
1

Collision detection

Collision detection is about finding where and
when two objects intersect
Main problems:

An accurate collision detection requires checking
each polygon against all other polygons: O(Np

2),
where Np can be tens of thousands of polygons, every
frame!
Computing the actual time of collision, not just
whether or not two objects are currently intersecting
Finding the contact point, where two objects first hit
each other

2

Collision detection (cont.)
Solutions to the complexity problem:

Broad phase + narrow phase
Broad phase does culling to quickly get rid of many obviously non-
colliding objects
Narrow phase checks for intersection of remaining objects

Single phase
Use subdivision so that search space for any object is limited to its
neighbourhood

Spatial and temporal coherence
Amount of change between frames is small, so reuse results from
previous frames instead of starting from scratch every time
Speed of objects is often limited, which sets a minimum time two
objects are guaranteed not to collide

3

Collision detection (cont.)

Broad phase detection
Like visibility culling: use a simple test to quickly
remove object pairs which definitely will not intersect
Test with simple bounding volumes
Don’t test objects which are more than some number
of grid squares away from each other
Only test objects which matter in the current state of
the game, such as only objects (almost) visible to the
player

4

Collision detection (cont.)

The fixed timestep problem:
If intersection calculations are performed only at each
frame time update, collisions may be missed. An
object with high velocity may have moved completely
through another object within the time step.

static wall

moving object
at frame k

at frame
k+13

at frame
k+2

at frame
k+1

moving
objects
at frame

k

moving
objects
at frame

k+3

5

Collision detection (cont.)

Must compute an accurate collision time,
generally better than frame time step resolution

Wrong collision time can produce different response

static wall

moving object
at frame k

moving object
at frame k+1
(incorrect)
(correct)

moving object
at frame k+2

(correct)
(incorrect)

moving object
at frame k+0.875

6

Collision detection (cont.)

Solutions to the time step problem
Swept volume: as an object moves over a time step, it
sweeps out a volume. Check intersection between
pairs of such swept volumes

Possibly use simple bounding volumes around the swept
volume as a broad phase step before doing more accurate
intersection computation
If there are multiple intersection points, pick the one with
smallest t (time) value

7

Collision detection (cont.)

Swept volume example
Sphere moving in a straight line in a time step T sweeps out
a cylinder capped at both ends with a hemisphere

Start point of cylinder is initial sphere position P(0)=(x0,y0,z0)
End point is P(t)=(x0,y0,z0) + (vx0,vy0,vz0) t

sphere at t = 0

sphere at t = T

8

Collision detection (cont.)

Swept volume example
Sphere moving in a curved path (e.g. gravity). Use a
bounding volume, such as a cylinder or oriented box

Could use (approximate) tangent at the halfway point of the
path to orient the bounding volume

If path is simple, such as a quadratic, can often compute a
tighter bounding volume by using its mathematical properties

9

Collision detection (cont.)
If path is not known exactly (e.g. predicting collision ahead of
time), limits on the object’s motion create a bounded volume

For example in point in 2D
Initial position P(0)=(x0,y0)
Initial velocity P’(0)=(vx0,vy0)
Say acceleration is bounded in magnitude over the time step
|P’’(t)| ≤ f, 0 ≤ t ≤ T
Path is defined by the equation of motion with acceleration
P(t) = P(0) + P’(0) t + 1/2 P’’(t) t2

Then change in position over time step is bounded by
|P(t) – (P(0) + P’(0) t)| ≤ (f/2)t2, 0 ≤ t ≤ T

x

t

P(0)

P(0) + P’(0)t

x

y

t

P(0)

P(0) + P’(0)t

P’(0)

P(t) within this disk

10

Collision detection (cont.)

Collision detection with axis-aligned bounding boxes
(AABB)

Simple to test for intersection of two AABBs
Given two AABBs A and B, they do not intersect if:

(AXmax < BXmin) || // A entirely left of B
(AXmin > BXmax) || // A entirely right of B
(AYmax < BYmin) || // A entirely below B
(AYmin > BYmax) || // A entirely above B
(AZmax < BZmin) || // A entirely in front of B
(AZmin > BZmax) // A entirely behind B

This implies that two AABBs intersect if and only if they
overlap in all 3 dimensions

11

Collision detection (cont.)
Can reduce the number of AABB pairs to check by using a sort and
sweep approach

1. Maintain a sorted list in each dimension of AABB start and end positions.
2. Sweep through each sorted list and build a second “active” list for each

dimension. Whenever a “start” value is encountered, add that interval to
the active list. Whenever an “end” value is encountered, remove that
interval.

3. When an interval is added to the active list add all the object pairs to a
“pair list”.

4. Compare the object pairs in each dimension’s pair list. Pairs that exist in
the pair list for all 3 dimensions intersect. Those that don’t, do not
intersect.

5. As objects move, each extent list must be resorted. Due to spatial
coherence changes will be small, so fast sorting methods which work on
almost-sorted lists can be used.

12

Collision detection (cont.)

x

y

5

4

3

2
1

Sorted list of X extents

s1 e1 s2s3 s5 s4e3 e4e5e2

Active X list

I1 I3 I2
I3

I5 I4
I5

I2 I4ØØ

Pairs list of overlapping extents in X dimension: (2,3), (4,5)

s1

e1

s2
s4

s3
s5

e2

e4

e3
e5

Sorted
list of

Y extents

I1
I1 I2

I1 I2 I4
I2 I4

I4
I4 I3

I4 I3 I5
I3 I5

I5

Active
Y list

Pairs list
of

overlapping
extents

in Y
dimension:

Intersection of
X pairs list

and
Y pairs list:

(4,5)

(1,2)
(1,4)
(2,4)
(3,4)
(3,5)
(4,5)

13

Collision detection (cont.)
AABB are fast to compute and check, but can be a poor fit

May need to recompute AABB when object rotates or animates
Collision detection with AABB is simple

Oriented bounding boxes (OBB) give a better fit, but are computationally
more complex

OBB remains constant with rotation
OBB for non-animated objects can be computed offline
OBB collision detection less simple

Choice is a balance between extra cost of doing OBB compared with AABB,
and the savings made by fewer narrow phase checks

AABB OBB
14

Collision detection (cont.)
Broad Phase collision detection with OBBs:
Separating Axis Theorem (SAT)
For 2 arbitrary, convex, disjoint polyhedra, A
and B, there exists a separating axis where
the projections of the polyhedra, which form
intervals on the axis, are also disjoint
If A and B are disjoint, then they can be
separated by an axis that is orthogonal to
either:

1. a face of A
2. a face of B
3. an edge from each polyhedron

A

B

A
B

A B

separating
axis

15

Collision detection (cont.)
In 3D there are maximum of 15 separating axes that may need testing.

3 axes orthogonal to the 3 orthogonal faces of A
3 axes orthogonal to the 3 orthogonal faces of B
9 axes orthogonal to an edge of A and an edge of B

Project OBBs onto separating axis and check if their projections overlap
If no overlap for any separating axis, OBBs don’t overlap
Optimisation for first 6 cases: projection of OBB with orthogonal face is that
orthogonal face
Last 9 cases occur relatively rarely, so could consider not doing them and rely on
narrow phase detection for final decision

16

Collision detection (cont.)

Broad phase collision detection with spatial partitioning
Assume one or both of potentially colliding objects have a spatial
partitioning

Regular grid
Bounding volume tree (spheres, AABB, OBB)
Octree (bounding volume tree with tightly packed AABBs)
BSP tree

Spatial partitioning and subdivision reduces the number of
objects and polygons that need to be checked for collision by
rejecting large groups of them early

17

Collision detection (cont.)

Regular grid
If objects are no larger than one grid square,
two objects will only ever collide if they are no
more than one grid square away from each
other

for all objects O
for y = O.grid_y-1 to O.grid_y+1
for x = O.grid_x-1 to O.grid_x+1
for all objects O’ in grid(x,y)
check collision O <-> O’

18

Collision detection (cont.)
Bounding volume trees (BV trees)

Assume bounding volume at any node in tree bounds the union of bounding
volumes of its children

1. Check object/polygon/point against top node of BV tree
2. If intersection with BV node, recurse into children until certain collision or no collision

found
Can check two BV trees A and B for collision:

1. Check intersection between node A and node B bounding volume
2. If no intersection

1. return no collision
3. Else if A and B are leaves

1. return narrow phase intersection test between objects in leaves
4. Else if A is a leaf

1. return intersection test between objects in leaf A and child nodes of B
5. Else if B is a leaf

1. return intersection test between objects in leaf B and child nodes of A
6. Else

1. For each pair of child nodes from A, B
1. If BV of child nodes intersect, recurse using those two nodes

Can modify to check trees breadth-first
If collision detection is running out of time, can terminate recursion at the current
level and assume that there is a collision

19

Collision detection (cont.)
Collision detection with BSP trees:
1. At a node, classify object/BV/poly/point as in front, behind, or

across partition plane
2. If across

1. Test against polygons in node
2. If intersection found, return true

3. If in front or across
1. Recurse into front node
2. If intersection found, return true

4. If behind or across
1. Recurse into back node
2. If intersection found, return true

5. Return false

20

Collision detection (cont.)

Narrow phase collision detection
Determine accurate intersection between:

Points
Lines and edges
Planes and polygons
Polyhedra, very often convex only

21

Collision detection (cont.)

Collision of two of convex polyhedra
Given 2 convex polyhedra, P and Q, determine if they intersect
5 possible cases for intersection:

1. No intersection
2. 1 or more vertices of P falls within Q
3. 1 or more vertices of Q falls within P
4. 2 or more edges of P intersect a face of Q [optional]

(note: 2 or more edges of Q intersect a face of P is a redundant test)
5. P and Q are identical and coincident [optional]

P

Q

P

Q

P

Q

P

Q

P

Q

22

Collision detection (cont.)

Test for a vertex within a convex polyhedron (cases 2,
3, possibly 5)

Similar to testing a point within the view frustum
To test for a vertex v of Q falling within P:
1. For all faces of P

1. Compute which side of face v is on
2. If v is on the outside of face, v is outside P

2. If v is inside all faces, v is inside P
Test each vertex of Q. If any is inside P, Q is intersecting P
If all vertices of Q are outside P, repeat with P and Q reversed

23

Collision detection (cont.)

Test for a vertex in a concave polyhedron
Shoot a ray from vertex to infinity

Use axis-aligned ray for ease

Count the number of times the ray intersects the
polyhedron
If count is even, vertex is outside
If count is off, vertex is inside
Must be very careful with ray (almost) intersecting
vertex, or going through face edge-on

24

Collision detection (cont.)
Test for an edge penetrating a face of a polyhedron

For each edge e of Q
For each face f of P

1. Test if edge intersects infinite plane of a face f
compute distance to plane for each edge vertex using plane equation
If sign differs, edge intersects plane

2. Find ray parameter t at intersection point
3. If 0 <= t <= 1, add t to list of face intersection points for edge

If list length > 1:
Sort list of t values (possibly create list sorted using insertion sort)
In order for an edge to penetrate P, there must exist a pair of consecutive
face intersections that form an “entry” into P followed by an “exit” from P,
which implies any point in between them must be inside P.
For each pair of t values, compute a midpoint and apply the vertex within a
polyhedron test. If true, edge penetrates P, else no penetration.

25

Collision detection (cont.)
Triangle-triangle intersection

Special case of polygon/polygon that takes advantage of
geometry
Interval Overlap Method

If the planes of the two triangles intersect
Find the line where the two planes intersect
Find the extents along that line of each triangle
Test if extents overlap

26

Collision detection (cont.)

Finding collision time:
For given object pair, can do a binary search over the frame
interval

Take earliest time when they intersect
Assumes at most one collision between pair during the frame
interval

Responding to a collision:
Boom, ouch, you’re dead
Bounce off by changing direction and re-running movement from
collision time to end of frame interval

May want to re-check for collisions given new movement
Return to previous “safe” position where there was no collision

But previous position may no longer be safe, as a 3rd object may
have moved into that space

