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Exponential Decay: physical needs versus
mathematical beauty.

V. Arnold, in his prominent interview (1993) with Sergey
Kapitsa, commented on the controversial idea by Paul Adrien
Moris Dirac (formulated, in particular in his lecture at Moscow
University in 1955) that Physical laws should have
mathematical beauty (see the above epigraph). Arnold’s
comment is even more straightforward than the original version
by Dirac which was softer by nature. On top of Dirac’s receipt
about choosing direction of a new step: “it’s future development
should affect something, which was out of any doubts before,
something which could not be revealed by the axiomatic
formulation”, see [?], Arnold comment contains an inspiring
advice on how and where to find the new physics.
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Exponential Decay: physical needs versus
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Of course, both statements by Dirac/Arnold are literally wrong.
Both are about the final formulation of the theory, when
"research is already dead", but not the first revolutionary
movement in the new direction. Max Planck’s formulation of the
leading idea of quantum physics - on the discrete nature of the
light radiation from the cavity - had no connection with any
beautiful mathematics at that time (in the beginning of the 20th

century). The initial mathematical formulation of the essence of
Quantum Physics appeared almost 30 years later due to John
von Neumann [?]. Since that moment a lot of new important
details were added to it, but, really, all subject noticeably drifted
towards mathematics.
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Exponential Decay: physical needs versus
mathematical beauty.

In this paper, oriented on a wide audience of theoretical
physicists and researchers in natural sciences we provide a
review of a beautiful chapter of modern mathematics: the
Harmonic Analysis of Operators in Hilbert Spaces, see [17],
which arose in the first half of the previous century as a branch
of Complex Analysis. However, it was never used by physicists
as it probably deserves, according to our vision. Following the
above receipt of Arnold, we choose the Decay problem in
Quantum Physics, and consider the implications of Harmonic
Analysis on it. We hope that our attempt may eventually bring
this beautiful piece of mathematics into the arsenal of
mathematical tools of natural sciences.
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The classical question on the validity of Quantum Mechanics
for the description of Decay of the wave-packet rarely was on
the front line of research in Physics. In fact, for almost 90 years
after the revolutionary paper by Gamow [?], it has been
considered more as an annoying nuisance. Nevertheless,
many great minds contributed competing points of view on the
subject. In 1930, Weisskopf and Wigner suggested a
persuading concept (further referred to as the WW concept) of
the exponential decay rate for a quantum system with discrete
spectrum, see [1]. Their proposal was recognized by most
experimentalists as a viable treatment of the subject.
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Unfortunately, 17 years later, Fock and Krylov spoiled the
happy end, see [2], by showing “from the first principles”, that
exponential decay cannot be explained based on the discrete
spectrum hypothesis, leaving only one way out: considering
quantum systems with continuous spectrum. This new concept
(further denoted as KF-concept), proposed by Fock and Krylov,
also sounds natural. Indeed, Fock was the first physicist to
suggest, in his textbook on Quantum Mechanics [3], an
accurate treatment of the continuous spectrum. This remained
unchanged up to now in all modern texts on Mathematics and
Mathematical Physics. Yet KF concept did not become a
gravestone for the question on Decay.
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A paper by L. Khalfin, [8], communicated by Fock to the
Russian Academy Doklady, contained an accurate calculation,
again “from the first principles”, on the decay of wave-packets
for the simplest quantum problems, in particular for the 1D
Schrödinger equation with compactly supported real potential.
Represent the evolution of the wave-packet by the Riesz
integral of the resolvent Rλ ≡ (H − λI)−1 of the corresponding
Hamiltonian H,

eiHt = − I
2πi

∫
Γ

Rλ eiλt dλ, (1)

on the contour Γ enclosing the spectrum σ of H. Using
analyticity of the integrand on the two-sheets Riemann surface
of the spectral parameter, one can deform Γ→ Γ′ to reveal i)
components of th3e evolution operator.
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Unfortunately, the corresponding contribution to evolution (1) of
the latter is estimated by the power function Const t−β of the
time t , with β depending on the incident data.
This result actually revealed the error by Gamov and could
possibly resolve the problem on the Decay, if the
non-exponential component of the decay would be observed in
an experiment. Surprisingly that was not the case up to now.
Nevertheless, in the modern textbook on Quantum Mechanics
[7], the result of L. Khalfin is quoted as an ultimate truth on
Decay.
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In this paper we aim again on the quoted proposals by [1, 2],
attempting to find a point of view that would permit for the ends
to meet one another. Our program does not eliminate the naive
theoretical analysis presented in [8], but reduces the discussion
of validity of it to the problem of the choice of measurement
tools that deliver the data from the quantum system to the
observer. In this paper, we consider the case when the role of
the “delivering tool” is played by the electromagnetic field, or,
generally, by another zero-mass field . In the 1D example
considered in this paper, the role of the delivering tool is played
by a massless field governed by the wave equation, a 1D
analog of photons.
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We will postpone for an upcoming publication a more realistic
choice of the delivering tool as a classical electro-magnetic field
in R3 which also satisfies all natural assumptions we are basing
on now.
Some of the basic mathematical tools that we use to interpret
the exponential decay are already prepared by mathematicians.
Similar situation was observed in Quantum Mechanics, where
an exact understanding of selfadjointness (the physicists
required for the Schrödinger theory by mid twenties ) was
already prepared by Hermann Weyl in 1916, see an adapted
text in [10].
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In our treatment of the exponential decay, we use analysis of
the acoustic scattering problem. Again, it was prepared by
Peter Lax and Ralph Phillips in the 60-s of the last century (see
[11]). Actually, Lax and Phillips succeeded to overcome,
without even noticing it, the horror physicists survived when
they discovered that the evolution of a quantum system with
positive Hamiltonian L may be generated by another operator
L, which has both negative and positive branches of spectrum.
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This phenomenon, discovered by Dirac in the 30-s, was
rigorously analyzed by Hegerfeld in his prominent theorem [16]
only at the end of previous century. Hegerfeldt was able to
show that the evolution of a quantum system with positive
Hamiltonian always has “infinite tails”. For instance, the
component of the 1D acoustic evolution in the positive
frequency sector is represented by D’Alembertian waves that
admit analytic continuation into the upper half-plane, and thus
cannot vanish on a set with positive measure on the real axis.
This was an essential step to legitimizing the
non-semi-bounded generators of evolution. Another example of
a non-semi-bounded generator is given by the supercharge in
super-symmetric quantum mechanics.
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So, by the end of previous century, the trick suggested by Lax
and Phillips would not look surprising any more. But in the
mid-century, it was probably still too special and suspicious for
physicists: Lax and Phillips represented the evolution of the
Cauchy data u ≡

(
u, c−1ut

)
of the wave equation

c−2 utt −∆u = 0

as a unitary transformation in the energy-normed space of the
Cauchy data

‖ u ‖2=
1
2

∫
Ωout

[
c−2|ut |2 + |∇u|2

]
dx3. (2)
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It was shown in [11] that the unitary evolution group
eiLt ≡ Ut : u(0) −→ u(t) is generated by a non-semi-bounded
operator L, an analog of the Dirac operator, that can be
represents as an appropriate block operator matrix

1
i
∂u
c∂t

= i
(

0 −1
−∆ 0

)
u ≡ Lu, L2 = −∆. (3)
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It turns out that (i) the generator L is self-adjoint in the
energy-normed space E of all Cauchy data with finite energy,
(ii) the spectrum of L in the energy-normed space of Cauchy
data supported by the complement Ωout of a compact domain
Ω ⊂ R3 is absolutely continuous and it fills in the whole real axis
(iii) the unitary group Ut has incoming and outgoing subspaces
Din, Dout that are invariant with respect to the positive and
negative semi-groups Ut and U−t , t ≥ 0, respectively. In fact,
these subspaces consist of the data vanishing on the positive
and negative light-cones respectively

Ut Dout ⊂ Dout , t ≥ 0, Ut Din ⊂ Din, t ≤ 0, (4)

Incoming and outgoing waves on the complement R3\Ω ≡ Ωout
are mutually orthogonal with respect to the energy dot-product.
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Fortunately, by that time the question on description of invariant
subspaces of an important isometry group in the Hilbert space
was already solved by Arno Beurling [?] with no connection to
the above acoustic problem. Beurling considered in 1947 the
shift operator T (right translation) in the Hilbert space l2 of all
complex square-summable sequences
~x = (x0, x1, x1, x2, x3, . . . )

(x0, x1, x1, x2, x3, . . . )
T−→ (0, x0, x1, x1, x2, x3, . . . ) ≡ t~x .
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One of Beurling’s problems in [?] was the description of all
invariant subspaces D of T : TD ⊂ T . Obviously, the space of
all sequences,

∑
s |xs|2, with (several) zeros on the first

positions, like (0, x1, x1, x2, x3, . . . ), is invariant with respect to
T . What are the others invariant subspaces? It is not that easy
to answer the question using the language of the l2 space. But
if we change the language by translating the question into the
one of Complex Analysis and substituting the sequences by the
functions analytic in the unit disc B = {ζ : |ζ| < 1} :

~X (x0, x1, x1, x2, x3, . . . )
T−→ x0+ζx1+ζ2x2+ζ3 x3+· · · ≡ x(ζ) ≡ T~x ,

the problem of the description of invariant subspaces becomes
almost trivial, and this is the beauty.
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Translating the question on invariant subspacec into the
language of the3 Complex Analysis, we get a marvelous
chance to view the problem from a completely new point,
substituting T by the multiplication operator : T~x −→ ζx(ζ).
Indeed, this transformation is a unitary mapping of l2 onto the
class of all analytic functions on the unit disc, with square
integrable boundary data on the circle Γ = {ζ : |ζ| = 1}. This is
the celebrated Hardy class H2

+: a subspace of L2(Γ) consisting
of all functions which admit an analytic continuation onto the
unit disc equipped with the norm

1
2π

∫
Γ
|x(eiθ)|2dθ = |~x |2l2 .
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The subspace of all sequences (0, x1, x1, x2, x3, . . . ), with zero
on the first position, is transformed into the class ζH2

+ of all
analytic functions in the unit disc vanishing at the center of the
disc. It is clear now that all subspaces of functions vanishing at
an inner point a are invariant with respect to T and are
represented as a−ζ

1−āζH2
+. Of course, all subspaces of the

analytic functions in the unit disk generated by finite or infinite
Blaschke products Π~a(ζ) ≡ Πs

as−ζ
1−āsζ

as
|as| , with convergent series∑

s(1− |a2
s |) <∞, are invariant subspaces Dout = Π~aH2

+ of the
shift operator T : T Π~aH2

+ = ζΠ~aH2
+ ⊂ Π~aH2

+.
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Some uniform limits of the Blaschke products give rise to so
called singular inner functions Θµ(ζ) on the unit disc. They are
represented via positive singular measures µ supported by the
unit circle as Θµ(ζ) = exp

∫
|η|=1

ζ+η
ζ−ηdµ(η). The functions Θµ

also produce invariant subspaces ΘµH2
+ of the shift, [21, 17].

The full answer to the question about the structure of the
outgoing invariant subspaces of the shift , ζDout ⊂ Dout ⊂ H2

+ ,
is given by the formula

Dout = Θµ Π H2
+.

Similarly, the problem of the description of the invariant
subspaces of the left shift Ut , t < 0, in the space of all
sequences x = (. . . ,−3, −2, −1) can be considered with the
use of the Hardy class H2

− of analytic functions on the
complement to the unit disc.
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These subspaces can be constructed from the singular inner
factor and the Blaschke product Θ,Π. It is a remarkable fact,
that the positive semi-group

{
ζ l} , l = 0,1,2,3, . . . , of the

unitary group ζ l on L2(Γ), restricted to the co-invariant
subspace H2

+ 	Dout ≡ K = H2
+ 	 ΠH2

+ ≡ K proves to be a
contracting semi-group

PKζ l
∣∣∣∣
K
≡ Z l , l = 0,1,2,3, . . . ,

with the generator Z . Indeed, since ζPH2
+
∈ PH2

+
⊥K , for l = 2,

we have:

Z 2 = PK ζ
2PK = PK ζ[PH2

+
+PK +PH2

−
]ζPK = PK ζ[PH2

+
+PK ]ζPK = PK ζPK ζPK = Z 2.
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Moreover, the eigenvalues of the generator Z coincide with the
zeros as of the Blaschke product Π~a and the corresponding
eigenfunctions are ψs[ζ] =

Π~a(ζ)
as−ζ . In addition, the bi-orthogonal

system of eigenvectors of the adjoint operator Z + is constituted
by the reproducing kernels φs(ζ) = 1

1−āsζ
, so that the spectral

decomposition of Z , with simple discrete spectrum, is given by
the interpolation series

f =
∑

s

Π~a(ζ)

as − ζ
f (as)

dΠ~a
dζ (as)

, f ∈ K

Similar explicit formulae are also true for the continuous shift of
the real axis f (x)→ f (x − t) ≡ Ut f .

V. kruglov , K. Makarov , B. Pavlov , A. Yafyasov



Exponential Decay: physical needs versus
mathematical beauty.

The role of the incoming and outgoing subspaces Din,out for the
continuous shift group in the spectral (Fourier) representation
Ut ≡ eipt is played by the Hardy classes of square-integrable
functions H2

± ⊂ L2(R) that admit an analytical continuation to
the upper and lower half-planes, respectively. In particular, the
subspaces ΠH2

+ generated by the Blaschke products in the
upper half-plane are invariant with respect to the (continuous)
shift in the Fourier representation. In general, the invariant
subspaces of the positive semi-group Ut , t ≥ 0 are
parameterized by the inner functions ΘΠ in the upper half-plane
as ΘΠH2

+ ≡ Dout , and, for the negative semi-group, the
corresponding representation is of the form Θ̄Π̄H2

− = Din.
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The restriction of the positive semi-group of the continuous shift
onto the orthogonal complement of L2(R)	 [Din ⊕Dout ] ≡ K of
the “incoming” and “outgoing” subspaces Din,out in L2(R) ≡ E ,
with K the corresponding co-invariant subspace, is a
strongly-continuous Lax-Phillips semi-group PKUt

∣∣
K =: eiBt ,

t > 0, of contractions generated by a dissipative operator B.
The spectral properties of the generator B are completely
determined by the scattering matrix S ≡ ΘΠ associated with
the unitary group Ut and the corresponding unperturbed group
U0

t which is a colligation of the components of the evolution on
the reduced space E0 =: Din ⊕Dout , see [20]. Again, similarly to
the above discrete case, the spectral analysis of the
Lax-Phillips semi-group can be done in an explicit form in terms
of the corresponding inner function ΘΠ, the scattering matrix.
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Here is another source of beauty: the duality between the
geometrical problem on invariant subspaces and relevant
spectral questions for contracting and dissipative operators and
classical questions on interpolation and approximation from the
theory of Analytic functions. Unfortunately, the simple
calculations above never appeared in elementary courses of
Complex Analysis for physicists or engineers.
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The question on exponential decay for the acoustic problem on
the complement of the scatterer Ω in a large ball BR served as a
central motivation for [11]. This problem is reduced to the study
of spectral properties of the generator B of the Lax-Phillips
semi-group: if all eigenvalues of the generator B are situated
strictly in the upper spectral half-plane =λ > β > 0, then the
Lax-Phillips semi-group admits an exponential estimation

‖ eiBtu0 ‖≤ Ce−β
′t ‖ u0 ‖, t ≥ 0,

for any β′ < β, with an appropriate absolute constant C,
depending on β′.
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Highly nontrivial analysis was developed to prove the bound
=λ > β > 0, λ ∈ σB, for compact obstacles Ω that satisfy the
exterior cone condition. Generally, the whole machinery,
developed in [11] to reach the quoted exponential estimate for
acoustic scattering, is based on Harmonic Analysis of
matrix-valued analytic functions u ∈ L2(E). It was motivated by
the problem of description of all invariant subspaces of the
standard shift groups u(p)→ eiptu(p) ≡ u(p, t) in the space
L2(E) of vector-valued, square-integrable functions u(p) ∈ E on
the real axis −∞ < p <∞. In fact, the above evolution group
Ut is unitarily equivalent to the shift group, and the incoming
subspaces of the evolution group Ut are equivalent to
subspaces of the Hardy class H2

−(E) ⊂ L2(E) of all square
integrable functions admitting an analytic continuation into the
lower half-plane =p < 0, see [21].
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The outgoing subspaces of the evolution group are unitarily
equivalent either to the Hardy class H2

+(E) ⊂ L2(E), or to
subspaces ΘH2

+ of the Hardy class defined by the inner factors
Θ, which are unitary on the real axis and admit an analytic
continuation into the upper half-plane =p > 0. In the case when
Π is a Blaschke product

Π(p) =
∏

l

[
p − pl

p − p̄l
θlPl + P⊥l

]
,

with appropriate phase factors θl and projections
Pl , P⊥l = I − Pl , the quantities p̄l coincide with the eigenvalues
of the adjoint generator B+, and the eigenfunctions of the
adjoint generator, in the "incoming" spectral representation of
the original unitary group Ut in the energy-normed space E ,
coincide with the reproducing kernels ϕl = el

p−p̄l
.
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The bi-orthogonal system of eigenfunctions of the original
operator B is formed as ψl = Θ(p)

p−pl
e+

l , with e+ ∈ ker Θ(pl), see
[17, 19, 26]. In the general case, these facts are derived from
an extended theory of the “functional model” (see, for instance,
[17, 19, 26]), which covers the Lax-Phillips generators with
absolutely continuous spectrum. The modern theory of the
Functional Model allows one to reduce all the questions of the
spectral theory of the Lax-Phillips semi-group to the relevant
questions of the theory of analytic functions and/or Harmonic
Analysis.
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The crucial role of the theory of analytic functions for the theory
of nonselfadjoint operator was predicted by M. G. Krein in his
talk at the Moscow International Congress of Mathematicians in
1966, (see, [22, 23]). The problem on exponential Decay
should be connected, from the point of view of mathematicians,
with the list of problems on spectral analysis of dissipative or
contracting operators. In the simplest case of a
one-dimensional acoustic problem that we discuss in section 3,
most of the above facts of spectral analysis of the Lax-Phillips
semi-group are established via straightforward calculations.
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It must be noted that the first attempt to bridge the general
theory of nonselfadjoint (in particular, dissipative) operators
with relevant physics was undertaken by M. S. Livshits [18]. He
was motivated by the observation that the problem of analysis
of nonself-adjoint details of complex physical systems appears
each time we attempt to substitute a whole complex system by
a simpler surrogate system with similar properties. In [18], M.
Livshits suggested a simplified model of a waveguide attached
to a resonator, produced by substitution of a nonself-adjoint
detail of the original system by a "triangular model", which, at
the time was the only available general model of a dissipative
operator. Based on Livshits’ discovery, a new, more convenient
“functional model” was suggested by B. Sz.-Nagy and C. Foias
(see [17]). But the role of the scattering matrix as a basic
parameter of the functional model was not yet recognized at
that stage.
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Few years later, a seminal paper [20] provided an important
connection between the Lax–Phillips scattering theory and the
Sz.-Nagy–Foias Functional Model, see [11, 17]. One of he
most important achievements of the theory was to give the
spectral meaning to resonances, which never happened in the
pure quantum mechanical treatment of the problem of the
exponential decay.
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All these important events succeeded just inside Mathematics.
Physicists did not see, until now, any connection between an
elegant analysis used by the community of analysts in their
study of the acoustic problem or the corresponding abstract
shift groups. One of the reasons for that is that the unitary
group generated by the semi-bounded Schrödinger operator
does not have orthogonal incoming and outgoing subspaces,
as it follows from the Hegerfeldt Theorem [16].

V. kruglov , K. Makarov , B. Pavlov , A. Yafyasov



Exponential Decay: physical needs versus
mathematical beauty.

Nevertheless, an elegant analysis provided by the Lax–Phillips
approach served as a motivation for the further research in a
close area followed by publishing numerous physical papers. In
particular, in [13, 14], the standard Hilbert space L2 of
square-integrable functions was supplied with additional
structures transforming it into a space similar to the one used in
[11]. In [12], a model Hamiltonian is constructed and an
artificial analytic scattering matrix is suggested.
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In the case studied by Horwitz and Piron, the most important
property of the model system in the Lax-Phillips approach, the
orthogonality of the incoming and outgoing subspaces, was just
formally derived from the analyticity of the constructed model
scattering matrix. In recent papers, H. Baumgärtel with
coauthors attempted to match the quantum mechanical
condition of positivity of the generator of the evolution with
spectral interpretation of the resonances to give the spectral
meaning to the corresponding "Gamov vectors" (see [?, ?]).
Unfortunately, on this way all essential advantages of the
Nagy-Foias functional model such as explicit expressions for
the eigenvectors of the Lax-Phillips semigroup, the Gamov
vectors, completeness of the corresponding bi-orthogonal
system, and the relevant spectral decomposition were lost,
because of the absence of natural, physically motivated,
orthogonal pair of incoming and outgoing subspaces.

V. kruglov , K. Makarov , B. Pavlov , A. Yafyasov



Exponential Decay: physical needs versus
mathematical beauty.

Besides, no physical consequences were derived in [?, ?] from
the proposed matching of Quantum Mechanics with the
corresponding analog of the Lax-Phillips theory. This most likely
suggests that the scheme proposed in the papers is sentenced,
according to the Arnold algorithm, to remain, for another period
inside mathematics until all these details are completed.
Contrary to that, in our version of bridging standard Quantum
Mechanics with the Lax-Phillips theory, instead of inventing an
artificial construction added on top of the standard quantum
space of all square-integrable functions in order to imitate the
Lax-Phillips structure, we consider excitations of the zero mass
field playing the role of a channel passing information to the
outside observer on the inner quantum system. Although the
evolution of the “inner” the Quantum System, for a finite time,
can be represented in the Schrödinger form as eiLt with a
positive Hamiltonian L, the study of its asymptotics as t →∞
requires a treatment based on the complete zero-mass field
evolution.
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The substitution of the Lorenz invariant picture by the
Schrödinger picture of evolution can only be done under the
“positivity of mass” condition (see next section). It is not trivial
to match this requirement with the zero-mass condition for the
Lax-Phillips scheme.
Thus, the central question in our treatment becomes the
matching of the Lax-Phillips scattering scheme with Quantum
Mechanics with the positive Hamiltonian, that is the question on
the physical realization. And again, the answer to this question
is not general and does not look obvious.
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Scattering of photons by a superconductor : an
interplay between
the Schrödinger equation and the Klein-Gordon-Fock
equation

Yet an interesting example of similar matching can be found in
the scattering of photons by a superconductor. Indeed, due to
the Meissner effect, magnetic field cannot penetrate the
super-conducting medium. The theoretical treatment of the
phenomenon by Ginzburg and Landau (see [4]) is based on
acquiring a non-zero mass by photons in the process of
spontaneous symmetry breaking, the loss of abelian gauge
invariance of the Lagrangian of the electromagnetic field in the
superconductor. Hence, both contradictory requirements of
zero-mass in the outer space, and the non-zero mass in the
inner space are satisfied. Thus, we may hope to “put both ends
together" in the problem .
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Scattering of photons by a superconductor : an
interplay between
the Schrödinger equation and the Klein-Gordon-Fock
equation

Consider a compact domain in R3 filled with a superconductor.
The Lagrangian of the electro-magnetic field in the outer space
is represented in terms of the field A, the electromagnetic
potential, as

1
4

∫
Ω̂s

F +F , where F = dA,

(see for instance [9]). Here dA is an exterior differential of the
field A, and F +F is a 3-form obtained as an exterior product of
2-form F and its (hermitian) complement. In the inner space,
due to the interaction of the electromagnetic field with the
boson field of Cooper pairs, the Lagrangian is modified, in the
boundary area of the superconductor, by additional massive
terms containing the product of the electromagnetic field and
the field of Cooper pairs see [9].V. kruglov , K. Makarov , B. Pavlov , A. Yafyasov



Scattering of photons by a superconductor : an
interplay between
the Schrödinger equation and the Klein-Gordon-Fock
equation.

The depth of penetration of the magnetic field into the
superconductor is estimated by the size δ of the Cooper pair,
which is normally relatively large, greater than 10−7 cm. If the
energy of photons does not exceed the
Bardeen-Cooper-Schrieffer gap (the BCS - gap), the field of
Cooper pairs can be eliminated and the scattering of photons
by the superconductor can be treated in the one-body photon’s
sector, similar to the scattering problem in the classical
Quantum Mechanics. In the one-body photon’s sector, the
scattering problem in vacuum Ω̂s can be reduced to the wave
equation (the Klein-Gordon-Fock equation with zero mass).
Similarly, the problem in Ωδ is also reduced to the
Klein-Gordon-Fock equation with non-zero mass.
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Scattering of photons by a superconductor : an
interplay between
the Schrödinger equation and the Klein-Gordon-Fock
equation

The corresponding scattered waves satisfy smooth matching
conditions on the common boundary of Ω̂s and Ωδ. If the
domain Ωs is filled with a superconductor, then the
electromagnetic potential should vanish on the common
boundary ∂Ωs ∩ ∂Ωδ. Thus, one can consider, as a
representative model, the Klein-Gordon-Fock equation in
R3 = Ωs ∪ Ωδ ∪ Ω̂s assuming that the compact domain Ωs ∪ Ωδ

is filled with the superconductor, and Ω̂s is the vacuum. The
mass is zero on Ω̂s, but is non-zero on the δ-thin shell Ωδ,
separating the inner and the outer spaces. While Ωs is filled by
the superconductor, the electromagnetic field does not
penetrate Ωs, so that we can apply a zero boundary condition
on ∂Ωs ∪ ∂Ωδ.
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Scattering of photons by a superconductor : an
interplay between
the Schrödinger equation and the Klein-Gordon-Fock
equation

Then the spectrum of the Klein-Gordon-Fock operator in Ωδ is
discrete, and the one on the complement Ω̂s is continuous.
Hence, the scattering in the small energy region, for energy not
exceeding the creation threshold of the Cooper pair, has a
resonance character. The scattering matrix of the problem is
unitary and analytic with respect to the energy on the
complement of the discrete set of resonances. For small values
of the added energy E ′ = E −mc2, E ′ << mc2, the evolution
on Ωδ can be described in a Schrödinger form:

E = c
√

m2c2 + p2 ≈ mc2 +
p2

2m
.
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Scattering of photons by a superconductor : an
interplay between
the Schrödinger equation and the Klein-Gordon-Fock
equation

Indeed, considering on Ωδ the Klein-Gordon-Fock equation with
non-zero mass

~2

c2
∂2ψ

∂t2 =
[
~2∆−m2c2

]
ψ,

permits to split off the fast oscillations by the unitary
transformation ψ = e−imc2~−1tφ :

∂ψ

∂t
=

[
∂φ

∂t
e−imc2~−1t − imc2~−1φe−imc2~−1t

]
≈ −

imc2

~
φe−imc2~−1t ,

∂2ψ

∂2t
≈ −

[
2imc2

~
∂φ

∂t
+

m2c4

~2 φ

]
e−imc2~−1t , (5)

which yields, for small momenta, the Schrödinger equation for φ

i~
∂φ

∂t
+

~2

2m
∆φ = 0. (6)
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Scattering of photons by a superconductor : an
interplay between
the Schrödinger equation and the Klein-Gordon-Fock
equation

A nice feature of this equation is the possibility to interpret |φ|2
as the probability density for the particle to bound at the location
marked by space coordinates (x , t) of the wave function φ(x , t),
with the total probability to find the particle in the space is
conserved

∫
|φ(x , t)|2dx = const . But the formal use of it in the

large time scale would give a non-exponential decay of the
wave packet of the magnetic field. Moreover, vice versa, a
straightforward analysis based on the Lax-Phillips scattering
arguments for the zero-mass field in Ω̂s and the non-zero mass
in the Klein-Gordon-Fock equation on Ωδ shows an exponential
decay, and even reveals the spectral meaning of resonances.
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Scattering of photons by a superconductor : an
interplay between
the Schrödinger equation and the Klein-Gordon-Fock
equation

Another interesting example of the exponential decay can be
connected with a similar problem for a thin compact
super-conducting shell Ωδ separating the inner vacuum domain
Ωs from the outer domain Ω̂s. Considering the one-particle
scattering problem with smooth matching conditions on the
inner and the outer components of the boundary of the shell,
we again obtain a Lax-Phillips Scattering System. Taking into
account the non-zero mass of the field on the shell, we see that
the low-energy resonances arise from the discrete spectrum of
the Dirichlet problem for the Klein-Gordon-Fock equation on the
shell.
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Scattering of photons by a superconductor : an
interplay between
the Schrödinger equation and the Klein-Gordon-Fock
equation

A relevant physical phenomenon was observed on a multi-layer
shell constructed of carbon nano-structures (see, for instance,
[?]). In that paper, the resonance pumping phenomenon was
discovered. Our previous analysis of the super-conducting
shells allow us to formulate a question on the superconduction
nature of the carbon shell in the experiment, which would
explain the nature of pumping based on the classical
Lax-Phillips resonance scattering (see next section).
The fields with nonzero mass play an important role in the
transition from the Klein-Gordon-Fock evolution to the
Schrödinger evolution. One may guess that other possible
experiments revealing an exponential decay in quantum physics
can be considered with involvement of some scalar boson fields
playing the role of the field of Cooper pairs in above problems.V. kruglov , K. Makarov , B. Pavlov , A. Yafyasov



Scattering of photons by a superconductor : an
interplay between
the Schrödinger equation and the Klein-Gordon-Fock
equation

This gives us a pretext to underline a unique role of
measurements based on zero-mass fields in quantum physics.
In combination with the symmetry breaking and mass creation,
these measurements may help to explain the exponential decay
and resonance pumping in these experiments.
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An example: analysis of 1D model of Decay observed
in 1D analog of an electro-magnetic experiment.

Our review of Lax-Phillips technique and basic results
presented in section 1 shows just a top of an Iceberg, with the
rest of estimations, complex and harmonic analysis remained
undercover. In the final part of section 1 of this paper we
provided only a sketch of results obtained by Lax-Phillips
technique for general multi-dimensional decay problem.
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An example: analysis of 1D model of Decay observed
in 1D analog of an electro-magnetic experiment.

In particular, modern technique of Lax-Phillips Scattering
Theory permits to realize the one-body program mentioned in
previous section. But we aim now on a simple aim
concentrating on a simplest 1D model, for which all analytical
details of the Lax-Phillips resonance scattering theory can be
derived explicitly with use of standard tools of spectral theory of
ordinary differential operators. Correspondingly, we select a
simplest 1D model of Decay in form of a Klein-Gordon-Fock
equation with quantum well potential supported by [−a,0] and
zero boundary condition at the end x = −a.
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An example: analysis of 1D model of Decay observed
in 1D analog of an electro-magnetic experiment.

The quantum well is attached to the positive half-axis.

c−2utt −
∂2u
∂x2 + VH(x)u = 0, −a < x <∞, u(−a) = 0. (7)

Instead of the shell Ωδ supporting the non-zero mass we
assume that the potential contains a repulsing singularity
Hδ(x), H > 0 at the origin, VH(x) = V (x) + Hδ(x), with a
smooth real component V (x), −a < x < 0.
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An example: analysis of 1D model of Decay observed
in 1D analog of an electro-magnetic experiment.

This δ- singularity emulates the condition of domination of the
BKS gap by the energy of photons and plays a role of a high
potential barrier which separates the inner part Ωs of the outer
componen , with the zero-mass field in the outer space x > 0.
Changing the "hight" H of the barrier one can approach the limit
H =∞, which corresponds to the zero boundary condition
u(0) = 0 decoupling the inner and the outer subsystems.
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An example: analysis of 1D model of Decay observed
in 1D analog of an electro-magnetic experiment.

Figure: A simplest 1D model of a nuclear decay

The role of excitations in the model is played by the
one-dimensional “photons” in the outer space x > 0.
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An example: analysis of 1D model of Decay observed
in 1D analog of an electro-magnetic experiment.

The excitations inside the well [−a,0] ≡ Ωs, are not observed
independently, but only due to their connection to the photon’s
field. Following our proposal formulated in previous section, we
introduce the slow varying component ψ of the wave-function
u = ψ(x) e−imc2t and assume, that the variation of the kinetic
energy associated with slow variables d2

dt2 c−2 ‖ ψt ‖2 is
relatively small and can be neglected so that we get the
Schrödinger equation with ω = mc2:
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An example: analysis of 1D model of Decay observed
in 1D analog of an electro-magnetic experiment.

−2iω c−2 ψt−
∂2ψ

∂x2 +VH(x)ψ−ω2 c−2ψ = 0, −a < x <∞. (8)

Eliminating the non-essential additive constant from the
potential, we obtain the Schrödinger type equation

− 2iω c−2 Ψt −
∂2Ψ

∂x2 + VH(x)Ψ = 0, −a < x <∞, (9)

which can be transformed to the standard form via introducing
the effective mass of the excitation as mω = ω ~ c−2:
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An example: analysis of 1D model of Decay observed
in 1D analog of an electro-magnetic experiment.

i~Ψt +
~2

2mω

∂2Ψ

∂x2 −
~2

2mω
VH(x)Ψ = 0, −a < x <∞. (10)

The above equation describes the evolution of the slow
component of the excitation’s in the quantum well, passed from
the inner evolution inside to the evolution of 1D photons field
outside - on the positive half-axis. Analysis of the wave-packets
based on the Schrödinger equation (10), derived based on
separation of the fast and slow variables, reveals a polynomial
decay rate caused by the branching point at the origin p = 0 in
the plane of the spectral parameter, see [8].
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An example: analysis of 1D model of Decay observed
in 1D analog of an electro-magnetic experiment.

This theoretical proposal was never confirmed experimentally.
We guess that the realistic decay rate can be theoretically
extracted from the original equation (7) based on analysis of
the corresponding Lax-Phillips dynamics, see below and more
technical details in [11, 19].
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An example: analysis of 1D model of Decay observed
in 1D analog of an electro-magnetic experiment.

Notice, first of all, that the basic Hilbert space associated with
the Schrödinger equation (10) is the space of all
square-integrable functions L2(−a,∞), while the Hilbert space
associated with (7) is an energy-normed space E of the Cauchy
data u = (u, c−1ut ) ≡ (u0,u1),

‖ u ‖2E=
1
2

∫ ∞
−a

[
|ux |2 + VHuū + c−2|ut |2

]
dx . (11)
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An example: analysis of 1D model of Decay observed
in 1D analog of an electro-magnetic experiment.

The basic equation (7) can be represented as a first order
equation for the vector of Cauchy data, with a symmetric
(selfadjoint) generator L:

1
i c

∂u
dt

= i

(
0 −1

− d2

dx2 + VH 0

)
u. (12)
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An example: analysis of 1D model of Decay observed
in 1D analog of an electro-magnetic experiment.

The evolution (12) of the Cauchy data is defined by the unitary
group exp iLt ≡ Ut , which has an orthogonal pair of incoming
and outgoing subspaces Din,out consisting of Cauchy data
{(u, ux )} , {(u, −ux )} of the corresponding d’Alembertian
waves u(x ± ct) supported by the positive half-axis 0 < x <∞,
see [11]. The orthogonal complement K ≡ E 	 [Din ⊕ Dout ] -
the corresponding co-invariant subspace - consists of the
Cauchy data supported essentially by the quantum well [−a,0]
and equal to u = (const,0) on the half-axis (0,∞).
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An example: analysis of 1D model of Decay observed
in 1D analog of an electro-magnetic experiment.

It is very easy to derive the semigroup property of the evolution
reduced onto the co-invariant subspace-the Lax-Phillips
semigroup:

PK eiLt
∣∣∣∣
K
≡ eiBt , t > 0, (13)

and calculate the corresponding generator as

B = i

(
0 −1

− d2

dx2 + VH 0

)

with the zero boundary condition at the end x = −a and the

impedance boundary condition at the origin u1 + du0
dx

∣∣∣∣
x=0

= 0.
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An example: analysis of 1D model of Decay observed
in 1D analog of an electro-magnetic experiment.

Similarly, the generator −B+ of the adjoint semigroup e−iB+t is
defined by the same differential expression and the dual

impedance boundary condition at the origin u1 − du0
dx

∣∣∣∣
x=0

= 0.

The generators B,−B+ are dissipative operators, see [11], with
discrete spectrum. It is important that the spectrum of B is
defined by the zeros of the corresponding Lax-Phillips
scattering matrix - the resonances.
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An example: analysis of 1D model of Decay observed
in 1D analog of an electro-magnetic experiment.

Indeed, the incoming and outgoing subspaces Din,out of the
Cauchy data are constituted by the Cauchy data of
D’Alembertian waves Φ(x ± ct), supported by the positive
half-axis. Then the spectral images of them with use of the
incoming scattered waves Ψin define the rescription B of B in
the “incoming ” spectral representation of L, attributing Din to
the Hardy class H2

min of all square-integrable functions admitting
an analytic continuation to the lower half-plane =p < 0 of the
spectral parameter p.
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An example: analysis of 1D model of Decay observed
in 1D analog of an electro-magnetic experiment.

This spectral representation is defined by the incoming
scattered waves of L

¯in(x ,p) =

( 1
ip
1

)
ψin(x ,p), (14)

where ψin(x ,p) is the solution of the equation
−d2ψin

dx2 + VH(x)ψin = p2 ψin, satisfying zero boundary condition
at the end x = −a and matching the scattering Ansatz

ψin(x ,p) = eipx + S(p)e−ipx , x > 0,or ψout (x ,p) = ψ̄in(x ,p)

at the origin to an appropriate solution ϕin,out (x ,p) of the
original equation −d2ϕ

dx2 + VH(x)ϕ = λϕ ≡ p2 ϕ on the well
(−a,0), satisfying the zero boundary condition at the end
x = −a : ϕ(−a,p) = 0.
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An example: analysis of 1D model of Decay observed
in 1D analog of an electro-magnetic experiment.

The corresponding Weyl function
mH(λ) = ϕ′(0,p) ϕ−1(0,p) + H + m(λ) + H has a negative
imaginary part in the upper half-plane =λ > 0. The stationary
scattering matrix is found from the smooth matching condition
at the origin as

S(p) =
ip −mH(λ)

ip + mH(λ)
, λ = p2. (15)

It is analytic in the lower half-plane =p < 0, and has a
sequence of zeros ps, =ps < 0, which is symmetric with
respect to reflection ps = −p̄−s.
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An example: analysis of 1D model of Decay observed
in 1D analog of an electro-magnetic experiment.

The scattered waves ψ obtained by matching ψin, ψout to φin,out
form a complete orthogonal in L2(−a,∞) systems of
eigenfunctions of the spectral problem
−d2ψ

dx2 + V (x)ψ = p2 ψ, ψ(−a,p) = 0 in L2(−a,∞):

δ(x − s) =
1

2π

∫ ∞
0

ψ(x ,p)ψ̄(s,p)dp,

and the corresponding eigenfunctions

Ψ(x ,p) =

( 1
ip
1

)
ψ(x , |p|), −∞ < p <∞ play a role of

eigenfunctions of L of the generator of the evolution of
Klein-Gordon-Fock equation, LΨin(∗,p) = pΨin(∗,p).
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An example: analysis of 1D model of Decay observed
in 1D analog of an electro-magnetic experiment.

The spectrum of L is (−∞,∞). The incoming spectral

representation u Jin−→ 〈Ψin,u〉E = V == Jinu =

1
2

∫ ∞
0

[
Ψ̄′0,in(x)u′0(x) + VH(x)Ψ̄0,in(x)u′0(x) + Ψ̄1,in(p, x)u1(x)

]
dx .

(16)
transforms the incoming subspace Din into the Hardy class H2

−
of square-integrable functions on real axis and the outgoing
subspace Dout into the invariant subspace S̄(p)H2

+ of the
positive shift semigroup f (p)→ eipt f (p), t > 0.
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An example: analysis of 1D model of Decay observed
in 1D analog of an electro-magnetic experiment.

Thus the co-invariant subspace K is transformed into
H2

+ 	 S̄H2
+ ≡ K , and the Lax -Phillips semigroup becomes

PK eipt
∣∣∣∣
K
≡ eiBt . The spectrum of the generator B = JinBJ +

in in

this representation coincides with the zeros p̄s of S̄(p̄), and the
eigenfunctions are just

φs ≡ S̄(p̄)
√

2|=ps|(p − p̄s)−1. (17)
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An example: analysis of 1D model of Decay observed
in 1D analog of an electro-magnetic experiment.

Together with the eigenfunctions

φ+ ≡
√

2|=ps|(p − ps)−1 (18)

of the adjoint generator B+ they form a complete bi-orthogonal
system in K ,

B =
∑

s

φs〉
1

〈φs, φ
+
s 〉
〈φ+

s , eiBt =
∑

s

φs〉
ei p̄s t
〈φs, φ

+
s 〉
〈φ+

s .
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An example: analysis of 1D model of Decay observed
in 1D analog of an electro-magnetic experiment.

Here 〈φs, φ
+
s 〉 =

∏
t 6=s

1−p̄s/p̄t
1−ps/pt

≡ Πs.
The system {φs} ,

{
φ+

s
}

is similar to an ortho-normal basis if
and only if the Carleson condition, see [19], is fulfilled:

inft
∏
s 6=t

|ps − pt |
|p̄s − pt |

> 0.

that is : under the Carleson condition there exist an orthogonal
basis {νs} which is connected with the normalized families
{φs} ,

{
φ+

s
}

by an invertible transformation:

φs = Tνs, φ
+
s =

[
T−1

]+
νs, ‖ T ‖, ‖

[
T−1

]+
‖<∞.
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An example: analysis of 1D model of Decay observed
in 1D analog of an electro-magnetic experiment.

Unfortunately the Carleson condition is never fulfilled for
potential of the type VH . But it may be fulfilled for the
corresponding polar problem with the potential substituted by
density - a coefficient in front of the spectral parameter.
Notice that the eigenvalues p̄s,ps of B, B+ depend on the
parameter H and approach the eigenvalues of the Schrödinger
operator LH = −∂2u

∂x2 + VH(x) in L2(−a,0) with zero boundary
conditions at the ends −a,0.
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An example: analysis of 1D model of Decay observed
in 1D analog of an electro-magnetic experiment.

The resonances p̄s - the zeros of the Lax-Phillips Scattering
matrix SLP = [SH(p)]−1,

S(p) =
ip + [m(λ) + H]

ip − [m(λ) + H]
, with λ = p2

are found from the equation ip + [m(λ) + H] = 0. For large H
the resonances are situated in the upper half-plane near the
poles of of m(λ) - the eigenvalues of the Dirichlet spectral
problem on the interval (−a,0):

ip + H +
qs

λ− λD
s

+ bs = 0.
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An example: analysis of 1D model of Decay observed
in 1D analog of an electro-magnetic experiment.

Denoting λD
s = [pD

s ]2, we have for resonances ps approaching
pD

s when H → +∞ the approximate expression

ps ≈ pD
s +

qs(ipD
s + H)

2pD
s (|pD

s |2 + (bs + H)2)
≈ pD

s +
qs

2pD
s H

+
iqs

2H2 . (19)

The eigenfunctions φs, φ
+
s of the generators B, B+ of the

Lax-Phillips semigroup are calculated in spectral representation
of the generator L of the evolution of the Klein-Gordon-Fock
equation according to (17,18) in terms of the resonances.
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Physics of the exponential decay via the Lax-Phillips
scheme.

The spectral analysis of the Lax-Phillips semi-group, described
in the brief review above, was based, on the one hand, on the
presence of the continuous spectrum of the zero-mass
Klein-Gordon-Fock evolution group generator L , and, on the
other hand, on the observation that the group possesses a pair
of orthogonal incoming and outgoing subspaces. More
specifically, the continuous spectrum of L fills in the whole real
axis and the parts of the evolution in the incoming and outgoing
subspaces are unitarily equivalent to the negative and positive
semi-groups generated (in the p-representation) by the shift
f → eipt f in the subspaces H2

− and SLPH2
+, respectively.
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Physics of the exponential decay via the Lax-Phillips
scheme.

As a result, the remaining part of the corresponding positive
evolution semi-group eiBt , t > 0, reduced onto the co-invariant
subspace Jin : K −→ H2

+ 	 SLPH2
+ ≡ K , is unitarily equivalent

to the Lax-Phillips semi-group

PKUt
∣∣
K

J+
in−→ PK eikt ∣∣

K , t > 0.
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The LP bridge between the WW and KF concepts

One can see that these Lax-Phillips features were waived in the
KF concept. Without them , the concept is not complete to
guarantee the exponential decay. Adding these details to the
KF proposal makes it sufficient not only to explain the
exponential decay, but also to construct a solid bridge between
the WW and KF schemes and even give a spectral meaning to
resonances , which would be absolutely impossible in the pure
Schrödinger approach. Indeed , firstly, the spectrum of the
Lax-Phillips semi-group PK eipt

∣∣
K = eiBt , t > 0 , associated with

a compact scatterer, is discrete, which meets the basic
requirement of the WW approach.
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The LP bridge between the WW and KF concepts

Secondly, the corresponding eigenfunctions in the incoming
spectral representation Jin : Din

Jin−→ H2
− are calculated

explicitly, as illustrated by (17,18) and, moreover, the
corresponding eigenvalues of the dissipative generator coincide
with the zeros p̄s of the scattering matrix SLP . In the case when
the singular spectrum of the Lax-Phillips generator is absent
and the discrete spectrum is simple, one can use a rational
approximation to the scattering matrix given by a finite
Blaschke product SN

LP = Θ0
∏N

s=1
p−p̄s
p−ps

, =ps < 0, with Θ0 a
unitary constant. Based on this approximation we can obtain an
approximate description of the exponential decay.
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The LP bridge between the WW and KF concepts

In particular, the Lax-Phillips evolution of an initial state that
coincides with the eigenvector φs can be described explicitly as

eiBtφs = ei p̄s t φs.

Here the normalized eigenvectors φs are to be found as
solutions of the impedance boundary problem for the
Schrödinger equation, with a subsequent restriction on the
coinvariant subspace, and the decrements =p̄s can be obtained
from the asymptotics (19). The resulting formula can be
considered to be a unification of both the Fock–Krylov and the
Weisskopf–Wigner approaches to resonances.
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The LP bridge between the WW and KF concepts

In previous example, see section 3 , we derived the formula
(??) based on interaction of the inner quantum system (on a
compact domain [−a,0]) with the Klein-Gordon-Fock equation
on the exterior domain defined by the appropriate matching at
the common boundary x = 0. Using the Lax-Phillips approach
we recovered the spectral meaning of resonances interpreting
them as eigenvalues of the generator of the Lax-Phillips
semi-group. In this particular case, the generator has a discrete
spectrum located in the neighborhood of the spectrum of the
unperturbed conservative system, the one which is defined by
the same Schrödinger differential equation with zero boundary
conditions at the end-points of the interval [−a,0].
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The LP bridge between the WW and KF concepts .

This permits to observe the WW concept of the decay from the
LP spectral point of view. In particular, in [1], an averaged
decay is considered. Using the spectral representation for the
Lax-Phillips semi-group, one can calculate the decrement by
observing the decay on the initial stage for a relatively small t .
Indeed, taking into account that 〈ψr , ψ

+
r 〉 = Πr and that

〈ψs, ψr 〉 =

√
2=p̄s
√

2=p̄r
=p̄s+=p̄r

, we get:

∥∥PK Ut
∣∣
K u
∥∥2

=
N∑
s,r

ei[p̄s−ipr ]t〈φs, φr 〉
〈φ+

s ,u〉 〈φ+
r ,u〉

〈φs, φ
+
s 〉 〈φr , φ

+
r 〉
≤
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The LP bridge between the WW and KF concepts

N∑
s,r

e−[=p̄s+=p̄r ]t
∣∣∣∣〈φs, φr 〉

〈φ+
s ,u〉 〈φ+

r ,u〉
〈φs, φ

+
s 〉 〈φr , φ

+
r 〉

∣∣∣∣ =
N∑
s,r

e−[=p̄s+=p̄r ]t

√
2=p̄s

√
2=p̄r

=p̄s + =p̄r

〈φ+
s ,u〉 〈φ+

r ,u〉
Πr Π̄s

.

(20)
One can see from (20) that

∥∥PK Ut
∣∣
K u
∥∥2 ≤ C(u)e−γt . The

integral parameter γ can be estimated based on the
asymptotics of (20) for small t .
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The LP bridge between the WW and KF concepts

Thus, we have

C(u)γ ≈ t−1
[
‖ PK Ut

∣∣
K u ‖2 − ‖ PK u ‖2

]
≤ 2

N∑
s,r

√
=p̄s
√
=p̄r 〈φ+

s ,u〉 〈φ+
r ,u〉

Πr Π̄s
, as t → 0.

(21)
Note that the incoming spectral representation transforms K in
to K = H2

+ 	 SLPH2
+. Then , for u ∈ K , we have

〈ψ+
s ,u〉 = 1

2π

∫
R

u(p)dp
p−p̄s

= iu(p̄s), with u calculated as Jinu
according to (16). The ultimate formula (21) bears some
features of the exponential decay formulae derived according to
the WW and KF concepts.
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The LP bridge between the WW and KF concepts

Indeed , the derivation of the exponential decay rate in the WW
manner presented in [6], see the formula (80.13, chapter
IX),gives the decay rate via the matrix elements of the
perturbation in the interaction representation. If the
perturbation is small, then the decay rate of the LP resonance
state φs, see can be interpreted as the decay of the bound
state state with the eigenvalue

(
pD

s
)2 close to the resonance ps,

according to (19).
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The spectral meaning of resonances.

Nevertheless, bridging together both of the contradictory
concepts of the WW and KF is not the main achievement of the
Lax-Phillips point of view. We suggest that the main
achievement is the discovery of the spectral meaning of
resonances: once we reduce the unitary evolution onto the
co-invariant space K = H2

+ 	 SLPH2
+, the result is represented,

via Jin, by the Lax-Phillips semi-group

eiBtu =
∑

s

e−i p̄s t φs〉〈φ+
s ,u〉

〈φs, φ
+
s 〉

. (22)
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The spectral meaning of resonances.

Here the "Gamov vectors" φs, φ
+
s have an unambiguous

spectral meaning as the eigenvectors of the Lax-Phillips
semigroup generator B, and p̄s are the corresponding
eigenvalues. The spectrum of the generator is discrete, but the
whole picture of the restricted evolution on the co-invariant
subspace arose because of the specific features of the
Lax-Phillips dynamics, first of all of those that are due to the
presence of the constant multiplicity continuous spectrum on
R = (−∞, ∞) for the shift group, exactly as it was expected in
[2]. But the authors of [2] missed another essential point: the
orthogonality in the energy-normed space of the incoming and
outgoing invariant subspaces of the wave equation evolution.
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The spectral meaning of resonances.

So , one can conclude that in the special case when the
condition of orthogonality on the incoming and outgoing
subspaces for the wave evolution is satisfied, the KF scheme of
the exponential decay is confirmed mathematically. In that case
, both the KF and WW schemes give expected results including
that of the discreteness of the spectrum of resonances.
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Quality of an oscillation system and the Resonance
Pumping.

Note that the spectral decomposition for the Lax-Phillips
semi-group ensures an exponentially decaying evolution for any
single term of the spectral expansion of the semi-group, with
the decrement =ps. It is customary to interpret the slow decay
of the terms of the spectral expansion as a “high quality” of the
corresponding oscillatory system. There is, in principle, another
method for the estimation of quality of the oscillatory system
that is based on estimating the growth of the amplitudes of
forced oscillations under periodic excitation. In radio-physics,
these two estimations of "quality", based on the decay and on
the "pumping", are considered to be alternative estimations of
the quality, but the equivalence of them needs a justification
using the spectral formulation of the Decay problem.
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Quality of an oscillation system and the Resonance
Pumping.

Indeed, let us consider the periodic excitation of the oscillatory
system in the form

1
i

du
dt

= Bu + eiωtν

with zero incident value. Using the spectral representation of
the Lax-Phillips semi-group, one obtains that

u(t) =
∑

s

i
∫ t

0
ei(ω−p̄s)τdτei p̄s t φs〉〈φ+

s , ν〉
〈φs, φ

+
s 〉

=

eiωt
∑

s

1− ei(p̄s−ω)t

(ω − p̄s)

φs〉〈φ+
s , ν〉

〈φs, φ
+
s 〉

.
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Quality of an oscillation system and the Resonance
Pumping

The phenomenon of resonance pumping is then observed
when the frequency ω is close to one of the eigenvalues of the
Lax–Phillips generator. For instance, if p̄s − ω = −i=ps, recall
that −=ps > 0, then the forced oscillation regime is

u(t) =
e=p1t − 1
=p1

eiωt φ1〉〈φ+
1 , ν〉

〈φ1, φ
+
s 〉

+

∑
s>1

1− ei(p̄s−ω)t

i(ω − p̄s)

φs〉〈φ+
s , ν〉

〈φs, φ
+
s 〉

.

Therefore, the forced amplitude of the first term is linearly
growing with time, until t ≈ (=p1)−1, but eventually , at large

time scale, it saturates at the value −(=p1)−1 φ1〉〈φ+
1 ,ν〉

〈φ1,φ
+
1 〉

.
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Complementarity of the Lax-Phillips Scattering
Scheme and the Quantum Zeno Effect.

The celebrated Zeno Paradox, see [?], can also be treated from
the viewpoint of the Lax–Phillips evolution. Indeed, consider the
Lax-Phillips evolution defined by the unitary group Ut = eiLt in
an energy normed space E and suppose that the group
possesses an orthogonal pair Din,out of incoming and outgoing
subspaces. The restriction PKUtPK, t > 0, of the positive
semi-group onto the co-invariant subspace K ≡ E 	 [Din ⊕Dout ]
is the Lax-Phillips semi-group PKUtPK ≡ eiBt .
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Complementarity of the Lax-Phillips Scattering
Scheme and the Quantum Zeno Effect.

It has a simple (with no self-adjoint/symmetric parts) dissipative
generator B with discrete spectrum parameterized by the
characteristic function SLP , the Lax-Phillips scattering matrix,
defined by a Blaschke product. Introducing the amplitude
〈eiLtφ, φ〉E ≡ aφ(t) of the returning probability pt ≡ āφ aφ, for
"smooth" elements φ ∈ K ∩ DB such that

Bφ ∈ DB we represent the amplitude as a (t) = 〈eiBtφ, φ〉E =

1 + it〈Bφ, φ〉E −
t2

2
〈B2φ, φ〉E + . . . .
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Complementarity of the Lax-Phillips Scattering
Scheme and the Quantum Zeno Effect.

Then, Taylor’s Theorem up to second order applied to the
returning probability yields

p(t) = āφ aφ = 1−2t=〈Bφ, φ〉E−t2
[
<〈B2φ, φ〉E − |〈Bφ, φ〉E |2

]
+· · · .
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Complementarity of the Lax-Phillips Scattering
Scheme and the Quantum Zeno Effect.

If =〈Bφ, φ〉E 6= 0, then 1− 2t=〈Bφ, φ〉E ≈ e−2t=〈Bφ, φ〉E , and
hence, despite a multiple control of the evolution we have
p(t) ≈ [p(t/n)]n. This is the case of an exponential decay with
the decrement Γ = 2=〈Bφ, φ〉E . The alternative condition
=〈Bφ, φ〉E = 0 implies

p(t) = 1− t2
[
<〈B2φ, φ〉E − |〈Bφ, φ〉E |2

]
+ · · · ≈ 1− At2

which would give the following asymptotics for the probability
under the evolution with the multiple control at the sequence of
moments
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Complementarity of the Lax-Phillips Scattering
Scheme and the Quantum Zeno Effect.

tm = m
n t , m = 1,2, . . . ,

[p(t/n]n) ≈ [1− A/n2]n ≈ [e−A]1/n ≈ 1 as t →∞.

This result corresponds to the quantum Zeno effect. The
condition =〈Bφ, φ〉E = 0 is not compatible with dissipativity of
the simple (with no self-adjoint parts) generator B with
Risz-basis property of eigenfunctions. Indeed the opposite
condition 〈=Bφ, φ〉 > 0 is obviously satisfied for all vectors from
the domain of B in the coinvariant subspace, if the system of it’s
eigenvectors is a Riesz basis. Thus , we conclude that the
Zeno effect is not compatible with the Lax–Phillips evolution for
elements φ from the coinvariant subspace such that
=〈Bφ, , φ〉E > 0.
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Complementarity of the Lax-Phillips Scattering
Scheme and the Quantum Zeno Effect.

Vice versa, the general Schrödinger type unitary evolution
Utφ = eiLt φ of a smooth state φ is compatible with the Zeno
effect (whenever L is a self-adjoint generator in the Hilbert
space E).
Indeed, the corresponding infinitesimal evolution for a smooth
normalized state φ yields

p(t) = 〈eiLt φ, φ〉E〈φ,eiLt φ〉E ≈ 1−

t2
[
〈L2φ, φ〉E − (〈Lφ, φ〉E)2

]
+ . . . .
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Complementarity of the Lax-Phillips Scattering
Scheme and the Quantum Zeno Effect.

Hence, in an experiment with the multiple control at the
moments of time tm = m

n t , m = 1,2, . . . , we obtain:

[p(t/n)]n ≈
(

1− t2

n2

[
〈L2φ, φ〉E − (〈Lφ, φ〉E)2

])n

≈

e−[〈L2φ,φ〉E−(〈Lφ,φ〉E)2]t2n−1 → 1, when n→∞.

V. kruglov , K. Makarov , B. Pavlov , A. Yafyasov



Complementarity of the Lax-Phillips Scattering
Scheme and the Quantum Zeno Effect.

This corresponds to the standard Zeno effect in Quantum
Mechanics, see [7]. It is worth mentioning that Quantum
Mechanics is a description of dynamics and probability is not
intrinsically involved in that. But probability arises as a detail of
the measurement process: it is clearly seen from the preceding
analysis that the interplay between the dynamics and the
measurement process is different for the Schrödinger evolution
[7] and for the Lax-Phillips one.
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Conclusion

Our version of matching of a zero-mass field in the outer space
with the Schrödinger evolution on the inner space of the
quantum system allows one to derive the exponential decay
based on the classical Lax-Phillips technique. Contrary to the
constructions suggested in [13, 14] and and those in the recent
papers [?, ?], we use explicit functional model formulae for the
eigenvalues and eigenvectors of the corresponding dissipative
generator that gives rise to the reduced dynamics on the
corresponding coinvariant subspace. For low energy, the
dynamics on the inner space is matched with the corresponding
Schrödinger dynamics that provides the standard probabilistic
interpretation of the wave-function but would formally produce
non-exponential terms in the large-time scale.
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Conclusion

But the original dynamics, before being reduced to
Schrödinger’s scenario, exhibits an exponential decay for large
time, with non-exponential terms absent. Our approach also
reveals the spectral meaning of the resonances and the
resonance states, and permits to bridge, on this base, the
alternative concepts of resonances and the exponential decay
proposed by Weisskopf–Wigner and Krylov–Fock. In turn, this
proves that the lifetime of a resonance and the velocity of the
resonance pumping are directly connected. We also establish
duality between the exponential decay and the absence of the
quantum Zeno effect on resonance initial data for the quantum
system under a permanent control.
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