
Sketching for the Refinement Stage of Design

Gabe Johnson
Carnegie Mellon University

johnsogg@cmu.edu

Abstract

This workshop paper summarizes the motivation for a
forthcoming PhD proposal on computational support for
sketching during the refinement stages of design. The
research explores this space by (1) building a tool em-
powering people to easily design artifacts by concurrently
sketching alongside traditional structured WIMP interac-
tion methods, and (2) evaluating interaction and engineer-
ing issues associated with it. Ultimately the contribution of
this work will be to further the understanding of interaction
techniques for refinement phases of design tools that make
use of sketch input.

1 Introduction

Early phases of design can be characterized by idea gen-
eration and exploration [2, 16]. Many sketching systems
have focused on early phases of design because sketch-
ing readily supports such activities. Refinement phases
are characterized by incremental revision and production—
activities traditional computer design tools support well.
However, designers continue to sketch on paper after they
have begun revising computer models. These refinement-
phase sketches help people solve sub-problems that were
not apparent or relevant during earlier exploration.

However, current software design tools are unable to di-
rectly leverage these refinement stage sketches. Instead,
users manually translate sketches to the computer model.
Design tools could be made to understand the user’s infor-
mal sketching input by leveraging the formal representation
already present in the model. It is not clear—from both
engineering and HCI perspectives—how a tool that concur-
rently supports formal and informal input should be made.

The first contribution of this work is the implementa-
tion of a design environment called FlatCAD. FlatCAD cur-
rently supports users to make models by programming in a
domain-specific language called FlatLang [8]. The next ver-
sion will additionally support structured WIMP operations
and sketching input.

(a) (b)

Figure 1. Soap trays programmed in FlatCAD.

The second contribution explores challenges associated
with concurrently using informal sketches with formal com-
puter representations. In particular this work focuses on
HCI aspects of these tools in order to better understand how
sketch-based interaction may be used concurrently with
structured WIMP interaction.

The following sections briefly describe FlatCAD, the de-
sign environment on which subsequent work will be based.
FlatCAD has been chosen as the platform for exploring
sketch based interaction because all aspects of the environ-
ment are familar to the author and can be changed easily.
Technical and interaction challenges associated with adding
support for sketching are discussed.

2 FlatCAD Use Scenario

FlatCAD is an environment for designing objects made
of flat material for rapid prototyping. Currently, users de-
fine shapes by programming in the LOGO-like FlatLang
domain-specific language. The output of a FlatLang pro-
gram is a “cutfile” that is sent to a laser cutter.

FlatCAD has been used to design several classes of phys-
ical artifacts, such as construction kits to mechanisms to
household goods like soap dishes and toothbrush holders.
The following details the process a designer took when
making the soap dishes shown in Figure 2.

The designer began by making quick drawings to help
think about aspects of making a soap dish. Its primary pur-
pose is to hold a bar of soap, but it also should prevent water

1
VL/HCC Workshop: Sketch Tools for Diagramming
Herrsching am Ammersee, Germany
15 September 2008
Editors: Beryl Plimmer & Tracy Hammond 47

bpli001
Text Box

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 2. Sketches made during idea genera-
tion and exploration.

from pooling, be easy to use, and be stylish.
The first sketches in this sequence supported reasoning

about functional requirements, while the last few sketches
focused on details of how the soap dish would be con-
structed and what particular pieces would look like. The
final two sketches include parameters and the locations of
notches where other pieces adjoin. After these drawings
were made, the designer recreated the sketches in FlatCAD
by writing a FlatLang program. Figure 3 shows the pro-
gram’s rendering of a single vertical slat.

As work commenced within the CAD tool the designer
needed to make several more drawings (Figure 4). Design-
ers often encounter breakdowns that lead them to “go back
to the drawing board” in order to restate, review and possi-

Figure 3. FlatCAD screen shot of a soap dish
slat in progress.

(a) (b)

Figure 4. Refinement phase sketches drawn
on paper.

bly reform their general approach for solving a design prob-
lem.

Some sketches in the second batch were made to help
understand how variables were related, others were used to
add needed complexity to the parts so they would fit to-
gether well. Even though there was a perfectly good image
of the model on the computer screen, the designer had to
re-draw it on paper before making progress. Many details
already specified in the code (lengths and angles) could not
be exactly transferred to the sketch. After making the draw-
ings, the designer had to translate what was learned from
the sketch back into the FlatLang code.

3 Interaction Techniques

In the earlier use case scenario, it would have been
helpful if the CAD tool enabled users to sketch directly
on the model in order to modify it. The precise na-
ture of the on-screen model provides excellent contextual
clues for supporting recognition. For example, several
sketches refer to variables that exist in the formal model
(e.g. n.thickness in Figure 4(a)) or anonymous dimen-
sions (e.g. the vertical edge indicated with the arrowheaded
line in Figure 4(b)).

Currently, design tools support input done with a key-
board and mouse in a structured user interface consisting
of elements like buttons, pick-lists, dialog boxes, text areas,
and so on. Structured interfaces are designed to minimize or
eliminate ambiguity of user input. Consider the simple task
of enlarging a rectangle. A traditional structured drawing
program is likely to provide control handles, which the user

2
VL/HCC Workshop: Sketch Tools for Diagramming
Herrsching am Ammersee, Germany
15 September 2008
Editors: Beryl Plimmer & Tracy Hammond 48

bpli001
Text Box

(a) Original rectangle

(b) Selecting object reveals ‘handles’

(c) Drag cursor, enlarge to 1/72 inch
accuracy

Figure 5. Enlarging an object using tradi-
tional WIMP interaction.

clicks and drags in order to change an object’s size (Fig-
ure 5(a)).

An alternate strategy is calligraphic interaction, wherein
users draw freehand, ambiguous input [10]. Users may
sketch their intention to resize an onscreen box in many
ways: drawing arrows indicating what should move, or re-
drawing the object entirely. Figure 6 illustrates a hypotheti-
cal interaction technique where a user resizes a rectangle by
redrawing only the portion that must change.

There has been a good deal of research focusing on new
types of design tools based on sketching [4, 7, 13]. In addi-
tion, many projects have explored isolated interaction tech-
niques for calligraphic interfaces [3,11,15]. However, there
are currently no widely used conventions for such interac-
tion, and little is known about what constitutes effective
day-to-day usage.

One prominent challenge with interactive systems is the
“mode problem” [19]: people often are unsure how to
enter an editing mode, or are unaware which mode they
are in. Structured user interfaces can arguably mitigate
this problem more effectively than recognition based in-
terfaces. There are several strategies for handling this in
sketch recognition user interfaces, including the Inferred
Mode Protocol [17], explicit mode selection triggered by
gestures [5, 9], or interactively picking the correct interpre-
tation from a list of several plausible alternatives [6, 15].

(a) Original rectangle

(b) Draw new extents of rectan-
gle, implicitly selecting the particular
edges that will change

(c) The exact size is not precisely
provided

Figure 6. Enlarging an object using calli-
graphic interaction.

4 Engineering

Existing sketching tools produce models for refinement
with other design software. In these cases, the connec-
tion between the sketching and refining tool has been one
way [14]. However, tools that enable iterative sketching
and refinement requires two-way connections. For example,
SimuSketch recognizes drawings of dynamic systems [12].
The recognized model is passed to the SimuLink program
for display and editing. However, modifications made in
SimuLink are not reflected in the sketch.

This work seeks to support such a two-way connection
between informal and formal modes of expressing intent.
Informal sketch input may be provided at one moment, for-
mal commands given the next. The inherent ambiguity of
sketch input must be managed because the user may issue
formal instructions at any time. Say the user has drawn a
shape that may be a rectangle, but may also be an oval.
Next the user selects a ‘resize’ tool and begins to enlarge
the shape. It is unclear what should happen at this point.

This is partly an interaction question, but it is also an
engineering question. The drawing may provide enough
context to disambiguate the shape’s identity. This context
can come in many forms, such as domain awareness [1], or
knowledge of temporal patterns of how people draw [18].

3
VL/HCC Workshop: Sketch Tools for Diagramming
Herrsching am Ammersee, Germany
15 September 2008
Editors: Beryl Plimmer & Tracy Hammond 49

bpli001
Text Box

bpli001
Text Box

5 Summary

A proposed version of FlatCAD aims to support concur-
rent informal and formal modes of input during the refine-
ment phases of design. This will serve as a useful means
for exploring various human-computer interaction topics re-
lated to sketch recognition interfaces. While it is not the fo-
cus of this work, the proposed system also provides a foun-
dation to study engineering topics of how to identify, model,
and use context for the purpose of recognition.

References

[1] C. Alvarado and R. Davis. Dynamically constructed bayes
nets for multi-domain sketch understanding. In Interna-
tional Joint Conference on Artificial Intelligence, 2005.

[2] B. Buxton. Sketching User Experiences. Morgan Kaufmann
Publishers, 2007.

[3] J. Geißler. Gedrics: the next generation of icons. In Pro-
ceedings of the 5th International Conference on Human-
Computer Interaction (INTERACT’95), 1995.

[4] M. D. Gross and E. Y.-L. Do. Ambiguous intentions: A
paper-like interface for creative design. In UIST ’04: ACM
Conference on User Interface Software Technology, pages
183–192, Seattle, WA, 1996.

[5] K. Hinckley, P. Baudisch, G. Ramos, and F. Guimbretiere.
Design and analysis of delimiters for selection-action pen
gesture phrases in scriboli. In CHI ’05: Proceedings of
the SIGCHI conference on Human factors in computing sys-
tems, pages 451–460, New York, NY, USA, 2005. ACM.

[6] T. Igarashi and J. F. Hughes. A suggestive interface for
3d drawing. In UIST ’01: Proceedings of the 14th annual
ACM symposium on User interface software and technology,
pages 173–181, New York, NY, USA, 2001. ACM.

[7] T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: A
sketching interface for 3d freeform design. In ACM SIG-
GRAPH’99, pages 409–416, Los Angeles, California, 1999.

[8] G. Johnson. FlatCAD and FlatLang: Kits by code. In
Proceedings of IEEE Symposium on Visual Languages and
Human-Centric Computing, 2008 (to appear).

[9] G. Johnson, M. D. Gross, and E. Y.-L. Do. Flow selection: A
time-based selection and operation technique for sketching
tools. In 2006 Conference on Advanced Visual Interfaces,
pages 83–86, Venice, Italy, 2006.

[10] J. A. Jorge and E. P. Glinert. Guest editor’s introduction
to “calligraphic interfaces: towards a new generation of in-
teractive systems”. Computers and Graphics, 24:817–818,
2000.

[11] L. B. Kara, C. M. D’Eramo, and K. Shimada. Pen-based
styling design of 3d geometry using concept sketches and
template models. In SPM ’06: Proceedings of the 2006 ACM
symposium on Solid and physical modeling, pages 149–160,
New York, NY, USA, 2006. ACM.

[12] L. B. Kara and T. F. Stahovich. Hierarchical parsing and
recognition of hand-sketched diagrams. In Proceedings of
UIST’04. ACM Press, 2004. 1029636 13-22.

[13] J. A. Landay and B. A. Myers. Interactive sketching for the
early stages of user interface design. In CHI ’95: Proceed-
ings of the SIGCHI conference on Human factors in comput-
ing systems, pages 43–50, New York, NY, USA, 1995. ACM
Press/Addison-Wesley Publishing Co.

[14] J. Lin, M. Newman, J. Hong, and J. Landay. DENIM: Find-
ing a tighter fit between tools and practice for web site de-
sign. In CHI Letters, pages 510–517, 2000.

[15] J. Mankoff, G. D. Abowd, and S. E. Hudson. OOPS: A
toolkit supporting mediation techniques for resolving am-
biguity in recognition-based interfaces. Computers and
Graphics, 24(6):819–834, 2000.

[16] M. W. Newman and J. A. Landay. Sitemaps, storyboards,
and specifications: a sketch of web site design practice. In
DIS ’00: Proceedings of the 3rd conference on Designing
interactive systems, pages 263–274, New York, NY, USA,
2000. ACM.

[17] E. Saund and E. Lank. Stylus input and editing without prior
selection of mode. In UIST ’03: Proceedings of the 16th an-
nual ACM symposium on User interface software and tech-
nology, pages 213–216, New York, NY, USA, 2003. ACM.

[18] T. M. Sezgin and R. Davis. Sketch interpretation using mul-
tiscale models of temporal patterns. IEEE Journal of Com-
puter Graphics and Applications, 27(1):28–37, 2007.

[19] L. Tesler. The smalltalk environment. Byte, 6:90–147, 1981.

4
VL/HCC Workshop: Sketch Tools for Diagramming
Herrsching am Ammersee, Germany
15 September 2008
Editors: Beryl Plimmer & Tracy Hammond 50

bpli001
Text Box

