Leigh Christensen’s Sculpture “Mainframe”

Leigh Christensen’s computer sculpture was inspired by the “logic circuits” that
are used in the design of computers. As well as looking great, the sculpture
actually works! It is a circuit that adds together two small numbers to produce
their sum.

Operating the Sculpture

We have to go into computer concepts a little to understand what the sculpture
actually accomplishes before we can operate it sensibly.

The sculpture, like a computer, deals with “binary” numbers. Binary numbers
restrict the digits in numbers to just two - 0 and 1 - from the usual ten digits 0, 1,
2,3,4,5,6,7,8,9. These two “binary digits” are called “bits”, for short. The
sculpture adds any two binary numbers of only two bits each. With binary
numbers, the rightmost bit represents 1, the next to the left represents decimal
2. There are only four 2-bit binary numbers 00, 01, 10, 11 representing decimal
numbers 0 (0+0), 1 (0+1), 2 (2+0), 3 (2+1).

The sculpture can add any two of these 2-bit numbers. The largest possible two
numbers to be added are both 3 (in decimal) so the largest possible sum can be 6
(and the smallest, of course, 0.) Decimal 6 is larger than the biggest 2-bit binary
number so to the sum needs an extra leftmost bit, representing decimal 4. The
“hardest” sum that the sculpture can undertake is, in decimal: 3+3 = 6, in binary:
11+11=110.

Where the sculpture differs from real computers is how the bits themselves are
represented. Computers use electricity, voltages, or currents. The sculpture
makes do with ball-bearings running in wooden grooves (slots or races or paths)
routed into the planks from which the sculpture is constructed. To distinguish
the two possibilities a large ball-bearing represents the bit 1, and a small ball-
bearing the bit 0.

When not is use the ball-bearings of the two sizes are held in racks on each side
of the panel on the top plank of the sculpture. When ready to work the two input
number’s ball-bearings are loaded into the holes in the top centre. The input
numbers are one above the other, let’s call them top and bottom with bits t2, t1
and b2, b1 respectively.

When the sculpture is operated the sum eventually will appear on the lowest
plank. There will be three ball-bearings representing the sum - let’s call the
result bits s4, s2, s1 - representing 4 or 0, 2 or 0 and 1 or 0, respectively.

As there are two separate inputs, each of which can represent four different
numbers 0, 1 2 or 3, there are 16 different distinct input combinations. We can
summarize the sums expected for each possibility in a table:

top bottom sum

decimal binary decimal binary decimal binary

t2 t1 b2 bl s4 s2
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0
0 0 0 2 0 0 2 0 1
0 0 0 3 0 0 3 0 1
1 0 0 0 0 0 1 0 0
1 0 0 1 0 0 2 0 1
1 0 0 2 0 0 3 0 1
1 0 0 3 0 0 4 1 0
2 0 0 0 0 0 2 0 1
2 0 0 1 0 0 3 0 1
2 0 0 2 0 0 4 1 0
2 0 0 3 0 0 5 1 0
3 0 0 0 0 0 3 0 1
3 0 0 1 0 0 4 1 0
3 0 0 2 0 0 5 1 0
3 0 0 3 0 0 6 1 1

Before the sculpture can be operated it has to be initialized if
there is to be any hope of getting the correct answer. Some
places - 19 in all - in the sculpture must be set up with ball
bearings. All such places are marked quite clearly with two
circles showing where large and small ball bearings must be
located (except for one on the 34 plank down on the right.)

There are also some elements in the circuit - 16 in all - that
have a lever that needs to be “set”. These are marked either
“AND” or “OR”, with the set position clearly indicated.

With all the initialization complete the sculpture is ready to
work. Insert ball bearings for your selected top and bottom
inputs. To release the ball-bearings move the knob next to
the inputs to the right. Hopefully, after quite a period of time,
the correct sum will appear on the bottom plank.

If all is OK you may try some other input numbers, but be sure to remove all ball
bearings from the circuit where they are not supposed to be, initialize the 19
pairs of ball-bearings and check that all of the 16 gates are set. It is easy to miss
removing one of the small ball-bearings from a hard-to-see place in the circuit -
be guided by the total numbers of each size of ball-bearing - 19 for initializing
plus the 4 in the full “input rack” - if you cannot initialize fully there will be a
ball-bearing to be located somewhere.

How it works
The circuit elements

Because both 0 and 1 are represented by ball-bearings, every path in the circuit
must eventually be traversed by only one ball bearing that represents the value
that the corresponding “wire” would have in a real computer circuit. (The only

oHrorHrHFH,FOHROOHOHMFEHOKOR

exception are the channels leading into “and” and “or” gates that are traversed by
two ball-bearings, as we will explain later.) Because there are many more paths
than ball bearings to start with, a large number of the circuit elements are “fan-
outs” that duplicate the incoming ball bearing. Here is another example of a “fan-
out:

The fan-out must pre-loaded with both a small and a large ball-
bearing. The incoming bearing (of either size) rolls down the
incoming slope from left to right (in this case, but some work from
right to left). If the ball is a small one it falls down the narrow
vertical shaft, if large it skips over the narrow shaft and falls down
the wider shaft. In either case the ball hits a lever, releases a ball of
the same size into the shaft on the left, and then continues to fall
along the shaft to the right. In either case the affect is that there are
now be two balls of the same size as the input ball, running down
different paths.

The output balls are lower than the fan-out itself. In three places the
sculpture needs the copy to be at a higher level. In these cases there
is a modification using “rods” to release the copied ball at a higher
level - as in the example alongside. In one case the same type of
element is used to transfer a bit “up” in the circuit without
duplication.

The real work of the circuit is done by the “and”, “or” and “not”
gates. Consider the typical “and gate”. The two input balls both roll
into the common single input slope that, in this example, runs down
from left to right inside the wooden plank. As with the fan-out, a
small ball will fall down the narrow shaft and a large ball down the
wider shaft. The gate has to be set so that the first small ball to come
along will fall straight through to the output giving a result of 0 - in
passing the ball changes the setting so the any following small ball is
trapped so that there is only one output ball.

The first large ball is trapped at the bottom of its shaft and goes nowhere. If there
is a second large ball then the presence of the first ball will allow the second to

roll to the output. So, only in the case of two inputs of “1” will the output be “1”.
We can summarise the working of the “and gate” in a table.

or
and) t tout
inputs output INpUts outpu
0 0 0
0 0 0
0 1 1
0 1 0
1 0 1
1 0 0 1 1 1
1 1 1

e s E’
The or-gate is similar. But, in this case, the trap allows the t"«" N ‘ /&

first large ball through, catching any second large ball.
The first small ball is held so that only a second small ball
continues to the output. So, the only case when a small
ball is output is when there are two small balls input -
two Os give a 0 output.

The not gate is like a fan-out in that it has to be pre-
loaded with a ball of each size, but the input ball causes
the output to be a ball of the other size. The input ball is
retained.

not

input output
0 1
1 0

The “circuit”

Considering the circuit as a whole, it is really quite

straightforward. The section on the right calculates xor

the bit s1 of the sum. This depends only on the tt bl s1
rightmost bits t1 and b1 of the inputs. Ignoring bits b2
and t2, the table showing the sum is as on the right.
The output bit is 1 only when the one of the inputs is
1, but not both. This is called an “exclusive or”. We’ll
look into that a little later.

= = O O
= O = O
oOr B+~ O

For now we need to note that the right side of the circuit also calculates whether
it is necessary to carry 1 from the addition of t0 and b0. This only occurs when
both t1 and b1 are 1. This can be obtained as the “and” of t0 and b0. Let’s call
this c2 (which actually represents either 2 or 0 to be added to t1 and b1.) The
circuit on the right already finds this value so it is “fanned-out” but the copy is
made at a higher level.

This value c2 is added to a2 and b2 to produce the bits s4 and s2 of the sum in
the left hand section of the circuit. Multiple copies of c2 are needed so it
immediately drops down to a fan-out, one branch of which is fanned-out again
but transferred to the top.

If we look at the top left of the circuit:

we can see the three inputs t2, b2 and c2 that are to be summed. t2 and b2 are
fanned out a number of times to produce multiple copies. Note the cross-overs to
ensure that colliding balls do not get stuck. (Collisions are still possible at the
inputs to the gates, however!)

The extreme left of the left part of the circuit is

also quite simple and works out s4 which mustbe inputs output
1 only when at least two of t2, b2 and c2 are 1. t2 b2 c2 s2

The middle part of the circuit (the right of the left) 0
has to find s2 and this is much more complicated.
The goal is simple enough - s2 can only be true if
one or three of t2, b2 and c2 are 1, as in the table.
You might notice that the top four rows are just
like the exclusive-or that was needed on the right
hand side. In fact, what is needed is called the
exclusive or of the three bits t2, b2 and c2.

H R H~HRFROOO

HH,OOKKHEOO
HOHLOFH,ORO
P OORFRLORRKRLO

More details

You can certainly test the sculpture on all inputs to show that it works correctly.
More understanding probably needs a little knowledge of Boolean algebra, which
is now assumed.

The right hand side, that takes the inputs t1 and b1 only, actually calculates:
(t1 xor b1) = ((not (t1 and b1)) and (t1 or b1)).

That is, firstly the inputs t1 and b1 are duplicated. One pair is used to find (t1
and b1), the other to find (t1 or b1). The carryout is found by duplicating (t1
and b1), sending one copy up to the left part of the circuit. The other copy of (t1
and b1) is inverted in a not-gate and its output is anded with the value (t1 or
b1).

The left of the sculpture calculates s4 and s2 from the three inputs t2, b2 and c2.
Four copies of each of the three inputs are created by fan-outs.

On the extreme left, to find s4 = (a2 and b2) or (b2 and c2) or (c2 and a2) the
work is performed as:

s4 = (((a2 and b2) or (a2 and c2)) or (b2 and c2)).

The middle of the circuit, finding s2, is more complex. The right of the middle
finds (b2 xor c2) which is transferred up to the top as input to another exclusive-
or with a2 to find s2 = (a2 xor (b2 xor c2)) as required. These two central xors
have the same form - the rightmost forms (b2 and c2), then (not (b2 and c2))
and then uses two ands and an or to find ((b2 and (not (b2 and c2))) or ((not
(b2 and c2)) and c2)) which is (b2 xor c2) as required. This is then used in
another xor cascade as input along with a2 to find, finally, s2 = (a2 xor (b2 xor

c2)).
How realistic is the sculpture?

Clearly not! But how about the concepts involved? Certainly real computers use
binary numbers, they use and, or and not gates so at this level the sculpture
mirrors reality and illustrates it well. You will notice one aspect of the sculpture
that is very life-like. Everything happens at once - computer circuits are
extremely parallel devices. However, you will also notice that there is serial core
to the circuit, with operations flowing from right to left, which constrains the
speed of operation.

The circuit itself is perhaps typical of very early computers where the goal was
getting it working and reducing cost rather than speed. Modern computers tend
to use more circuitry so that addition can be much faster - the time to add two
64-bit binary numbers is often the same as the computer’s cycle-time - a
machine rated as 5 GigaHertz will complete such an addition in 200 picoseconds.

Real circuitry offers some advantages over ball-bearings. A modest fan-out of
about 4 from any gate is possible without any special circuitry, the not of a
circuit input is often available for no extra cost, it is possible for both and-gates
and or-gates to have more than 2 inputs and it is often possible to just join wires
together to make an “or” without a special or-gate being needed.

So, in modern terms the likely arrangement of a circuit would implement
(writing the “wired-ors” as + and “not” as -):

Level 1:
sl=((tland (-b1))+((-tl)and b1))

s20 = ((t2 and (- b2)) + ((- t2) and b2))

s40 = ((t4 and (- b4)) + ((- t4) and b4))

c2=tlandbl

c4 = (t2and b2) + (-t2 and b2 and t1 and b1) + (t2 and - b2 and t1 and b1)
Level 2:

s2 =((s20 and (- c2)) + ((- s20) and c2))

s4 = ((s40 and (- c4)) + ((- s40) and c1))

The longest path in this involves only two gates as opposed to the ten, or so, in
the sculpture. It would be a lot faster than the sculpture but nowhere near as
spectacular!

