Hartmanis-Stearns conjecture on real time
and transcendence
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The most interesting results in mathematics, computer
science and elsewhere are those which expose unexpected
relations between seemingly unrelated objects. One of the
most famous examples is the Cauchy-Hadamard theorem
reiating radius of convergence of a power series to the
properties of the complex variable function defined by
the power series.

The radius of convergence of a power series f centered
on a point a is equal to the distance from a to the nearest
point where f cannot be defined in a way that makes it
holomorphic.



This work was extended by Alan Baker (1939-) in 1966
by proving a result on linear forms in any number of
logarithms (of algebraic numbers).

Theorem. (Alan Baker [1966]) Let ay, ap, - -+ , s be
nonzero algebraic numbers such that the numbers
log oy, log as, - - - ,log arpy are linearly independent over
rational numbers. Then for any algebraic numbers
B1, Ba, - - -, Bar, not all zero, the number
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1s transcendental.



The nearest point means the nearest point in the com-
plex plane, not necessarily on the real line, even if the
center and all coeflicients are real. For example, the func-
tion

1
f(z) o Tt ,ZQ
has no singularities on the real line, since 1 + 2 has no
real roots. Its Taylor series about 0 is given by
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Juris Hartmanis and Richard Edwin Stearns in their
paper awarded by the ACM Turing Award asked do there

exist irrational algebraic numbers which are computable
in real time.

More precisely, a real number is said to be computable
in time 7'(n) if there exists a multitape Turing machine
which gives the first n-th terms of its binary expansion in
(at most) T'(n) operations. Real time means that T'(n) =
n. All rational numbers clearly share this property. On

the other hand, there are some transcendental numbers
that can be computed in real time.




Why Hartmanis-Stearns conjecture is interesting”? First
of all, because mathematicians have had and they still
have enormous difficulties to prove transcendence of num-
bers. Had Hartmanis-Stearns conjecture been proved, this
would have been a very powertul tool to obtain new tran-

scendence prootfs.

A rational number is a number of the form ff,, where p

and g are integers and ¢q 1s not zero. An irrational number
1s any complex number which is not rational. A transcen-
dental number is a number (possibly a complex number)
that 1s not algebraic - that is, it is not a root of a non-
constant polynomial equation with rational coeflicients.



The name transcendental comes from Gottiried Wil
helm von Leibniz (1646 — 1716) in his 1682 paper where
he proved sinx is not an algebraic function of x. Leon-

hard Euler (1707 - 1783) was probably the first person to
define transcendental numbers in the modern sense.

Joseph Liouville (1809 — 1882) first proved the exis-
tence of transcendental numbers in 1844, and in 1851
gave the first decimal examples such as the Liouville con-

stant

» 107 = 0.110001000000000000000001000 . . .
k=1



» 107 = 0.110001000000000000000001000 . . .
k=1

We call an irrational number o well-approzimable it

for all positive integers N, n, there is a rational number

;{‘f such that
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It is easy to see that the Liouville constant is well-approximable.
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Theorem 1. (Joseph Liouville [1851]) No well-approzimable
number can be algebraic.



A completely different proof was given three decades
later by Georg Ferdinand Ludwig Philipp Cantor (1845 —

1918). He proved that there are more real numbers than
algebraic numbers. According to the intuitionist school
in the philosophy of mathematics (originated by Luitzen

Egbertus Jan Brouwer, 1881 — 1966), such a pure exis-
tence proof is not valid unless it explicitly provides an
algorithm for the construction of the object whose exis-
tence is asserted. However, even much less radical math-

ematicians felt that Cantor’s theorem does not eliminate
the need for explicit proofs of transcendence for specific

numbers.



Charles Hermite (1822 -1901) proved the transcen-
dence of the number e in 1873. In 1882, Ferdinand von
Lindemann published a proof that the number 7 is tran-
scendental. He first showed that e to any nonzero alge-

braic power is transcendental, and since e’ = —1 1is alge-
braic 27 and therefore m must be transcendental. This ap-
proach was generalized by Karl Theodor Wilhelm Weier-
strass (1815 — 1897) to the Lindemann—Weierstrass the-
orem. The transcendence of 7 allowed the proof of the
impossibility of several ancient geometric constructions

involving compass and straightedge, including the most
famous one, squaring the circle.



In 1900, David Hilbert (1862 — 1943) posed an influ-
ential question about transcendental numbers, Hilbert’s
seventh problem: If o is an algebraic number, that is
not zero or one, and 3 is an irrational algebraic number,

is o” necessarily transcendental? The affirmative answer
was provided in 1934 by the Gelftond — Schneider theo-
rem (Alexander Osipovich Gelfond, 1906 — 1968, Theodor
Schneider, 1911 — 1988).




Alan Baker (1939-) was awarded the Fields Medal in

1970 for this result. Baker’s theorem can make an im-
pression that there is no more any difficulty to prove

transcendence of numbers widely used in mathematics.
Unfortunately, we are still very far from such a situation.
Even for many numbers constructed from e, 7 and similar
ones, we do not know much.



It is known that e™ is transcendental (implied by Gel-
fond — Schneider theorem), but for the number 7¢ it is
not known whether it is rational. At least one of ™ X e
and m + e (and probably both) are transcendental, but
transcendence has not been proven for either number on
its own. It is not known if e, 7™, 7° are transcendental.



However, not only Liouville’sresult but also his method
was important. It was later generalized at a great extent.
For Liouville the most important lemma was as follows.

Lemma. Let o be an irrational algebraic number of
degree d. Then there exists a positive constant depending
only on a, ¢ = c(a), such that for every rational number
f;"? the inequality
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1s satisfied.



This lemma produced a notion of Liouville number.
We say that L is a Liouwville number if there exists an

infinite sequence of rational numbers £ satisfying
n
Pl o 1
dn q,,

Liouville’s theorem asserts that all Liouville numbers
are transcendental.



Many mathematicians including Axel Thue (1863 -
1922), Carl Ludwig Siegel (1896 — 1981), Freeman Dyson
(1923-) made important improvements to Liouville’s t he-
orem. In 1955 Klaus Friedrich Roth (1925 —) provided the
best possible improvement.

Theorem. (K.F.Roth [1955]) Let a be an irrational
algebraic number of degree d > 2 and let ¢ > 0. Then
there exists a positive constant ¢ = ¢(a, €), such that for

all £,
q




Roth’s result is the best possible, because this state-
ment would fail on setting ¢ = 0 (by Dirichlet’s theorem
on diophantine approximation there are infinitely many
solutions in this case). K.F.Roth was awarded Fields Medal
for this result in 1958.

Roth’s theorem easily implies transcendence of Cham-
pernowne’s number 0.1234567891011121314 - - - (obtained
by concatenating the decimal expansions of all natural

numbers)



Roth’s theorem continued research started by Adolf
Hurwitz ( 1859 — 1919). Hurwitz’s theorem asserted that

for arbitrary irrational number o there are infinitely many

rationals % such that

o0—— < ——,
n V5n?

and v/5 cannot be substituted by a smaller number.
Hurwitz’s theorem is often used to classity irrational num-
bers according to the rate of the well-approximability. For

example, for the number ¢=(1++5)/2 (the golden ratio) then

there exist only finitely many rational numbers — such

that the formula above holds. Unfortunately for us, the
rate of the well-approximability has no direct relation to
number’s being or not being transcendental.
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Transcendental numbers initially were supposed to be
more complicated rather than algebraic numbers. At least,
the choice of the term "transcendental” suggests so. On
the other hand, the Liouville constant has a rather simple
description

0.110001000000000000000001000. . .

while the algebraic number

V2 = 1.4142135623730950488016887 24209698078 56967187 537694807317667973799...

seems to be quite "random”. Of course, all rational num-
bers are algebraic and decimal (and all the other b-adic
expansions) of them are periodic and hence simple. It

turns out that all irrational algebraic numbers are rather
complicated.



In 1909 Emile Borel (Félix Edouard Justin Emile Borel,
1871 — 1956) asked whether it is possible to tell transcen-
dental numbers from algebraic ones by statistics of their
digits in some b-adic expansion. He introduced the notion
of a normal number.




Let x and b > 2. Consider the sequence of digits of the
expansion of z in base b. We are interested in finding out
how often a given digit s shows up in the above repre-
sentation of x . If we denote by N(s,n) the number of
occurrences of s in the first n digits of x , we can calcu-
Nen) Agp oa h hi ' ,

~ pproaches oc , this ratio may
converge to a limit, called the frequency of s in = . The

frequency of s in = is necessarily between 0 and 1. If all

late the ratio

base b digits are equally frequent, 1.e. if the frequency of
each digit 5,0 < s < b, 1s }—j , then we say that = is simply
normal in base b . For example, in base 5 , the number
01234012340123401234 - - - is simply normal.




In 1909 Emile Borel (Félix Edouard Justin Emile Borel,
1871 — 1956) asked whether it is possible to tell transcen-
dental numbers from algebraic ones by statistics of their
digits in some b-adic expansion. He introduced the notion

of a normal number
Let x and b > 2. Consider the sequence of digits of the

expansion of x in base b. We are interested in finding out
how often a given digit s shows up in the above repre-
sentation of x . If we denote by N(s,n) the number of
occurrences of s in the first n digits of x , we can calcu-

late the ratio & [_;:’”) As n approaches oo , this ratio may

converge to a limit, called the frequency of s in = . The
frequency of s in x is necessarily between 0 and 1. If all
base b digits are equally frequent, i.e. if the frequency of
each digit s, 0 < s < b, is }—j , then we say that x is sitmply
normal in base b . For example, in base 5 , the number

01234012340123401234 - - - 1s simply normal.




If we allow s to be any finite string of digits (in base
b), then we have the notion of a normal number.

Let = be a real number. Let s be a string of digits of
length £ , in base b : s = s5189---5; where 0 < s; <
b. Define N(s,n) to be the number of times the string
s occurs among the first n digits of = in base b . For
example, if x = 21131112 in base 4 , then N(1,8) =
5,N(11,8) = 3 , and N(111,8) = 1 . We say that z is

normal in base b if

s n 1
1m = —
n—oo N(s,n) b
for every finite string s of length £ . We see that it k =1,
we are back to the definition of a simply normal number,

so every number normal in base b is in particular simply
normal in base b .



Intuitively, z is normal in base b if all digits and digit-
blocks in the base b digit sequence of = occur just as
often as would be expected if the sequence had been pro-

duced completely randomly. Unlike simply normal num-
bers, normal numbers are necessarily irrational.



Normal numbers are not as easy to find as simply nor-
mal numbers. One example is Champernowne’s number

0.1234567891011121314 - - -

(obtained by concatenating the decimal expansions of
all natural numbers), which is normal in base 10. It is
not known whether Champernowne’s number is normal
in other bases. Champernowne’s number can be written
as

107 —1

Cho = i
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There exist numbers which are normal in all bases b =
2,3,4,---. They are called absolutely normal. The first
absolutely normal number was constructed by Waclaw
Franciszek Sierpinski (1882 — 1969) in 1917. Verodnica
Becher and Santiago Figueira proved

Theorem. (Becher, Figueira (2002)) There exists a

computable absolutely normal number.

The construction of computable absolutely normal num-
bers is an innovative and complicated recursive function
theoretical adaptation of Sierpinski’s construction. (By
the way, the authors of this paper acknowledge valuable

comments from Cristian Calude.)



In 1950 Borel asked whether all irrational algebraic
numbers are absolutely normal. It is still not known. The
mere existence of this open problem shows that absolute
normality of numbers is a property that can be possessed
only by numbers whose decimal (and other b-adic) ex-
pansions are very complicated. Unfortunately, no one has
been able to use this observation to tell transcendental
numbers from algebraic ones.

In contrast to Borel’s conjecture, it is needed to say
that all algebraic numbers about whom we know that
they are absolutely normal, are highly artificial. They are
specially constructed to prove their absolute normality.

However, is the notion of absolutely normal numbers
the notion we need to prove the Hartmanis-Stearns con-

jecture?




Continued tractions



Now we are looking for another way to describe ir-
rational numbers with a hope that this new description
could be used to distinguish transcendental numbers. One
such potentially useful description is continued fractions.

Continued fractions is a natural notion. Most people
believe that there cannot exist a way how to memorize
good approximations for the number

m = 3.1415926535897932384626433832795028841971

6939937510582097494459230781640628620899
862803482534211706798214808651328230664 7
0938446095500822317253594081284811174502...



However, they exist:
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A finite continued fraction is an expression of the form

ao - 1

ag+ ——1—
tan

where ag is an integer, any other a; members are posi-
tive integers, and n is a non-negative integer. An infinite
continued fraction can be written as

Qg ]

: 1
rl;;-l——l—
I'1_4+T

One can abbreviate a continued fraction as = = [ag; a1, a9, ag,



The decimal representation of real numbers has some

problems. One problem is that many rational numbers

lack finite representations in this system. For example, %

3
is represented by the infinite sequence (0, 3,3, 3,3,...).

Another problem is that the constant 10 is an essen-
tially arbitrary choice, and one which biases the resulting
representation toward numbers that have some relation
to the integer 10. Continued fraction notation is a rep-

resentation of the real numbers that avoids both these
problems.



Continued fractions provide regular patterns for many
important numbers. For example, the golden ratio

14 /5 1
2 p
has a continued fraction representation o = [1;1,1,1,1,---].

Notably,

e=1[2;1,2,1,1,4,1,1,6,1,1,8 1,1,10,1,1,12,1,1,-- -],

e’ = [7' 2 1,75 3:18:0,:1:1. 6,30, 8:1; 1,942 11 -~ 3k, 12k
6,1,1,---],

:[l,n 1,1,1,3n—1,1,1,52—1,1,1,7n —1,1,1, - - - ]
1) =[085 13:3s 1pby 1l 9,11 10361, 15,75 1715 < |

3||—'=~'



If arbitrary values and/or functions are used in place of
one or more of the numerators the resulting expression is
a generalized continued fraction. The 3 distinct fractions
above for m were generalized continued fractions. Every
real number has exactly one standard continued fraction.
The continued fraction for 7 is not as regular as the gen-
eralized continued fractions shown above.

=[3;7,15,1,292,1,1,1,2,1,3,14,2,1,1,2,2,2,2,1,84, - - -].
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From results of Leonhard Euler (1707 — 1783) and

Joseph-Louis Lagrange (1736 — 1813) we know that the

regular continued fraction expansion of z is periodic if
and only if x is a quadratic irrational.




Continued fractions may give us many still not discov-
ered criteria for properties of numbers. For example, if
ai, as, - -- and by, by, - - - are positive integers with a; < by,

for all suthiciently large k, then the generalized continued
fraction

converges to an irrational limit.



Aleksandr Yakovlevich Khinchin (1894 — 1959) expressed
a conjecture in 1949 which is now widely believed that the
continued fraction expansion of any irrational algebraic
number « is either eventually periodic (and we know that
this is the case if and only if « is a quadratic irrational),
or it contains arbitrarily large partial quotients.

J.P. Allouche [2000] conjectures that the continued
fraction expansion of any algebraic irrational number that
1s not a quadratic number is normal.



Automata in number theory



J. Hartmanis and R. Stearns asked do there exist ir-
rational algebraic numbers which are computable in real
time. Hence it seems natural that we start by proving
that it 1s not possible to compute an rrational algebraic
number by a finite automaton. Indeed, a finite automa-
ton with no input information can produce only a peri-
odic sequence but every number whose b-adic expansion
1s periodic, 1s inevitably rational. True but too simple for

a good result.
However, there is a possibility for nontrivial results.



Definition. Let b > 2 be an integer. A sequence (a,)
is called b-automatic if there exists a finite automaton
taking the base-b expansion of n as input and producing
the term a,, as output.

It is not hard to prove that all periodic sequences
are b-automatic for every integer b > 2. But is every
2-automatic sequence also 3-automatic? Alan Cobham

(1927-) published two influential papers [1969,1972] on
this topic.




Theorem. A sequence is b-automatic if and only if it
is b"-automatic for all positive integers r.

Definition. Two positive integers b and d are mul-
tiplicatively independent if the equation b = d” has no
nontrivial integer solution (a, b), that is, %ﬁﬁ is irrational.
Theorem. A nonperiodic sequence cannot be both b-

automatic and d-automatic for two multiplicatively inde-
pendent positive integers b and d.



For continued fractions somewhat similar results were
proved in 1997 by Ferenczi and Mauduit.



Theorem. (Cobham [1972]) An infinite word is k-

automatic if and only if it is the image by a coding of
a word that is generated by a k-uniform morphism.

Definition. The k-kernel of a sequence a = (a,,),>0 is
defined as the set

Nk(ﬂ) = {(ﬁk“n—l—:é)nzﬂ | L > 030 <1< kr}

Theorem. (Eilenberg [1974]) A sequence is k-automatic
if and only if its k-kernel is finite.



In 1977 John Loxton and Alf van der Poorten proved
transcendence results on values of Mahler functions. In
consequence the matter of the transcendence of irrational
automatic numbers became known as the conjecture of
Loxton and van der Poorten.

This line of research resulted in 2004 by a result by
Boris Adamczewski, Yann Bugeaud and Florian Luca.

Theorem. Let b > 2 be an integer. The b-ary expan-
sion of any irrational algebraic number cannot be gener-
ated by a finite automaton.

In other words, irrational automatic numbers are tran-
scendental.



Two re: TS (Y are said t » equivalent 1t ther adic
Two real numbers a and o' are said to be equivalent if their b-adic
expansions have the same tail.

We say that a is a stammering sequence if there exist a real num-
ber w > 1 and two sequences of finite words (W,)n>1, (Xy)n>1 such
that:

(i) For any n > 1, the word W, X" is a prefix of the word a:
(ii) The sequence (| W, | / | X, |)n>1 18 bounded from above;
(iii) The sequence (| X, |)n>1 is increasing.

Theorem. (Adamczewski, Bugeaud, Luca [2007]) Let a = (ag)x>1

be a stammering sequence of integers from {0,1,--- ,b — 1}. Then,

the real number
-+ 00

>

o = —

b
k=1

1s either rational or transcendental.



Let @ = (ax)k>1 and d = (a})r>1 be sequences of e {'*111{*11’[5 from
A, that we identify with the infinite words ajas - -+ and o/ .., Te-
Hp{‘{ tively. We say that the pair (a, a') satisfies C{mdltl{m b{j if there
exist three sequences of flI]lT{E words (Up)n>1, (U, )n>1, and (Vy)n>1
such that:

) For any n > 1, the word U, Vf” is a prefix of the word «;

ii) For any n > 1, the word U'V,, is a prefix of the word o';

111) The sequences (| U, | / | Vi, Nt and (| U2 |/ | Vi |Jn>1 are
bounded from above; B -

(iv) The sequence (| V}, |)n>1 is increasing.

If, moreover, we add the condition

(v) The sequence (| Uy, ! |)n>1 is unbounded,

then, we say that the pair (a,a’) satisfies Condition (xx).




Theorem. (Adamczewski, Bugeaud [2010]) )

Let a = (ag)i>1 and @ = (a},)r>1 be sequences of in-
tegers from {0,1,--- ,b — 1}. If the pair (a,d’) satisfies
Condition (), then at least one of the real numbers

+00 400 /

_ Ak ;o aj,

o= @ =05
k=1 k=1

is transcendental, or o and o' are equivalent. Further-
more, if the pair (a,d’) satisfies Condition (*x), then at

least one of the real numbers «, o/ is transcendental, or
they are equivalent and both rational.




Theorems by Adamczewski and Bugeaud show that
the solution to Hartmanis-Stearns conjecture may be com-

1ng SOON.

One may say that the number-theoretical background
1s already provided and now it remains to prove proper-
ties of real-time Turing machines to ensure the properties

(1)~(v).

The problem to prove Hartmanis-Stearns conjecture
has changed its nature. From a number-theoretical
problem 1t has become a problem in theory of computa-
t1om.
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[ thank Cristian Calude for many years of friendship,
and I wish him many happy and healthy years.



