
COMPSCI 777 S2 C 2004
Computer Games Technology

—A* Path Planning—

Hans W. Guesgen
Computer Science Department

COMPSCI 777 S2 C 2004 Computer Games Technology

The Path-Planning Problem

• What kind of problem is path planning?

• A planning problem?

• A search problem?

• A special search problem?

Hans W. Guesgen 1

COMPSCI 777 S2 C 2004 Computer Games Technology

Path Planning as Informed Search

• Given a start and a goal, find a path that is optimal with respect to
given criterion.

• Informed search uses problem-specific knowledge to finding such a path.

• Usually, the knowledge is encoded in an evaluation function that returns
a number indicating the desirability of expanding the node.

• When the nodes are ordered so that the one with the best evaluation is
expanded first, the resulting strategy is called best-first search.

Hans W. Guesgen 2

COMPSCI 777 S2 C 2004 Computer Games Technology

The A* Algorithm

• The algorithm uses an evaluation function f(N) = g(N) + h(N).

• g(N) denotes the costs so far, i.e., the costs to get from the start to the
current position.

• h(N) denotes the estimated cost to the goal, i.e., an approximation of
the costs from the current position to the goal.

• h(N) is an admissible heuristic, i.e., it never overestimates the actual
cost of the best solution through N .

• A* search is complete and optimal.

Hans W. Guesgen 3

COMPSCI 777 S2 C 2004 Computer Games Technology

Graceful Decay of Admissibility

• For some problems, the only way to always avoid overestimating the cost
to reach the goal is to set h to zero, which leads to uniform cost search.

• On the other hand, if h rarely overestimates the actual cost to reach the
goal by more than δ, then the algorithm will rarely find a solution whose
cost is more than δ greater than the cost of the optimal solution.

• This might be good enough for most computer games applications.

Hans W. Guesgen 4

COMPSCI 777 S2 C 2004 Computer Games Technology

Pseudo-code for the A* Algorithm

1. Let S be the starting point.

2. Assign f , g, and h values to S.

3. Add S to the Open list. At this point, S is the only node on the Open list.

4. Let B be the best node from the Open list (best node has the lowest f -value).

(a) If B is the goal node, then quit (a path has been found).

(b) If the Open list is empty, the quit (a path cannot be found).

5. Let C be a valid node connected to B.

(a) Assign f , g, and h values to C.

(b) Check whether C is on the Open or Closed list.

i. If so, check whether the new path is more efficient (lower f -value).

If so, update the path.

ii. Otherwise, add C to the Open list.

iii. Repeat Step 5 for all valid successors of B.

6. Put B on the Closed list and repeat from Step 4.

Hans W. Guesgen 5

COMPSCI 777 S2 C 2004 Computer Games Technology

Some Heuristics

• Given current node N = (Nx, Ny) and goal node G = (Gx, Gy)

• Euclidean distance:

h(N) =
√

(Nx − Gx)2 + (Ny − Gy)2

• Manhattan distance:

h(N) = |Nx − Gx| + |Ny − Gy|

• The Manhattan distance might not be admissible.

Hans W. Guesgen 6

COMPSCI 777 S2 C 2004 Computer Games Technology

Partitioning the Space

Rectangular grid Quadtree

Hans W. Guesgen 7

COMPSCI 777 S2 C 2004 Computer Games Technology

Successors in Rectangular Grids

Edge neighbors Vertex neighbors

Hans W. Guesgen 8

COMPSCI 777 S2 C 2004 Computer Games Technology

The A* Explorer

• Written by James Matthews of
Generation5.

• Good for exploring various
aspects of the A* algorithm.

• Available from the course
website.

Hans W. Guesgen 9

COMPSCI 777 S2 C 2004 Computer Games Technology

Designing a Path-Finding Engine

• Players will complain if the computed paths are not appropriate, which
means that good path planning is essential.

• Good path planning is expensive but has to fit into the allocated CPU
time (to avoid “game freeze”).

• A path-finding engine might have to perform time-sliced path planning
to compute good path in reasonable time.

Hans W. Guesgen 10

COMPSCI 777 S2 C 2004 Computer Games Technology

Island Search (Dillenburg)

• Search with subgoals (islands) can reduce node expansions.

• It has potential for path finding as knowledge of commonly traversed
intersections is often known prior to search.

S
Ga

b

c

Hobson Bay

Waitemata Harbour

Hans W. Guesgen 11

COMPSCI 777 S2 C 2004 Computer Games Technology

Three-Step Path Finding (Higgins)

• Assume the player gives a order to move a unit in the game.

• The player expects the unit to respond quickly, rather than not to move
until a perfect path is computed.

• To achieve this goal, path finding can be divided into three phases:

– Computing a quick path
– Computing a full path
– Computing a splice path

Hans W. Guesgen 12

COMPSCI 777 S2 C 2004 Computer Games Technology

Quick Path

Start

Water

Goal

x

x

• Get a unit moving by using a
high-speed short-distance path
finder, which searches between
3 to 15 tiles towards the goal.

Hans W. Guesgen 13

COMPSCI 777 S2 C 2004 Computer Games Technology

Full Path

Start

Water

Goal

x

x

• Perform a thorough search
from the end of the quick path
to the goal, which is done while
the unit moves.

Hans W. Guesgen 14

COMPSCI 777 S2 C 2004 Computer Games Technology

Splice Path

Start

Water

Goal

x

x

Unit
x

• Use the high-speed path finder
again to compute a better path
from the current position to a
position on the full path.

Hans W. Guesgen 15

COMPSCI 777 S2 C 2004 Computer Games Technology

Iterative Deepening A* Search (IDA*)

• IDA* is based on the same idea as regular iterative deepening:

– Search is performed only to a limited depth.
– If search fails, the depth limit is relaxed.
– Instead of a depth limit, IDA* uses an f -cost limit.

• IDA* usually uses less memory than A*.

• IDA* speeds up the detection of almost-straight paths.

• IDA* improves performance in environments where other agents can
temporarily block paths.

Hans W. Guesgen 16

