
1

1

Visibility culling

Do not render what you do not see
Typically only see a small part of the game world
Why not to render everything:

Fillrate and polygon setup limits
Memory limits (CPU and GPU)
Bus transfer limits

Can also be used to speed up other
computations such as AI and collision detection

2

Culling reasons

Part of the world may be culled for various
reasons:

Outside the view frustum
Anything outside the field of view does not affect what is
shown on the screen

Occlusions
Anything hidden behind something else will not be seen, so
does not need to be rendered

Too far away
Limit how far you can see (e.g. fog); only render objects near
the viewer

3

GPU

CPU

Culling stages

Culling done at
various stages in the
rendering pipeline
The earlier you cull,
the bigger the savings
But, culling earlier is
often more expensive
and conservative

Game engine

Driver

Polygon processing

Fragment processing

4

Culling levels

Culling can be done at various levels:
Fragment level: do not draw pixels that can’t be seen
Polygon level: do not process unseen polygons
Object level: cull an object, for example a monster out
of view or behind a wall
World level: cull entire groups of objects, for example
an unseen room, or everything except the room the
player is in

2

5

Culling levels: Fragments

Fragment (pixel) level
Done at the fragment stage on the GPU
Clipping: do not draw outside the view frustum

Needs to know projected position of fragment
Z-buffer: do not draw behind existing render

Needs to know position and depth of fragment
Most effective when rendering front-to-back, as it
prevents too much “overdraw”

6

Culling levels: Polygons

Polygon level
Often done by the driver and GPU
View frustum culling

Do not process polygons that are entirely outside
the view frustum

Back-face culling
Do not process polygons that are facing away from
the camera

7

Culling levels: Objects

Typically done by the game engine, as
there is little concept of an object at the
driver or GPU level

View frustum culling
Do not process objects that are entirely outside the
view frustum

Hidden object culling
Do not process objects which are entirely hidden

8

Culling levels: World

Done by the game engine
Ignores entire regions of the game world
not relevant to the current state
Ideal for indoor environments

3

9

Visibility determination methods

PVS: Potential Visibility Set
Raycasting on grids
Portals
Quadtrees and Octrees
BSP trees

10

Potential Visibility Set (PVS)

Concept: pre-compute what is visible at
any point in the game world; only draw
what is visible
Used for static parts of the game world

11

PVS (cont.)

Divide the world into small regions, such as a
regular grid
Assign regions to all static geometry
For each region, pre-compute what regions can
be seen from it

Use one of the other visibility algorithms
At runtime, find what region viewer is in, and
process only the regions visible from the
viewer’s region

12

PVS (cont.)

Two ways of storing visibility info:
For each region keep a list of visible regions
For each region store boolean array indicating
visibility for all regions

Method to use depends on factors like:
Average number of visible regions (few: list,
many: boolean array)
Use of compression (boolean array with large
blocks of 0s or 1s compresses very well)
Rendering algorithm, AI algorithms

4

13

PVS (cont.)

Conservative: always renders what can be
seen from a grid square, but may render
what can’t be seen at viewer’s position
Higher resolution grid gives more accurate
visibility, but increases memory usage
Reduce memory requirements by using
compression, but decompression takes
time

14

PVS (cont.)
// Position of a grid square
typedef short Coord;
struct GridPos
{

Coord x, y;
};

// The PVS is simply an array of positions of visible grid squares
typedef std::vector<GridPos> PVS;

// Information about a grid square
struct Square
{

bool wall; // True if this square is a wall
PVS pvs; // PVS of all squares visible from this square

};

15

PVS (cont.)
// Compute the PVS for a given viewing position
void ComputePVSSquare(const GridPos& vp)
{

Square& square = world[vp.x][vp.y];

square.pvs.clear();

// Go through all squares in the visible range and find which
// are visible from the viewing position
GridPos p;
const Coord minx = max(vp.x - MAX_VISIBLE_DISTANCE, 1);
const Coord miny = max(vp.y - MAX_VISIBLE_DISTANCE, 1);
const Coord maxx = min(vp.x + MAX_VISIBLE_DISTANCE + 1, WORLD_SIZE-1);
const Coord maxy = min(vp.y + MAX_VISIBLE_DISTANCE + 1, WORLD_SIZE-1);

16

PVS (cont.)
for(p.x = minx; p.x < maxx; p.x++)
{

for(p.y = miny; p.y < maxy; p.y++)
{

// Use some method to determine if p is visible
// from vp
if(IsSquareVisible(vp, p))

square.pvs.push_back(p);
}

}
}

// Compute the PVS for all squares in the world
void ComputePVS(void)
{

GridPos p;
for(p.x = 0; p.x < WORLD_SIZE; p.x++)

for(p.y = 0; p.y < WORLD_SIZE; p.y++)
ComputePVSSquare(p);

}

5

17

PVS (cont.)
void RenderWorld(void)

{

const Square& playersquare = world[player.x][player.y];

for(PVS::const_iterator vi = playersquare.pvs.begin();

vi != playersquare.pvs.end(); vi++)

{

RenderSquare(world[vi->x][vi->y]);

}
}

18

Raycasting on grids
Method for games using
2D grid maps
Determine what grid
squares are visible by
casting a set of rays from
the viewer’s grid square
For each ray, store a “ray
depth”: distance to
nearest grid square
where the ray is blocked
Assume anything further
away is not visible

19

Raycasting (cont.)

Recompute ray depths when player moves
When rendering a grid square:

Determine which rays from viewer intersect
the square
If ray depth of any of those rays is larger than
distance between grid square and viewer,
square is visible.

20

Raycasting (cont.)

Set of rays cast must
be dense enough so
that all grid squares
are covered
Limit view to a
maximum distance

Fog
Level design

?

6

21

Raycasting (cont.)

Set of rays does not
need to be distributed
evenly over viewing
directions
Cast rays to every
grid square in an
outer ring

Faster, easier math
Covers all squares

22

Raycasting (cont.)

Casting a ray:
Step by (dx,dy) with
max(fabs(dx), fabs(dy)) == 1

Four sectors to consider
Make sure sectors don’t
overlap

0

1

2

3 +x

+y

dx=1

dy=?

dx=? dy=1

dx=? dy=-1

dx=-1

dy=?

23

Raycasting (cont.)

Store ray depths in an
array
Need to enumerate the
rays

number of rays in ring = R * 8
rays per sector = R * 2

sector = ray / rays per sector

1 2 3 4 5 60

7

8

9

10

11

17 16 15 14 13 1218

23

22

21

20

19

24

Raycasting (cont.)

Converting ray number to step direction:
void RayNumberToStepDirection(int ray, float& dx, float& dy)

{

// Compute sector number with fraction

const float sector = (float)ray / RAYS_PER_SECTOR;

// Sector 0: 0 <= sector < 1, -1 <= dx < 1, dy = 1
if(sector < 1) { dx = sector * 2 - 1; dy = 1; }
// Sector 1: 1 <= sector < 2, dx = 1, 1 >= dy > -1

else if(sector < 2) { dx = 1; dy = 3 - sector * 2; }
// Sector 2: 2 <= sector < 3, 1 >= dx > -1, dy = -1

else if(sector < 3) { dx = 5 - sector * 2; dy = -1; }
// Sector 3: 3 <= sector < 4 dx = -1, -1 <= dy < 1

else { dx = -1; dy = sector * 2 - 7; }
}

7

25

Raycasting (cont.)
Converting square position to ray number:

int SquareToRayNumber(const GridPos& vp, const GridPos& p)
{

// Compute square position p relative to viewer position vp
const int dx = p.x – vp.x;
const int dy = p.y – vp.y;

// Compute ray number
int ray;

// Sector 0: -1 <= dx/dy < 1, 0 <= ray < RAYS_PER_SECTOR
if((dx >= -dy) && (dx < dy))

ray = 0*RAYS_PER_SECTOR + (dx * RAYS_PER_SECTOR / dy + RAYS_PER_SECTOR) / 2;
// Sector 1: 1 <= dy/dx < -1, RAYS_PER_SECTOR <= ray < 2*RAYS_PER_SECTOR
else if((dx >= dy) && (dx > -dy))

ray = 1*RAYS_PER_SECTOR + (RAYS_PER_SECTOR - dy * RAYS_PER_SECTOR / dx) / 2;
// Sector 2: -1 <= dx/dy < 1, 2*RAYS_PER_SECTOR <= ray < 3*RAYS_PER_SECTOR
else if((dx <= -dy) && (dx > dy))

ray = 2*RAYS_PER_SECTOR + (dx * RAYS_PER_SECTOR / dy + RAYS_PER_SECTOR) / 2;
// Sector 3: 1 <= dy/dx < -1, 3*RAYS_PER_SECTOR <= ray < 4*RAYS_PER_SECTOR
else

ray = 3*RAYS_PER_SECTOR + (RAYS_PER_SECTOR - dy * RAYS_PER_SECTOR / dx) / 2;

return ray;
}

26

Raycasting (cont.)

Computing a ray depth map
// Compute the ray depth for all rays from a viewing given position
typedef int RayDepthMap[NUM_RAYS];
void ComputeRayDepthMap(const GridPos& vp, RayDepthMap& raydepthmap)
{

// Go around the outer ring in clockwise direction
for(int ray = 0; ray < NUM_RAYS; ray++)
{

// Compute ray step direction from ray number
float dx, dy;
RayDirectionFromNumber(ray, dx, dy);

// Cast a ray, and store distance to the first thing hit.
// If nothing hit, store a distance larger than anything can be
GridPos p;
if(Raycast(vp, dx, dy, p))

raydepthmap[ray] = Distance(vp, p);
else

raydepthmap[ray] = INT_MAX;
}

}

27

Raycasting (cont.)

Casting a ray

bool Raycast(const GridPos& vp, const float dx, const float dy, GridPos& p)
{

for(Coord s = 1; s <= MAX_VISIBLE_DISTANCE; s++)
{

// Compute nearest square to ray sample
p.x = vp.x + (int)floor(s * dx + 0.5);
p.y = vp.y + (int)floor(s * dy + 0.5);

// If the ray falls off the end of the world, return nothing hit
if((p.x < 0) || (p.x >= WORLD_SIZE) || (p.y < 0) || (p.y >= WORLD_SIZE))

return false;
// If the square is a wall, return a hit
if(world[p.x][p.y].wall)

return true;
}
// Gone beyond the visible range, return no hit
return false;

}

28

Raycasting (cont.)

Determining if a square is visible:
bool IsSquareVisible(const GridPos& vp, const GridPos& p, const RayDepthMap&

raydepthmap)
{

const Coord dx = p.x - vp.x;
const Coord dy = p.y - vp.y;

// Any squares beyond range are invisible
if((abs(dx) > MAX_VISIBLE_DISTANCE) || (abs(dy) > MAX_VISIBLE_DISTANCE))

return false;

// A square is always visible from itself
if((dx == 0) && (dy == 0))

return true;

// Check if the distance to the square is no more than the ray distance
int ray = SquareToRayNumber(vp, p);
return Distance(vp, p) <= raydepthmap[ray];

}

8

29

Raycasting (cont.)

Rendering
void RenderWorld(void)
{

// Compute the ray depth map for the current view
// Really only needs to be done when the player moves
// to a different square
RayDepthMap raydepthmap;
ComputeRayDepthMap(player, raydepthmap);

// Go through all squares in the visible range and find which
// are visible from the viewing position
GridPos p;
const Coord minx = max(player.x-MAX_VISIBLE_DISTANCE, 1);
const Coord miny = max(player.y-MAX_VISIBLE_DISTANCE, 1);
const Coord maxx = min(player.x+MAX_VISIBLE_DISTANCE+1, WORLD_SIZE-1);
const Coord maxy = min(player.y+MAX_VISIBLE_DISTANCE+1, WORLD_SIZE-1);

30

Raycasting (cont.)
for(p.x = minx; p.x < maxx; p.x++)
{

for(p.y = miny; p.y < maxy; p.y++)
{

if(IsSquareVisible(vp, p, raydepthmap))
RenderSquare(world[p.x][p.y]);

}
}

}

31

Raycasting (cont.)

Potential problems:
False hits at oblique angles
Visibility may change as player moves across square

Possible solution: check neighbouring squares
If any neighbours are visible by raycasting, consider
square as visible

32

Raycasting (cont.)

Can also be used to cull large objects
Determine which rays intersect the object
If ray depth of any of those rays is larger than
distance between viewer grid square and
object, object is visible. Otherwise, cull object.

9

33

Raycasting (cont.)

Possible improvements:
Interpolate from view position to outer ring in
Raycast() instead of stepping (see online code)
Only cast rays within the field of view
Use Manhatten distance:

abs(p.x – vp.x) + abs(p.y – vp.y)

Real distance not needed, only relative order
Manhatten distance gives order close to L2 order

Use Bresenham line drawing algorithm instead of
rounding position to the nearest square

34

Raycasting (cont.)

Used in the Cube
engine to compute
visibility at each frame

http://wouter.fov120.com/cube/

