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Abstract

Many of today’s recognition approaches for hand-drawn
sketches are feature-based, which is conceptually similar to
the recognition of hand-written text. While very suitable for
the latter (and more tasks, e.g., for entering commands),
such approaches do not easily allow for clustering and seg-
mentation of strokes, which is crucial to their recognition.
This results in applications which do not feel natural but
impose artificial restrictions on the user regarding how di-
agrams and single components are to be drawn.

In this paper we propose a recognition approach based
on models, which is designed for the mentioned issue of
clustering and segmentation. All strokes are fed into differ-
ent models, where each model is responsible for a certain
type of primitive, e.g., a line or an arc. The recognition of
a component in the drawing is then decomposed into the
recognition of its primitives, which can be directly searched
for in the models. Finally, the identified primitives are as-
sembled to the complete component.

In several case studies we also show the applicability
and generality of our approach, as very different types of
components can be recognized. Furthermore, the proposed
approach is part of a complete system to sketch understand-
ing which can not only recognize single components, but
can also reason about diagrams as a whole, consisting of a
set of these components.

1. Introduction

Electronic devices supporting free-hand input become
more ubiquitous; recently, Apple released its iPhone and
the very similar iPod touch, both mobile devices which are
controlled by a touch-sensitive display. For several years
Toshiba is selling and upgrading its Protégé series note-
books with can be converted to tablet computers. In in-
dustry, many more examples can be observed. Despite this
technical evolution, often software for such devices is very

basic, using the touch input as a bare replacement for a
pointing device like a mouse, neglecting its special char-
acteristics. While processing of hand-written text is quite
matured (e.g., the hand-writing recognition module from
Microsoft Windows XP Tablet PC Edition), processing of
hand-drawn sketches is not.

In this paper we focus on hand-drawn diagrams, which is
a subset of hand-drawn sketches. Diagrams are composed
of diagram components; both the visual appearance of the
components, and the syntactic and semantic rules for a com-
plete diagram are known. This has an important implication
on the recognizer for diagrams: it can be tailored especially
to the components in question, and does not need to recog-
nize any other components.

The issue of processing hand-drawn diagrams is two-
fold. First, the diagram components drawn on the canvas
must be recognized; then, analysis of the identified com-
ponents takes place (cf. Sec. 2). The latter is closely re-
lated to regular diagram processing (i.e., not hand-drawn);
many matured approaches exist here, and research is still
going on. Examples of such approaches are DiaGen [17],
DiaMeta [18], AToM3 [9], and Fujaba [10], many more ex-
ist. Despite a large body of research produced so far, the
recognition process for hand-drawn diagrams is an open
challenge. It can be described by the question ”Given a set
of strokes drawn on the canvas by the user, what diagram
components are represented by these strokes?”

A challenge included in this question is that of clustering
and segmentation. The former means to decide which dif-
ferent strokes must be combined to make one component.
Segmentation means quite the opposite, regarding whether
the same stroke contributes to more than one component.
Clustering and segmentation are a central point for recog-
nition, because their result must be known to decide about
the actually drawn components, but it can only be known
for sure after the recognition process identified all of those
components; a typical chicken-and-egg problem. Examples
for clustering and segmentation can be seen in Sec. 4.

There are many approaches to recognition, which can be
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arranged in several main categories. There are image-based
approaches, like the one given by Kara [15]. The general
problem here is that segmentation and clustering cannot be
done at all. Kara, for example, therefore combines his ap-
proach with some other technique (marker symbols) to over-
come this drawback.

The largest group of recognizers (regarding references
in literature) are feature-based approaches. The work of
Rubine [20] has to be mentioned here, as it is well-known
and served as basis for several similar recognizers enhanc-
ing his original concept, e.g., [19]. Typically, feature-based
approaches can be easily implemented, and there even exist
frameworks providing recognizers ready for use [19, 14],
which is a big advantage; sketching systems can be quicker
implemented using these recognizers, getting rid of one of
the pitfalls of the field. Nevertheless, segmentation and
clustering are difficult here, too, as it is (in general) not
meaningful to compute features of a stroke if you have not
decided about segmentation yet, and as the value of a fea-
ture can be very different depending on the actual segmen-
tation intended by the user.

In this paper we propose a different type of recognition.
The driving idea was to overcome the mentioned issues.
Nevertheless, it is possible to integrate already existing rec-
ognizers and related approaches in our recognizer. While
useful for image- and feature-based approaches, we do not
rely on training the system in any way. Adding support for
training is subject to future work.

The remainder of this paper is as follows. Sec. 2 briefly
describes the sketch understanding system the proposed rec-
ognizer is integrated in. Sec. 3 discusses the recognizer and
how it works in detail. Sec. 4 shows the case studies we
have performed. Sec. 5 gives related work. Finally, Sec. 6
concludes the paper and describes future work.

2. A sketch understanding system

In [3] we have described a generic sketch understand-
ing system, i.e., it can be tailored to very different diagram
types. Our system is no framework, but a full application;
tailoring is done by specifications, from which source code
is generated. An overview of the architecture of our system
is depicted in Fig. 1. Solid arrows denote the control flow,
rectangles denote processing units, and rounded boxes de-
note data.

The user draws a diagram using the drawing tool, i.e., the
graphical user interface, which generates a set of strokes by
capturing the event stream generated by the stylus, and a
set of text written on the canvas (see Sec. 3.5). The strokes
and the text are used by the recognizer to identify (or rec-
ognize) all represented components. This is the focus of
the current paper. To solve the ambiguities which naturally
arise from the process of recognition, the set of all identified
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Figure 1. Architecture of our sketch under-
standing system [3].

components is then analyzed. As the components are tried
to be added to a complete diagram, syntax and semantics of
this diagram can be checked. Details of this process are de-
scribed in [2]. Furthermore, the recognizer and the analysis
are tailored by the afore-mentioned specification to account
for the specific details of a diagram language.

To satisfy the requirements of an usual application, the
drawing tool is also equipped with editing capabilities, load
and save functions and text input. The latter is currently
subject to research in our group.

3. The model-based recognizer

This section describes the recognizer in detail. Its basic
idea is to decompose a diagram component into its primi-
tives. Then, these primitives are searched for. If found, the
component can be assembled and passed on to the analy-
sis step (see previous section). Decomposition of a compo-
nent into primitives is also done by other approaches like
SkG [7], and Ladder [13] (cf. Sec. 5).

3.1 Specification

A component consists of primitives and constraints on
these primitives, e.g., regarding the length of a line, or the
angle between two lines. In Fig. 2 the specification of an
arrow with an open head and of a rectangle parallel to the
axes is given. A graphical representation of the arrow and
the rectangle, not showing the constraints, is depicted for
clarity.

The arrow consists of three primitives, two for its head,
and one for its shaft. Each primitive and each junction of
primitives has a name (an identifier), as indicated by from,
to and id. The type of the three lines means that they
can be arbitrarily rotated and do not need to run parallel to
the axes. This contrasts to the rectangle; here, we require
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<component name="rectangle">
<primitives>

<line from="ul" to="ur"
type="right" id="top" />

<line from="ll" to="ul"
type="up" id="left" />

<line from="lr" to="ll"
type="left" id="bottom" />

<line from="ur" to="lr"
type="down" id="right" />

</primitives>
</component>

<component name="arrow">
<primitives>

<line type="arbitrary" id="shaft"
from="head" to="tail" />

<line type="arbitrary" id="lineA"
from="head" to="sideA" />

<line type="arbitrary" id="lineB"
from="head" to="sideB" />

</primitives>

<constraint type="fixedlength"
compare="gt" ids="head,tail"
length="80" />

<constraint type="relativelength"
required="true" compare="lt"
ids="head,sideB,head,tail" />

<constraint type="relativelength"
required="true" compare="lt"
ids="head,sideA,head,tail" />

<constraint type="fixedangle"
ids="sideA,head,head" angle="20"
required="true" compare="gt" />

<constraint type="fixedangle"
ids="sideA,head,head" angle="70"
required="true" compare="lt" />

<!-- last two analog for sideB -->
</component>
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Figure 2. XML specification of an axially par-
allel rectangle and an arrow, and graphical
representations.

the four sides to be either vertical (up, down) or horizontal
(left, right).

For the arrow we require some further constraints in or-
der to prohibit any three lines meeting in one junction to
be an arrow. Thanks to the names these constraints can be
easily specified. The first constraint requires the shaft to
be longer than 80 [units]. The next two constraints require
the two lines forming the arrow head to be shorter than the
shaft. These two constraints are also required, which
means that they must be satisfied for a valid component. If
not specified, this attribute is regarded as false, meaning
that the constraint should be satisfied (but does not have to
be) in order to identify a valid component. Finally, the last
two constraints require the angles between sideA and the
shaft to be smaller than 70◦ and larger than 30◦.

Although these two examples use only lines, we cur-
rently support three types of primitives: straight lines (as
in the examples), arcs, and links. Arcs (always assumed as
a quarter of an ellipse lying between the axes of the ellipse,
i.e., fully inside a quadrant of the coordinate system with
the center of the ellipse as origin) are quite similar to lines,
but are not specified by a type, instead having an attribute
identifying the quadrant (1 to 4) where the arc is placed in,
and an attribute telling about the sense of rotation. Links,
on the other hand, simply connect two junctions with an ar-
bitrarily shaped connection in between. For example, for
the shaft of an arrow this is a useful alternative to straight
lines. Using a link, the shaft may have bends and can be
curved. Using a line, as in the example in Fig. 2, requires
the shaft to be straight. We found these three types of prim-
itives sufficient for most domains (cf. Sec. 4). Dashed and
dotted primitives are not supported.

3.2 Models

When the user draws strokes using the stylus on the can-
vas of the drawing tool, the system records these strokes for
the recognition process. Like virtually any other approach,
we regard strokes as sequences of tuples (x, y, t), where x
and y mark a position on the canvas, and t is a timing in-
formation (the elapsed time in milliseconds since the first
tuple in the sequence). Currently we do not use the timing
information.

Fig. 3 shows a conceptual view of the recognizer, which
will be explained in this section. While the user draws, the
system does neither know about clustering and segmenta-
tion, nor does it know what strokes (or part of strokes) are
meant to represent which primitives. To account for this un-
consciousness, each (part of a) stroke must be interpretable
as any available primitive, i.e., as a straight line, an arc, or
a link. To do so, we rely on different models. Each model
represents a certain view on the strokes and interprets them
only regarding its view. The controller can then query the
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Figure 3. Conceptual view of the recognizer.

models for the different primitives. If a model identifies
primitives suitable for the query, it returns them.

Models are not supposed to store strokes directly,
but only preprocessed information required to satisfy the
queries from the controller. Therefore, each model has asso-
ciated a transformer which performs the preprocessing for
exactly this model, i.e., low-level processing of the strokes.
The preprocessing serves two purposes. First, it stores in-
formation in a format suitable for the model, e.g., in the
circle model circles are stored by their center and radius,
and in the line model, straight lines are stored by their end
points. Second, as the transformation takes place, the infor-
mation is inevitably abstracted, thus enabling faster replies
to the queries of the controller.

Additionally, the transformers also know the specifica-
tion and may decide about which strokes to preprocess and
which to discard. This way, the contents of the model can be
adapted to the diagram language, and useless information
can be discarded as early as possible, thus speeding subse-
quent processing. Also part of the preprocessing is to decide
about clustering and segmentation. Depending on the view
of their models, the transformers must decide which strokes
to combine, and which to split.

Until now we implemented five different models. One
for each primitive, one especially designed for identifying
circles, and one for text. Further models are conceivable
and may be added to the system. In the following we dis-
cuss each model in detail, and then discuss the actual recog-
nition process. The text model will be discussed separately
in Sec. 3.5.

As mentioned before, the transformers low-level prepro-
cess (filter, transform, and abstract) the information repre-
sented by the strokes. Fig. 4 shows the original drawing of
a rectangle, a circle and an arrow, and graphical represen-
tations of the models. Preprocessing can clearly be seen by
the bold, black lines, which indicate the data contained in
the respective models.

The line model tries to interpret the whole drawing as
if it consists of straight lines only. Basic vectorization al-

original drawing

line model        arc model          circle model        link model

Figure 4. A simple exemplary sketch and
graphical representations of the four models.

gorithms can be applied for this purpose. We decided for a
very simple one, which proves to work very well and very
fast for practical testing. The transformer applies the fol-
lowing steps on each stroke independently:

1. from a stroke each tuple is discarded which has a dis-
tance smaller than 5 [units] from its predecessor. This
value is a threshold and can be set by the user. As all
other thresholds, its value has been determined empir-
ically by testing.

2. from three remaining consecutive tuples p1, p2, p3 the
transformer discards p2 if the angle between the three
differs no more than 20◦ from 180◦, which is another
threshold. Without the first step, this second step fails,
as most hardware has a very high sampling rate and
usually consecutive samples are next to each other
(distance 1 or

√
2), resulting in angles of 0◦, 45◦, 90◦,

135◦, etc.

3. For each remaining two consecutive tuples, a line is
added to the model from the one point to the other. Fur-
thermore, each of those lines is attached an attribute re-
garding its direction. It can have one of the four values
horizontal, vertical, diagonal ascending to the left, or
diagonal ascending to the right. This attribute is later
used for answering queries by the controller.

Finally, all lines are split at points of mutual intersection,
and information is collected about lines close to each other.

The arc model works very similar to the line model.
The idea here is to approximate each stroke by quarters
of ellipses lying inside quadrants of the coordinate system.
Straight lines are dismissed (cf. Fig. 4). The following steps
are applied to each stroke independently:

1. same as for the line model, step 1.
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2. the list of remaining tuples is split at points where the
sense of rotation changes. Consequently, the resulting
sub-lists always turn left or right.

3. based on the direction of the connection between two
consecutive points, for each sub-list the quarter el-
lipses can be obtained.

Unlike the line model and the arc model, the link model
and the circle model are more driven by heuristics. For the
circle model we implemented a feature-based recognizer
which is able to identify closed circles drawn in one stroke.
This is justified by the observation that most users draw cir-
cles in one stroke indeed, even if not explicitly told to do so.
The transformer works in the following way:

1. if the bounding box of the stroke is more than twice as
high as wide, or more than twice as wide as high, the
stroke is dismissed, i.e., it is not regarded as a circle.

2. using a least-square-error analysis, center, radius, and
span width are calculated.

3. if the span width is less than 300◦, the stroke is dis-
missed.

4. if the actual length of the stroke compared to the cal-
culated length for a perfect circle (regarding the span
width) differs more than 10%, the stroke is dismissed.

5. if three consecutive tuples from the stroke describe
an angle which is too acute (very similar to the line
model), the stroke is dismissed. For this test we ex-
clude the first and last 20% of a stroke, as we found
out that users frequently draw hooks here which in fact
describe acute angles.

All strokes which pass this series of tests are then stored
as circles in the model, saving the center and the radius.
Although the arc model itself contains all information nec-
essary to identify a circle, we decided to add the mentioned
circle model, because we found the arc transformer not be-
ing reliable enough. Adding an additional model is pro-
vided by design: our recognizer approach allows for adding
different transformer-model-pairs for the same primitives,
such that the overall robustness and reliability is augmented.

Finally, the link model regards every stroke as a link,
unless its end points are very close to each other, thus the
stroke forms some closed shape. Additionally, links may be
split at points with a very acute angle. We had to add this
mechanism as we observed that, for example, when drawing
an open-headed arrow some users tended to draw the shaft
(a link) and one of the two lines for the head in one stroke.
To account for this behavior, links must be split at acute
angles.

As this section shows, the actual recognition of strokes
is done by the transformers. Already existing and newly

statement

condition

while loopuntil loop

Figure 5. Diagram components of NSD. One
possibility for common primitives is indi-
cated by bold strokes.

created approaches may be combined with our proposal, by
adding them as new transformer-model pairs just like the
circle model. This means that very much of the research
done so far is orthogonal to our approach, and can be seam-
lessly integrated.

3.3 Recognition

As mentioned before, the controller searches for prim-
itives of a component one after another, until they are all
identified. Then, the component can be assembled. To
speed up processing by avoiding double effort, primitives
common to different components are searched for jointly.
For this purpose we rely on a search plan, which is precom-
puted based on the specification. As an example consider
Nassi-Shneiderman diagrams (NSD). They have a simple
syntax with only four different diagram components, as de-
picted in Fig. 5. Primitives common to all components are,
for example, a vertical line which is, at its upper end, con-
nected to a horizontal line (indicated by the bold strokes
in the drawing). There are other combinations possible as
well.

For NSD, the controller may first search for horizontal
straight lines. Then, in the second step, the mentioned ver-
tical line is searched. In the third step, another horizon-
tal line connected to the vertical line at the lower end may
be searched, and so on. Primitives are searched for jointly
as long as possible, then the search process branches off
search for the primitives of the individual components. The
decision which primitives to search for jointly, and when
to branch off individual components is determined by the
search plan. Because finding an optimal search plan is not
trivial, we rely on some heuristics; in a greedy fashion, for
the next step it is always taken that alternative which pre-
serves the most components for joint search. The search
plan is always a tree, and it is not unique in general. Fig. 6
depicts one possible search plan for NSD. The bold lines
indicate for each node (i.e., step in the search process) that
primitive which was recognized and added last. At every
leaf the last primitive of a component is identified (indi-
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possible: (all)

completed: (none)

possible: (all)

completed: (none)
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possible: condition

completed: statement

possible: condition

completed: (none)
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completed: statement

possible: while, until
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possible: while

completed: (none)

possible: (none)

completed: while

possible: until

completed: (none)

possible: (none)

completed: until

START

Figure 6. One possible search plan for NSD.

cated by completed), and statements are even fully identi-
fied at an inner node. The information which components
are still possible at a given node is actually not required by
the search process, but serves as clarification. For the sake
of simplicity, no constraints are assumed here.

A noteworthy point of the recognition process is that, at
each node, all identified primitives are always connected to
each other. This property is assured when the search plan
is computed. The first primitive of a component which is
searched for (the horizontal line in the example) is not re-
stricted regarding its position on the canvas. The next prim-
itive must then be connected to this first one, i.e., must have
a common junction. The third must be connected to one of
the two previous ones, and so on. This way, the set of al-
ready identified primitives is always connected. The benefit
of this method is that there are – in general – much less al-
ternatives for a primitive if one or more of its junctions are
already known. The recognition process is speeded. Ad-
ditionally, required constraints are checked as soon as all
necessary junctions and primitives are identified. If not sat-
isfied, no further primitives need to be searched for, and this
set of primitives can immediately be discarded. For con-
necting primitives, of course some threshold is applied, as it
lies in the nature of hand-drawing that precision is lacking,
and that there are some gaps in drawings of a component
which is actually solid. Examples can be seen in Fig. 4;
neither the circle nor the rectangle are closed, the lines of
the rectangle and of the arrow are not perfectly straight, the
circle is not evenly rounded.

As it makes no sense to have the same (part of a) stroke
belonging to two different primitives of the same compo-
nent, the controller assures that no part of a stroke is used
twice for one component. It can do so because each model
includes information about parts of strokes in its replies.

3.4 Eliminating double findings

During testing we identified a typical behavior of the rec-
ognizer; the same component is often identified more than
once, each time with slightly different junctions. The sub-
sequent analysis step can handle this, but it is also this step
which takes more time the more components there are. Ac-
cordingly, we have implemented three heuristics to suppress
those double findings. One of two identified components of
the same type (depending on the specification, e.g., state-
ment, condition, while loop, or until loop) is discarded

• if the junctions with the same identifier from the two
different components are very close to each other
(within a range of some pixels).

• if exactly the same parts of strokes are used for both
components, not regarding how they are assigned to
different primitives.

• if the base primitives of both components use the same
parts of strokes. Base primitives are those primitives
where all junctions are connected to other primitives.
For example, an arrow has no base primitives, and a
rectangle has only base primitives.

We equip each identified component with a rating, which
depends on how precisely each primitive is drawn, on how
close the connections at the junctions are, and on how good
the constraints are met. Whenever one of two components
has to be discarded, that one is chosen which has the lower
rating.

3.5 Text

As depicted in Fig. 3, text is also represented as a model,
and can be queried by the controller. After all primitives
of a component are identified, the controller constructs the
regions where text may be added. The necessary informa-
tion again comes from the specification. The controller then
queries the text model and adds the respective texts to the
components. Just like other primitives, text can be speci-
fied as required. In case that some text is required, but not
present, the component is dismissed. Additionally, text can
be checked against regular expressions to allow for some
basic filtering.

To distinguish text from graphics, we do not rely on a di-
vider (a piece of software can perform this determination),
although [19] reports some advances. Instead, the drawing
tool requires the user to explicitly indicate input of text. The
input is then directly transformed to a string representation,
which is fed into the text transformer.
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statement condition

Figure 7. An example of ambiguity resolution
by use of context information. The light gray
lines on the left hand side are regarded as
wrong.

3.6 Analysis

Subsequent to the recognizer, the analysis step is applied.
At this point a common source of ambiguity can be dis-
cussed. As the search plan (Fig. 6) clearly shows, there
is identified a statement for each identified condition. The
system recognizes this ambiguity, but cannot decide for one
component yet. A conceivable meta-rule could suppress
the statement, for example, because the condition has more
primitives, thus gaining a higher rating. However, this rule
does not include the context of the component in question,
which would clearly point out what choice is the right one.
An example is given in Fig. 7. Although the framed com-
ponent looks like a condition, on the left hand side it makes
only sense to regard it as a statement. The two diagonal
lines can be regarded as wrong in this case. On the con-
trary, on the right hand side, the component must be clearly
a condition. No meta-rule could ever distinguish these two
cases. Accordingly, the mentioned resolution is done by the
analysis, which happens subsequent to the recognition of
components. Apart from this example, analysis is not dis-
cussed in this paper, but in [2].

4. Case Studies

This section describes the different examples we have
implemented with our system so far. For each case study,
its visuals are described briefly, and an example drawing
is given. All of these examples are recognized correctly.
Sec. 4.6 reports the performance of the implementation for
each case study, and discusses the lessons learned. These
case studies are intended to show the range of domains
where our approach can be applied, and the speed of our
implementation. A user study which investigates recogni-
tion rates for a large body of participants is subject to future
work.

(a) (b)

(c)

(d)

Figure 8. Examples for the case studies.
(a) Petri net, (b) NSD, (c) logic gate, (d) tic-
tac-toe.

4.1 Petri nets

Also known as place/transition nets, Petri nets are used
to model the behavior of (distributed) systems. The lan-
guage consists of four different component types. Places
are depicted as circles and may contain one or more tokens.
Although tokens are commonly depicted as small filled cir-
cles, we omit the filling and draw tokens as circles, too.
The analysis step (cf. Sec. 2) reliably detects the difference.
Finally there are transitions, which we depict as rectangles,
and open-headed arrows. Arrows connect either a place and
a transition, or a transition and a place, but never two places
or two transitions. Fig. 8 (a) shows a simple Petri net con-
sisting of three places, three transitions, one token, and 8
arrows.

4.2 Nassi-Schneiderman diagrams

NSD are used to visualize structured programs. Its four
different types of components are depicted in Fig. 5 (actu-
ally NSD are more powerful and have more components,
but for the sake of simplicity we assume this subset). An
algorithm for computing the Collatz sequence is given in
Fig. 8 (b). It consists of 6 statements, one loop, and one
condition.

The mentioned figure also shows clustering and segmen-
tation. The left vertical line spanning from the first state-
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ment to the last is drawn in one stroke, although it con-
tributes to four components (two statements, the loop, and
the final statement). Hence this line is segmented. Addi-
tionally, each of these four components requires more lines
than just this vertical line, so the recognizer has to cluster
lines also.

4.3 Logic gates

Common boolean logic can also be expressed graphi-
cally. As operators we assume and, or and not. All of
them are drawn as rectangles, input on the left, output on
the right. and and or are always assumed binary, not
is unary. The operators are distinguished by text written
inside the rectangles. & stands for and, >=1 stands for
or, and 1 stands for not. A small circle, called a bubble,
can be drawn between an operator and its output, which
means that the output is negated. This is mandatory for
not; and and or become nand and nor this way. For
not, a triangle can be drawn instead of the rectangle. In
this case no text is necessary (cf. Fig. 8 (c)). The figure
represents the expression result := not(a and b
or not(c and d) or not(e or f or not(g
and h))). The advantage of the graphical representation
is its clarity for larger expressions.

4.4 Tic-tac-toe

Apart from the technical examples given so far, it is even
conceivable to implement simple paper-based games with
our approach. As an example we have chosen tic-tac-toe,
because it is possible to give suitable rules for the analy-
sis step here, which is, as mentioned before, crucial to our
approach. Using the analysis step, we can also do some
reasoning about game situations (because our system does
not allow for interactivity, you cannot actually play). For
the situation depicted in Fig. 8 (d) the system correctly tells
that it is player X’s turn.

4.5 GUI builder

Another example not regarding a traditional diagram-
ming language is a GUI builder. The idea is to simply draw
a window with some widgets, have the system recognize the
drawing and generate an actual window from the recognized
information. An example is given in Fig. 9. This example
also shows all widgets which we support: combo boxes, text
fields, checkboxes, radio buttons, regular buttons, and slid-
ers. The graphical representation should become obvious
from the drawing. The generated window is made in such a
way that the correspondence to the drawing can be clearly
seen.

Figure 9. Example for the GUI builder. The
right hand side shows the generated window.

4.6 Discussion

To evaluate the performance of our implementation we
used the examples from above. For each case study we
measured the time for recognition (skipping the time for
analysis), using one, four, 7 and 10 copies of the respec-
tive example, thus linearly increasing the load. We repeated
each setting 10 times and used the lowest value (measured
in milliseconds). This is valid because the implementation
is deterministic, and does the same for each run. Extra time
is thus consumed by the operating system.

The result is depicted in Fig. 10. In all cases the time for
processing seems to increase roughly linear with the input.
However, some aspects like matching text to components
is actually not linear, but worse. As the figure shows, the
impact of these aspects is very little. The average time to
recognize one actually drawn component ranges from about
2msec for logic gates to about 16msec for Tic-tac-toe and
NSD. We believe that the small figure for logic gates is due
to the large number of connections between the operators,
which are made by only one link each, and can thus be rec-
ognized very fast. On the contrary, for Tic-tac-toe, and for
NSD, the components are more complex, thus taking more
time to be recognized; the board for Tic-tac-toe consists of
12 primitives, for example.

For NSD we observed that the number of false positives
is very high due to the visual appearance of the single com-
ponents. For example, the recognizer identifies for each two
consecutive statements a third one, omitting the horizontal
line dissecting the two. This issue, and a larger exemplary
diagram consisting of 10 statements, three loops and two
conditions, are discussed in more detail in [3]. Here, the
recognizer identifies 56 components which would be passed
to the analysis step. As an optimization we added an option
to the recognizer, allowing for dismissing a component if it
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Figure 10. Runtime measurements for the five
case studies for a linear increase in load. The
vertical axis shows time in milliseconds, the
horizontal axis shows the number of copies
of the original diagrams from Fig. 8 and
Fig. 9.

contains one or more other components. Enabling this op-
tion, only 25 of the initial 56 components are kept, cutting
the processing time for the full diagram from 2.5 seconds to
0.7 seconds. The correct result was obtained anyway. The
measurements reported in Fig. 10 also make use of this op-
tion. The drawback is that the error tolerance is reduced. In
case of a false positive inside a component, this component
is dismissed, although it may be correct.

Similar to NSD, we face a lot of false positives for the
GUI builder. For example, each rectangle is recognized as
a text field, although most rectangles are part of other com-
ponents as well. However, the analysis step reliably selects
the intended components. In the depicted case in Fig. 9, 28
components are identified, although only 11 are represented
in the generated window. Due to the internal structure used
for generating the window, the effect on the analysis can be
neglected here, as it is not as severe as for NSD.

5. Related work

Conceptually very similar to our approach is that of
Hammond and Davis, LADDER [12, 13]. The details are
different, tough. Their description language allows speci-
fying the same as we do, but additionally, editing behav-
ior and more sophisticated constraints may be given. What
we referred to as required constraints is distinguished as
soft and hard constraints. Components may be defined hier-
archically, using abstract components. Regarding recogni-
tion, they use a rule-based approach. Strokes are classified
as primitives, and added as facts. Recognition of compo-
nents is then represented as rules about the facts. Ambigu-
ity on the level of components is solved by meta-rules, an
analysis step as we have is not provided.

Also closely related to our work is the approach by
Costagliola et al. [7, 8]. Domain-specific recognizers are

generated from grammars in the SkG-formalism. Three lev-
els of recognition are employed: at the lowest level, prim-
itives like lines and arcs are constructed from the input
strokes by the SATIN toolkit [14]. At the next level, the
primitives are grouped into (partial) symbols, each having
an importance rate. Based on this rate and the context, at
the highest level it is finally decided for interpretations, and
conflicting partial symbols may be pruned. The full system
works incrementally. The reported recognition rates typi-
cally exceed 90%, with some exceptions. As a comparison,
recognition rates are also taken without disambiguitation,
which clearly reduces recognition rates.

From the same group as LADDER there are also other
approaches available. [21] uses Hidden Markov Models,
for example. Their recognizer takes into account the spe-
cific drawing styles of individual users. Reported recogni-
tion rates and run times for the recognizer are very good. [1]
uses a Bayes net to reason about diagrams. The approach
relies on three stages; first, there are hypotheses generated
from the input strokes. Second, using the Bayes net it is de-
termined how well these hypotheses fit the data. Third, fur-
ther hypotheses are generated from the result of stage two.
Using this approach it is even possible to recognize compo-
nents only drawn partially, and context of a component may
be considered.

Casella et al. [5, 6] propose a conceptually interest-
ing generic framework for sketch understanding based on
agents. They can include arbitrary symbol recognizers,
but their organization is quite different from our approach.
There is an individual agent for each available component
type, called an SRA (symbol recognition agent). The SRAs
autonomously search for components, but may communi-
cate which each other to exchange context information. A
central agent may solve conflicts between the SRAs. Use
case diagrams from the UML serve as an example. Us-
ing a Java-based implementation, good recognition rates are
reported. Similar to our findings, the result is clearly im-
proved by use of context information.

The low-level framework Cali is based on features [11].
Segmentation cannot be performed, clustering is done auto-
matically if strokes are drawn quickly one after another. All
features calculated depend on the convex hull, the order-
ing of the points (and strokes) is not regarded. The system
detects a small set of primitives (straight lines, rectangles,
circles, wavy lines, etc.) very reliable and very quick, us-
ing fuzzy logic. Training allows to add further primitives,
but it is not clear for which visual appearance of primitives
the applied features of Cali are suitable. Combining prim-
itives into domain-dependent components must be done by
applications utilizing Cali, such as [4], and application for
drawing user interfaces.
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6. Conclusions and future work

In this paper we have proposed an alternative to conven-
tional recognizers, which are based on image-processing
techniques, or based on features. Our approach solves the
issue of clustering and segmentation, and allows for inte-
grating previous work due to its model-based concept. Sev-
eral case studies show that our approach can be applied
to recognize components from very different diagramming
languages. The performance is good on a typical desktop
computer for various sizes of diagrams.

As future work we plan to include more primitives and
respective transformer-model-pairs. Currently we are work-
ing on a model for hatched and solid regions, as these fre-
quently occur in diagramming languages. For example,
transitions in Petri nets are drawn solid, and in architecture
plans and blueprints one can often find hatched regions, e.g.,
for walls.

The integration of mechanisms well-known and under-
stood for other types of recognizers is a completely open
issue, such as training, or mediation techniques [16].

A thorough evaluation of our approach in terms of recog-
nition rate by a user study is also necessary. From our ex-
perience gained so far we have learned that components not
identified by the recognizer are always due to the models
giving improper answers to the queries from the controller.
Hence, the overall concept seems very reasonable and reli-
able, while the transformers miss some information some-
times. The evaluation will have to clarify this assumption.
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