
1

Vertex & Fragment shaders
The next big step in graphics hardware
Adds programmability to the previously fixed rendering
pipeline
The OpenGL Shading Language (a.k.a. GLSL, glslang)

Vertex shaders: programs for per-vertex computations
Fragment shaders: program for per-fragment (pixel)
computations

Now standard part of OpenGL 2.0
OpenGL2.0 spec defines how to manage vertex and fragment
shaders
OpenGL Shading Language spec defines the shading language
itself

2

Vertex & Fragment shaders (cont.)

Why?
Demand for more sophisticated effects
“If only I could add this to that on the card…”

Why not before?
Computational power of GPUs is now at a
level where they can execute arbitrary
programs per vertex and pixel fast enough

3

Vertex & Fragment shaders (cont.)

In the beginning…
3D graphics drawn using the CPU only
Gobbles up all CPU power, leaving very little time to
do anything else
CPUs not powerful enough

CPUs are good at everything, instead of excellent at one
thing

Solution: use specialised hardware parallel to the
CPU that can do 3D really well

Rendering pipeline is hardwired

4

Vertex & Fragment shaders (cont.)
Fixed OpenGL rendering pipeline (OpenGL1.5)

A
pplication
M

em
ory

Per vertex
operations

Pixel
unpack

Pixel
pack

Rasterise

Primitive
assembly

Pixel
transfer

Clip
Project

Viewport
Cull

Fragment
processing

Per fragment
operations

Frame buffer
operations

Frame
buffer

Texture
memory

Read
control

Vertices

Pixel groups

Fragments

Textures

5

Vertex & Fragment shaders (cont.)

Fixed pipeline geared towards textured polygons
Colours and normals given per-vertex
Lighting computed per-vertex, interpolated over polygon

For speed, put as much on GPU as possible
But once there, how can we manipulate it?

Linear transformations through modelview matrix
But what about morphing or animation for example?

What if we want to use a different lighting model?
Various tricks to do effects like per-pixel lighting, bump mapping

Gfx card devs start adding extensions like NVidia register combiners
OpenGL starts adding extensions to fixed pipeline to make it more flexible (e.g. depth
textures, texture combining)

Keep adding functions to the fixed pipeline not a viable option
Takes more time to get a function in the standard than it take for people to come up with a
new effect
Gfx card becoming more programmable to decrease hardware development time and reduce
complexity

Make the pipeline programmable

6

Vertex & Fragment shaders (cont.)
Programmable OpenGL rendering pipeline (OpenGL2.0)

A
pplication
M

em
ory

Vertex
processor

Pixel
unpack

Pixel
pack

Rasterise

Primitive
assembly

Pixel
transfer

Clip
Project

Viewport
Cull

Fragment
processor

Per fragment
operations

Frame buffer
operations

Frame
buffer

Texture
memory

Read
control

Vertices

Pixel groups

Fragments

Textures

7

Vertex & Fragment shaders (cont.)

What sort of language?
Low level (like assembler)
High level (like C/C++)

Low level:
Easy to implement assembler
Closer to how the hardware works

Potentially faster hand-tuned code
What if tomorrow’s hardware works differently?

Low level optimisation only
Virtually all OpenGL programming done in high level languages

High level
More difficult to implement compiler
Familiar to most people
High level optimisation
Further removed from hardware

Relies on compiler to produce optimal hardware-specific code
More future-proof

8

Vertex & Fragment shaders (cont.)

Efforts began around 2001

Vertex and fragment program extensions
Low level
Based on assembler

Vertex and fragment shader extensions
High level
Based on C/C++

NVidia Cg language
High level
Based on C/C++

Meanwhile Microsoft Direct3D gets HLSL high level shading language

2004: Vertex and fragment shader extensions promoted to core OpenGL
Called GLSL, or glslang

9

O
penG

L
D

irect3D

Vertex & Fragment shaders (cont.)
GLSL is high level, and requires a compiler
Where to put the compiler?

1. Provide a stand-alone compiler outside of
OpenGL driver which compiles to some
standard assembler, object, or binary format
(done in Direct3D)

Creates a market of shader compilers
Need to define yet another standard
Compiler would need to know how to best
optimise for each gfx card

2. Include compiler in driver which compiles to
some undefined internal hardware-specific
format

Can compile from high level directly to hardware
Compiler optimised for use with cards supported
by the driver
Each gfx card manufacturer needs to make their
own compiler

Decided on 2nd method: compiler in the driver

HLSL shader

HLSL translator

D3D program

D3D driver

Hardware

GLSL shader

OpenGL driver

Hardware

GLSL compiler

10

Vertex & Fragment shaders (cont.)
An example vertex shader
uniform vec3 LightPosition;
const float SpecularContribution = 0.3;
const float DiffuseContribution = 1.0 - SpecularContribution;
varying float LightIntensity;
varying vec2 MCposition;

void main(void)
{

vec3 ecPosition = vec3 (gl_ModelViewMatrix * gl_Vertex);
vec3 tnorm = normalize(gl_NormalMatrix * gl_Normal);
vec3 lightVec = normalize(LightPosition - ecPosition);
vec3 reflectVec = reflect(-lightVec, tnorm);
vec3 viewVec = normalize(-ecPosition);
float diffuse = max(dot(lightVec, tnorm), 0.0);
float spec = 0.0;
if (diffuse > 0.0)
{

spec = max(dot(reflectVec, viewVec), 0.0);
spec = pow(spec, 16.0);

}
LightIntensity = DiffuseContribution * diffuse + SpecularContribution * spec;
MCposition = gl_Vertex.xy;
gl_Position = ftransform();

}

11

Vertex & Fragment shaders (cont.)
An example fragment shader
uniform vec3 BrickColor, MortarColor;
uniform vec2 BrickSize;
uniform vec2 BrickPct;
varying vec2 MCposition;
varying float LightIntensity;

void main(void)
{

vec3 color;
vec2 position, useBrick;
position = MCposition / BrickSize;
if (fract(position.y * 0.5) > 0.5)

position.x += 0.5;

position = fract(position);
useBrick = step(position, BrickPct);
color = mix(MortarColor, BrickColor, useBrick.x * useBrick.y);
color *= LightIntensity;
gl_FragColor = vec4 (color, 1.0);

}

12

Vertex & Fragment shaders (cont.)

Vertex shader
Executed for every vertex while active

Explicit glVertex() call
Implicit vertex calls, e.g. from vertex arrays

Must set the camera-relative position of each vertex
May set any per-vertex information

Fragment shader
Executed for every fragment (pixel) being drawn while active
May set a colour and depth for fragment
May discard the fragment

13

Vertex & Fragment shaders (cont.)

Vertex shader replaces fixed functionality such as:
Vertex transformation (modelview and projection)
Transformation and normalisation of normals
Texture coordinate generation
Texture coordinate transformation
Lighting
Color material application

Vertex shaders limited to single vertex operations
Vertex shaders do not replace:

Perspective divisions
Viewport mapping
Primitive assembly
Clipping
Backface culling
…and more things that depend on knowledge of more than one vertex at a time

Vertex shaders can not access other vertices

14

Vertex & Fragment shaders (cont.)

Fragment shader replaces fixed functionality such as:
Operations on interpolated values
Texture access
Texture application
Fog

Fragment shaders do not replace such things as:
Shading model
Depth test
Alpha blending
Window clipping

Note that many of the things not replaced by fragment shaders can be
disabled
Fragment shaders can not change the position of a fragment, or access
other fragments

15

Vertex & Fragment shaders (cont.)

Vertex and fragment shaders output values to the remaining fixed pipeline
through special variables
Vertex shader must set the position of the vertex in the gl_Position
special variable

Vertex shader can read from gl_Position only after setting it
Vertex shader may also set special variables:

float gl_PointSize: size of point primitives
vec4 gl_ClipVertex: position to use when determining clipping of vertex
against user-defined clip planes

Fragment shader writes to special variables:
vec4 gl_FragColor: colour of fragment
float gl_FragDepth: depthbuffer value of fragment

Fragment shader has access to special read-only variables:
vec4 gl_FragCoord: window coordinates of fragment (including depth value
as computed by fixed pipeline)
bool gl_FrontFacing: set to true if fragment belongs to front-facing primitive

16

Vertex & Fragment shaders (cont.)
Types

a three component Boolean vectorbvec3

a handle for accessing a 2D depth texture with comparisonsampler2DShadow

a handle for accessing a 1D depth texture with comparisonsampler1DShadow

a handle for accessing a cube mapped texturesamplerCube

a handle for accessing a 3D texturesampler3D

a handle for accessing a 2D texturesampler2D

a handle for accessing a 1D texturesampler1D

a 4×4 floating-point matrixmat4

a 3×3 floating-point matrixmat3

a 2×2 floating-point matrixmat2

a four component integer vectorivec4

a three component integer vectorivec3

a two component integer vectorivec2

a four component Boolean vectorbvec4

a two component Boolean vectorbvec2

a four component floating-point vectorvec4

a three component floating-point vectorvec3

a two component floating-point vectorvec2

a single floating-point scalarfloat

a signed integerint

a conditional type, taking on values of true or falsebool

for functions that do not return a valuevoid

17

Vertex & Fragment shaders (cont.)

Booleans
true or false, used for conditionals

Integers
Rarely used, as most computations are done using floats
Mostly meant for loop counts, array indexing
16 bit signed integers
Result of overflow is undefined

Floats
Single precision (32 bits) IEEE floating point values

Vectors
A basic type, not an array or struct

Matrices
A basic type, not an array or struct
Column major order

Samplers
Black box handle for accessing textures

18

Vertex & Fragment shaders (cont.)

Vector components
Components of a vector accessed like fields of a struct

vec3 v;
float xpos = v.x;
float zpos = v.z;

Vector used for position, colour, and texture coordinates
Can use different component names to suit usage:

vec3 col;
float red = col.r;
vec2 texcoord;
float s = texcoord.s;

19

Vertex & Fragment shaders (cont.)

Can create a new vector by using multiple components:
vec4 col;
vec4 othercol = col.rgba; // same as col
vec3 othercol = col.rgb;
vec2 othercol = col.xz;

Components can be “swizzled”:
vec4 othercol = col.abgr;
vec2 othercol = col.rr;

Can assign to selected components:
othercol.r = 1;
othercol.ar = vec2(0.7, 0.4);
otherpos.xy = pos.zz;

Can use indexing to get a component:
col[2] // same as col.b

20

Vertex & Fragment shaders (cont.)

Matrix
Matrix components accessed using array indices

mat4 m;
m[2][3] = 2.0; // 4th element of 3rd column

A column is a vector
vec4 v = m[1]; // sets v to 2nd column

Structures
Like with C++

Arrays
Only 1D arrays are supported
Array size has to be known at compile-time

Size specified by constants or expressions of constants
Array size can be set after declaration:
light lights[];
const int numLights = 2;
light lights[numLights];

Arrays indexed from 0
Bits?

There is no concept of bits making up a basic type
No bit manipulation operations

21

Vertex & Fragment shaders (cont.)

Constructors
Used to convert between types, create a value for a larger type from smaller
types, or reduce a larger type to a smaller type
Convert between scalar types:

bool b = true;
int a = int(b); // int(true) == 1
a = int(2.3);

Convert to a scalar type (picks first component)
vec3 v;
float f = float(v); // assigns v.x to f
int a = int(v);

Vector constructors
vec2 v = vec3(1.2); // v == (1.2, 1.2)
v = vec2(1.2, 3.4);
vec3 w = vec3(v, 5.6); // w = (1.2, 3.4, 5.6)
vec2 q = vec2(w); // drops last components

Matrix constructors
mat3 m = mat3(2.3); // Sets diagonal components to 2.3, rest to 0
vec3 v,w,q;
m = mat3(v, w, q);

22

Vertex & Fragment shaders (cont.)

Structure constructors
struct light {

float intensity;

vec3 position;

};

light lightVar = light(3.0, vec3(1.0, 2.0, 3.0));

23

Vertex & Fragment shaders (cont.)
Type qualifiers

for function parameters passed both into and out of a functioninout

for function parameters passed back out of a function, but not
initialized for use when passed in

out

for function parameters passed into a functionin

linkage between a vertex shader and a fragment shader for
interpolated data

varying

value does not change across the primitive being processed,
uniforms form the linkage between a shader, OpenGL, and the
application

uniform

linkage between a vertex shader and OpenGL for per-vertex dataattribute

a compile-time constant, or a function parameter that is read-onlyconst

local read/write memory, or an input parameter to a function<none>

24

Vertex & Fragment shaders (cont.)

Attribute
Value that is associated with a vertex
Set per-vertex by an OpenGL program
Vertex shader only
Read-only in a shader
Attributes are global in scope in a shader
Standard pre-defined vertex attributes

attribute vec4 gl_Color
attribute vec3 gl_Normal
attribute vec4 gl_Vertex
attrribute vec4 gl_MultiTexCoord0, glMultiTexCoord1, …
etc.

Attributes are defined in a vertex shader, but given a value by an
OpenGL program

25

Vertex & Fragment shaders (cont.)

Uniform
Per-primitive constant value
Give the OpenGL state at the time the primitive is being processed
Read-only, global
Available in vertex and fragment shaders
Defined in a shader, but given a value by an OpenGL program
Some pre-defined uniforms:

uniform mat4 gl_ModelViewMatrix
uniform mat4 gl_ProjectionMatrixInverse
uniform mat4 glTextureMatrixTranspose[gl_MaxTextureCoords]
uniform gl_LightSourceParameters gl_LightSource[gl_MaxLights]

26

Vertex & Fragment shaders (cont.)

Varying
Values that are interpolated over the primitive
Vertex shader computes the values per-vertex
OpenGL interpolates the values over the primitive

Interpolation is perspective-corrected
Fragment shader gets interpolated value for fragment
Global, read/write in vertex shader, read-only in fragment shader
If a varying variable is used by a fragment shader (or the fixed pipeline if no
fragment shader) then the vertex shader must set a value
Some pre-defined varying variables that can be written to in a vertex shader:

varying vec4 gl_FrontColor
varying vec4 gl_TexCoord[]

Some pre-define varying variables that can be read from in a fragment shader:
varying vec4 gl_Color
varying vec4 gl_TexCoord[]

27

Vertex & Fragment shaders (cont.)

In, out, inout
Defines which parameters of a function are input
parameters, output parameters, or both
Value of out parameter is undefined until assigned a
value by the function
Function parameters passed by value

All computations in a function are done on copies, not
affecting the original variables

Value of out and inout parameters copied back out to
original variables when function returns

28

Vertex & Fragment shaders (cont.)
Operators:

29

Vertex & Fragment shaders (cont.)

30

Vertex & Fragment shaders (cont.)

Add, subtract, multiply, divide:
If one operand is a scalar, other a vector or matrix: scalar applied
to each component
With two vectors: component-wise operations
Multiply of two matrices: matrix multiplication
Matrix with vector of same size: matrix-vector multiplication

Equality: vector, matrices, structures are equal if their
components/fields are the same
Comparisons other than equality: only defined for scalars

31

Vertex & Fragment shaders (cont.)

Have the usual statements and expressions
Selection
if (bool-expression)

true-statement

if (bool-expression)
true-statement

else
false-statement

Iteration
for (init-expression; condition-expression; loop-expression)

sub-statement

while (condition-expression)
sub-statement

do
statement

while (condition-expression)

32

Vertex & Fragment shaders (cont.)

Jumps
continue;
break;
return;
return expression;

discard; // fragment shaders only

Discard only used in fragment shaders to discard the current fragment
Processing stops on discarded fragments
Discarded fragments are never rendered

33

Vertex & Fragment shaders (cont.)

Functions
Can define functions

Parameters qualified with in, out, or inout
If unqualified, default is in

Parameters can be qualified as being const
Parameter may be array or structure
If no parameters, parameter list either empty or void
Functions can return a value of any type except array
If no return value, return type is void
Function names can be overloaded, as long as the parameter types are different

Each shader must have a function called main with no parameters and no return:
void main()
void main(void)

When calling a function, values passed to out or inout parameters must be
assignable (“lvalues”)
Recursion is not allowed, and results in undefined behaviour

34

Vertex & Fragment shaders (cont.)

Built-in functions
Lots, check the GLSL spec
Trig: radians, degrees, sin, cos, tan, asin, acos, atan
Exponents: pow, exp, log, exp2, log2, sqrt, inversesqrt
Math: abs, sign, floor, ceil, fract, mod, min, max, clamp, mix, step,
smoothstep
Geometric: length, distance, dot, cross, normalize, ftransform,
faceforward, reflect, refract
Matrix: matrixCompMult
Vector relational: lessThan, lessThanEqual, greaterThan,
greaterThanEqual, equal, notEqual, any, all, not
Texture lookup: texture1D, texture1DProj, texture1DLod,
texture1DProjLod, texture2D, …, textureCube, textureCubeLod,
shadow1D, …
Fragment processing: dFdx, dFdy, fwidth
Random noise: noise1, noise2, noise3, noise4

35

Vertex & Fragment shaders (cont.)

Some of note:
vec4 ftransform()

Vertex shader only
Transforms vertex exactly like the fixed functionality

mat matrixCompMult(mat x, mat y)
Component-wise multiplication of matrices

bvec lessThan(vec x, vec y), greaterThanEqual(), etc.
Component-wise comparisons of vectors

vec4 texture2D(sampler2D sampler, vec2 coord), etc.
Sample a texture
Some differences between usage in vertex and fragment shaders

Noise functions
Fragment shader only
Return a random noise value in the range [-1,1]
Same input gives same random number
No specific implementation defined, but is likely to be something like Perlin noise

Derivatives
Fragment shader only
Computes numerical derivatives, possibly approximately only
No specific implementation defined, only some properties
genType dFdx(genType p), dFdy()

Computes derivative in x or y respectively for input
Rough idea: values of p for neighbouring fragments are used to compute a slope
Higher order derivatives like dFdx(dFdx(p)) or dFdx(dFdy(p)) undefined

36

Vertex & Fragment shaders (cont.)

Preprocessor
Very similar to C preprocessor

#define, #if, etc.
No file-based directives like #include
#version number

Tell compiler what language version shader is written in
Current shader language version is 110

#extension extension_name : behaviour
Tells the compiler how to behave when encountering a
language extension (enable, warn, disable, etc.)

#pragma optimize(on) #pragma optimize(off)
Turn on and off optimisation

// and /* … */ are comments

37

Vertex & Fragment shaders (cont.)

Using shaders in an OpenGL program
Shaders and their state are encapsulated in an
OpenGL object (similar to a texture object)
Shaders are defined as an array of strings
Basic steps for using a shader:

Send shader source to OpenGL
Compile the shader
Create an “executable” by linking compiled shaders
Install the executable as part of the current OpenGL state

Shaders can be compiled at any time, executables
created at any time

38

Vertex & Fragment shaders (cont.)

Create a shader object:
GLuint shader = glCreateShader(GLenum type);

type is GL_VERTEX_SHADER or GL_FRAGMENT_SHADER

Set source code for shader:
glShaderSource(GLuint shader, GLsizei count, const char
**strings, const int *lengths);

Adds an array of strings
lengths is array containing the length of each string; may be NULL to
indicate that all strings are null-terminated

Compile shader:
glCompileShader(GLuint shader);

Delete a shader:
glDeleteShader(GLuint shader);

Deletes shader as soon as it is no longer needed

39

Vertex & Fragment shaders (cont.)

Putting shaders together in an executable program
Create a program object:

GLuint program = glCreateProgram();
Attach shaders to the program:

glAttachShader(GLuint program, GLuint shader);
Link the attached shaders together:

glLinkProgram(GLuint program);
Start using a linked program:

glUseProgram(GLuint program);

A program that is in use can be modified
Modifications will only come into effect when program is relinked

To remove program and return to fixed pipeline:
glUseProgram(0)

Shader may be put in multiple programs
Detaching a shader from a program:

glDetachShader(GLuint program, GLuint shader);

40

Vertex & Fragment shaders (cont.)

Program may contain only a vertex shader, fragment
shader, or both
Program may contain multiple vertex and fragment
shaders [which will be used???]
When linking a vertex shader and fragment shader
together, they must match

Any varying variables used by the fragment shader must be
provided by the vertex shader

Various functions to get info about a program, like:
glGetProgramiv(GLuint program, GLenum pname, T params);

41

Vertex & Fragment shaders (cont.)

Setting attributes
Attributes are defined per-vertex

glVertexAttrib*(GLuint index, T values)
glVertexAttribPointer(GLuint index, int size, GLenum
type, GLboolean normalised, GLsizei stride, const void *pointer);

Attributes are referenced by an index
Before use, must have the index of an attribute

Associate an index with an attribute explicitly before linking:
glBindAttribLocation(GLuint program, GLuint index, const
char *name);

Or if not bound before linking, an index will be assigned by OpenGL; get
index using:

glGetAttribLocation(GLuint program, const char *name);

To get info about an attribute in use by a program:
glGetActiveAttrib(GLuint program, GLuint index, GLsizei
bufSize, GLsizei *length, int *size, GLenum *type, char
*name);

Attribute index 0 is always gl_Vertex

42

Vertex & Fragment shaders (cont.)

Setting uniforms
Similar to attributes
Not set per-vertex, but per-primitive (outside glBegin()…glEnd())
To set a uniform value:

glUniform*(int location, T value);

Get the location of a uniform:
glGetUniformLocation(GLuint program, const char *name);

Get info about a uniform that is in use by a program:
glGetActiveUniform();

Setting texture samplers
Texture samplers are uniforms
Bind a texture and make it active as usual (glBindTexture(), glActiveTexture())
Get the location of the sampler with glGetUniformLocation()
Set the sampler to the texture unit with glUniform1i()

43

Vertex & Fragment shaders (cont.)

Getting info from the compiler and linker
After compiling:

glGetShaderInfoLog(GLuint shader, GLsizei bufSize,
GLsizei *length, char *infoLog);
Returns errors, warnings, etc. from the last compile
Get needed buffer size from glGetShaderiv();

After linking:
glGetProgramInfoLog()
Use glGetProgramiv() to get needed buffer size

