; 
                else if(model.folded2AllinPre < 30) 
                    //lowest EV = +3109 ~15BB 
                    rankThresholdND =40; 
            } 
        } 
    } 
 
     
    return((rankThresholdD > 0 || rankThresholdND > 0)); 
} 
 

 

 

.2 Appendix B: Results 
 

Run 1: 
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Run 2: 
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