[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

3.4 Options Controlling C Dialect

The following options control the dialect of C (or languages derived from C, such as C++ and Objective C) that the compiler accepts:

In C mode, support all ISO C89 programs. In C++ mode, remove GNU extensions that conflict with ISO C++.

This turns off certain features of GCC that are incompatible with ISO C (when compiling C code), or of standard C++ (when compiling C++ code), such as the asm and typeof keywords, and predefined macros such as unix and vax that identify the type of system you are using. It also enables the undesirable and rarely used ISO trigraph feature. For the C compiler, it disables recognition of C++ style `//' comments as well as the inline keyword.

The alternate keywords __asm__, __extension__, __inline__ and __typeof__ continue to work despite `-ansi'. You would not want to use them in an ISO C program, of course, but it is useful to put them in header files that might be included in compilations done with `-ansi'. Alternate predefined macros such as __unix__ and __vax__ are also available, with or without `-ansi'.

The `-ansi' option does not cause non-ISO programs to be rejected gratuitously. For that, `-pedantic' is required in addition to `-ansi'. See section 3.8 Options to Request or Suppress Warnings.

The macro __STRICT_ANSI__ is predefined when the `-ansi' option is used. Some header files may notice this macro and refrain from declaring certain functions or defining certain macros that the ISO standard doesn't call for; this is to avoid interfering with any programs that might use these names for other things.

Functions which would normally be built in but do not have semantics defined by ISO C (such as alloca and ffs) are not built-in functions with `-ansi' is used. See section Other built-in functions provided by GNU CC, for details of the functions affected.

Determine the language standard. A value for this option must be provided; possible values are

Same as `-ansi'

ISO C as modified in amend. 1

ISO C99. Note that this standard is not yet fully supported; see http://gcc.gnu.org/gcc-3.0/c99status.html for more information.

same as `-std=iso9899:1990'

same as `-std=iso9899:1999'

default, iso9899:1990 + gnu extensions

iso9899:1999 + gnu extensions

same as `-std=iso9899:1999', deprecated

same as `-std=iso9899:1999', deprecated

same as `-std=gnu99', deprecated

Even when this option is not specified, you can still use some of the features of newer standards in so far as they do not conflict with previous C standards. For example, you may use __restrict__ even when `-std=c99' is not specified.

The `-std' options specifying some version of ISO C have the same effects as `-ansi', except that features that were not in ISO C89 but are in the specified version (for example, `//' comments and the inline keyword in ISO C99) are not disabled.

See section Language Standards Supported by GCC, for details of these standard versions.

-aux-info filename
Output to the given filename prototyped declarations for all functions declared and/or defined in a translation unit, including those in header files. This option is silently ignored in any language other than C.

Besides declarations, the file indicates, in comments, the origin of each declaration (source file and line), whether the declaration was implicit, prototyped or unprototyped (`I', `N' for new or `O' for old, respectively, in the first character after the line number and the colon), and whether it came from a declaration or a definition (`C' or `F', respectively, in the following character). In the case of function definitions, a K&R-style list of arguments followed by their declarations is also provided, inside comments, after the declaration.

Do not recognize asm, inline or typeof as a keyword, so that code can use these words as identifiers. You can use the keywords __asm__, __inline__ and __typeof__ instead. `-ansi' implies `-fno-asm'.

In C++, this switch only affects the typeof keyword, since asm and inline are standard keywords. You may want to use the `-fno-gnu-keywords' flag instead, which has the same effect. In C99 mode (`-std=c99' or `-std=gnu99'), this switch only affects the asm and typeof keywords, since inline is a standard keyword in ISO C99.

Don't recognize built-in functions that do not begin with `__builtin_' as prefix. See section Other built-in functions provided by GNU CC, for details of the functions affected, including those which are not built-in functions when `-ansi' or `-std' options for strict ISO C conformance are used because they do not have an ISO standard meaning.

GCC normally generates special code to handle certain built-in functions more efficiently; for instance, calls to alloca may become single instructions that adjust the stack directly, and calls to memcpy may become inline copy loops. The resulting code is often both smaller and faster, but since the function calls no longer appear as such, you cannot set a breakpoint on those calls, nor can you change the behavior of the functions by linking with a different library.

In C++, `-fno-builtin' is always in effect. The `-fbuiltin' option has no effect. Therefore, in C++, the only way to get the optimization benefits of built-in functions is to call the function using the `__builtin_' prefix. The GNU C++ Standard Library uses built-in functions to implement many functions (like std::strchr), so that you automatically get efficient code.


Assert that compilation takes place in a hosted environment. This implies `-fbuiltin'. A hosted environment is one in which the entire standard library is available, and in which main has a return type of int. Examples are nearly everything except a kernel. This is equivalent to `-fno-freestanding'.


Assert that compilation takes place in a freestanding environment. This implies `-fno-builtin'. A freestanding environment is one in which the standard library may not exist, and program startup may not necessarily be at main. The most obvious example is an OS kernel. This is equivalent to `-fno-hosted'.

See section Language Standards Supported by GCC, for details of freestanding and hosted environments.

Support ISO C trigraphs. The `-ansi' option (and `-std' options for strict ISO C conformance) implies `-trigraphs'.

Attempt to support some aspects of traditional C compilers. Specifically:

You may wish to use `-fno-builtin' as well as `-traditional' if your program uses names that are normally GNU C built-in functions for other purposes of its own.

You cannot use `-traditional' if you include any header files that rely on ISO C features. Some vendors are starting to ship systems with ISO C header files and you cannot use `-traditional' on such systems to compile files that include any system headers.

The `-traditional' option also enables `-traditional-cpp', which is described next.

Attempt to support some aspects of traditional C preprocessors. Specifically:

Allow conditional expressions with mismatched types in the second and third arguments. The value of such an expression is void. This option is not supported for C++.

Let the type char be unsigned, like unsigned char.

Each kind of machine has a default for what char should be. It is either like unsigned char by default or like signed char by default.

Ideally, a portable program should always use signed char or unsigned char when it depends on the signedness of an object. But many programs have been written to use plain char and expect it to be signed, or expect it to be unsigned, depending on the machines they were written for. This option, and its inverse, let you make such a program work with the opposite default.

The type char is always a distinct type from each of signed char or unsigned char, even though its behavior is always just like one of those two.

Let the type char be signed, like signed char.

Note that this is equivalent to `-fno-unsigned-char', which is the negative form of `-funsigned-char'. Likewise, the option `-fno-signed-char' is equivalent to `-funsigned-char'.

These options control whether a bit-field is signed or unsigned, when the declaration does not use either signed or unsigned. By default, such a bit-field is signed, because this is consistent: the basic integer types such as int are signed types.

However, when `-traditional' is used, bit-fields are all unsigned no matter what.

Store string constants in the writable data segment and don't uniquize them. This is for compatibility with old programs which assume they can write into string constants. The option `-traditional' also has this effect.

Writing into string constants is a very bad idea; "constants" should be constant.

Do not promote single precision math operations to double precision, even when compiling with `-traditional'.

Traditional K&R C promotes all floating point operations to double precision, regardless of the sizes of the operands. On the architecture for which you are compiling, single precision may be faster than double precision. If you must use `-traditional', but want to use single precision operations when the operands are single precision, use this option. This option has no effect when compiling with ISO or GNU C conventions (the default).

Override the underlying type for `wchar_t' to be `short unsigned int' instead of the default for the target. This option is useful for building programs to run under WINE.

[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

This document was generated by Vincent Chung on June, 26 2001 using texi2html