
The OpenGL
R©

Graphics System:
A Specification

(Version 2.0 - September 7, 2004)

Mark Segal
Kurt Akeley

Editor (version 1.1): Chris Frazier
Editor (versions 1.2-1.5): Jon Leech

Editors (version 2.0): Jon Leech and Pat Brown



Copyright c© 1992-2004 Silicon Graphics, Inc.

This document contains unpublished information of
Silicon Graphics, Inc.

This document is protected by copyright, and contains information proprietary to
Silicon Graphics, Inc. Any copying, adaptation, distribution, public performance,
or public display of this document without the express written consent of Silicon
Graphics, Inc. is strictly prohibited. The receipt or possession of this document
does not convey any rights to reproduce, disclose, or distribute its contents, or to
manufacture, use, or sell anything that it may describe, in whole or in part.

U.S. Government Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions set forth
in FAR 52.227.19(c)(2) or subparagraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013 and/or in similar or succes-
sor clauses in the FAR or the DOD or NASA FAR Supplement. Unpublished rights
reserved under the copyright laws of the United States. Contractor/manufacturer is
Silicon Graphics, Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043.

OpenGL is a registered trademark of Silicon Graphics, Inc.
Unix is a registered trademark of The Open Group.

The ”X” device and X Windows System are trademarks of
The Open Group.



Contents

1 Introduction 1
1.1 Formatting of Optional Features . . . . . . . . . . . . . . . . . .1
1.2 What is the OpenGL Graphics System? . . . . . . . . . . . . . .1
1.3 Programmer’s View of OpenGL . . . . . . . . . . . . . . . . . . 2
1.4 Implementor’s View of OpenGL . . . . . . . . . . . . . . . . . . 2
1.5 Our View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.6 Companion Documents . . . . . . . . . . . . . . . . . . . . . . . 3

2 OpenGL Operation 4
2.1 OpenGL Fundamentals . . . . . . . . . . . . . . . . . . . . . . .4

2.1.1 Floating-Point Computation . . . . . . . . . . . . . . . . 6
2.2 GL State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 GL Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Basic GL Operation . . . . . . . . . . . . . . . . . . . . . . . . .10
2.5 GL Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Begin/End Paradigm . . . . . . . . . . . . . . . . . . . . . . . .12

2.6.1 Begin and End . . . . . . . . . . . . . . . . . . . . . . .15
2.6.2 Polygon Edges . . . . . . . . . . . . . . . . . . . . . . .19
2.6.3 GL Commands withinBegin/End . . . . . . . . . . . . . 19

2.7 Vertex Specification . . . . . . . . . . . . . . . . . . . . . . . . .20
2.8 Vertex Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
2.9 Buffer Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

2.9.1 Vertex Arrays in Buffer Objects . . . . . . . . . . . . . .38
2.9.2 Array Indices in Buffer Objects . . . . . . . . . . . . . .39

2.10 Rectangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
2.11 Coordinate Transformations . . . . . . . . . . . . . . . . . . . .40

2.11.1 Controlling the Viewport . . . . . . . . . . . . . . . . . . 41
2.11.2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . .42
2.11.3 Normal Transformation . . . . . . . . . . . . . . . . . . .48

i



CONTENTS ii

2.11.4 Generating Texture Coordinates . . . . . . . . . . . . . .49
2.12 Clipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.13 Current Raster Position . . . . . . . . . . . . . . . . . . . . . . .54
2.14 Colors and Coloring . . . . . . . . . . . . . . . . . . . . . . . . .57

2.14.1 Lighting . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.14.2 Lighting Parameter Specification . . . . . . . . . . . . . .64
2.14.3 ColorMaterial . . . . . . . . . . . . . . . . . . . . . . . 66
2.14.4 Lighting State . . . . . . . . . . . . . . . . . . . . . . . .68
2.14.5 Color Index Lighting . . . . . . . . . . . . . . . . . . . . 68
2.14.6 Clamping or Masking . . . . . . . . . . . . . . . . . . .69
2.14.7 Flatshading . . . . . . . . . . . . . . . . . . . . . . . . .69
2.14.8 Color and Associated Data Clipping . . . . . . . . . . . .70
2.14.9 Final Color Processing . . . . . . . . . . . . . . . . . . .71

2.15 Vertex Shaders . . . . . . . . . . . . . . . . . . . . . . . . . . .71
2.15.1 Shader Objects . . . . . . . . . . . . . . . . . . . . . . .72
2.15.2 Program Objects . . . . . . . . . . . . . . . . . . . . . .73
2.15.3 Shader Variables . . . . . . . . . . . . . . . . . . . . . .75
2.15.4 Shader Execution . . . . . . . . . . . . . . . . . . . . . .84
2.15.5 Required State . . . . . . . . . . . . . . . . . . . . . . .88

3 Rasterization 90
3.1 Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
3.2 Antialiasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.2.1 Multisampling . . . . . . . . . . . . . . . . . . . . . . . 93
3.3 Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95

3.3.1 Basic Point Rasterization . . . . . . . . . . . . . . . . . .97
3.3.2 Point Rasterization State . . . . . . . . . . . . . . . . . .101
3.3.3 Point Multisample Rasterization . . . . . . . . . . . . . .101

3.4 Line Segments . . . . . . . . . . . . . . . . . . . . . . . . . . .101
3.4.1 Basic Line Segment Rasterization . . . . . . . . . . . . .102
3.4.2 Other Line Segment Features . . . . . . . . . . . . . . . .104
3.4.3 Line Rasterization State . . . . . . . . . . . . . . . . . .107
3.4.4 Line Multisample Rasterization . . . . . . . . . . . . . .107

3.5 Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
3.5.1 Basic Polygon Rasterization . . . . . . . . . . . . . . . .108
3.5.2 Stippling . . . . . . . . . . . . . . . . . . . . . . . . . .110
3.5.3 Antialiasing . . . . . . . . . . . . . . . . . . . . . . . . .111
3.5.4 Options Controlling Polygon Rasterization . . . . . . . .111
3.5.5 Depth Offset . . . . . . . . . . . . . . . . . . . . . . . .112
3.5.6 Polygon Multisample Rasterization . . . . . . . . . . . .113

Version 2.0 - September 7, 2004



CONTENTS iii

3.5.7 Polygon Rasterization State . . . . . . . . . . . . . . . .114
3.6 Pixel Rectangles . . . . . . . . . . . . . . . . . . . . . . . . . . .114

3.6.1 Pixel Storage Modes . . . . . . . . . . . . . . . . . . . .114
3.6.2 The Imaging Subset . . . . . . . . . . . . . . . . . . . .115
3.6.3 Pixel Transfer Modes . . . . . . . . . . . . . . . . . . . .116
3.6.4 Rasterization of Pixel Rectangles . . . . . . . . . . . . .126
3.6.5 Pixel Transfer Operations . . . . . . . . . . . . . . . . .137
3.6.6 Pixel Rectangle Multisample Rasterization . . . . . . . .147

3.7 Bitmaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147
3.8 Texturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149

3.8.1 Texture Image Specification . . . . . . . . . . . . . . . .150
3.8.2 Alternate Texture Image Specification Commands . . . .159
3.8.3 Compressed Texture Images . . . . . . . . . . . . . . . .163
3.8.4 Texture Parameters . . . . . . . . . . . . . . . . . . . . .166
3.8.5 Depth Component Textures . . . . . . . . . . . . . . . .168
3.8.6 Cube Map Texture Selection . . . . . . . . . . . . . . . .168
3.8.7 Texture Wrap Modes . . . . . . . . . . . . . . . . . . . .169
3.8.8 Texture Minification . . . . . . . . . . . . . . . . . . . .170
3.8.9 Texture Magnification . . . . . . . . . . . . . . . . . . .176
3.8.10 Texture Completeness . . . . . . . . . . . . . . . . . . .177
3.8.11 Texture State and Proxy State . . . . . . . . . . . . . . .178
3.8.12 Texture Objects . . . . . . . . . . . . . . . . . . . . . . .180
3.8.13 Texture Environments and Texture Functions . . . . . . .182
3.8.14 Texture Comparison Modes . . . . . . . . . . . . . . . .185
3.8.15 Texture Application . . . . . . . . . . . . . . . . . . . . .189

3.9 Color Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191
3.10 Fog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191
3.11 Fragment Shaders . . . . . . . . . . . . . . . . . . . . . . . . . .193

3.11.1 Shader Variables . . . . . . . . . . . . . . . . . . . . . .193
3.11.2 Shader Execution . . . . . . . . . . . . . . . . . . . . . .194

3.12 Antialiasing Application . . . . . . . . . . . . . . . . . . . . . .197
3.13 Multisample Point Fade . . . . . . . . . . . . . . . . . . . . . . .197

4 Per-Fragment Operations and the Framebuffer 198
4.1 Per-Fragment Operations . . . . . . . . . . . . . . . . . . . . . .199

4.1.1 Pixel Ownership Test . . . . . . . . . . . . . . . . . . . .199
4.1.2 Scissor Test . . . . . . . . . . . . . . . . . . . . . . . . .200
4.1.3 Multisample Fragment Operations . . . . . . . . . . . . .200
4.1.4 Alpha Test . . . . . . . . . . . . . . . . . . . . . . . . .201
4.1.5 Stencil Test . . . . . . . . . . . . . . . . . . . . . . . . .202

Version 2.0 - September 7, 2004



CONTENTS iv

4.1.6 Depth Buffer Test . . . . . . . . . . . . . . . . . . . . . .203
4.1.7 Occlusion Queries . . . . . . . . . . . . . . . . . . . . .204
4.1.8 Blending . . . . . . . . . . . . . . . . . . . . . . . . . .205
4.1.9 Dithering . . . . . . . . . . . . . . . . . . . . . . . . . .209
4.1.10 Logical Operation . . . . . . . . . . . . . . . . . . . . .210
4.1.11 Additional Multisample Fragment Operations . . . . . . .210

4.2 Whole Framebuffer Operations . . . . . . . . . . . . . . . . . . .212
4.2.1 Selecting a Buffer for Writing . . . . . . . . . . . . . . .212
4.2.2 Fine Control of Buffer Updates . . . . . . . . . . . . . .214
4.2.3 Clearing the Buffers . . . . . . . . . . . . . . . . . . . .215
4.2.4 The Accumulation Buffer . . . . . . . . . . . . . . . . .217

4.3 Drawing, Reading, and Copying Pixels . . . . . . . . . . . . . . .218
4.3.1 Writing to the Stencil Buffer . . . . . . . . . . . . . . . .218
4.3.2 Reading Pixels . . . . . . . . . . . . . . . . . . . . . . .219
4.3.3 Copying Pixels . . . . . . . . . . . . . . . . . . . . . . .223
4.3.4 Pixel Draw/Read State . . . . . . . . . . . . . . . . . . .226

5 Special Functions 227
5.1 Evaluators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227
5.2 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233
5.3 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235
5.4 Display Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . .237
5.5 Flush and Finish . . . . . . . . . . . . . . . . . . . . . . . . . . .242
5.6 Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242

6 State and State Requests 244
6.1 Querying GL State . . . . . . . . . . . . . . . . . . . . . . . . .244

6.1.1 Simple Queries . . . . . . . . . . . . . . . . . . . . . . .244
6.1.2 Data Conversions . . . . . . . . . . . . . . . . . . . . . .245
6.1.3 Enumerated Queries . . . . . . . . . . . . . . . . . . . .246
6.1.4 Texture Queries . . . . . . . . . . . . . . . . . . . . . . .248
6.1.5 Stipple Query . . . . . . . . . . . . . . . . . . . . . . . .250
6.1.6 Color Matrix Query . . . . . . . . . . . . . . . . . . . . .250
6.1.7 Color Table Query . . . . . . . . . . . . . . . . . . . . .250
6.1.8 Convolution Query . . . . . . . . . . . . . . . . . . . . .251
6.1.9 Histogram Query . . . . . . . . . . . . . . . . . . . . . .252
6.1.10 Minmax Query . . . . . . . . . . . . . . . . . . . . . . .252
6.1.11 Pointer and String Queries . . . . . . . . . . . . . . . . .253
6.1.12 Occlusion Queries . . . . . . . . . . . . . . . . . . . . .254
6.1.13 Buffer Object Queries . . . . . . . . . . . . . . . . . . .255

Version 2.0 - September 7, 2004



CONTENTS v

6.1.14 Shader and Program Queries . . . . . . . . . . . . . . . .256
6.1.15 Saving and Restoring State . . . . . . . . . . . . . . . . .260

6.2 State Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264

A Invariance 299
A.1 Repeatability . . . . . . . . . . . . . . . . . . . . . . . . . . . .299
A.2 Multi-pass Algorithms . . . . . . . . . . . . . . . . . . . . . . .300
A.3 Invariance Rules . . . . . . . . . . . . . . . . . . . . . . . . . . .300
A.4 What All This Means . . . . . . . . . . . . . . . . . . . . . . . .302

B Corollaries 303

C Version 1.1 306
C.1 Vertex Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . .306
C.2 Polygon Offset . . . . . . . . . . . . . . . . . . . . . . . . . . .307
C.3 Logical Operation . . . . . . . . . . . . . . . . . . . . . . . . . .307
C.4 Texture Image Formats . . . . . . . . . . . . . . . . . . . . . . .307
C.5 Texture Replace Environment . . . . . . . . . . . . . . . . . . . .307
C.6 Texture Proxies . . . . . . . . . . . . . . . . . . . . . . . . . . .308
C.7 Copy Texture and Subtexture . . . . . . . . . . . . . . . . . . . .308
C.8 Texture Objects . . . . . . . . . . . . . . . . . . . . . . . . . . .308
C.9 Other Changes . . . . . . . . . . . . . . . . . . . . . . . . . . .308
C.10 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . .309

D Version 1.2 311
D.1 Three-Dimensional Texturing . . . . . . . . . . . . . . . . . . . .311
D.2 BGRA Pixel Formats . . . . . . . . . . . . . . . . . . . . . . . .311
D.3 Packed Pixel Formats . . . . . . . . . . . . . . . . . . . . . . . .312
D.4 Normal Rescaling . . . . . . . . . . . . . . . . . . . . . . . . . .312
D.5 Separate Specular Color . . . . . . . . . . . . . . . . . . . . . .312
D.6 Texture Coordinate Edge Clamping . . . . . . . . . . . . . . . .312
D.7 Texture Level of Detail Control . . . . . . . . . . . . . . . . . . .313
D.8 Vertex Array Draw Element Range . . . . . . . . . . . . . . . . .313
D.9 Imaging Subset . . . . . . . . . . . . . . . . . . . . . . . . . . .313

D.9.1 Color Tables . . . . . . . . . . . . . . . . . . . . . . . .313
D.9.2 Convolution . . . . . . . . . . . . . . . . . . . . . . . . .314
D.9.3 Color Matrix . . . . . . . . . . . . . . . . . . . . . . . .314
D.9.4 Pixel Pipeline Statistics . . . . . . . . . . . . . . . . . . .315
D.9.5 Constant Blend Color . . . . . . . . . . . . . . . . . . . .315
D.9.6 New Blending Equations . . . . . . . . . . . . . . . . . .315

Version 2.0 - September 7, 2004



CONTENTS vi

D.10 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . .315

E Version 1.2.1 319

F Version 1.3 320
F.1 Compressed Textures . . . . . . . . . . . . . . . . . . . . . . . .320
F.2 Cube Map Textures . . . . . . . . . . . . . . . . . . . . . . . . .320
F.3 Multisample . . . . . . . . . . . . . . . . . . . . . . . . . . . . .321
F.4 Multitexture . . . . . . . . . . . . . . . . . . . . . . . . . . . . .321
F.5 Texture Add Environment Mode . . . . . . . . . . . . . . . . . .322
F.6 Texture Combine Environment Mode . . . . . . . . . . . . . . .322
F.7 Texture Dot3 Environment Mode . . . . . . . . . . . . . . . . . .322
F.8 Texture Border Clamp . . . . . . . . . . . . . . . . . . . . . . .322
F.9 Transpose Matrix . . . . . . . . . . . . . . . . . . . . . . . . . .323
F.10 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . .323

G Version 1.4 328
G.1 Automatic Mipmap Generation . . . . . . . . . . . . . . . . . . .328
G.2 Blend Squaring . . . . . . . . . . . . . . . . . . . . . . . . . . .328
G.3 Changes to the Imaging Subset . . . . . . . . . . . . . . . . . . .329
G.4 Depth Textures and Shadows . . . . . . . . . . . . . . . . . . . .329
G.5 Fog Coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . .329
G.6 Multiple Draw Arrays . . . . . . . . . . . . . . . . . . . . . . . .329
G.7 Point Parameters . . . . . . . . . . . . . . . . . . . . . . . . . .330
G.8 Secondary Color . . . . . . . . . . . . . . . . . . . . . . . . . .330
G.9 Separate Blend Functions . . . . . . . . . . . . . . . . . . . . . .330
G.10 Stencil Wrap . . . . . . . . . . . . . . . . . . . . . . . . . . . .330
G.11 Texture Crossbar Environment Mode . . . . . . . . . . . . . . . .330
G.12 Texture LOD Bias . . . . . . . . . . . . . . . . . . . . . . . . . .331
G.13 Texture Mirrored Repeat . . . . . . . . . . . . . . . . . . . . . .331
G.14 Window Raster Position . . . . . . . . . . . . . . . . . . . . . .331
G.15 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . .331

H Version 1.5 334
H.1 Buffer Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . .334
H.2 Occlusion Queries . . . . . . . . . . . . . . . . . . . . . . . . . .335
H.3 Shadow Functions . . . . . . . . . . . . . . . . . . . . . . . . . .335
H.4 Changed Tokens . . . . . . . . . . . . . . . . . . . . . . . . . . .335
H.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . .335

Version 2.0 - September 7, 2004



CONTENTS vii

I Version 2.0 340
I.1 Programmable Shading . . . . . . . . . . . . . . . . . . . . . . .340

I.1.1 Shader Objects . . . . . . . . . . . . . . . . . . . . . . .340
I.1.2 Shader Programs . . . . . . . . . . . . . . . . . . . . . .340
I.1.3 OpenGL Shading Language . . . . . . . . . . . . . . . .341
I.1.4 Changes To Shader APIs . . . . . . . . . . . . . . . . . .341

I.2 Multiple Render Targets . . . . . . . . . . . . . . . . . . . . . .341
I.3 Non-Power-Of-Two Textures . . . . . . . . . . . . . . . . . . . .341
I.4 Point Sprites . . . . . . . . . . . . . . . . . . . . . . . . . . . . .342
I.5 Separate Stencil . . . . . . . . . . . . . . . . . . . . . . . . . . .342
I.6 Other Changes . . . . . . . . . . . . . . . . . . . . . . . . . . .342
I.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . .343

J ARB Extensions 345
J.1 Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . .345
J.2 Promoting Extensions to Core Features . . . . . . . . . . . . . .346
J.3 Multitexture . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346
J.4 Transpose Matrix . . . . . . . . . . . . . . . . . . . . . . . . . .346
J.5 Multisample . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346
J.6 Texture Add Environment Mode . . . . . . . . . . . . . . . . . .346
J.7 Cube Map Textures . . . . . . . . . . . . . . . . . . . . . . . . .347
J.8 Compressed Textures . . . . . . . . . . . . . . . . . . . . . . . .347
J.9 Texture Border Clamp . . . . . . . . . . . . . . . . . . . . . . .347
J.10 Point Parameters . . . . . . . . . . . . . . . . . . . . . . . . . .347
J.11 Vertex Blend . . . . . . . . . . . . . . . . . . . . . . . . . . . .347
J.12 Matrix Palette . . . . . . . . . . . . . . . . . . . . . . . . . . . .347
J.13 Texture Combine Environment Mode . . . . . . . . . . . . . . .348
J.14 Texture Crossbar Environment Mode . . . . . . . . . . . . . . . .348
J.15 Texture Dot3 Environment Mode . . . . . . . . . . . . . . . . . .348
J.16 Texture Mirrored Repeat . . . . . . . . . . . . . . . . . . . . . .348
J.17 Depth Texture . . . . . . . . . . . . . . . . . . . . . . . . . . . .348
J.18 Shadow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .348
J.19 Shadow Ambient . . . . . . . . . . . . . . . . . . . . . . . . . .348
J.20 Window Raster Position . . . . . . . . . . . . . . . . . . . . . .349
J.21 Low-Level Vertex Programming . . . . . . . . . . . . . . . . . .349
J.22 Low-Level Fragment Programming . . . . . . . . . . . . . . . .349
J.23 Buffer Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . .349
J.24 Occlusion Queries . . . . . . . . . . . . . . . . . . . . . . . . . .349
J.25 Shader Objects . . . . . . . . . . . . . . . . . . . . . . . . . . .349
J.26 High-Level Vertex Programming . . . . . . . . . . . . . . . . . .350

Version 2.0 - September 7, 2004



CONTENTS viii

J.27 High-Level Fragment Programming . . . . . . . . . . . . . . . .350
J.28 OpenGL Shading Language . . . . . . . . . . . . . . . . . . . .350
J.29 Non-Power-Of-Two Textures . . . . . . . . . . . . . . . . . . . .350
J.30 Point Sprites . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350
J.31 Fragment Program Shadow . . . . . . . . . . . . . . . . . . . . .350
J.32 Multiple Render Targets . . . . . . . . . . . . . . . . . . . . . .351
J.33 Rectangular Textures . . . . . . . . . . . . . . . . . . . . . . . .351

Index 352

Version 2.0 - September 7, 2004



List of Figures

2.1 Block diagram of the GL. . . . . . . . . . . . . . . . . . . . . . .10
2.2 Creation of a processed vertex from a transformed vertex and cur-

rent values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
2.3 Primitive assembly and processing. . . . . . . . . . . . . . . . . .13
2.4 Triangle strips, fans, and independent triangles. . . . . . . . . . .16
2.5 Quadrilateral strips and independent quadrilaterals. . . . . . . . .18
2.6 Vertex transformation sequence. . . . . . . . . . . . . . . . . . .40
2.7 Current raster position. . . . . . . . . . . . . . . . . . . . . . . .55
2.8 Processing of RGBA colors. . . . . . . . . . . . . . . . . . . . .57
2.9 Processing of color indices. . . . . . . . . . . . . . . . . . . . . .57
2.10 ColorMaterial operation. . . . . . . . . . . . . . . . . . . . . . .66

3.1 Rasterization. . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
3.2 Rasterization of non-antialiased wide points. . . . . . . . . . . . .97
3.3 Rasterization of antialiased wide points. . . . . . . . . . . . . . .97
3.4 Visualization of Bresenham’s algorithm. . . . . . . . . . . . . . .102
3.5 Rasterization of non-antialiased wide lines. . . . . . . . . . . . .105
3.6 The region used in rasterizing an antialiased line segment. . . . .106
3.7 Operation ofDrawPixels. . . . . . . . . . . . . . . . . . . . . . 126
3.8 Selecting a subimage from an image . . . . . . . . . . . . . . . .130
3.9 A bitmap and its associated parameters. . . . . . . . . . . . . . .148
3.10 A texture image and the coordinates used to access it. . . . . . . .158
3.11 Multitexture pipeline. . . . . . . . . . . . . . . . . . . . . . . . .190

4.1 Per-fragment operations. . . . . . . . . . . . . . . . . . . . . . .199
4.2 Operation ofReadPixels. . . . . . . . . . . . . . . . . . . . . . . 219
4.3 Operation ofCopyPixels. . . . . . . . . . . . . . . . . . . . . . . 223

5.1 Map Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . .229
5.2 Feedback syntax. . . . . . . . . . . . . . . . . . . . . . . . . . .238

ix



List of Tables

2.1 GL command suffixes . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 GL data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Summary of GL errors . . . . . . . . . . . . . . . . . . . . . . .12
2.4 Vertex array sizes (values per vertex) and data types . . . . . . . .25
2.5 Variables that direct the execution ofInterleavedArrays. . . . . . 32
2.6 Buffer object parameters and their values. . . . . . . . . . . . . .34
2.7 Buffer object initial state. . . . . . . . . . . . . . . . . . . . . . .36
2.8 Buffer object state set byMapBuffer . . . . . . . . . . . . . . . . 37
2.9 Component conversions . . . . . . . . . . . . . . . . . . . . . . .59
2.10 Summary of lighting parameters. . . . . . . . . . . . . . . . . . .61
2.11 Correspondence of lighting parameter symbols to names. . . . . .65
2.12 Polygon flatshading color selection. . . . . . . . . . . . . . . . .70

3.1 PixelStoreparameters. . . . . . . . . . . . . . . . . . . . . . . .115
3.2 PixelTransfer parameters. . . . . . . . . . . . . . . . . . . . . .117
3.3 PixelMap parameters. . . . . . . . . . . . . . . . . . . . . . . .118
3.4 Color table names. . . . . . . . . . . . . . . . . . . . . . . . . .119
3.5 DrawPixelsandReadPixelstypes. . . . . . . . . . . . . . . . . .128
3.6 DrawPixelsandReadPixelsformats. . . . . . . . . . . . . . . . 129
3.7 Swap Bytes bit ordering. . . . . . . . . . . . . . . . . . . . . . .130
3.8 Packed pixel formats. . . . . . . . . . . . . . . . . . . . . . . . .132
3.9 UNSIGNEDBYTEformats. Bit numbers are indicated for each com-

ponent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132
3.10 UNSIGNEDSHORTformats . . . . . . . . . . . . . . . . . . . . .133
3.11 UNSIGNEDINT formats . . . . . . . . . . . . . . . . . . . . . . .134
3.12 Packed pixel field assignments. . . . . . . . . . . . . . . . . . . .135
3.13 Color table lookup. . . . . . . . . . . . . . . . . . . . . . . . . .140
3.14 Computation of filtered color components. . . . . . . . . . . . . .141

x



LIST OF TABLES xi

3.15 Conversion from RGBA and depth pixel components to internal
texture, table, or filter components. . . . . . . . . . . . . . . . . .153

3.16 Correspondence of sized internal formats to base internal formats.154
3.17 Specific compressed internal formats. . . . . . . . . . . . . . . .155
3.18 Generic compressed internal formats. . . . . . . . . . . . . . . .155
3.19 Texture parameters and their values. . . . . . . . . . . . . . . . .167
3.20 Selection of cube map images. . . . . . . . . . . . . . . . . . . .168
3.21 Correspondence of filtered texture components. . . . . . . . . . .184
3.22 Texture functionsREPLACE, MODULATE, andDECAL. . . . . . . . 184
3.23 Texture functionsBLENDandADD. . . . . . . . . . . . . . . . . . 185
3.24 COMBINEtexture functions. . . . . . . . . . . . . . . . . . . . . .186
3.25 Arguments forCOMBINERGBfunctions. . . . . . . . . . . . . . . 187
3.26 Arguments forCOMBINEALPHAfunctions. . . . . . . . . . . . . 187
3.27 Depth texture comparison functions. . . . . . . . . . . . . . . . .188

4.1 RGB and Alpha blend equations. . . . . . . . . . . . . . . . . . .207
4.2 Blending functions. . . . . . . . . . . . . . . . . . . . . . . . . .208
4.3 Arguments toLogicOp and their corresponding operations. . . . .211
4.4 Arguments toDrawBuffer and the buffers that they indicate. . . .213
4.5 PixelStoreparameters. . . . . . . . . . . . . . . . . . . . . . . .221
4.6 ReadPixelsindex masks. . . . . . . . . . . . . . . . . . . . . . .223
4.7 ReadPixelsGL data types and reversed component conversion for-

mulas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224

5.1 Values specified by thetargetto Map1. . . . . . . . . . . . . . . 228
5.2 Correspondence of feedback type to number of values per vertex. .237
5.3 Hint targets and descriptions . . . . . . . . . . . . . . . . . . . .243

6.1 Texture, table, and filter return values. . . . . . . . . . . . . . . .249
6.2 Attribute groups . . . . . . . . . . . . . . . . . . . . . . . . . . .261
6.3 State Variable Types . . . . . . . . . . . . . . . . . . . . . . . . .263
6.4 GL Internal begin-end state variables (inaccessible) . . . . . . . .265
6.5 Current Values and Associated Data . . . . . . . . . . . . . . . .266
6.6 Vertex Array Data . . . . . . . . . . . . . . . . . . . . . . . . . .267
6.7 Vertex Array Data (cont.) . . . . . . . . . . . . . . . . . . . . . .268
6.8 Buffer Object State . . . . . . . . . . . . . . . . . . . . . . . . .269
6.9 Transformation state . . . . . . . . . . . . . . . . . . . . . . . .270
6.10 Coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271
6.11 Lighting (see also table2.10for defaults) . . . . . . . . . . . . . 272
6.12 Lighting (cont.) . . . . . . . . . . . . . . . . . . . . . . . . . . .273

Version 2.0 - September 7, 2004



LIST OF TABLES xii

6.13 Rasterization . . . . . . . . . . . . . . . . . . . . . . . . . . . .274
6.14 Multisampling . . . . . . . . . . . . . . . . . . . . . . . . . . . .275
6.15 Textures (state per texture unit and binding point) . . . . . . . . .276
6.16 Textures (state per texture object) . . . . . . . . . . . . . . . . . .277
6.17 Textures (state per texture image) . . . . . . . . . . . . . . . . . .278
6.18 Texture Environment and Generation . . . . . . . . . . . . . . . .279
6.19 Pixel Operations . . . . . . . . . . . . . . . . . . . . . . . . . . .280
6.20 Pixel Operations (cont.) . . . . . . . . . . . . . . . . . . . . . . .281
6.21 Framebuffer Control . . . . . . . . . . . . . . . . . . . . . . . .282
6.22 Pixels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283
6.23 Pixels (cont.) . . . . . . . . . . . . . . . . . . . . . . . . . . . .284
6.24 Pixels (cont.) . . . . . . . . . . . . . . . . . . . . . . . . . . . .285
6.25 Pixels (cont.) . . . . . . . . . . . . . . . . . . . . . . . . . . . .286
6.26 Pixels (cont.) . . . . . . . . . . . . . . . . . . . . . . . . . . . .287
6.27 Evaluators (GetMap takes a map name) . . . . . . . . . . . . . .288
6.28 Shader Object State . . . . . . . . . . . . . . . . . . . . . . . . .289
6.29 Program Object State . . . . . . . . . . . . . . . . . . . . . . . .290
6.30 Vertex Shader State . . . . . . . . . . . . . . . . . . . . . . . . .291
6.31 Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292
6.32 Implementation Dependent Values . . . . . . . . . . . . . . . . .293
6.33 Implementation Dependent Values (cont.) . . . . . . . . . . . . .294
6.34 Implementation Dependent Values (cont.) . . . . . . . . . . . . .295
6.35 Implementation Dependent Values (cont.) . . . . . . . . . . . . .296
6.36 Implementation Dependent Pixel Depths . . . . . . . . . . . . . .297
6.37 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . .298

H.1 New token names . . . . . . . . . . . . . . . . . . . . . . . . . .336

Version 2.0 - September 7, 2004



Chapter 1

Introduction

This document describes the OpenGL graphics system: what it is, how it acts, and
what is required to implement it. We assume that the reader has at least a rudi-
mentary understanding of computer graphics. This means familiarity with the es-
sentials of computer graphics algorithms as well as familiarity with basic graphics
hardware and associated terms.

1.1 Formatting of Optional Features

Starting with version 1.2 of OpenGL, some features in the specification are consid-
ered optional; an OpenGL implementation may or may not choose to provide them
(see section3.6.2).

Portions of the specification which are optional are so described where the
optional features are first defined (see section3.6.2). State table entries which are
optional are typesetagainst a gray background.

1.2 What is the OpenGL Graphics System?

OpenGL (for “Open Graphics Library”) is a software interface to graphics hard-
ware. The interface consists of a set of several hundred procedures and functions
that allow a programmer to specify the objects and operations involved in produc-
ing high-quality graphical images, specifically color images of three-dimensional
objects.

Most of OpenGL requires that the graphics hardware contain a framebuffer.
Many OpenGL calls pertain to drawing objects such as points, lines, polygons, and
bitmaps, but the way that some of this drawing occurs (such as when antialiasing

1



1.3. PROGRAMMER’S VIEW OF OPENGL 2

or texturing is enabled) relies on the existence of a framebuffer. Further, some of
OpenGL is specifically concerned with framebuffer manipulation.

1.3 Programmer’s View of OpenGL

To the programmer, OpenGL is a set of commands that allow the specification of
geometric objects in two or three dimensions, together with commands that control
how these objects are rendered into the framebuffer. For the most part, OpenGL
provides an immediate-mode interface, meaning that specifying an object causes it
to be drawn.

A typical program that uses OpenGL begins with calls to open a window into
the framebuffer into which the program will draw. Then, calls are made to allocate
a GL context and associate it with the window. Once a GL context is allocated,
the programmer is free to issue OpenGL commands. Some calls are used to draw
simple geometric objects (i.e. points, line segments, and polygons), while others
affect the rendering of these primitives including how they are lit or colored and
how they are mapped from the user’s two- or three-dimensional model space to
the two-dimensional screen. There are also calls to effect direct control of the
framebuffer, such as reading and writing pixels.

1.4 Implementor’s View of OpenGL

To the implementor, OpenGL is a set of commands that affect the operation of
graphics hardware. If the hardware consists only of an addressable framebuffer,
then OpenGL must be implemented almost entirely on the host CPU. More typi-
cally, the graphics hardware may comprise varying degrees of graphics accelera-
tion, from a raster subsystem capable of rendering two-dimensional lines and poly-
gons to sophisticated floating-point processors capable of transforming and com-
puting on geometric data. The OpenGL implementor’s task is to provide the CPU
software interface while dividing the work for each OpenGL command between
the CPU and the graphics hardware. This division must be tailored to the available
graphics hardware to obtain optimum performance in carrying out OpenGL calls.

OpenGL maintains a considerable amount of state information. This state con-
trols how objects are drawn into the framebuffer. Some of this state is directly
available to the user: he or she can make calls to obtain its value. Some of it, how-
ever, is visible only by the effect it has on what is drawn. One of the main goals of
this specification is to make OpenGL state information explicit, to elucidate how it
changes, and to indicate what its effects are.

Version 2.0 - September 7, 2004



1.5. OUR VIEW 3

1.5 Our View

We view OpenGL as a state machine that controls a set of specific drawing oper-
ations. This model should engender a specification that satisfies the needs of both
programmers and implementors. It does not, however, necessarily provide a model
for implementation. An implementation must produce results conforming to those
produced by the specified methods, but there may be ways to carry out a particular
computation that are more efficient than the one specified.

1.6 Companion Documents

This specification should be read together with a companion document titledThe
OpenGL Shading Language. The latter document (referred to as the OpenGL Shad-
ing Language Specification hereafter) defines the syntax and semantics of the pro-
gramming language used to write vertex and fragment shaders (see sections2.15
and3.11). These sections may include references to concepts and terms (such as
shading language variable types) defined in the companion document.

OpenGL 2.0 implementations are guaranteed to support at least version 1.10 of
the shading language; the actual version supported may be queried as described in
section6.1.11.

Version 2.0 - September 7, 2004



Chapter 2

OpenGL Operation

2.1 OpenGL Fundamentals

OpenGL (henceforth, the “GL”) is concerned only with rendering into a frame-
buffer (and reading values stored in that framebuffer). There is no support for
other peripherals sometimes associated with graphics hardware, such as mice and
keyboards. Programmers must rely on other mechanisms to obtain user input.

The GL drawsprimitivessubject to a number of selectable modes. Each prim-
itive is a point, line segment, polygon, or pixel rectangle. Each mode may be
changed independently; the setting of one does not affect the settings of others
(although many modes may interact to determine what eventually ends up in the
framebuffer). Modes are set, primitives specified, and other GL operations de-
scribed by sendingcommandsin the form of function or procedure calls.

Primitives are defined by a group of one or morevertices. A vertex defines a
point, an endpoint of an edge, or a corner of a polygon where two edges meet. Data
(consisting of positional coordinates, colors, normals, and texture coordinates) are
associated with a vertex and each vertex is processed independently, in order, and
in the same way. The only exception to this rule is if the group of vertices must
be clipped so that the indicated primitive fits within a specified region; in this
case vertex data may be modified and new vertices created. The type of clipping
depends on which primitive the group of vertices represents.

Commands are always processed in the order in which they are received, al-
though there may be an indeterminate delay before the effects of a command are
realized. This means, for example, that one primitive must be drawn completely
before any subsequent one can affect the framebuffer. It also means that queries
and pixel read operations return state consistent with complete execution of all
previously invoked GL commands, except where explicitly specified otherwise. In

4



2.1. OPENGL FUNDAMENTALS 5

general, the effects of a GL command on either GL modes or the framebuffer must
be complete before any subsequent command can have any such effects.

In the GL, data binding occurs on call. This means that data passed to a com-
mand are interpreted when that command is received. Even if the command re-
quires a pointer to data, those data are interpreted when the call is made, and any
subsequent changes to the data have no effect on the GL (unless the same pointer
is used in a subsequent command).

The GL provides direct control over the fundamental operations of 3D and 2D
graphics. This includes specification of such parameters as transformation matri-
ces, lighting equation coefficients, antialiasing methods, and pixel update opera-
tors. It does not provide a means for describing or modeling complex geometric
objects. Another way to describe this situation is to say that the GL provides mech-
anisms to describe how complex geometric objects are to be rendered rather than
mechanisms to describe the complex objects themselves.

The model for interpretation of GL commands is client-server. That is, a pro-
gram (the client) issues commands, and these commands are interpreted and pro-
cessed by the GL (the server). The server may or may not operate on the same
computer as the client. In this sense, the GL is “network-transparent.” A server
may maintain a number of GLcontexts, each of which is an encapsulation of cur-
rent GL state. A client may choose toconnectto any one of these contexts. Issuing
GL commands when the program is notconnectedto acontextresults in undefined
behavior.

The effects of GL commands on the framebuffer are ultimately controlled by
the window system that allocates framebuffer resources. It is the window sys-
tem that determines which portions of the framebuffer the GL may access at any
given time and that communicates to the GL how those portions are structured.
Therefore, there are no GL commands to configure the framebuffer or initialize the
GL. Similarly, display of framebuffer contents on a CRT monitor (including the
transformation of individual framebuffer values by such techniques as gamma cor-
rection) is not addressed by the GL. Framebuffer configuration occurs outside of
the GL in conjunction with the window system; the initialization of a GL context
occurs when the window system allocates a window for GL rendering.

The GL is designed to be run on a range of graphics platforms with varying
graphics capabilities and performance. To accommodate this variety, we specify
ideal behavior instead of actual behavior for certain GL operations. In cases where
deviation from the ideal is allowed, we also specify the rules that an implemen-
tation must obey if it is to approximate the ideal behavior usefully. This allowed
variation in GL behavior implies that two distinct GL implementations may not
agree pixel for pixel when presented with the same input even when run on identi-
cal framebuffer configurations.

Version 2.0 - September 7, 2004



2.2. GL STATE 6

Finally, command names, constants, and types are prefixed in the GL (bygl,
GL , andGL, respectively inC) to reduce name clashes with other packages. The
prefixes are omitted in this document for clarity.

2.1.1 Floating-Point Computation

The GL must perform a number of floating-point operations during the course of
its operation. We do not specify how floating-point numbers are to be represented
or how operations on them are to be performed. We require simply that numbers’
floating-point parts contain enough bits and that their exponent fields are large
enough so that individual results of floating-point operations are accurate to about
1 part in105. The maximum representable magnitude of a floating-point number
used to represent positional, normal, or texture coordinates must be at least232;
the maximum representable magnitude for colors must be at least210. The max-
imum representable magnitude for all other floating-point values must be at least
232. x · 0 = 0 · x = 0 for any non-infinite and non-NaNx. 1 · x = x · 1 = x.
x + 0 = 0 + x = x. 00 = 1. (Occasionally further requirements will be specified.)
Most single-precision floating-point formats meet these requirements.

Any representable floating-point value is legal as input to a GL command that
requires floating-point data. The result of providing a value that is not a floating-
point number to such a command is unspecified, but must not lead to GL interrup-
tion or termination. In IEEE arithmetic, for example, providing a negative zero or a
denormalized number to a GL command yields predictable results, while providing
a NaN or an infinity yields unspecified results.

Some calculations require division. In such cases (including implied divisions
required by vector normalizations), a division by zero produces an unspecified re-
sult but must not lead to GL interruption or termination.

2.2 GL State

The GL maintains considerable state. This document enumerates each state vari-
able and describes how each variable can be changed. For purposes of discussion,
state variables are categorized somewhat arbitrarily by their function. Although we
describe the operations that the GL performs on the framebuffer, the framebuffer
is not a part of GL state.

We distinguish two types of state. The first type of state, called GLserver
state, resides in the GL server. The majority of GL state falls into this category.
The second type of state, called GLclient state, resides in the GL client. Unless
otherwise specified, all state referred to in this document is GL server state; GL

Version 2.0 - September 7, 2004



2.3. GL COMMAND SYNTAX 7

client state is specifically identified. Each instance of a GL context implies one
complete set of GL server state; each connection from a client to a server implies
a set of both GL client state and GL server state.

While an implementation of the GL may be hardware dependent, this discus-
sion is independent of the specific hardware on which a GL is implemented. We are
therefore concerned with the state of graphics hardware only when it corresponds
precisely to GL state.

2.3 GL Command Syntax

GL commands are functions or procedures. Various groups of commands perform
the same operation but differ in how arguments are supplied to them. To conve-
niently accommodate this variation, we adopt a notation for describing commands
and their arguments.

GL commands are formed from anamefollowed, depending on the particular
command, by up to 4 characters. The first character indicates the number of values
of the indicated type that must be presented to the command. The second character
or character pair indicates the specific type of the arguments: 8-bit integer, 16-bit
integer, 32-bit integer, single-precision floating-point, or double-precision floating-
point. The final character, if present, isv , indicating that the command takes a
pointer to an array (a vector) of values rather than a series of individual arguments.
Two specific examples come from theVertex command:

void Vertex3f( float x, float y, float z );

and

void Vertex2sv( short v[2] );

These examples show the ANSICdeclarations for these commands. In general,
a command declaration has the form1

rtypeName{ε1234}{ε b s i f d ub us ui}{εv}
( [args ,] T arg1 ,. . . , T argN [, args] );

rtype is the return type of the function. The braces ({}) enclose a series of char-
acters (or character pairs) of which one is selected.ε indicates no character. The
arguments enclosed in brackets ([args ,] and[, args]) may or may not be present.

1The declarations shown in this document apply to ANSIC. Languages such asC++ and Ada
that allow passing of argument type information admit simpler declarations and fewer entry points.

Version 2.0 - September 7, 2004



2.3. GL COMMAND SYNTAX 8

Letter CorrespondingGLType

b byte
s short
i int
f float
d double

ub ubyte
us ushort
ui uint

Table 2.1: Correspondence of command suffix letters to GL argument types. Refer
to table2.2for definitions of the GL types.

TheN argumentsarg1 throughargN have typeT, which corresponds to one of the
type letters or letter pairs as indicated in table2.1 (if there are no letters, then the
arguments’ type is given explicitly). If the final character is notv, thenN is given
by the digit1, 2, 3, or 4 (if there is no digit, then the number of arguments is fixed).
If the final character isv, then onlyarg1 is present and it is an array ofN values
of the indicated type. Finally, we indicate anunsigned type by the shorthand of
prepending au to the beginning of the type name (so that, for instance,unsigned
char is abbreviateduchar ).

For example,

void Normal3{fd}( T arg );

indicates the two declarations

void Normal3f( float arg1, float arg2, float arg3 );
void Normal3d( double arg1, double arg2, double arg3 );

while

void Normal3{fd}v( T arg );

means the two declarations

void Normal3fv( float arg[3] );
void Normal3dv( double arg[3] );

Arguments whose type is fixed (i.e. not indicated by a suffix on the command)
are of one of 14 types (or pointers to one of these). These types are summarized in
table2.2.

Version 2.0 - September 7, 2004



2.3. GL COMMAND SYNTAX 9

GL Type Minimum Description
Bit Width

boolean 1 Boolean
byte 8 signed 2’s complement binary integer
ubyte 8 unsigned binary integer
char 8 characters making up strings
short 16 signed 2’s complement binary integer
ushort 16 unsigned binary integer
int 32 signed 2’s complement binary integer
uint 32 unsigned binary integer
sizei 32 Non-negative binary integer size
enum 32 Enumerated binary integer value
intptr ptrbits signed 2’s complement binary integer
sizeiptr ptrbits Non-negative binary integer size
bitfield 32 Bit field
float 32 Floating-point value
clampf 32 Floating-point value clamped to[0, 1]
double 64 Floating-point value
clampd 64 Floating-point value clamped to[0, 1]

Table 2.2: GL data types. GL types are not C types. Thus, for example, GL
type int is referred to asGLint outside this document, and is not necessarily
equivalent to the C typeint . An implementation may use more bits than the
number indicated in the table to represent a GL type. Correct interpretation of
integer values outside the minimum range is not required, however.
ptrbits is the number of bits required to represent a pointer type; in other words,
typesintptr andsizeiptr must be sufficiently large as to store any address.

Version 2.0 - September 7, 2004



2.4. BASIC GL OPERATION 10

Display
   List

Evaluator

Per−Vertex
Operations Rasteriz−

ation

Per−
Fragment
Operations

Framebuffer

Pixel
Operations

Primitive
Assembly

Texture
Memory

Figure 2.1. Block diagram of the GL.

2.4 Basic GL Operation

Figure2.1shows a schematic diagram of the GL. Commands enter the GL on the
left. Some commands specify geometric objects to be drawn while others control
how the objects are handled by the various stages. Most commands may be ac-
cumulated in adisplay list for processing by the GL at a later time. Otherwise,
commands are effectively sent through a processing pipeline.

The first stage provides an efficient means for approximating curve and sur-
face geometry by evaluating polynomial functions of input values. The next stage
operates on geometric primitives described by vertices: points, line segments, and
polygons. In this stage vertices are transformed and lit, and primitives are clipped
to a viewing volume in preparation for the next stage, rasterization. The rasterizer
produces a series of framebuffer addresses and values using a two-dimensional de-
scription of a point, line segment, or polygon. Eachfragmentso produced is fed
to the next stage that performs operations on individual fragments before they fi-
nally alter the framebuffer. These operations include conditional updates into the
framebuffer based on incoming and previously stored depth values (to effect depth
buffering), blending of incoming fragment colors with stored colors, as well as
masking and other logical operations on fragment values.

Finally, there is a way to bypass the vertex processing portion of the pipeline to
send a block of fragments directly to the individual fragment operations, eventually
causing a block of pixels to be written to the framebuffer; values may also be read

Version 2.0 - September 7, 2004



2.5. GL ERRORS 11

back from the framebuffer or copied from one portion of the framebuffer to another.
These transfers may include some type of decoding or encoding.

This ordering is meant only as a tool for describing the GL, not as a strict rule
of how the GL is implemented, and we present it only as a means to organize the
various operations of the GL. Objects such as curved surfaces, for instance, may
be transformed before they are converted to polygons.

2.5 GL Errors

The GL detects only a subset of those conditions that could be considered errors.
This is because in many cases error checking would adversely impact the perfor-
mance of an error-free program.

The command

enum GetError ( void );

is used to obtain error information. Each detectable error is assigned a numeric
code. When an error is detected, a flag is set and the code is recorded. Further
errors, if they occur, do not affect this recorded code. WhenGetError is called,
the code is returned and the flag is cleared, so that a further error will again record
its code. If a call toGetError returnsNOERROR, then there has been no detectable
error since the last call toGetError (or since the GL was initialized).

To allow for distributed implementations, there may be several flag-code pairs.
In this case, after a call toGetError returns a value other thanNOERROReach
subsequent call returns the non-zero code of a distinct flag-code pair (in unspecified
order), until all non-NOERRORcodes have been returned. When there are no more
non-NOERRORerror codes, all flags are reset. This scheme requires some positive
number of pairs of a flag bit and an integer. The initial state of all flags is cleared
and the initial value of all codes isNOERROR.

Table2.3summarizes GL errors. Currently, when an error flag is set, results of
GL operation are undefined only ifOUTOF MEMORYhas occurred. In other cases,
the command generating the error is ignored so that it has no effect on GL state or
framebuffer contents. If the generating command returns a value, it returns zero. If
the generating command modifies values through a pointer argument, no change is
made to these values. These error semantics apply only to GL errors, not to system
errors such as memory access errors. This behavior is the current behavior; the
action of the GL in the presence of errors is subject to change.

Several error generation conditions are implicit in the description of every GL
command:

Version 2.0 - September 7, 2004



2.6. BEGIN/END PARADIGM 12

Error Description Offending com-
mand ignored?

INVALID ENUM enum argument out of range Yes
INVALID VALUE Numeric argument out of range Yes
INVALID OPERATION Operation illegal in current state Yes
STACKOVERFLOW Command would cause a stack

overflow
Yes

STACKUNDERFLOW Command would cause a stack
underflow

Yes

OUTOF MEMORY Not enough memory left to exe-
cute command

Unknown

TABLE TOOLARGE The specified table is too large Yes

Table 2.3: Summary of GL errors

• If a command that requires an enumerated value is passed a symbolic con-
stant that is not one of those specified as allowable for that command, the
error INVALID ENUMerror is generated. This is the case even if the argu-
ment is a pointer to a symbolic constant, if value pointer to is not allowable
for the given command.

• If a negative number is provided where an argument of typesizei is spec-
ified, the errorINVALID VALUEis generated.

• If memory is exhausted as a side effect of the execution of a command, the
errorOUTOF MEMORYmay be generated.

Otherwise, errors are generated only for conditions that are explicitly described in
this specification.

2.6 Begin/End Paradigm

In the GL, most geometric objects are drawn by enclosing a series of coordinate
sets that specify vertices and optionally normals, texture coordinates, and colors
betweenBegin/End pairs. There are ten geometric objects that are drawn this
way: points, line segments, line segment loops, separated line segments, polygons,
triangle strips, triangle fans, separated triangles, quadrilateral strips, and separated
quadrilaterals.

Version 2.0 - September 7, 2004



2.6. BEGIN/END PARADIGM 13

Each vertex is specified with two, three, or four coordinates. In addition, a
current normal, multiplecurrent texture coordinate sets, multiplecurrent generic
vertex attributes, current color, current secondary color, andcurrent fog coor-
dinate may be used in processing each vertex. Normals are used by the GL in
lighting calculations; the current normal is a three-dimensional vector that may be
set by sending three coordinates that specify it. Texture coordinates determine how
a texture image is mapped onto a primitive. Multiple sets of texture coordinates
may be used to specify how multiple texture images are mapped onto a primitive.
The number of texture units supported is implementation dependent but must be
at least two. The number of texture units supported can be queried with the state
MAXTEXTUREUNITS. Generic vertex attributes can be accessed from within ver-
tex shaders (section2.15) and used to compute values for consumption by later
processing stages.

Primary and secondary colors are associated with each vertex (see section3.9).
Theseassociatedcolors are either based on the current color and current secondary
color or produced by lighting, depending on whether or not lighting is enabled.
Texture and fog coordinates are similarly associated with each vertex. Multiple
sets of texture coordinates may be associated with a vertex. Figure2.2summarizes
the association of auxiliary data with a transformed vertex to produce aprocessed
vertex.

The current values are part of GL state. Vertices and normals are transformed,
colors may be affected or replaced by lighting, and texture coordinates are trans-
formed and possibly affected by a texture coordinate generation function. The
processing indicated for each current value is applied for each vertex that is sent to
the GL.

The methods by which vertices, normals, texture coordinates, , fog coordinate,
generic attributes, and colors are sent to the GL, as well as how normals are trans-
formed and how vertices are mapped to the two-dimensional screen, are discussed
later.

Before colors have been assigned to a vertex, the state required by a vertex
is the vertex’s coordinates, the current normal, the current edge flag (see sec-
tion 2.6.2), the current material properties (see section2.14.2), the current fog
coordinate, the multiple generic vertex attribute sets, and the multiple current tex-
ture coordinate sets. Because color assignment is done vertex-by-vertex, a pro-
cessed vertex comprises the vertex’s coordinates, its edge flag, its fog coordinate,
its assigned colors, and its multiple texture coordinate sets.

Figure2.3shows the sequence of operations that builds aprimitive (point, line
segment, or polygon) from a sequence of vertices. After a primitive is formed, it
is clipped to a viewing volume. This may alter the primitive by altering vertex
coordinates, texture coordinates, and colors. In the case of line and polygon prim-

Version 2.0 - September 7, 2004



2.6. BEGIN/END PARADIGM 14

Current
Edge Flag & 
Fog Coord

lighting

vertex / normal
transformation

Current
Normal

Current
Colors & 
Materials

Associated
Data

Transformed
Coordinates

Processed
Vertex

Out

(Colors, Edge Flag,
Fog and Texture

Coordinates)

Vertex
Coordinates In

texgen texture
matrix 0

Current
Texture

Coord Set 0

texgen texture
matrix 1

Current
Texture

Coord Set 1

texgen texture
matrix 2

Current
Texture

Coord Set 2

texgen texture
matrix 3

Current
Texture

Coord Set 3

Figure 2.2. Association of current values with a vertex. The heavy lined boxes rep-
resent GL state. Four texture units are shown; however, multitexturing may support
a different number of units depending on the implementation.

Version 2.0 - September 7, 2004



2.6. BEGIN/END PARADIGM 15

Processed
Vertices

Point,
Line Segment, or

Polygon
(Primitive)
Assembly

Begin/End
State

Point culling;
Line Segment
 or Polygon

Clipping

Color
Processing

Rasterization

Coordinates

Associated
Data

Figure 2.3. Primitive assembly and processing.

itives, clipping may insert new vertices into the primitive. The vertices defining a
primitive to be rasterized have texture coordinates and colors associated with them.

2.6.1 Begin and End

Vertices making up one of the supported geometric object types are specified by
enclosing commands defining those vertices between the two commands

void Begin( enum mode);
void End( void );

There is no limit on the number of vertices that may be specified between aBegin
and anEnd.

Points. A series of individual points may be specified by callingBeginwith an
argument value ofPOINTS. No special state need be kept betweenBeginandEnd
in this case, since each point is independent of previous and following points.

Line Strips. A series of one or more connected line segments is specified by
enclosing a series of two or more endpoints within aBegin/End pair whenBegin is
called withLINE STRIP. In this case, the first vertex specifies the first segment’s
start point while the second vertex specifies the first segment’s endpoint and the
second segment’s start point. In general, theith vertex (fori > 1) specifies the
beginning of theith segment and the end of thei − 1st. The last vertex specifies
the end of the last segment. If only one vertex is specified between theBegin/End
pair, then no primitive is generated.

Version 2.0 - September 7, 2004



2.6. BEGIN/END PARADIGM 16

The required state consists of the processed vertex produced from the last ver-
tex that was sent (so that a line segment can be generated from it to the current
vertex), and a boolean flag indicating if the current vertex is the first vertex.

Line Loops. Line loops, specified with theLINE LOOPargument value to
Begin, are the same as line strips except that a final segment is added from the final
specified vertex to the first vertex. The additional state consists of the processed
first vertex.

Separate Lines.Individual line segments, each specified by a pair of vertices,
are generated by surrounding vertex pairs withBegin and End when the value
of the argument toBegin is LINES . In this case, the first two vertices between a
BeginandEnd pair define the first segment, with subsequent pairs of vertices each
defining one more segment. If the number of specified vertices is odd, then the last
one is ignored. The state required is the same as for lines but it is used differently: a
vertex holding the first vertex of the current segment, and a boolean flag indicating
whether the current vertex is odd or even (a segment start or end).

Polygons. A polygon is described by specifying its boundary as a series of
line segments. WhenBegin is called withPOLYGON, the bounding line segments
are specified in the same way as line loops. Depending on the current state of the
GL, a polygon may be rendered in one of several ways such as outlining its border
or filling its interior. A polygon described with fewer than three vertices does not
generate a primitive.

Only convex polygons are guaranteed to be drawn correctly by the GL. If a
specified polygon is nonconvex when projected onto the window, then the rendered
polygon need only lie within the convex hull of the projected vertices defining its
boundary.

The state required to support polygons consists of at least two processed ver-
tices (more than two are never required, although an implementation may use
more); this is because a convex polygon can be rasterized as its vertices arrive,
before all of them have been specified. The order of the vertices is significant in
lighting and polygon rasterization (see sections2.14.1and3.5.1).

Triangle strips. A triangle strip is a series of triangles connected along shared
edges. A triangle strip is specified by giving a series of defining vertices between
a Begin/End pair whenBegin is called withTRIANGLE STRIP. In this case, the
first three vertices define the first triangle (and their order is significant, just as for
polygons). Each subsequent vertex defines a new triangle using that point along
with two vertices from the previous triangle. ABegin/End pair enclosing fewer
than three vertices, whenTRIANGLE STRIP has been supplied toBegin, produces
no primitive. See figure2.4.

The state required to support triangle strips consists of a flag indicating if the
first triangle has been completed, two stored processed vertices, (called vertex A

Version 2.0 - September 7, 2004



2.6. BEGIN/END PARADIGM 17

(a) (b) (c)

1

2

3

4

5 1

2
3

4

5
1

2

3

4

5

6

Figure 2.4. (a) A triangle strip. (b) A triangle fan. (c) Independent triangles. The
numbers give the sequencing of the vertices betweenBegin andEnd. Note that in
(a) and (b) triangle edge ordering is determined by the first triangle, while in (c) the
order of each triangle’s edges is independent of the other triangles.

and vertex B), and a one bit pointer indicating which stored vertex will be replaced
with the next vertex. After aBegin( TRIANGLE STRIP) , the pointer is initialized
to point to vertex A. Each vertex sent between aBegin/End pair toggles the pointer.
Therefore, the first vertex is stored as vertex A, the second stored as vertex B, the
third stored as vertex A, and so on. Any vertex after the second one sent forms a
triangle from vertex A, vertex B, and the current vertex (in that order).

Triangle fans. A triangle fan is the same as a triangle strip with one exception:
each vertex after the first always replaces vertex B of the two stored vertices. The
vertices of a triangle fan are enclosed betweenBegin andEnd when the value of
the argument toBegin is TRIANGLE FAN.

Separate Triangles. Separate triangles are specified by placing vertices be-
tweenBegin andEnd when the value of the argument toBegin is TRIANGLES. In
this case, The3i + 1st, 3i + 2nd, and3i + 3rd vertices (in that order) determine
a triangle for eachi = 0, 1, . . . , n − 1, where there are3n + k vertices between
theBegin andEnd. k is either 0, 1, or 2; ifk is not zero, the finalk vertices are
ignored. For each triangle, vertex A is vertex3i and vertex B is vertex3i + 1.
Otherwise, separate triangles are the same as a triangle strip.

The rules given for polygons also apply to each triangle generated from a tri-
angle strip, triangle fan or from separate triangles.

Quadrilateral (quad) strips. Quad strips generate a series of edge-sharing
quadrilaterals from vertices appearing betweenBegin and End, whenBegin is

Version 2.0 - September 7, 2004



2.6. BEGIN/END PARADIGM 18

1

2

3

4

5

6

1

2 3

4 5

6 7

8

(a) (b)

Figure 2.5. (a) A quad strip. (b) Independent quads. The numbers give the sequenc-
ing of the vertices betweenBeginandEnd.

called with QUADSTRIP. If the m vertices between theBegin and End are
v1, . . . , vm, wherevj is thejth specified vertex, then quadi has vertices (in or-
der)v2i, v2i+1, v2i+3, andv2i+2 with i = 0, . . . , bm/2c. The state required is thus
three processed vertices, to store the last two vertices of the previous quad along
with the third vertex (the first new vertex) of the current quad, a flag to indicate
when the first quad has been completed, and a one-bit counter to count members
of a vertex pair. See figure2.5.

A quad strip with fewer than four vertices generates no primitive. If the number
of vertices specified for a quadrilateral strip betweenBegin andEnd is odd, the
final vertex is ignored.

Separate QuadrilateralsSeparate quads are just like quad strips except that
each group of four vertices, the4j + 1st, the4j + 2nd, the4j + 3rd, and the
4j + 4th, generate a single quad, forj = 0, 1, . . . , n − 1. The total number of
vertices betweenBegin andEnd is 4n + k, where0 ≤ k ≤ 3; if k is not zero, the
final k vertices are ignored. Separate quads are generated by callingBegin with
the argument valueQUADS.

The rules given for polygons also apply to each quad generated in a quad strip
or from separate quads.

The state required forBeginandEnd consists of an eleven-valued integer indi-
cating either one of the ten possibleBegin/End modes, or that noBegin/End mode
is being processed.

Version 2.0 - September 7, 2004



2.6. BEGIN/END PARADIGM 19

2.6.2 Polygon Edges

Each edge of each primitive generated from a polygon, triangle strip, triangle fan,
separate triangle set, quadrilateral strip, or separate quadrilateral set, is flagged as
eitherboundaryor non-boundary. These classifications are used during polygon
rasterization; some modes affect the interpretation of polygon boundary edges (see
section3.5.4). By default, all edges are boundary edges, but the flagging of poly-
gons, separate triangles, or separate quadrilaterals may be altered by calling

void EdgeFlag( boolean flag );
void EdgeFlagv( boolean *flag );

to change the value of a flag bit. Ifflag is zero, then the flag bit is set toFALSE; if
flag is non-zero, then the flag bit is set toTRUE.

When Begin is supplied with one of the argument valuesPOLYGON,
TRIANGLES, or QUADS, each vertex specified within aBegin and End pair be-
gins an edge. If the edge flag bit isTRUE, then each specified vertex begins an edge
that is flagged as boundary. If the bit isFALSE, then induced edges are flagged as
non-boundary.

The state required for edge flagging consists of one current flag bit. Initially, the
bit is TRUE. In addition, each processed vertex of an assembled polygonal primitive
must be augmented with a bit indicating whether or not the edge beginning on that
vertex is boundary or non-boundary.

2.6.3 GL Commands within Begin/End

The only GL commands that are allowed within anyBegin/End pairs are the com-
mands for specifying vertex coordinates, vertex colors, normal coordinates, texture
coordinates, generic vertex attributes, and fog coordinates (Vertex, Color, Sec-
ondaryColor, Index, Normal, TexCoord andMultiTexCoord , VertexAttrib ,
FogCoord), the ArrayElement command (see section2.8), the EvalCoord and
EvalPoint commands (see section5.1), commands for specifying lighting mate-
rial parameters (Material commands; see section2.14.2), display list invocation
commands (CallList andCallLists; see section5.4), and theEdgeFlagcommand.
Executing any other GL command between the execution ofBegin and the corre-
sponding execution ofEnd results in the errorINVALID OPERATION. Executing
Begin afterBegin has already been executed but before anEnd is executed gen-
erates theINVALID OPERATIONerror, as does executingEnd without a previous
correspondingBegin.

Execution of the commandsEnableClientState, DisableClientState, Push-
ClientAttrib , PopClientAttrib , ColorPointer, FogCoordPointer, EdgeFlag-

Version 2.0 - September 7, 2004



2.7. VERTEX SPECIFICATION 20

Pointer, IndexPointer, NormalPointer, TexCoordPointer, SecondaryColor-
Pointer, VertexPointer, VertexAttribPointer , ClientActiveTexture, Inter-
leavedArrays, andPixelStore is not allowed within anyBegin/End pair, but an
error may or may not be generated if such execution occurs. If an error is not gen-
erated, GL operation is undefined. (These commands are described in sections2.8,
3.6.1, and chapter6.)

2.7 Vertex Specification

Vertices are specified by giving their coordinates in two, three, or four dimensions.
This is done using one of several versions of theVertex command:

void Vertex{234}{sifd}( T coords);
void Vertex{234}{sifd}v( T coords);

A call to anyVertex command specifies four coordinates:x, y, z, andw. The
x coordinate is the first coordinate,y is second,z is third, andw is fourth. A
call to Vertex2 sets thex andy coordinates; thez coordinate is implicitly set to
zero and thew coordinate to one.Vertex3 setsx, y, andz to the provided values
andw to one. Vertex4 sets all four coordinates, allowing the specification of an
arbitrary point in projective three-space. Invoking aVertex command outside of a
Begin/End pair results in undefined behavior.

Current values are used in associating auxiliary data with a vertex as described
in section2.6. A current value may be changed at any time by issuing an appropri-
ate command. The commands

void TexCoord{1234}{sifd}( T coords);
void TexCoord{1234}{sifd}v( T coords);

specify the current homogeneous texture coordinates, nameds, t, r, andq. The
TexCoord1 family of commands set thes coordinate to the provided single argu-
ment while settingt andr to 0 andq to 1. Similarly,TexCoord2setss andt to the
specified values,r to 0 andq to 1; TexCoord3 setss, t, andr, with q set to 1, and
TexCoord4sets all four texture coordinates.

Implementations must support at least two sets of texture coordinates. The
commands

void MultiTexCoord {1234 }{sifd }(enum texture,T coords)
void MultiTexCoord {1234 }{sifd }v(enum texture,T

coords)

Version 2.0 - September 7, 2004



2.7. VERTEX SPECIFICATION 21

take the coordinate set to be modified as thetextureparameter.textureis a symbolic
constant of the formTEXTUREi, indicating that texture coordinate seti is to be
modified. The constants obeyTEXTUREi = TEXTURE0+ i (i is in the range 0 to
k−1, wherek is the implementation-dependent number of texture coordinate sets
defined byMAXTEXTURECOORDS).

TheTexCoord commands are exactly equivalent to the correspondingMulti-
TexCoord commands withtextureset toTEXTURE0.

Gets of CURRENTTEXTURECOORDSreturn the texture coordinate set defined
by the value ofACTIVE TEXTURE.

Specifying an invalid texture coordinate set for thetextureargument ofMulti-
TexCoord results in undefined behavior.

The current normal is set using

void Normal3{bsifd}( T coords);
void Normal3{bsifd}v( T coords);

Byte, short, or integer values passed toNormal are converted to floating-point
values as indicated for the corresponding (signed) type in table2.9.

The current fog coordinate is set using

void FogCoord{fd}( T coord);
void FogCoord{fd}v( T coord);

There are several ways to set the current color and secondary color. The GL
stores a current single-valuedcolor index, as well as a current four-valued RGBA
color and secondary color. Either the index or the color and secondary color are
significant depending as the GL is incolor index modeor RGBA mode. The mode
selection is made when the GL is initialized.

The commands to set RGBA colors are

void Color{34}{bsifd ubusui}( T components);
void Color{34}{bsifd ubusui}v( T components);
void SecondaryColor3{bsifd ubusui}( T components);
void SecondaryColor3{bsifd ubusui}v( T components);

TheColor command has two major variants:Color3 andColor4. The four value
versions set all four values. The three value versions set R, G, and B to the provided
values; A is set to 1.0. (The conversion of integer color components (R, G, B, and
A) to floating-point values is discussed in section2.14.)

The secondary color has only the three value versions. Secondary A is always
set to 1.0.

Version 2.0 - September 7, 2004



2.7. VERTEX SPECIFICATION 22

Versions of theColor andSecondaryColorcommands that take floating-point
values accept values nominally between 0.0 and 1.0. 0.0 corresponds to the min-
imum while 1.0 corresponds to the maximum (machine dependent) value that a
component may take on in the framebuffer (see section2.14on colors and color-
ing). Values outside[0, 1] are not clamped.

The command

void Index{sifd ub}( T index);
void Index{sifd ub}v( T index);

updates the current (single-valued) color index. It takes one argument, the value
to which the current color index should be set. Values outside the (machine-
dependent) representable range of color indices are not clamped.

Vertex shaders (see section2.15) can be written to access an array of 4-
component generic vertex attributes in addition to the conventional attributes spec-
ified previously. The first slot of this array is numbered 0, and the size of the array
is specified by the implementation-dependent constantMAXVERTEXATTRIBS.

The commands

void VertexAttrib {1234}{sfd}( uint index, T values);
void VertexAttrib {123}{sfd}v( uint index, T values);
void VertexAttrib4 {bsifd ubusui}v( uint index, T values);

can be used to load the given value(s) into the generic attribute at slotindex, whose
components are namedx, y, z, andw. TheVertexAttrib1* family of commands
sets thex coordinate to the provided single argument while settingy andz to 0 and
w to 1. Similarly,VertexAttrib2* commands setx andy to the specified values,
z to 0 andw to 1; VertexAttrib3* commands setx, y, andz, with w set to 1, and
VertexAttrib4* commands set all four coordinates. The errorINVALID VALUEis
generated ifindexis greater than or equal toMAXVERTEXATTRIBS.

The commands

void VertexAttrib4Nub ( uint index, T values);
void VertexAttrib4N {bsi ubusui}v( uint index, T values);

also specify vertex attributes with fixed-point coordinates that are scaled to a nor-
malized range, according to table2.9.

The VertexAttrib* entry points defined earlier can also be used to load at-
tributes declared as a2 × 2, 3 × 3 or 4 × 4 matrix in a vertex shader. Each
column of a matrix takes up one generic 4-component attribute slot out of the

Version 2.0 - September 7, 2004



2.8. VERTEX ARRAYS 23

MAXVERTEXATTRIBS available slots. Matrices are loaded into these slots in
column major order. Matrix columns need to be loaded in increasing slot numbers.

Setting generic vertex attribute zero specifies a vertex; the four vertex coordi-
nates are taken from the values of attribute zero. AVertex2, Vertex3, or Vertex4
command is completely equivalent to the correspondingVertexAttrib* command
with anindexof zero. Setting any other generic vertex attribute updates the current
values of the attribute. There are no current values for vertex attribute zero.

There is no aliasing among generic attributes and conventional attributes. In
other words, an application can set allMAXVERTEXATTRIBS generic attributes
and all conventional attributes without fear of one particular attribute overwriting
the value of another attribute.

The state required to support vertex specification consists of four floating-
point numbers per texture coordinate set to store the current texture coordinatess,
t, r, andq, three floating-point numbers to store the three coordinates of the current
normal, one floating-point number to store the current fog coordinate, four floating-
point values to store the current RGBA color, four floating-point values to store the
current RGBA secondary color, one floating-point value to store the current color
index, andMAXVERTEXATTRIBS− 1 four-component floating-point vectors to
store generic vertex attributes.

There is no notion of a current vertex, so no state is devoted to vertex coordi-
nates or generic attribute zero. The initial texture coordinates are(s, t, r, q) =
(0, 0, 0, 1) for each texture coordinate set. The initial current normal has coor-
dinates(0, 0, 1). The initial fog coordinate is zero. The initial RGBA color is
(R,G,B,A) = (1, 1, 1, 1) and the initial RGBA secondary color is(0, 0, 0, 1).
The initial color index is 1. The initial values for all generic vertex attributes are
(0, 0, 0, 1).

2.8 Vertex Arrays

The vertex specification commands described in section2.7 accept data in almost
any format, but their use requires many command executions to specify even sim-
ple geometry. Vertex data may also be placed into arrays that are stored in the
client’s address space. Blocks of data in these arrays may then be used to spec-
ify multiple geometric primitives through the execution of a single GL command.
The client may specify up to seven plus the values ofMAXTEXTURECOORDS

andMAXVERTEXATTRIBS arrays: one each to store vertex coordinates, normals,
colors, secondary colors, color indices, edge flags, fog coordinates, two or more
texture coordinate sets, and one or more generic vertex attributes. The commands

Version 2.0 - September 7, 2004



2.8. VERTEX ARRAYS 24

void VertexPointer( int size, enum type, sizei stride,
void *pointer );

void NormalPointer( enum type, sizei stride,
void *pointer );

void ColorPointer( int size, enum type, sizei stride,
void *pointer );

void SecondaryColorPointer( int size, enum type,
sizei stride, void *pointer );

void IndexPointer( enum type, sizei stride, void *pointer );

void EdgeFlagPointer( sizei stride, void *pointer );

void FogCoordPointer( enum type, sizei stride,
void *pointer );

void TexCoordPointer( int size, enum type, sizei stride,
void *pointer );

void VertexAttribPointer ( uint index, int size, enum type,
boolean normalized, sizei stride, const
void *pointer );

describe the locations and organizations of these arrays. For each command,
typespecifies the data type of the values stored in the array. Because edge flags
are always typeboolean , EdgeFlagPointerhas notypeargument.size, when
present, indicates the number of values per vertex that are stored in the array.
Because normals are always specified with three values,NormalPointer has no
sizeargument. Likewise, because color indices and edge flags are always spec-
ified with a single value,IndexPointer andEdgeFlagPointeralso have nosize
argument. Table 2.4 indicates the allowable values forsize and type (when
present). Fortype the valuesBYTE, SHORT, INT , FLOAT, andDOUBLEindicate
typesbyte , short , int , float , anddouble , respectively; and the values
UNSIGNEDBYTE, UNSIGNEDSHORT, andUNSIGNEDINT indicate typesubyte ,
ushort , anduint , respectively. The errorINVALID VALUEis generated ifsize
is specified with a value other than that indicated in the table.

The index parameter in theVertexAttribPointer command identifies the
generic vertex attribute array being described. The errorINVALID VALUEis gener-
ated ifindexis greater than or equal toMAXVERTEXATTRIBS. Thenormalizedpa-
rameter in theVertexAttribPointer command identifies whether fixed-point types

Version 2.0 - September 7, 2004



2.8. VERTEX ARRAYS 25

Command Sizes Normalized Types

VertexPointer 2,3,4 no short , int , float , double
NormalPointer 3 yes byte , short , int , float ,

double
ColorPointer 3,4 yes byte , ubyte , short ,

ushort , int , uint , float ,
double

SecondaryColorPointer 3 yes byte , ubyte , short ,
ushort , int , uint , float ,
double

IndexPointer 1 no ubyte , short , int , float ,
double

FogCoordPointer 1 - float , double
TexCoordPointer 1,2,3,4 no short , int , float , double
EdgeFlagPointer 1 no boolean
VertexAttribPointer 1,2,3,4 flag byte , ubyte , short ,

ushort , int , uint , float ,
double

Table 2.4: Vertex array sizes (values per vertex) and data types. The ”normalized”
column indicates whether fixed-point types are accepted directly or normalized
to [0, 1] (for unsigned types) or[−1, 1] (for signed types). For generic vertex at-
tributes, fixed-point data are normalized if and only if theVertexAttribPointer
normalizedflag is set.

Version 2.0 - September 7, 2004



2.8. VERTEX ARRAYS 26

should be normalized when converted to floating-point. Ifnormalizedis TRUE,
fixed-point data are converted as specified in table2.9; otherwise, the fixed-point
values are converted directly.

The one, two, three, or four values in an array that correspond to a single vertex
comprise an arrayelement. The values within each array element are stored se-
quentially in memory. Ifstride is specified as zero, then array elements are stored
sequentially as well. The errorINVALID VALUEis generated ifstride is negative.
Otherwise pointers to theith and(i + 1)st elements of an array differ bystride
basic machine units (typically unsigned bytes), the pointer to the(i + 1)st element
being greater. For each command,pointerspecifies the location in memory of the
first value of the first element of the array being specified.

An individual array is enabled or disabled by calling one of

void EnableClientState( enum array );
void DisableClientState( enum array );

with array set to VERTEXARRAY, NORMALARRAY, COLORARRAY,
SECONDARYCOLORARRAY, INDEX ARRAY, EDGEFLAG ARRAY,
FOGCOORDARRAY, or TEXTURECOORDARRAY, for the vertex, normal, color,
secondary color, color index, edge flag, fog coordinate, or texture coordinate array,
respectively.

An individual generic vertex attribute array is enabled or disabled by calling
one of

void EnableVertexAttribArray ( uint index);
void DisableVertexAttribArray ( uint index);

where index identifies the generic vertex attribute array to enable or disable.
The error INVALID VALUE is generated ifindex is greater than or equal to
MAXVERTEXATTRIBS.

The command

void ClientActiveTexture( enum texture);

is used to select the vertex array client state parameters to be modified by
theTexCoordPointer command and the array affected byEnableClientStateand
DisableClientStatewith parameterTEXTURECOORDARRAY. This command sets
the client state variableCLIENT ACTIVE TEXTURE. Each texture coordinate set
has a client state vector which is selected when this command is invoked. This
state vector includes the vertex array state. This call also selects the texture
coordinate set state used for queries of client state.

Version 2.0 - September 7, 2004



2.8. VERTEX ARRAYS 27

Specifying an invalidtexturegenerates the errorINVALID ENUM. Valid values
of textureare the same as for theMultiTexCoord commands described in sec-
tion 2.7.

The command

void ArrayElement ( int i );

transfers theith element of every enabled array to the GL. The effect of
ArrayElement (i) is the same as the effect of the command sequence

if ( normal array enabled)
Normal3[type]v(normal array elementi );

if ( color array enabled)
Color[size][type]v(color array elementi );

if ( secondary color array enabled)
SecondaryColor3[type]v(secondary color array elementi );

if ( fog coordinate array enabled)
FogCoord[type]v(fog coordinate array elementi );

for (j = 0; j < textureUnits; j++) {
if ( texture coordinate setj array enabled)

MultiTexCoord[size][type]v (TEXTURE0+ j , texture coordinate setj array elementi );
if ( color index array enabled)

Index[type]v(color index array elementi );
if ( edge flag array enabled)

EdgeFlagv(edge flag array elementi );
for (j = 1; j < genericAttributes; j++) {

if ( generic vertex attributej array enabled) {
if ( generic vertex attributej array normalization flag is set, and

type is notFLOATor DOUBLE)
VertexAttrib[size]N[type]v (j , generic vertex attributej array elementi );

else
VertexAttrib[size][type]v (j, generic vertex attribute j array elementi );

}
}
if ( generic attribute array 0 enabled) {

if ( generic vertex attribute 0 array normalization flag is set, and
type is notFLOATor DOUBLE)

VertexAttrib[size]N[type]v (0, generic vertex attribute 0 array elementi );
else

VertexAttrib[size][type]v (0, generic vertex attribute 0 array elementi );

Version 2.0 - September 7, 2004



2.8. VERTEX ARRAYS 28

} else if ( vertex array enabled) {
Vertex[size][type]v(vertex array elementi );

}

where textureUnitsandgenericAttributesgive the number of texture coordinate
sets and generic vertex attributes supported by the implementation, respectively.
”[size]” and ”[type]” correspond to the size and type of the corresponding array.
For generic vertex attributes, it is assumed that a complete set of vertex attribute
commands exists, even though not all such functions are provided by the GL.

Changes made to array data between the execution ofBegin and the corre-
sponding execution ofEnd may affect calls toArrayElement that are made within
the sameBegin/End period in non-sequential ways. That is, a call toArrayEle-
ment that precedes a change to array data may access the changed data, and a call
that follows a change to array data may access original data.

Specifying i < 0 results in undefined behavior. Generating the error
INVALID VALUEis recommended in this case.

The command

void DrawArrays ( enum mode, int first, sizei count);

constructs a sequence of geometric primitives using elementsfirst through
first + count − 1 of each enabled array.modespecifies what kind of primi-
tives are constructed; it accepts the same token values as themode parameter of
theBegincommand. The effect of

DrawArrays ( mode, first, count);

is the same as the effect of the command sequence

if ( mode or count is invalid )
generate appropriate error

else {
Begin( mode);
for (int i = 0; i < count ; i++)

ArrayElement ( first+ i);
End();

}

with one exception: the current normal coordinates, color, secondary color, color
index, edge flag, fog coordinate, texture coordinates, and generic attributes are
each indeterminate after execution ofDrawArrays , if the corresponding array is

Version 2.0 - September 7, 2004



2.8. VERTEX ARRAYS 29

enabled. Current values corresponding to disabled arrays are not modified by the
execution ofDrawArrays .

Specifyingfirst < 0 results in undefined behavior. Generating the error
INVALID VALUEis recommended in this case.

The command

void MultiDrawArrays ( enum mode, int *first,
sizei *count, sizei primcount);

behaves identically toDrawArrays except thatprimcountseparate ranges of
elements are specified instead. It has the same effect as:

for (i = 0; i < primcount; i++) {
if ( count[i] > 0)

DrawArrays ( mode, first[i], count[i]);
}

The command

void DrawElements( enum mode, sizei count, enum type,
void *indices);

constructs a sequence of geometric primitives using thecount elements
whose indices are stored inindices. type must be one ofUNSIGNEDBYTE,
UNSIGNEDSHORT, or UNSIGNEDINT , indicating that the values inindicesare in-
dices of GL typeubyte , ushort , or uint respectively.modespecifies what
kind of primitives are constructed; it accepts the same token values as themode
parameter of theBegincommand. The effect of

DrawElements( mode, count, type, indices);

is the same as the effect of the command sequence

if ( mode, count, or type is invalid )
generate appropriate error

else {
Begin( mode);
for (int i = 0; i < count ; i++)

ArrayElement ( indices[i ]);
End();

}

Version 2.0 - September 7, 2004



2.8. VERTEX ARRAYS 30

with one exception: the current normal coordinates, color, secondary color, color
index, edge flag, fog coordinate, texture coordinates, and generic attributes are each
indeterminate after the execution ofDrawElements, if the corresponding array is
enabled. Current values corresponding to disabled arrays are not modified by the
execution ofDrawElements.

The command

void MultiDrawElements ( enum mode, sizei *count,
enum type, void **indices, sizei primcount);

behaves identically toDrawElements except thatprimcountseparate lists of
elements are specified instead. It has the same effect as:

for (i = 0; i < primcount; i++) {
if ( count[i]) > 0)

DrawElements( mode, count[i], type, indices[i]);
}

The command

void DrawRangeElements( enum mode, uint start,
uint end, sizei count, enum type, void *indices);

is a restricted form ofDrawElements. mode, count, type, andindicesmatch the
corresponding arguments toDrawElements, with the additional constraint that all
values in the arrayindicesmust lie betweenstart andendinclusive.

Implementations denote recommended maximum amounts of vertex and index
data, which may be queried by callingGetIntegerv with the symbolic constants
MAXELEMENTSVERTICESandMAXELEMENTSINDICES . If end − start + 1 is
greater than the value ofMAXELEMENTSVERTICES, or if count is greater than
the value ofMAXELEMENTSINDICES , then the call may operate at reduced per-
formance. There is no requirement that all vertices in the range[start, end] be
referenced. However, the implementation may partially process unused vertices,
reducing performance from what could be achieved with an optimal index set.

The errorINVALID VALUEis generated ifend < start. Invalid mode, count,
or type parameters generate the same errors as would the corresponding call to
DrawElements. It is an error for indices to lie outside the range[start, end], but
implementations may not check for this. Such indices will cause implementation-
dependent behavior.

The command

Version 2.0 - September 7, 2004



2.8. VERTEX ARRAYS 31

void InterleavedArrays( enum format, sizei stride,
void *pointer );

efficiently initializes the six arrays and their enables to one of 14 con-
figurations. format must be one of 14 symbolic constants:V2F,
V3F, C4UBV2F, C4UBV3F, C3F V3F, N3F V3F, C4F N3F V3F, T2F V3F,
T4F V4F, T2F C4UBV3F, T2F C3F V3F, T2F N3F V3F, T2F C4F N3F V3F, or
T4F C4F N3F V4F.

The effect of

InterleavedArrays( format, stride, pointer);

is the same as the effect of the command sequence

if ( format or stride is invalid)
generate appropriate error

else {
int str;
setet, ec, en, st, sc, sv, tc, pc, pn, pv, ands as a function

of table2.5and the value offormat.
str = stride;
if (str is zero)

str = s;
DisableClientState( EDGEFLAG ARRAY) ;
DisableClientState( INDEX ARRAY) ;
DisableClientState( SECONDARYCOLORARRAY) ;
DisableClientState( FOGCOORDARRAY) ;
if ( et) {

EnableClientState( TEXTURECOORDARRAY) ;
TexCoordPointer( st, FLOAT, str , pointer) ;

} else
DisableClientState( TEXTURECOORDARRAY) ;

if ( ec) {
EnableClientState( COLORARRAY) ;
ColorPointer( sc, tc, str , pointer + pc) ;

} else
DisableClientState( COLORARRAY) ;

if ( en) {
EnableClientState( NORMALARRAY) ;
NormalPointer( FLOAT, str , pointer + pn) ;

} else

Version 2.0 - September 7, 2004



2.8. VERTEX ARRAYS 32

format et ec en st sc sv tc

V2F False False False 2
V3F False False False 3
C4UBV2F False True False 4 2 UNSIGNEDBYTE

C4UBV3F False True False 4 3 UNSIGNEDBYTE

C3F V3F False True False 3 3 FLOAT

N3F V3F False False True 3
C4F N3F V3F False True True 4 3 FLOAT

T2F V3F True False False 2 3
T4F V4F True False False 4 4
T2F C4UBV3F True True False 2 4 3 UNSIGNEDBYTE

T2F C3F V3F True True False 2 3 3 FLOAT

T2F N3F V3F True False True 2 3
T2F C4F N3F V3F True True True 2 4 3 FLOAT

T4F C4F N3F V4F True True True 4 4 4 FLOAT

format pc pn pv s

V2F 0 2f
V3F 0 3f
C4UBV2F 0 c c + 2f
C4UBV3F 0 c c + 3f

C3F V3F 0 3f 6f
N3F V3F 0 3f 6f
C4F N3F V3F 0 4f 7f 10f
T2F V3F 2f 5f

T4F V4F 4f 8f
T2F C4UBV3F 2f c + 2f c + 5f
T2F C3F V3F 2f 5f 8f
T2F N3F V3F 2f 5f 8f

T2F C4F N3F V3F 2f 6f 9f 12f
T4F C4F N3F V4F 4f 8f 11f 15f

Table 2.5: Variables that direct the execution ofInterleavedArrays. f is
sizeof(FLOAT) . c is 4 timessizeof(UNSIGNED BYTE), rounded up to
the nearest multiple off . All pointer arithmetic is performed in units of
sizeof(UNSIGNED BYTE).

Version 2.0 - September 7, 2004



2.9. BUFFER OBJECTS 33

DisableClientState( NORMALARRAY) ;
EnableClientState( VERTEXARRAY) ;
VertexPointer( sv, FLOAT, str , pointer + pv) ;

}

If the number of supported texture units (the value ofMAXTEXTURECOORDS)
is m and the number of supported generic vertex attributes (the value of
MAXVERTEXATTRIBS) is n, then the client state required to implement vertex
arrays consists of an integer for the client active texture unit selector,7 + m + n
boolean values,7 + m + n memory pointers,7 + m + n integer stride values,
7 + m + n symbolic constants representing array types,3 + m + n integers repre-
senting values per element, andn boolean values indicating normalization. In the
initial state, the client active texture unit selector isTEXTURE0, the boolean values
are each false, the memory pointers are eachNULL, the strides are each zero, the
array types are eachFLOAT, and the integers representing values per element are
each four.

2.9 Buffer Objects

The vertex data arrays described in section2.8 are stored in client memory. It is
sometimes desirable to store frequently used client data, such as vertex array data,
in high-performance server memory. GL buffer objects provide a mechanism that
clients can use to allocate, initialize, and render from such memory.

The name space for buffer objects is the unsigned integers, with zero re-
served for the GL. A buffer object is created by binding an unused name to
ARRAYBUFFER. The binding is effected by calling

void BindBuffer ( enum target, uint buffer);

with targetset toARRAYBUFFERandbufferset to the unused name. The resulting
buffer object is a new state vector, initialized with a zero-sized memory buffer, and
comprising the state values listed in table2.6.

BindBuffer may also be used to bind an existing buffer object. If the bind is
successful no change is made to the state of the newly bound buffer object, and any
previous binding totarget is broken.

While a buffer object is bound, GL operations on the target to which it is bound
affect the bound buffer object, and queries of the target to which a buffer object is
bound return state from the bound object.

In the initial state the reserved name zero is bound toARRAYBUFFER. There
is no buffer object corresponding to the name zero, so client attempts to modify

Version 2.0 - September 7, 2004



2.9. BUFFER OBJECTS 34

Name Type Initial Value Legal Values

BUFFERSIZE integer 0 any non-negative integer
BUFFERUSAGE enum STATIC DRAW STREAMDRAW, STREAMREAD,

STREAMCOPY, STATIC DRAW,
STATIC READ, STATIC COPY,
DYNAMICDRAW, DYNAMICREAD,
DYNAMICCOPY

BUFFERACCESS enum READWRITE READONLY, WRITEONLY,
READWRITE

BUFFERMAPPED boolean FALSE TRUE, FALSE

BUFFERMAPPOINTER void* NULL address

Table 2.6: Buffer object parameters and their values.

or query buffer object state for the targetARRAYBUFFERwhile zero is bound will
generate GL errors.

Buffer objects are deleted by calling

void DeleteBuffers( sizei n, const uint *buffers);

bufferscontainsn names of buffer objects to be deleted. After a buffer object is
deleted it has no contents, and its name is again unused. Unused names inbuffers
are silently ignored, as is the value zero.

The command

void GenBuffers( sizei n, uint *buffers);

returnsn previously unused buffer object names inbuffers. These names are
marked as used, for the purposes ofGenBuffersonly, but they acquire buffer state
only when they are first bound, just as if they were unused.

While a buffer object is bound, any GL operations on that object affect any
other bindings of that object. If a buffer object is deleted while it is bound, all
bindings to that object in the current context (i.e. in the thread that calledDelete-
Buffers) are reset to zero. Bindings to that buffer in other contexts and other
threads are not affected, but attempting to use a deleted buffer in another thread
produces undefined results, including but not limited to possible GL errors and
rendering corruption. Using a deleted buffer in another context or thread may not,
however, result in program termination.

The data store of a buffer object is created and initialized by calling

Version 2.0 - September 7, 2004



2.9. BUFFER OBJECTS 35

void BufferData( enum target, sizeiptr size, const
void *data, enum usage);

with target set toARRAYBUFFER, sizeset to the size of the data store in basic
machine units, anddata pointing to the source data in client memory. Ifdata is
non-null, then the source data is copied to the buffer object’s data store. Ifdata is
null, then the contents of the buffer object’s data store are undefined.

usageis specified as one of nine enumerated values, indicating the expected
application usage pattern of the data store. The values are:

STREAMDRAWThe data store contents will be specified once by the application,
and used at most a few times as the source of a GL drawing command.

STREAMREAD The data store contents will be specified once by reading data from
the GL, and queried at most a few times by the application.

STREAMCOPYThe data store contents will be specified once by reading data from
the GL, and used at most a few times as the source of a GL drawing com-
mand.

STATIC DRAWThe data store contents will be specified once by the application,
and used many times as the source for GL drawing commands.

STATIC READ The data store contents will be specified once by reading data from
the GL, and queried many times by the application.

STATIC COPYThe data store contents will be specified once by reading data from
the GL, and used many times as the source for GL drawing commands.

DYNAMICDRAWThe data store contents will be respecified repeatedly by the ap-
plication, and used many times as the source for GL drawing commands.

DYNAMICREAD The data store contents will be respecified repeatedly by reading
data from the GL, and queried many times by the application.

DYNAMICCOPYThe data store contents will be respecified repeatedly by reading
data from the GL, and used many times as the source for GL drawing com-
mands.

usageis provided as a performance hint only. The specified usage value does
not constrain the actual usage pattern of the data store.

BufferData deletes any existing data store, and sets the values of the buffer
object’s state variables as shown in table2.7.

Version 2.0 - September 7, 2004



2.9. BUFFER OBJECTS 36

Name Value

BUFFERSIZE size
BUFFERUSAGE usage
BUFFERACCESS READWRITE

BUFFERMAPPED FALSE

BUFFERMAPPOINTER NULL

Table 2.7: Buffer object initial state.

Clients must align data elements consistent with the requirements of the client
platform, with an additional base-level requirement that an offset within a buffer to
a datum comprisingN basic machine units be a multiple ofN .

If the GL is unable to create a data store of the requested size, the error
OUTOF MEMORYis generated.

To modify some or all of the data contained in a buffer object’s data store, the
client may use the command

void BufferSubData( enum target, intptr offset,
sizeiptr size, const void *data );

with targetset toARRAYBUFFER. offsetandsizeindicate the range of data in the
buffer object that is to be replaced, in terms of basic machine units.dataspecifies a
region of client memorysizebasic machine units in length, containing the data that
replace the specified buffer range. AnINVALID VALUEerror is generated ifoffset
or sizeis less than zero, or ifoffset+ sizeis greater than the value ofBUFFERSIZE .

The entire data store of a buffer object can be mapped into the client’s address
space by calling

void *MapBuffer ( enum target, enum access);

with target set toARRAYBUFFER. If the GL is able to map the buffer object’s
data store into the client’s address space,MapBuffer returns the pointer value
to the data store. If the buffer data store is already in the mapped state,Map-
Buffer returnsNULL, and anINVALID OPERATIONerror is generated. Otherwise
MapBuffer returnsNULL, and the errorOUTOF MEMORYis generated.accessis
specified as one ofREADONLY, WRITEONLY, or READWRITE, indicating the op-
erations that the client may perform on the data store through the pointer while the
data store is mapped.

MapBuffer sets buffer object state values as shown in table2.8.

Version 2.0 - September 7, 2004



2.9. BUFFER OBJECTS 37

Name Value

BUFFERACCESS access
BUFFERMAPPED TRUE

BUFFERMAPPOINTER pointer to the data store

Table 2.8: Buffer object state set byMapBuffer .

Non-NULLpointers returned byMapBuffer may be used by the client to mod-
ify and query buffer object data, consistent with the access rules of the mapping,
while the mapping remains valid. No GL error is generated if the pointer is
used to attempt to modify aREADONLYdata store, or to attempt to read from a
WRITEONLYdata store, but operation may be slow and system errors (possibly in-
cluding program termination) may result. Pointer values returned byMapBuffer
may not be passed as parameter values to GL commands. For example, they may
not be used to specify array pointers, or to specify or query pixel or texture image
data; such actions produce undefined results, although implementations may not
check for such behavior for performance reasons.

Calling BufferSubData to modify the data store of a mapped buffer will gen-
erate anINVALID OPERATIONerror.

Mappings to the data stores of buffer objects may have nonstandard perfor-
mance characteristics. For example, such mappings may be marked as uncacheable
regions of memory, and in such cases reading from them may be very slow. To
ensure optimal performance, the client should use the mapping in a fashion consis-
tent with the values ofBUFFERUSAGEandBUFFERACCESS. Using a mapping in
a fashion inconsistent with these values is liable to be multiple orders of magnitude
slower than using normal memory.

After the client has specified the contents of a mapped data store, and before
the data in that store are dereferenced by any GL commands, the mapping must be
relinquished by calling

boolean UnmapBuffer( enum target);

with targetset toARRAYBUFFER. Unmapping a mapped buffer object invalidates
the pointers to its data store and sets the object’sBUFFERMAPPEDstate toFALSE

and itsBUFFERMAPPOINTERstate toNULL.
UnmapBuffer returnsTRUEunless data values in the buffer’s data store have

become corrupted during the period that the buffer was mapped. Such corruption
can be the result of a screen resolution change or other window-system-dependent

Version 2.0 - September 7, 2004



2.9. BUFFER OBJECTS 38

event that causes system heaps such as those for high-performance graphics mem-
ory to be discarded. GL implementations must guarantee that such corruption can
occur only during the periods that a buffer’s data store is mapped. If such corrup-
tion has occurred,UnmapBuffer returnsFALSE, and the contents of the buffer’s
data store become undefined.

If the buffer data store is already in the unmapped state,UnmapBuffer returns
FALSE, and anINVALID OPERATIONerror is generated. However, unmapping
that occurs as a side effect of buffer deletion or reinitialization is not an error.

2.9.1 Vertex Arrays in Buffer Objects

Blocks of vertex array data may be stored in buffer objects with the same format
and layout options supported for client-side vertex arrays. However, it is expected
that GL implementations will (at minimum) be optimized for data with all compo-
nents represented as floats, as well as for color data with components represented
as either floats or unsigned bytes.

A buffer object binding point is added to the client state associated with
each vertex array type. The commands that specify the locations and or-
ganizations of vertex arrays copy the buffer object name that is bound to
ARRAYBUFFER to the binding point corresponding to the vertex array of the
type being specified. For example, theNormalPointer command copies the
value of ARRAYBUFFERBINDING (the queriable name of the buffer bind-
ing corresponding to the targetARRAYBUFFER) to the client state variable
NORMALARRAYBUFFERBINDING.

Rendering commandsArrayElement , DrawArrays , DrawElements,
DrawRangeElements, MultiDrawArrays , andMultiDrawElements operate as
previously defined, except that data for enabled vertex and attrib arrays are sourced
from buffers if the array’s buffer binding is non-zero. When an array is sourced
from a buffer object, the pointer value of that array is used to compute an offset, in
basic machine units, into the data store of the buffer object. This offset is computed
by subtracting a null pointer from the pointer value, where both pointers are treated
as pointers to basic machine units.

It is acceptable for vertex or attrib arrays to be sourced from any combination
of client memory and various buffer objects during a single rendering operation.

Attempts to source data from a currently mapped buffer object will generate an
INVALID OPERATIONerror.

Version 2.0 - September 7, 2004



2.10. RECTANGLES 39

2.9.2 Array Indices in Buffer Objects

Blocks of array indices may be stored in buffer objects with the same format op-
tions that are supported for client-side index arrays. Initially zero is bound to
ELEMENTARRAYBUFFER, indicating thatDrawElements and DrawRangeEle-
ments are to source their indices from arrays passed as theirindicesparameters,
and thatMultiDrawElements is to source its indices from the array of pointers to
arrays passed in as itsindicesparameter.

A buffer object is bound toELEMENTARRAYBUFFERby callingBindBuffer
with targetset toELEMENTARRAYBUFFER, andbufferset to the name of the buffer
object. If no corresponding buffer object exists, one is initialized as defined in
section2.9.

The commandsBufferData, BufferSubData, MapBuffer , andUnmapBuffer
may all be used withtargetset toELEMENTARRAYBUFFER. In such event, these
commands operate in the same fashion as described in section2.9, but on the buffer
currently bound to theELEMENTARRAYBUFFERtarget.

While a non-zero buffer object name is bound toELEMENTARRAYBUFFER,
DrawElements and DrawRangeElementssource their indices from that buffer
object, using theirindicesparameters as offsets into the buffer object in the same
fashion as described in section2.9.1. MultiDrawElements also sources its in-
dices from that buffer object, using itsindicesparameter as a pointer to an array of
pointers that represent offsets into the buffer object.

Buffer objects created by binding an unused name toARRAYBUFFERand to
ELEMENTARRAYBUFFERare formally equivalent, but the GL may make different
choices about storage implementation based on the initial binding. In some cases
performance will be optimized by storing indices and array data in separate buffer
objects, and by creating those buffer objects with the corresponding binding points.

2.10 Rectangles

There is a set of GL commands to support efficient specification of rectangles as
two corner vertices.

void Rect{sifd}( T x1, T y1, T x2, T y2 );
void Rect{sifd}v( T v1[2], T v2[2] );

Each command takes either four arguments organized as two consecutive pairs of
(x, y) coordinates, or two pointers to arrays each of which contains anx value
followed by ay value. The effect of theRectcommand

Rect ( x1, y1, x2, y2);

Version 2.0 - September 7, 2004



2.11. COORDINATE TRANSFORMATIONS 40

is exactly the same as the following sequence of commands:

Begin(POLYGON);
Vertex2( x1, y1);
Vertex2( x2, y1);
Vertex2( x2, y2);
Vertex2( x1, y2);

End();

The appropriateVertex2 command would be invoked depending on which of the
Rectcommands is issued.

2.11 Coordinate Transformations

This section and the following discussion through section2.14describe the state
values and operations necessary for transforming vertex attributes according to a
fixed-functionality method. An alternateprogrammablemethod for transforming
vertex attributes is described in section2.15.

Vertices, normals, and texture coordinates are transformed before their coordi-
nates are used to produce an image in the framebuffer. We begin with a description
of how vertex coordinates are transformed and how this transformation is con-
trolled.

Figure2.6 diagrams the sequence of transformations that are applied to ver-
tices. The vertex coordinates that are presented to the GL are termedobject co-
ordinates. Themodel-viewmatrix is applied to these coordinates to yieldeyeco-
ordinates. Then another matrix, called theprojection matrix, is applied to eye
coordinates to yieldclip coordinates. A perspective division is carried out on clip
coordinates to yieldnormalized devicecoordinates. A finalviewport transforma-
tion is applied to convert these coordinates intowindow coordinates.

Object coordinates, eye coordinates, and clip coordinates are four-dimensional,
consisting ofx, y, z, andw coordinates (in that order). The model-view and pro-
jection matrices are thus4× 4.

If a vertex in object coordinates is given by


xo

yo

zo

wo

 and the model-view matrix

is M , then the vertex’s eye coordinates are found as
xe

ye

ze

we

 = M


xo

yo

zo

wo

 .

Version 2.0 - September 7, 2004



2.11. COORDINATE TRANSFORMATIONS 41

Object

Coordinates Coordinates

Eye

Coordinates

Window

Coordinates

Normalized
DeviceModel−View

Matrix

Perspective
Division

Viewport
Transformation

Coordinates

ClipProjection

Matrix

Figure 2.6. Vertex transformation sequence.

Similarly, if P is the projection matrix, then the vertex’s clip coordinates are
xc

yc

zc

wc

 = P


xe

ye

ze

we

 .

The vertex’s normalized device coordinates are thenxd

yd

zd

 =

xc/wc

yc/wc

zc/wc

 .

2.11.1 Controlling the Viewport

The viewport transformation is determined by the viewport’s width and height in
pixels,px andpy, respectively, and its center(ox, oy) (also in pixels). The vertex’s

window coordinates,

xw

yw

zw

, are given by

xw

yw

zw

 =

 (px/2)xd + ox

(py/2)yd + oy

[(f − n)/2]zd + (n + f)/2

 .

The factor and offset applied tozd encoded byn andf are set using

Version 2.0 - September 7, 2004



2.11. COORDINATE TRANSFORMATIONS 42

void DepthRange( clampd n, clampd f );

Each ofnandf are clamped to lie within[0, 1], as are all arguments of typeclampd
or clampf . zw is taken to be represented in fixed-point with at least as many bits
as there are in the depth buffer of the framebuffer. We assume that the fixed-point
representation used represents each valuek/(2m − 1), wherek ∈ {0, 1, . . . , 2m −
1}, ask (e.g. 1.0 is represented in binary as a string of all ones).

Viewport transformation parameters are specified using

void Viewport ( int x, int y, sizei w, sizei h );

wherex andy give thex andy window coordinates of the viewport’s lower left
corner andw andhgive the viewport’s width and height, respectively. The viewport
parameters shown in the above equations are found from these values asox =
x + w/2 andoy = y + h/2; px = w, py = h.

Viewport width and height are clamped to implementation-dependent maxi-
mums when specified. The maximum width and height may be found by issuing
an appropriateGet command (see chapter6). The maximum viewport dimensions
must be greater than or equal to the visible dimensions of the display being ren-
dered to.INVALID VALUEis generated if eitherw or h is negative.

The state required to implement the viewport transformation is four integers
and two clamped floating-point values. In the initial state,w andh are set to the
width and height, respectively, of the window into which the GL is to do its ren-
dering.ox andoy are set tow/2 andh/2, respectively.n andf are set to0.0 and
1.0, respectively.

2.11.2 Matrices

The projection matrix and model-view matrix are set and modified with a variety
of commands. The affected matrix is determined by the current matrix mode. The
current matrix mode is set with

void MatrixMode ( enum mode);

which takes one of the pre-defined constantsTEXTURE, MODELVIEW, COLOR, or
PROJECTIONas the argument value.TEXTUREis described later in section2.11.2,
andCOLORis described in section3.6.3. If the current matrix mode isMODELVIEW,
then matrix operations apply to the model-view matrix; ifPROJECTION, then they
apply to the projection matrix.

The two basic commands for affecting the current matrix are

Version 2.0 - September 7, 2004



2.11. COORDINATE TRANSFORMATIONS 43

void LoadMatrix {fd}( T m[16] );
void MultMatrix {fd}( T m[16] );

LoadMatrix takes a pointer to a4× 4 matrix stored in column-major order as 16
consecutive floating-point values, i.e. as

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

a4 a8 a12 a16

 .

(This differs from the standard row-majorC ordering for matrix elements. If the
standard ordering is used, all of the subsequent transformation equations are trans-
posed, and the columns representing vectors become rows.)

The specified matrix replaces the current matrix with the one pointed to.Mult-
Matrix takes the same type argument asLoadMatrix , but multiplies the current
matrix by the one pointed to and replaces the current matrix with the product. IfC
is the current matrix andM is the matrix pointed to byMultMatrix ’s argument,
then the resulting current matrix,C ′, is

C ′ = C ·M.

The commands

void LoadTransposeMatrix{fd}( T m[16] );
void MultTransposeMatrix {fd}( T m[16] );

take pointers to4×4 matrices stored in row-major order as 16 consecutive floating-
point values, i.e. as 

a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12

a13 a14 a15 a16

 .

The effect of

LoadTransposeMatrix[fd] ( m);

is the same as the effect of

LoadMatrix[fd] ( mT );

The effect of

Version 2.0 - September 7, 2004



2.11. COORDINATE TRANSFORMATIONS 44

MultTransposeMatrix[fd] ( m);

is the same as the effect of

MultMatrix[fd] ( mT );

The command

void LoadIdentity ( void );

effectively callsLoadMatrix with the identity matrix:
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

There are a variety of other commands that manipulate matrices.Rotate,
Translate, Scale, Frustum, andOrtho manipulate the current matrix. Each com-
putes a matrix and then invokesMultMatrix with this matrix. In the case of

void Rotate{fd}( T θ, T x, T y, T z );

θ gives an angle of rotation in degrees; the coordinates of a vectorv are given by
v = (x y z)T . The computed matrix is a counter-clockwise rotation about the line
through the origin with the specified axis when that axis is pointing up (i.e. the
right-hand rule determines the sense of the rotation angle). The matrix is thus

0
R 0

0
0 0 0 1

 .

Let u = v/||v|| = (x′ y′ z′ )T . If

S =

 0 −z′ y′

z′ 0 −x′

−y′ x′ 0


then

R = uuT + cos θ(I − uuT ) + sin θS.

The arguments to

void Translate{fd}( T x, T y, T z );

Version 2.0 - September 7, 2004



2.11. COORDINATE TRANSFORMATIONS 45

give the coordinates of a translation vector as(x y z)T . The resulting matrix is a
translation by the specified vector:

1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

 .

void Scale{fd}( T x, T y, T z );

produces a general scaling along thex-, y-, andz- axes. The corresponding matrix
is 

x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 1

 .

For

void Frustum( double l, double r, double b, double t,
double n, double f );

the coordinates(l b − n)T and(r t − n)T specify the points on the near clipping
plane that are mapped to the lower left and upper right corners of the window,
respectively (assuming that the eye is located at(0 0 0)T ). f gives the distance
from the eye to the far clipping plane. If eithern or f is less than or equal to zero,
l is equal tor, b is equal tot, or n is equal tof , the errorINVALID VALUEresults.
The corresponding matrix is

2n
r−l 0 r+l

r−l 0
0 2n

t−b
t+b
t−b 0

0 0 −f+n
f−n − 2fn

f−n
0 0 −1 0

 .

void Ortho ( double l, double r, double b, double t,
double n, double f );

describes a matrix that produces parallel projection.(l b − n)T and(r t − n)T

specify the points on the near clipping plane that are mapped to the lower left and
upper right corners of the window, respectively.f gives the distance from the eye

Version 2.0 - September 7, 2004



2.11. COORDINATE TRANSFORMATIONS 46

to the far clipping plane. Ifl is equal tor, b is equal tot, or n is equal tof , the
error INVALID VALUEresults. The corresponding matrix is

2
r−l 0 0 − r+l

r−l

0 2
t−b 0 − t+b

t−b

0 0 − 2
f−n −f+n

f−n
0 0 0 1

 .

For each texture coordinate set, a4× 4 matrix is applied to the corresponding
texture coordinates. This matrix is applied as

m1 m5 m9 m13

m2 m6 m10 m14

m3 m7 m11 m15

m4 m8 m12 m16




s
t
r
q

 ,

where the left matrix is the current texture matrix. The matrix is applied to the
coordinates resulting from texture coordinate generation (which may simply be the
current texture coordinates), and the resulting transformed coordinates become the
texture coordinates associated with a vertex. Setting the matrix mode toTEXTURE

causes the already described matrix operations to apply to the texture matrix.
The command

void ActiveTexture( enum texture);

specifies the active texture unit selector,ACTIVE TEXTURE. Each texture unit con-
tains up to two distinct sub-units: a texture coordinate processing unit (consisting
of a texture matrix stack and texture coordinate generation state) and a texture
image unit (consisting of all the texture state defined in section3.8). In implemen-
tations with a different number of supported texture coordinate sets and texture
image units, some texture units may consist of only one of the two sub-units.

The active texture unit selector specifies the texture coordinate set accessed
by commands involving texture coordinate processing. Such commands include
those accessing the current matrix stack (ifMATRIX MODEis TEXTURE), TexEnv
commands controlling point sprite coordinate replacement (see section3.3), Tex-
Gen (section2.11.4), Enable/Disable (if any texture coordinate generation enum
is selected), as well as queries of the current texture coordinates and current raster
texture coordinates. If the texture coordinate set number corresponding to the cur-
rent value ofACTIVE TEXTUREis greater than or equal to the implementation-
dependent constantMAXTEXTURECOORDS, the error INVALID OPERATIONis
generated by any such command.

Version 2.0 - September 7, 2004



2.11. COORDINATE TRANSFORMATIONS 47

The active texture unit selector also selects the texture image unit accessed
by commands involving texture image processing (section3.8). Such commands
include all variants ofTexEnv (except for those controlling point sprite coordi-
nate replacement),TexParameter, andTexImagecommands,BindTexture, En-
able/Disable for any texture target (e.g.,TEXTURE2D), and queries of all such
state. If the texture image unit number corresponding to the current value of
ACTIVE TEXTUREis greater than or equal to the implementation-dependent con-
stantMAXCOMBINEDTEXTUREIMAGEUNITS, the errorINVALID OPERATIONis
generated by any such command.

ActiveTexture generates the errorINVALID ENUMif an invalid textureis spec-
ified. texture is a symbolic constant of the formTEXTUREi, indicating that tex-
ture uniti is to be modified. The constants obeyTEXTUREi = TEXTURE0+ i (i
is in the range 0 tok − 1, wherek is the larger ofMAXTEXTURECOORDSand
MAXCOMBINEDTEXTUREIMAGEUNITS).

For backwards compatibility, the implementation-dependent
constantMAXTEXTUREUNITS specifies the number of conventional texture units
supported by the implementation. Its value must be no larger than the minimum of
MAXTEXTURECOORDSandMAXCOMBINEDTEXTUREIMAGEUNITS.

There is a stack of matrices for each of matrix modesMODELVIEW,
PROJECTION, andCOLOR, and for each texture unit. ForMODELVIEWmode, the
stack depth is at least 32 (that is, there is a stack of at least 32 model-view ma-
trices). For the other modes, the depth is at least2. Texture matrix stacks for all
texture units have the same depth. The current matrix in any mode is the matrix on
the top of the stack for that mode.

void PushMatrix ( void );

pushes the stack down by one, duplicating the current matrix in both the top of the
stack and the entry below it.

void PopMatrix ( void );

pops the top entry off of the stack, replacing the current matrix with the matrix
that was the second entry in the stack. The pushing or popping takes place on the
stack corresponding to the current matrix mode. Popping a matrix off a stack with
only one entry generates the errorSTACKUNDERFLOW; pushing a matrix onto a full
stack generatesSTACKOVERFLOW.

When the current matrix mode isTEXTURE, the texture matrix stack of the
active texture unit is pushed or popped.

The state required to implement transformations consists of an integer for
the active texture unit selector, a four-valued integer indicating the current matrix

Version 2.0 - September 7, 2004



2.11. COORDINATE TRANSFORMATIONS 48

mode, one stack of at least two4 × 4 matrices for each ofCOLOR, PROJECTION,
and each texture coordinate set,TEXTURE; and a stack of at least 324× 4 matrices
for MODELVIEW. Each matrix stack has an associated stack pointer. Initially, there
is only one matrix on each stack, and all matrices are set to the identity. The
initial active texture unit selector isTEXTURE0, and the initial matrix mode is
MODELVIEW.

2.11.3 Normal Transformation

Finally, we consider how the model-view matrix and transformation state affect
normals. Before use in lighting, normals are transformed to eye coordinates by a
matrix derived from the model-view matrix. Rescaling and normalization opera-
tions are performed on the transformed normals to make them unit length prior to
use in lighting. Rescaling and normalization are controlled by

void Enable( enum target);

and

void Disable( enum target);

with target equal toRESCALENORMALor NORMALIZE. This requires two bits of
state. The initial state is for normals not to be rescaled or normalized.

If the model-view matrix isM , then the normal is transformed to eye coordi-
nates by:

( nx
′ ny

′ nz
′ q′ ) = ( nx ny nz q ) ·M−1

where, if


x
y
z
w

 are the associated vertex coordinates, then

q =


0, w = 0,

−(nx ny nz )

x
y
z


w , w 6= 0

(2.1)

Implementations may choose instead to transform( nx ny nz ) to eye coor-
dinates using

( nx
′ ny

′ nz
′ ) = ( nx ny nz ) ·Mu

−1

Version 2.0 - September 7, 2004



2.11. COORDINATE TRANSFORMATIONS 49

whereMu is the upper leftmost 3x3 matrix taken fromM .
Rescale multiplies the transformed normals by a scale factor

( nx
′′ ny

′′ nz
′′ ) = f ( nx

′ ny
′ nz

′ )

If rescaling is disabled, thenf = 1. If rescaling is enabled, thenf is computed
as (mij denotes the matrix element in rowi and columnj of M−1, numbering the
topmost row of the matrix as row 1 and the leftmost column as column 1)

f =
1√

m31
2 + m32

2 + m33
2

Note that if the normals sent to GL were unit length and the model-view matrix
uniformly scales space, then rescale makes the transformed normals unit length.

Alternatively, an implementation may choose f as

f =
1√

nx
′2 + ny

′2 + nz
′2

recomputingf for each normal. This makes all non-zero length normals unit length
regardless of their input length and the nature of the model-view matrix.

After rescaling, the final transformed normal used in lighting,nf , is computed
as

nf = m ( nx
′′ ny

′′ nz
′′ )

If normalization is disabled, thenm = 1. Otherwise

m =
1√

nx
′′2 + ny

′′2 + nz
′′2

Because we specify neither the floating-point format nor the means for matrix
inversion, we cannot specify behavior in the case of a poorly-conditioned (nearly
singular) model-view matrixM . In case of an exactly singular matrix, the trans-
formed normal is undefined. If the GL implementation determines that the model-
view matrix is uninvertible, then the entries in the inverted matrix are arbitrary. In
any case, neither normal transformation nor use of the transformed normal may
lead to GL interruption or termination.

2.11.4 Generating Texture Coordinates

Texture coordinates associated with a vertex may either be taken from the current
texture coordinates or generated according to a function dependent on vertex coor-
dinates. The command

Version 2.0 - September 7, 2004



2.11. COORDINATE TRANSFORMATIONS 50

void TexGen{ifd}( enum coord, enum pname, T param);
void TexGen{ifd}v( enum coord, enum pname, T params);

controls texture coordinate generation.coord must be one of the constantsS, T,
R, or Q, indicating that the pertinent coordinate is thes, t, r, or q coordinate, re-
spectively. In the first form of the command,paramis a symbolic constant speci-
fying a single-valued texture generation parameter; in the second form,paramsis
a pointer to an array of values that specify texture generation parameters.pname
must be one of the three symbolic constantsTEXTUREGENMODE, OBJECTPLANE,
or EYE PLANE. If pnameis TEXTUREGENMODE, then eitherparamspoints to
or param is an integer that is one of the symbolic constantsOBJECTLINEAR,
EYE LINEAR, SPHEREMAP, REFLECTIONMAP, or NORMALMAP.

If TEXTUREGENMODEindicatesOBJECTLINEAR, then the generation func-
tion for the coordinate indicated bycoord is

g = p1xo + p2yo + p3zo + p4wo.

xo, yo, zo, andwo are the object coordinates of the vertex.p1, . . . , p4 are specified
by callingTexGenwith pnameset toOBJECTPLANEin which caseparamspoints
to an array containingp1, . . . , p4. There is a distinct group of plane equation co-
efficients for each texture coordinate;coord indicates the coordinate to which the
specified coefficients pertain.

If TEXTUREGENMODEindicatesEYE LINEAR, then the function is

g = p′1xe + p′2ye + p′3ze + p′4we

where
( p′1 p′2 p′3 p′4 ) = ( p1 p2 p3 p4 ) M−1

xe, ye, ze, andwe are the eye coordinates of the vertex.p1, . . . , p4 are set by
calling TexGenwith pnameset toEYE PLANEin correspondence with setting the
coefficients in theOBJECTPLANEcase. M is the model-view matrix in effect
whenp1, . . . , p4 are specified. Computed texture coordinates may be inaccurate or
undefined ifM is poorly conditioned or singular.

When used with a suitably constructed texture image, callingTexGen with
TEXTUREGENMODEindicatingSPHEREMAPcan simulate the reflected image of
a spherical environment on a polygon.SPHEREMAPtexture coordinates are gen-
erated as follows. Denote the unit vector pointing from the origin to the vertex
(in eye coordinates) byu. Denote the current normal, after transformation to eye
coordinates, bynf . Let r = ( rx ry rz )T , the reflection vector, be given by

r = u− 2nf
T (nfu) ,

Version 2.0 - September 7, 2004



2.11. COORDINATE TRANSFORMATIONS 51

and letm = 2
√

r2
x + r2

y + (rz + 1)2. Then the value assigned to ans coordinate

(the firstTexGenargument value isS) is s = rx/m + 1
2 ; the value assigned to at

coordinate ist = ry/m + 1
2 . Calling TexGenwith a coordof eitherR or Qwhen

pnameindicatesSPHEREMAPgenerates the errorINVALID ENUM.
If TEXTUREGENMODEindicatesREFLECTIONMAP, compute the reflection

vectorr as described for theSPHEREMAPmode. Then the value assigned to an
s coordinate iss = rx; the value assigned to at coordinate ist = ry; and the value
assigned to anr coordinate isr = rz. Calling TexGen with a coord of Q when
pnameindicatesREFLECTIONMAPgenerates the errorINVALID ENUM.

If TEXTUREGENMODEindicatesNORMALMAP, compute the normal vectornf

as described in section2.11.3. Then the value assigned to ans coordinate iss =
nf x; the value assigned to at coordinate ist = nf y; and the value assigned to an
r coordinate isr = nf z (the valuesnf x, nf y, andnf z are the components ofnf .)
Calling TexGenwith a coordof Q whenpnameindicatesNORMALMAPgenerates
the errorINVALID ENUM.

A texture coordinate generation function is enabled or disabled usingEn-
able and Disable with an argument ofTEXTUREGENS, TEXTUREGENT,
TEXTUREGENR, orTEXTUREGENQ(each indicates the corresponding texture co-
ordinate). When enabled, the specified texture coordinate is computed according
to the currentEYE LINEAR, OBJECTLINEAR or SPHEREMAPspecification, de-
pending on the current setting ofTEXTUREGENMODEfor that coordinate. When
disabled, subsequent vertices will take the indicated texture coordinate from the
current texture coordinates.

The state required for texture coordinate generation for each texture unit com-
prises a five-valued integer for each coordinate indicating coordinate generation
mode, and a bit for each coordinate to indicate whether texture coordinate genera-
tion is enabled or disabled. In addition, four coefficients are required for the four
coordinates for each ofEYE LINEAR andOBJECTLINEAR. The initial state has the
texture generation function disabled for all texture coordinates. The initial values
of pi for s are all 0 exceptp1 which is one; fort all thepi are zero exceptp2, which
is 1. The values ofpi for r andq are all 0. These values ofpi apply for both the
EYE LINEAR andOBJECTLINEAR versions. Initially all texture generation modes
areEYE LINEAR.

Version 2.0 - September 7, 2004



2.12. CLIPPING 52

2.12 Clipping

Primitives are clipped to theclip volume. In clip coordinates, theview volumeis
defined by

−wc ≤ xc ≤ wc

−wc ≤ yc ≤ wc

−wc ≤ zc ≤ wc.

This view volume may be further restricted by as many asn client-defined clip
planes to generate the clip volume. (n is an implementation dependent maximum
that must be at least6.) Each client-defined plane specifies a half-space. The clip
volume is the intersection of all such half-spaces with the view volume (if there no
client-defined clip planes are enabled, the clip volume is the view volume).

A client-defined clip plane is specified with

void ClipPlane( enum p, double eqn[4] );

The value of the first argument,p, is a symbolic constant,CLIP PLANEi, wherei is
an integer between 0 andn− 1, indicating one ofn client-defined clip planes.eqn
is an array of four double-precision floating-point values. These are the coefficients
of a plane equation in object coordinates:p1, p2, p3, andp4 (in that order). The
inverse of the current model-view matrix is applied to these coefficients, at the time
they are specified, yielding

( p′1 p′2 p′3 p′4 ) = ( p1 p2 p3 p4 ) M−1

(whereM is the current model-view matrix; the resulting plane equation is unde-
fined if M is singular and may be inaccurate ifM is poorly-conditioned) to obtain
the plane equation coefficients in eye coordinates. All points with eye coordinates
( xe ye ze we )T that satisfy

( p′1 p′2 p′3 p′4 )


xe

ye

ze

we

 ≥ 0

lie in the half-space defined by the plane; points that do not satisfy this condition
do not lie in the half-space.

When a vertex shader is active, the vector( xe ye ze we )T is no longer
computed. Instead, the value of thegl ClipVertex built-in variable is used in its
place. Ifgl ClipVertex is not written by the vertex shader, its value is undefined,
which implies that the results of clipping to any client-defined clip planes are also

Version 2.0 - September 7, 2004



2.12. CLIPPING 53

undefined. The user must ensure that the clip vertex and client-defined clip planes
are defined in the same coordinate space.

Client-defined clip planes are enabled with the genericEnable command and
disabled with theDisable command. The value of the argument to either com-
mand isCLIP PLANEi wherei is an integer between 0 andn; specifying a value
of i enables or disables the plane equation with indexi. The constants obey
CLIP PLANEi = CLIP PLANE0+ i.

If the primitive under consideration is a point, then clipping passes it un-
changed if it lies within the clip volume; otherwise, it is discarded. If the prim-
itive is a line segment, then clipping does nothing to it if it lies entirely within the
clip volume and discards it if it lies entirely outside the volume. If part of the line
segment lies in the volume and part lies outside, then the line segment is clipped
and new vertex coordinates are computed for one or both vertices. A clipped line
segment endpoint lies on both the original line segment and the boundary of the
clip volume.

This clipping produces a value,0 ≤ t ≤ 1, for each clipped vertex. If the
coordinates of a clipped vertex areP and the original vertices’ coordinates areP1

andP2, thent is given by

P = tP1 + (1− t)P2.

The value oft is used in color, secondary color, texture coordinate, and fog coor-
dinate clipping (section2.14.8).

If the primitive is a polygon, then it is passed if every one of its edges lies
entirely inside the clip volume and either clipped or discarded otherwise. Polygon
clipping may cause polygon edges to be clipped, but because polygon connectivity
must be maintained, these clipped edges are connected by new edges that lie along
the clip volume’s boundary. Thus, clipping may require the introduction of new
vertices into a polygon. Edge flags are associated with these vertices so that edges
introduced by clipping are flagged as boundary (edge flagTRUE), and so that orig-
inal edges of the polygon that become cut off at these vertices retain their original
flags.

If it happens that a polygon intersects an edge of the clip volume’s boundary,
then the clipped polygon must include a point on this boundary edge. This point
must lie in the intersection of the boundary edge and the convex hull of the vertices
of the original polygon. We impose this requirement because the polygon may not
be exactly planar.

A line segment or polygon whose vertices havewc values of differing signs
may generate multiple connected components after clipping. GL implementations
are not required to handle this situation. That is, only the portion of the primitive
that lies in the region ofwc > 0 need be produced by clipping.

Version 2.0 - September 7, 2004



2.13. CURRENT RASTER POSITION 54

Primitives rendered with clip planes must satisfy a complementarity crite-
rion. Suppose a single clip plane with coefficients( p′1 p′2 p′3 p′4 ) (or a num-
ber of similarly specified clip planes) is enabled and a series of primitives are
drawn. Next, suppose that the original clip plane is respecified with coefficients
(−p′1 −p′2 −p′3 −p′4 ) (and correspondingly for any other clip planes) and
the primitives are drawn again (and the GL is otherwise in the same state). In this
case, primitives must not be missing any pixels, nor may any pixels be drawn twice
in regions where those primitives are cut by the clip planes.

The state required for clipping is at least 6 sets of plane equations (each consist-
ing of four double-precision floating-point coefficients) and at least 6 correspond-
ing bits indicating which of these client-defined plane equations are enabled. In the
initial state, all client-defined plane equation coefficients are zero and all planes are
disabled.

2.13 Current Raster Position

Thecurrent raster positionis used by commands that directly affect pixels in the
framebuffer. These commands, which bypass vertex transformation and primitive
assembly, are described in the next chapter. The current raster position, however,
shares some of the characteristics of a vertex.

The current raster position is set using one of the commands

void RasterPos{234}{sifd}( T coords);
void RasterPos{234}{sifd}v( T coords);

RasterPos4takes four values indicatingx, y, z, andw. RasterPos3(or Raster-
Pos2) is analogous, but sets onlyx, y, andz with w implicitly set to1 (or only x
andy with z implicitly set to0 andw implicitly set to1).

Gets ofCURRENTRASTERTEXTURECOORDSare affected by the setting of the
stateACTIVE TEXTURE.

The coordinates are treated as if they were specified in aVertex command. If
a vertex shader is active, this vertex shader is executed using thex, y, z, andw
coordinates as the object coordinates of the vertex. Otherwise, thex, y, z, and
w coordinates are transformed by the current model-view and projection matri-
ces. These coordinates, along with current values, are used to generate primary
and secondary colors and texture coordinates just as is done for a vertex. The col-
ors and texture coordinates so produced replace the colors and texture coordinates
stored in the current raster position’s associated data. If a vertex shader is active
then the current raster distance is set to the value of the shader built in varying
gl FogFragCoord . Otherwise, if the value of the fog source (see section3.10) is

Version 2.0 - September 7, 2004



2.13. CURRENT RASTER POSITION 55

FOGCOORDSRC, then the current raster distance is set to the value of the current
fog coordinate. Otherwise, the current raster distance is set to the distance from
the origin of the eye coordinate system to the vertex as transformed by only the
current model-view matrix. This distance may be approximated as discussed in
section3.10.

Since vertex shaders may be executed when the raster position is set, any at-
tributes not written by the shader will result in undefined state in the current raster
position. Vertex shaders should output all varying variables that would be used
when rasterizing pixel primitives using the current raster position.

The transformed coordinates are passed to clipping as if they represented a
point. If the “point” is not culled, then the projection to window coordinates is
computed (section2.11) and saved as the current raster position, and the valid
bit is set. If the “point” is culled, the current raster position and its associated
data become indeterminate and the valid bit is cleared. Figure2.7summarizes the
behavior of the current raster position.

Alternately, the current raster position may be set by one of theWindowPos
commands:

void WindowPos{23}{ifds}( T coords);
void WindowPos{23}{ifds}v( const T coords );

WindowPos3 takes three values indicatingx, y and z, while WindowPos2
takes two values indicatingx andy with z implicitly set to0. The current raster
position,(xw, yw, zw, wc), is defined by:

xw = x

yw = y

zw =


n, z ≤ 0
f, z ≥ 1
n + z(f − n), otherwise

wc = 1

wheren andf are the values passed toDepthRange(see section2.11.1).
Lighting, texture coordinate generation and transformation, and clipping are

not performed by theWindowPos functions. Instead, in RGBA mode, the current

Version 2.0 - September 7, 2004



2.13. CURRENT RASTER POSITION 56

Rasterpos In

Current
Normal

Lighting

Vertex/Normal
Transformation

Clip Project

Current
Raster

Position

Valid

Raster
Position

Raster
Distance

Associated
Data

Current
Color & 

Materials

Texture
Matrix 0Current

Texture
Coord Set 0

Texgen

Texture
Matrix 3Current

Texture
Coord Set 3

Texgen

Texture
Matrix 2Current

Texture
Coord Set 2

Texgen

Texture
Matrix 1Current

Texture
Coord Set 1

Texgen

Figure 2.7. The current raster position and how it is set. Four texture units are
shown; however, multitexturing may support a different number of units depending
on the implementation.

Version 2.0 - September 7, 2004



2.14. COLORS AND COLORING 57

raster color and secondary color are obtained by clamping each component of the
current color and secondary color, respectively, to[0, 1]. In color index mode, the
current raster color index is set to the current color index. The current raster texture
coordinates are set to the current texture coordinates, and the valid bit is set.

If the value of the fog source isFOGCOORDSRC, then the current raster dis-
tance is set to the value of the current fog coordinate. Otherwise, the raster distance
is set to0.

The current raster position requires six single-precision floating-point values
for itsxw, yw, andzw window coordinates, itswc clip coordinate, its raster distance
(used as the fog coordinate in raster processing), a single valid bit, four floating-
point values to store the current RGBA color, four floating-point values to store the
current RGBA secondary color, one floating-point value to store the current color
index, and 4 floating-point values for texture coordinates for each texture unit. In
the initial state, the coordinates and texture coordinates are all(0, 0, 0, 1), the eye
coordinate distance is 0, the fog coordinate is 0, the valid bit is set, the associated
RGBA color is(1, 1, 1, 1), the associated RGBA secondary color is(0, 0, 0, 1), and
the associated color index color is 1. In RGBA mode, the associated color index
always has its initial value; in color index mode, the RGBA color and secondary
color always maintain their initial values.

2.14 Colors and Coloring

Figures2.8and2.9diagram the processing of RGBA colors and color indices be-
fore rasterization. Incoming colors arrive in one of several formats. Table2.9sum-
marizes the conversions that take place on R, G, B, and A components depending
on which version of theColor command was invoked to specify the components.
As a result of limited precision, some converted values will not be represented
exactly. In color index mode, a single-valued color index is not mapped.

Next, lighting, if enabled, produces either a color index or primary and sec-
ondary colors. If lighting is disabled, the current color index or current color
(primary color) and current secondary color are used in further processing. After
lighting, RGBA colors are clamped to the range[0, 1]. A color index is converted
to fixed-point and then its integer portion is masked (see section2.14.6). After
clamping or masking, a primitive may beflatshaded, indicating that all vertices of
the primitive are to have the same colors. Finally, if a primitive is clipped, then
colors (and texture coordinates) must be computed at the vertices introduced or
modified by clipping.

Version 2.0 - September 7, 2004



2.14. COLORS AND COLORING 58

[0,2k−1]

float

Convert to
[0.0,1.0]

[−2k,2k−1] Convert to
[−1.0,1.0]

Current
RGBA
Color Lighting

Clamp to
[0.0, 1.0]

Flatshade?

Primitive
Clipping

Color
Clipping

Convert to
fixed−point

Figure 2.8. Processing of RGBA colors. The heavy dotted lines indicate both pri-
mary and secondary vertex colors, which are processed in the same fashion. See
table2.9for the interpretation ofk.

Convert to
float

[0,2n−1]

float

Current
Color
Index Lighting

Mask to

[0.0, 2n−1]

Flatshade?

Primitive
Clipping

Color
Clipping

Convert to
fixed−point

Figure 2.9. Processing of color indices.n is the number of bits in a color index.

Version 2.0 - September 7, 2004



2.14. COLORS AND COLORING 59

GL Type Conversion

ubyte c/(28 − 1)
byte (2c + 1)/(28 − 1)
ushort c/(216 − 1)
short (2c + 1)/(216 − 1)
uint c/(232 − 1)
int (2c + 1)/(232 − 1)
float c

double c

Table 2.9: Component conversions. Color, normal, and depth components, (c),
are converted to an internal floating-point representation, (f ), using the equations
in this table. All arithmetic is done in the internal floating point format. These
conversions apply to components specified as parameters to GL commands and to
components in pixel data. The equations remain the same even if the implemented
ranges of the GL data types are greater than the minimum required ranges. (Refer
to table2.2)

2.14.1 Lighting

GL lighting computes colors for each vertex sent to the GL. This is accomplished
by applying an equation defined by a client-specified lighting model to a collection
of parameters that can include the vertex coordinates, the coordinates of one or
more light sources, the current normal, and parameters defining the characteristics
of the light sources and a current material. The following discussion assumes that
the GL is in RGBA mode. (Color index lighting is described in section2.14.5.)

Lighting is turned on or off using the genericEnable or Disable commands
with the symbolic valueLIGHTING. If lighting is off, the current color and cur-
rent secondary color are assigned to the vertex primary and secondary color, re-
spectively. If lighting is on, colors computed computed from the current lighting
parameters are assigned to the vertex primary and secondary colors.

Lighting Operation

A lighting parameter is of one of five types: color, position, direction, real, or
boolean. A color parameter consists of four floating-point values, one for each of
R, G, B, and A, in that order. There are no restrictions on the allowable values for
these parameters. A position parameter consists of four floating-point coordinates
(x, y, z, andw) that specify a position in object coordinates (w may be zero,

Version 2.0 - September 7, 2004



2.14. COLORS AND COLORING 60

indicating a point at infinity in the direction given byx, y, andz). A direction
parameter consists of three floating-point coordinates (x, y, andz) that specify a
direction in object coordinates. A real parameter is one floating-point value. The
various values and their types are summarized in table2.10. The result of a lighting
computation is undefined if a value for a parameter is specified that is outside the
range given for that parameter in the table.

There aren light sources, indexed byi = 0, . . . , n−1. (n is an implementation
dependent maximum that must be at least 8.) Note that the default values fordcli

andscli differ for i = 0 andi > 0.
Before specifying the way that lighting computes colors, we introduce oper-

ators and notation that simplify the expressions involved. Ifc1 andc2 are col-
ors without alpha wherec1 = (r1, g1, b1) and c2 = (r2, g2, b2), then define
c1 ∗ c2 = (r1r2, g1g2, b1b2). Addition of colors is accomplished by addition of
the components. Multiplication of colors by a scalar means multiplying each com-
ponent by that scalar. Ifd1 andd2 are directions, then define

d1 � d2 = max{d1 · d2, 0}.

(Directions are taken to have three coordinates.) IfP1 andP2 are (homogeneous,
with four coordinates) points then let

−−−→P1P2 be the unit vector that points fromP1

to P2. Note that ifP2 has a zerow coordinate andP1 has non-zerow coordinate,
then

−−−→P1P2 is the unit vector corresponding to the direction specified by thex, y,
andz coordinates ofP2; if P1 has a zerow coordinate andP2 has a non-zerow
coordinate then

−−−→P1P2 is the unit vector that is the negative of that corresponding
to the direction specified byP1. If both P1 andP2 have zerow coordinates, then−−−→P1P2 is the unit vector obtained by normalizing the direction corresponding to
P2 −P1.

If d is an arbitrary direction, then let̂d be the unit vector ind’s direction. Let
‖P1P2‖ be the distance betweenP1 andP2. Finally, let V be the point corre-
sponding to the vertex being lit, andn be the corresponding normal. LetPe be the
eyepoint ((0, 0, 0, 1) in eye coordinates).

Lighting produces two colors at a vertex: a primary colorcpri and a secondary
colorcsec. The values ofcpri andcsec depend on the light model color control,ces.
If ces = SINGLE COLOR, then the equations to computecpri andcsec are

cpri = ecm

+ acm ∗ acs

Version 2.0 - September 7, 2004



2.14. COLORS AND COLORING 61

Parameter Type Default Value Description
Material Parameters

acm color (0.2, 0.2, 0.2, 1.0) ambient color of material
dcm color (0.8, 0.8, 0.8, 1.0) diffuse color of material
scm color (0.0, 0.0, 0.0, 1.0) specular color of material
ecm color (0.0, 0.0, 0.0, 1.0) emissive color of material
srm real 0.0 specular exponent (range:

[0.0, 128.0])
am real 0.0 ambient color index
dm real 1.0 diffuse color index
sm real 1.0 specular color index

Light Source Parameters
acli color (0.0, 0.0, 0.0, 1.0) ambient intensity of lighti

dcli(i = 0) color (1.0, 1.0, 1.0, 1.0) diffuse intensity of light0
dcli(i > 0) color (0.0, 0.0, 0.0, 1.0) diffuse intensity of lighti
scli(i = 0) color (1.0, 1.0, 1.0, 1.0) specular intensity of light0
scli(i > 0) color (0.0, 0.0, 0.0, 1.0) specular intensity of lighti

Ppli position (0.0, 0.0, 1.0, 0.0) position of lighti
sdli direction (0.0, 0.0,−1.0) direction of spotlight for lighti
srli real 0.0 spotlight exponent for lighti

(range:[0.0, 128.0])
crli real 180.0 spotlight cutoff angle for lighti

(range:[0.0, 90.0], 180.0)
k0i real 1.0 constant attenuation factor for

light i (range:[0.0,∞))
k1i real 0.0 linear attenuation factor for

light i (range:[0.0,∞))
k2i real 0.0 quadratic attenuation factor for

light i (range:[0.0,∞))
Lighting Model Parameters

acs color (0.2, 0.2, 0.2, 1.0) ambient color of scene
vbs boolean FALSE viewer assumed to be at

(0, 0, 0) in eye coordinates
(TRUE) or (0, 0,∞) (FALSE)

ces enum SINGLE COLOR controls computation of colors
tbs boolean FALSE use two-sided lighting mode

Table 2.10: Summary of lighting parameters. The range of individual color com-
ponents is(−∞,+∞).

Version 2.0 - September 7, 2004



2.14. COLORS AND COLORING 62

+
n−1∑
i=0

(atti)(spoti) [acm ∗ acli

+ (n�−−→VPpli)dcm ∗ dcli

+ (fi)(n� ĥi)srmscm ∗ scli]
csec = (0, 0, 0, 1)

If ces = SEPARATESPECULARCOLOR, then

cpri = ecm

+ acm ∗ acs

+
n−1∑
i=0

(atti)(spoti) [acm ∗ acli

+ (n�−−→VPpli)dcm ∗ dcli]

csec =
n−1∑
i=0

(atti)(spoti)(fi)(n� ĥi)srmscm ∗ scli

where

fi =

{
1, n�−−→VPpli 6= 0,
0, otherwise,

(2.2)

hi =

{ −−→VPpli +−−→VPe, vbs = TRUE,
−−→VPpli + ( 0 0 1 )T , vbs = FALSE,

(2.3)

atti =


1

k0i + k1i‖VPpli‖ + k2i‖VPpli‖2
, if Ppli’s w 6= 0,

1.0, otherwise.
(2.4)

spoti =


(−−−→PpliV � ŝdli)srli , crli 6= 180.0,

−−−→PpliV � ŝdli ≥ cos(crli),
0.0, crli 6= 180.0,

−−−→PpliV � ŝdli < cos(crli),
1.0, crli = 180.0.

(2.5)

All computations are carried out in eye coordinates.

Version 2.0 - September 7, 2004



2.14. COLORS AND COLORING 63

The value of A produced by lighting is the alpha value associated withdcm.
A is always associated with the primary colorcpri; the alpha component ofcsec is
always1.

Results of lighting are undefined if thewe coordinate (w in eye coordinates) of
V is zero.

Lighting may operate intwo-sidedmode (tbs = TRUE), in which afront color
is computed with one set of material parameters (thefront material) and aback
color is computed with a second set of material parameters (theback material).
This second computation replacesn with −n. If tbs = FALSE, then the back color
and front color are both assigned the color computed using the front material with
n.

Additionally, vertex shaders can operate in two-sided color mode. When a ver-
tex shader is active, front and back colors can be computed by the vertex shader and
written to thegl FrontColor , gl BackColor , gl FrontSecondaryColor

andgl BackSecondaryColor outputs. IfVERTEXPROGRAMTWOSIDE is en-
abled, the GL chooses between front and back colors, as described below. Oth-
erwise, the front color output is always selected. Two-sided color mode is
enabled and disabled by callingEnable or Disable with the symbolic value
VERTEXPROGRAMTWOSIDE.

The selection between back and front colors depends on the primitive of which
the vertex being lit is a part. If the primitive is a point or a line segment, the front
color is always selected. If it is a polygon, then the selection is based on the sign of
the (clipped or unclipped) polygon’s signed area computed in window coordinates.
One way to compute this area is

a =
1
2

n−1∑
i=0

xi
wyi⊕1

w − xi⊕1
w yi

w (2.6)

wherexi
w and yi

w are thex and y window coordinates of theith vertex of the
n-vertex polygon (vertices are numbered starting at zero for purposes of this com-
putation) andi⊕ 1 is (i + 1) mod n. The interpretation of the sign of this value is
controlled with

void FrontFace( enum dir );

Settingdir to CCW(corresponding to counter-clockwise orientation of the projected
polygon in window coordinates) indicates that ifa ≤ 0, then the color of each
vertex of the polygon becomes the back color computed for that vertex while if
a > 0, then the front color is selected. Ifdir is CW, thena is replaced by−a in the
above inequalities. This requires one bit of state; initially, it indicatesCCW.

Version 2.0 - September 7, 2004



2.14. COLORS AND COLORING 64

2.14.2 Lighting Parameter Specification

Lighting parameters are divided into three categories: material parameters, light
source parameters, and lighting model parameters (see table2.10). Sets of lighting
parameters are specified with

void Material {if}( enum face, enum pname, T param);
void Material {if}v( enum face, enum pname, T params);
void Light {if}( enum light, enum pname, T param);
void Light {if}v( enum light, enum pname, T params);
void LightModel {if}( enum pname, T param);
void LightModel {if}v( enum pname, T params);

pnameis a symbolic constant indicating which parameter is to be set (see ta-
ble 2.11). In the vector versions of the commands,paramsis a pointer to a group
of values to which to set the indicated parameter. The number of values pointed to
depends on the parameter being set. In the non-vector versions,paramis a value to
which to set a single-valued parameter. (Ifparamcorresponds to a multi-valued pa-
rameter, the errorINVALID ENUMresults.) For theMaterial command,facemust
be one ofFRONT, BACK, or FRONTANDBACK, indicating that the propertynameof
the front or back material, or both, respectively, should be set. In the case ofLight ,
light is a symbolic constant of the formLIGHTi, indicating that lighti is to have
the specified parameter set. The constants obeyLIGHTi = LIGHT0 + i.

Table2.11gives, for each of the three parameter groups, the correspondence
between the pre-defined constant names and their names in the lighting equations,
along with the number of values that must be specified with each. Color param-
eters specified withMaterial and Light are converted to floating-point values
(if specified as integers) as indicated in table2.9 for signed integers. The error
INVALID VALUEoccurs if a specified lighting parameter lies outside the allowable
range given in table2.10. (The symbol “∞” indicates the maximum representable
magnitude for the indicated type.)

Material properties can be changed inside aBegin/End pair by callingMa-
terial . However, when a vertex shader is active such property changes are not
guaranteed to update material parameters, defined in table2.11, until the following
End command.

The current model-view matrix is applied to the position parameter indicated
with Light for a particular light source when that position is specified. These
transformed values are the values used in the lighting equation.

The spotlight direction is transformed when it is specified using only the upper
leftmost 3x3 portion of the model-view matrix. That is, ifMu is the upper left 3x3

Version 2.0 - September 7, 2004



2.14. COLORS AND COLORING 65

Parameter Name Number of values
Material Parameters (Material )

acm AMBIENT 4
dcm DIFFUSE 4

acm,dcm AMBIENTANDDIFFUSE 4
scm SPECULAR 4
ecm EMISSION 4
srm SHININESS 1

am, dm, sm COLORINDEXES 3
Light Source Parameters (Light )

acli AMBIENT 4
dcli DIFFUSE 4
scli SPECULAR 4
Ppli POSITION 4
sdli SPOTDIRECTION 3
srli SPOTEXPONENT 1
crli SPOTCUTOFF 1
k0 CONSTANTATTENUATION 1
k1 LINEAR ATTENUATION 1
k2 QUADRATICATTENUATION 1

Lighting Model Parameters (LightModel )
acs LIGHT MODELAMBIENT 4
vbs LIGHT MODELLOCALVIEWER 1
tbs LIGHT MODELTWOSIDE 1
ces LIGHT MODELCOLORCONTROL 1

Table 2.11: Correspondence of lighting parameter symbols to names.
AMBIENTANDDIFFUSE is used to setacm anddcm to the same value.

Version 2.0 - September 7, 2004



2.14. COLORS AND COLORING 66

matrix taken from the current model-view matrixM , then the spotlight direction dx

dy

dz


is transformed to  d′x

d′y
d′z

 = Mu

 dx

dy

dz

 .

An individual light is enabled or disabled by callingEnableor Disablewith the
symbolic valueLIGHTi (i is in the range 0 ton−1, wheren is the implementation-
dependent number of lights). If lighti is disabled, theith term in the lighting
equation is effectively removed from the summation.

2.14.3 ColorMaterial

It is possible to attach one or more material properties to the current color, so
that they continuously track its component values. This behavior is enabled and
disabled by callingEnableor Disablewith the symbolic valueCOLORMATERIAL.

The command that controls which of these modes is selected is

void ColorMaterial ( enum face, enum mode);

face is one ofFRONT, BACK, or FRONTANDBACK, indicating whether the front
material, back material, or both are affected by the current color.modeis one
of EMISSION, AMBIENT, DIFFUSE, SPECULAR, or AMBIENTANDDIFFUSE and
specifies which material property or properties track the current color. Ifmodeis
EMISSION, AMBIENT, DIFFUSE, orSPECULAR, then the value ofecm, acm, dcm or
scm, respectively, will track the current color. Ifmodeis AMBIENTANDDIFFUSE,
bothacm anddcm track the current color. The replacements made to material prop-
erties are permanent; the replaced values remain until changed by either sending a
new color or by setting a new material value whenColorMaterial is not currently
enabled to override that particular value. WhenCOLORMATERIAL is enabled, the
indicated parameter or parameters always track the current color. For instance,
calling

ColorMaterial ( FRONT, AMBIENT)

while COLORMATERIAL is enabled sets the front materialacm to the value of the
current color.

Material properties can be changed inside aBegin/End pair indirectly by en-
abling ColorMaterial mode and makingColor calls. However, when a vertex

Version 2.0 - September 7, 2004



2.14. COLORS AND COLORING 67

Current
Color

Front Ambient
Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is AMBIENT or AMBIENT_AND_DIFFUSE,
and ColorMaterial is enabled.  Down otherwise.

Material*(FRONT,AMBIENT)
To lighting equations

Front Diffuse
Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is DIFFUSE or AMBIENT_AND_DIFFUSE,
and ColorMaterial is enabled.  Down otherwise.

Material*(FRONT,DIFFUSE)
To lighting equations

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is SPECULAR, and ColorMaterial is
enabled.  Down otherwise.

Material*(FRONT,SPECULAR)
To lighting equations

Front Emission
Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is EMISSION, and ColorMaterial is
enabled.  Down otherwise.

Material*(FRONT,EMISSION)
To lighting equations

Front Specular
Color

Color*() To  subsequent vertex operations

State values flow continuously along this path

State values flow along this path only when a command is issued

Figure 2.10. ColorMaterial operation. Material properties are continuously up-
dated from the current color whileColorMaterial is enabled and has the appro-
priate mode. Only the front material properties are included in this figure. The
back material properties are treated identically, except thatfacemust beBACKor
FRONTANDBACK.

Version 2.0 - September 7, 2004



2.14. COLORS AND COLORING 68

shader is active such property changes are not guaranteed to update material pa-
rameters, defined in table2.11, until the followingEnd command.

2.14.4 Lighting State

The state required for lighting consists of all of the lighting parameters (front
and back material parameters, lighting model parameters, and at least 8 sets of
light parameters), a bit indicating whether a back color distinct from the front
color should be computed, at least 8 bits to indicate which lights are enabled,
a five-valued variable indicating the currentColorMaterial mode, a bit indicat-
ing whether or notCOLORMATERIAL is enabled, and a single bit to indicate
whether lighting is enabled or disabled. In the initial state, all lighting parame-
ters have their default values. Back color evaluation does not take place,Color-
Material is FRONTANDBACKandAMBIENTANDDIFFUSE, and both lighting and
COLORMATERIALare disabled.

2.14.5 Color Index Lighting

A simplified lighting computation applies in color index mode that uses many of
the parameters controlling RGBA lighting, but none of the RGBA material param-
eters. First, the RGBA diffuse and specular intensities of lighti (dcli and scli,
respectively) determine color index diffuse and specular light intensities,dli and
sli from

dli = (.30)R(dcli) + (.59)G(dcli) + (.11)B(dcli)

and
sli = (.30)R(scli) + (.59)G(scli) + (.11)B(scli).

R(x) indicates the R component of the colorx and similarly forG(x) andB(x).
Next, let

s =
n∑

i=0

(atti)(spoti)(sli)(fi)(n� ĥi)srm

whereatti andspoti are given by equations2.4 and2.5, respectively, andfi and
ĥi are given by equations2.2 and2.3, respectively. Lets′ = min{s, 1}. Finally,
let

d =
n∑

i=0

(atti)(spoti)(dli)(n�
−−→VPpli).

Then color index lighting produces a valuec, given by

c = am + d(1− s′)(dm − am) + s′(sm − am).

Version 2.0 - September 7, 2004



2.14. COLORS AND COLORING 69

The final color index is
c′ = min{c, sm}.

The valuesam, dm andsm are material properties described in tables2.10and2.11.
Any ambient light intensities are incorporated intoam. As with RGBA lighting,
disabled lights cause the corresponding terms from the summations to be omitted.
The interpretation oftbs and the calculation of front and back colors is carried out
as has already been described for RGBA lighting.

The valuesam, dm, and sm are set withMaterial using a pname of
COLORINDEXES. Their initial values are0, 1, and1, respectively. The additional
state consists of three floating-point values. These values have no effect on RGBA
lighting.

2.14.6 Clamping or Masking

After lighting (whether enabled or not), all components of both primary and sec-
ondary colors are clamped to the range[0, 1].

For a color index, the index is first converted to fixed-point with an unspecified
number of bits to the right of the binary point; the nearest fixed-point value is
selected. Then, the bits to the right of the binary point are left alone while the
integer portion is masked (bitwise ANDed) with2n − 1, wheren is the number of
bits in a color in the color index buffer (buffers are discussed in chapter4).

2.14.7 Flatshading

A primitive may beflatshaded, meaning that all vertices of the primitive are as-
signed the same color index or the same primary and secondary colors. These
colors are the colors of the vertex that spawned the primitive. For a point, these
are the colors associated with the point. For a line segment, they are the colors of
the second (final) vertex of the segment. For a polygon, they come from a selected
vertex depending on how the polygon was generated. Table2.12summarizes the
possibilities.

Flatshading is controlled by

void ShadeModel( enum mode);

modevalue must be either of the symbolic constantsSMOOTHor FLAT. If modeis
SMOOTH(the initial state), vertex colors are treated individually. Ifmodeis FLAT,
flatshading is turned on.ShadeModelthus requires one bit of state.

Version 2.0 - September 7, 2004



2.14. COLORS AND COLORING 70

Primitive type of polygoni Vertex

single polygon (i ≡ 1) 1
triangle strip i + 2
triangle fan i + 2
independent triangle 3i

quad strip 2i + 2
independent quad 4i

Table 2.12: Polygon flatshading color selection. The colors used for flatshading
the ith polygon generated by the indicatedBegin/End type are derived from the
current color (if lighting is disabled) in effect when the indicated vertex is specified.
If lighting is enabled, the colors are produced by lighting the indicated vertex.
Vertices are numbered1 throughn, wheren is the number of vertices between the
Begin/End pair.

2.14.8 Color and Associated Data Clipping

After lighting, clamping or masking and possible flatshading, colors are clipped.
Those colors associated with a vertex that lies within the clip volume are unaffected
by clipping. If a primitive is clipped, however, the colors assigned to vertices
produced by clipping are clipped colors.

Let the colors assigned to the two verticesP1 andP2 of an unclipped edge be
c1 andc2. The value oft (section2.12) for a clipped pointP is used to obtain the
color associated withP as

c = tc1 + (1− t)c2.

(For a color index color, multiplying a color by a scalar means multiplying the
index by the scalar. For an RGBA color, it means multiplying each of R, G, B, and
A by the scalar. Both primary and secondary colors are treated in the same fashion.)
Polygon clipping may create a clipped vertex along an edge of the clip volume’s
boundary. This situation is handled by noting that polygon clipping proceeds by
clipping against one plane of the clip volume’s boundary at a time. Color clipping
is done in the same way, so that clipped points always occur at the intersection of
polygon edges (possibly already clipped) with the clip volume’s boundary.

Texture and fog coordinates, vertex shader varying variables (section2.15.3),
and point sizes computed on a per vertex basis must also be clipped when a primi-
tive is clipped. The method is exactly analogous to that used for color clipping.

Version 2.0 - September 7, 2004



2.15. VERTEX SHADERS 71

2.14.9 Final Color Processing

For an RGBA color, each color component (which lies in[0, 1]) is converted
(by rounding to nearest) to a fixed-point value withm bits. We assume that
the fixed-point representation used represents each valuek/(2m − 1), where
k ∈ {0, 1, . . . , 2m − 1}, as k (e.g. 1.0 is represented in binary as a string of
all ones).m must be at least as large as the number of bits in the corresponding
component of the framebuffer.m must be at least 2 for A if the framebuffer does
not contain an A component, or if there is only 1 bit of A in the framebuffer. A
color index is converted (by rounding to nearest) to a fixed-point value with at least
as many bits as there are in the color index portion of the framebuffer.

Because a number of the formk/(2m − 1) may not be represented exactly as
a limited-precision floating-point quantity, we place a further requirement on the
fixed-point conversion of RGBA components. Suppose that lighting is disabled, the
color associated with a vertex has not been clipped, and one ofColorub, Colorus,
or Colorui was used to specify that color. When these conditions are satisfied, an
RGBA component must convert to a value that matches the component as specified
in the Color command: ifm is less than the number of bitsb with which the
component was specified, then the converted value must equal the most significant
m bits of the specified value; otherwise, the most significantb bits of the converted
value must equal the specified value.

2.15 Vertex Shaders

The sequence of operations described in sections2.11 through2.14 is a fixed-
function method for processing vertex data. Applications can more generally de-
scribe the operations that occur on vertex values and their associated data by using
avertex shader.

A vertex shader is an array of strings containing source code for the operations
that are meant to occur on each vertex that is processed. The language used for
vertex shaders is described in the OpenGL Shading Language Specification.

To use a vertex shader, shader source code is first loaded into ashader object
and thencompiled. One or more vertex shader objects are then attached to apro-
gram object. A program object is thenlinked, which generates executable code
from all the compiled shader objects attached to to the program. When a linked
program object is used as the current program object, the executable code for the
vertex shaders it contains is used to process vertices.

In addition to vertex shaders,fragment shaderscan be created, compiled, and
linked into program objects. Fragment shaders affect the processing of fragments

Version 2.0 - September 7, 2004



2.15. VERTEX SHADERS 72

during rasterization, and are described in section3.11. A single program object
can contain both vertex and fragment shaders.

When the program object currently in use includes a vertex shader, its vertex
shader is consideredactiveand is used to process vertices. If the program object
has no vertex shader, or no program object is currently in use, the fixed-function
method for processing vertices is used instead.

2.15.1 Shader Objects

The source code that makes up a program that gets executed by one of the pro-
grammable stages is encapsulated in one or moreshader objects.

The name space for shader objects is the unsigned integers, with zero re-
served for the GL. This name space is shared with program objects. The following
sections define commands that operate on shader and program objects by name.
Commands that accept shader or program object names will generate the error
INVALID VALUEif the provided name is not the name of either a shader or pro-
gram object andINVALID OPERATIONif the provided name identifies an object
that is not the expected type.

To create a shader object, use the command

uint CreateShader( enum type);

The shader object is empty when it is created. Thetypeargument specifies the type
of shader object to be created. For vertex shaders,typemust beVERTEXSHADER.
A non-zero name that can be used to reference the shader object is returned. If an
error occurs, zero will be returned.

The command

void ShaderSource( uint shader, sizei count, const
char **string , const int *length );

loads source code into the shader object namedshader. string is an array ofcount
pointers to optionally null-terminated character strings that make up the source
code. Thelengthargument is an array with the number ofchar s in each string (the
string length). If an element inlengthis negative, its accompanying string is null-
terminated. Iflengthis NULL, all strings in thestringargument are considered null-
terminated. TheShaderSourcecommand sets the source code for theshaderto
the text strings in thestringarray. Ifshaderpreviously had source code loaded into
it, the existing source code is completely replaced. Any length passed in excludes
the null terminator in its count.

Version 2.0 - September 7, 2004



2.15. VERTEX SHADERS 73

The strings that are loaded into a shader object are expected to form the source
code for a valid shader as defined in the OpenGL Shading Language Specification.

Once the source code for a shader has been loaded, a shader object can be
compiled with the command

void CompileShader( uint shader);

Each shader object has a boolean status,COMPILESTATUS, that is modified as
a result of compilation. This status can be queried withGetShaderiv (see sec-
tion 6.1.14). This status will be set toTRUEif shaderwas compiled without errors
and is ready for use, andFALSE otherwise. Compilation can fail for a variety of
reasons as listed in the OpenGL Shading Language Specification. IfCompile-
Shader failed, any information about a previous compile is lost. Thus a failed
compile does not restore the old state ofshader.

Changing the source code of a shader object withShaderSourcedoes not
change its compile status or the compiled shader code.

Each shader object has an information log, which is a text string that is over-
written as a result of compilation. This information log can be queried withGet-
ShaderInfoLog to obtain more information about the compilation attempt (see
section6.1.14).

Shader objects can be deleted with the command

void DeleteShader( uint shader);

If shaderis not attached to any program object, it is deleted immediately. Oth-
erwise,shaderis flagged for deletion and will be deleted when it is no longer
attached to any program object. If an object is flagged for deletion, its boolean
status bitDELETESTATUSis set to true. The value ofDELETESTATUScan be
queried withGetShaderiv(see section6.1.14). DeleteShaderwill silently ignore
the value zero.

2.15.2 Program Objects

The shader objects that are to be used by the programmable stages of the GL are
collected together to form aprogram object. The programs that are executed by
these programmable stages are calledexecutables. All information necessary for
defining an executable is encapsulated in a program object. A program object is
created with the command

uint CreateProgram( void );

Version 2.0 - September 7, 2004



2.15. VERTEX SHADERS 74

Program objects are empty when they are created. A non-zero name that can be
used to reference the program object is returned. If an error occurs, 0 will be
returned.

To attach a shader object to a program object, use the command

void AttachShader( uint program, uint shader);

The errorINVALID OPERATIONis generated ifshaderis already attached topro-
gram.

Shader objects may be attached to program objects before source code has
been loaded into the shader object, or before the shader object has been compiled.
Multiple shader objects of the same type may be attached to a single program
object, and a single shader object may be attached to more than one program object.

To detach a shader object from a program object, use the command

void DetachShader( uint program, uint shader);

The errorINVALID OPERATIONis generated ifshaderis not attached toprogram.
If shaderhas been flagged for deletion and is not attached to any other program
object, it is deleted.

In order to use the shader objects contained in a program object, the program
object must be linked. The command

void LinkProgram ( uint program);

will link the program object namedprogram. Each program object has a boolean
status,LINK STATUS, that is modified as a result of linking. This status can be
queried withGetProgramiv (see section6.1.14). This status will be set toTRUEif
a valid executable is created, andFALSEotherwise. Linking can fail for a variety
of reasons as specified in the OpenGL Shading Language Specification. Linking
will also fail if one or more of the shader objects, attached toprogram are not
compiled successfully, or if more active uniform or active sampler variables are
used inprogram than allowed (see section2.15.3). If LinkProgram failed, any
information about a previous link of that program object is lost. Thus, a failed link
does not restore the old state ofprogram.

Each program object has an information log that is overwritten as a result of a
link operation. This information log can be queried withGetProgramInfoLog to
obtain more information about the link operation (see section6.1.14).

If a valid executable is created, it can be made part of the current rendering
state with the command

Version 2.0 - September 7, 2004



2.15. VERTEX SHADERS 75

void UseProgram( uint program);

This command will install the executable code as part of current rendering state if
the program objectprogramcontains valid executable code, i.e. has been linked
successfully. IfUseProgram is called withprogramset to 0, it is as if the GL
had no programmable stages and the fixed-function paths will be used instead.
If program has not been successfully linked, the errorINVALID OPERATIONis
generated and the current rendering state is not modified.

While a program object is in use, applications are free to modify attached
shader objects, compile attached shader objects, attach additional shader objects,
and detach shader objects. These operations do not affect the link status or exe-
cutable code of the program object.

If the program object that is in use is re-linked successfully, theLinkProgram
command will install the generated executable code as part of the current rendering
state if the specified program object was already in use as a result of a previous call
to UseProgram.

If that program object that is in use is re-linked unsuccessfully, the link status
will be set toFALSE, but existing executable and associated state will remain part
of the current rendering state until a subsequent call toUseProgram removes it
from use. After such a program is removed from use, it can not be made part of the
current rendering state until it is successfully re-linked.

Program objects can be deleted with the command

void DeleteProgram( uint program);

If programis not the current program for any GL context, it is deleted immediately.
Otherwise,programis flagged for deletion and will be deleted when it is no longer
the current program for any context. When a program object is deleted, all shader
objects attached to it are detached.DeleteProgramwill silently ignore the value
zero.

2.15.3 Shader Variables

A vertex shader can reference a number of variables as it executes.Vertex attributes
are the per-vertex values specified in section2.7. Uniformsare per-program vari-
ables that are constant during program execution.Samplersare a special form of
uniform used for texturing (section3.8). Varying variableshold the results of ver-
tex shader execution that are used later in the pipeline. The following sections
describe each of these variable types.

Version 2.0 - September 7, 2004



2.15. VERTEX SHADERS 76

Vertex Attributes

Vertex shaders can access built-in vertex attribute variables corresponding to the
per-vertex state set by commands such asVertex, Normal, Color. Vertex shaders
can also define named attribute variables, which are bound to the generic vertex
attributes that are set byVertexAttrib* . This binding can be specified by the ap-
plication before the program is linked, or automatically assigned by the GL when
the program is linked.

When an attribute variable declared as afloat , vec2 , vec3 or vec4 is bound
to a generic attribute indexi, its value(s) are taken from thex, (x, y), (x, y, z), or
(x, y, z, w) components, respectively, of the generic attributei. When an attribute
variable declared as amat2 , its matrix columns are taken from the(x, y) compo-
nents of generic attributesi and i + 1. When an attribute variable declared as a
mat3 , its matrix columns are taken from the(x, y, z) components of generic at-
tributesi throughi + 2. When an attribute variable declared as amat4 , its matrix
columns are taken from the(x, y, z, w) components of generic attributesi through
i + 3.

An attribute variable (either conventional or generic) is consideredactiveif it is
determined by the compiler and linker that the attribute may be accessed when the
shader is executed. Attribute variables that are declared in a vertex shader but never
used will not count against the limit. In cases where the compiler and linker cannot
make a conclusive determination, an attribute will be considered active. A pro-
gram object will fail to link if the sum of the active generic and active conventional
attributes exceedsMAXVERTEXATTRIBS.

To determine the set of active vertex attributes used by a program, and to de-
termine their types, use the command:

void GetActiveAttrib ( uint program, uint index,
sizei bufSize, sizei *length, int *size, enum *type,
char *name);

This command provides information about the attribute selected byindex. An in-
dexof 0 selects the first active attribute, and anindexof ACTIVE ATTRIBUTES− 1
selects the last active attribute. The value ofACTIVE ATTRIBUTEScan be queried
with GetProgramiv (see section6.1.14). If index is greater than or equal to
ACTIVE ATTRIBUTES, the errorINVALID VALUE is generated. Note thatindex
simply identifies a member in a list of active attributes, and has no relation to the
generic attribute that the corresponding variable is bound to.

The parameterprogram is the name of a program object for which the com-
mandLinkProgram has been issued in the past. It is not necessary forprogramto

Version 2.0 - September 7, 2004



2.15. VERTEX SHADERS 77

have been linked successfully. The link could have failed because the number of
active attributes exceeded the limit.

The name of the selected attribute is returned as a null-terminated string in
name. The actual number of characters written intoname, excluding the null termi-
nator, is returned inlength. If lengthis NULL, no length is returned. The maximum
number of characters that may be written intoname, including the null terminator,
is specified bybufSize. The returned attribute name can be the name of a generic
attribute or a conventional attribute (which begin with the prefix"gl " , see the
OpenGL Shading Language specification for a complete list). The length of the
longest attribute name inprogramis given byACTIVE ATTRIBUTE MAXLENGTH,
which can be queried withGetProgramiv (see section6.1.14).

For the selected attribute, the type of the attribute is returned intotype. The
size of the attribute is returned intosize. The value insizeis in units of the type re-
turned intype. The type returned can be any ofFLOAT, FLOATVEC2, FLOATVEC3,
FLOATVEC4, FLOATMAT2, FLOATMAT3, or FLOATMAT4.

If an error occurred, the return parameterslength, size, typeandnamewill be
unmodified.

This command will return as much information about active attributes as pos-
sible. If no information is available,lengthwill be set to zero andnamewill be an
empty string. This situation could arise ifGetActiveAttrib is issued after a failed
link.

After a program object has been linked successfully, the bindings of attribute
variable names to indices can be queried. The command

int GetAttribLocation ( uint program, const char *name);

returns the generic attribute index that the attribute variable namednamewas bound
to when the program object namedprogramwas last linked.namemust be a null-
terminated string. Ifnameis active and is an attribute matrix,GetAttribLocation
returns the index of the first column of that matrix. Ifprogramhas not been suc-
cessfully linked, the errorINVALID OPERATIONis generated. Ifnameis not an
active attribute, ifnameis a conventional attribute, or if an error occurs, -1 will be
returned.

The binding of an attribute variable to a generic attribute index can also be
specified explicitly. The command

void BindAttribLocation ( uint program, uint index, const
char *name);

specifies that the attribute variable namednamein programprogram should be
bound to generic vertex attributeindexwhen the program is next linked. Ifname

Version 2.0 - September 7, 2004



2.15. VERTEX SHADERS 78

was bound previously, its assigned binding is replaced withindex. namemust be a
null terminated string. The errorINVALID VALUEis generated ifindexis equal or
greater thanMAXVERTEXATTRIBS. BindAttribLocation has no effect until the
program is linked. In particular, it doesn’t modify the bindings of active attribute
variables in a program that has already been linked.

Built-in attribute variables are automatically bound to conventional attributes,
and can not have an assigned binding. The errorINVALID OPERATIONis gener-
ated ifnamestarts with the reserved"gl " prefix.

When a program is linked, any active attributes without a binding specified
throughBindAttribLocation will be automatically be bound to vertex attributes
by the GL. Such bindings can be queried using the commandGetAttribLocation .
LinkProgram will fail if the assigned binding of an active attribute variable would
cause the GL to reference a non-existant generic attribute (one greater than or equal
to MAXVERTEXATTRIBS). LinkProgram will fail if the attribute bindings as-
signed byBindAttribLocation do not leave not enough space to assign a location
for an active matrix attribute, which requires multiple contiguous generic attributes.
LinkProgram will also fail if the vertex shaders used in the program object contain
assignments (not removed during pre-processing) to an attribute variable bound to
generic attribute zero and to the conventional vertex position (gl Vertex ).

BindAttribLocation may be issued before any vertex shader objects are at-
tached to a program object. Hence it is allowed to bind any name (except a name
starting with"gl " ) to an index, including a name that is never used as an attribute
in any vertex shader object. Assigned bindings for attribute variables that do not
exist or are not active are ignored.

The values of generic attributes sent to generic attribute indexi are part of
current state, just like the conventional attributes. If a new program object has
been made active, then these values will be tracked by the GL in such a way that
the same values will be observed by attributes in the new program object that are
also bound to indexi.

It is possible for an application to bind more than one attribute name to the
same location. This is referred to asaliasing. This will only work if only one of
the aliased attributes is active in the executable program, or if no path through the
shader consumes more than one attribute of a set of attributes aliased to the same
location. A link error can occur if the linker determines that every path through the
shader consumes multiple aliased attributes, but implementations are not required
to generate an error in this case. The compiler and linker are allowed to assume that
no aliasing is done, and may employ optimizations that work only in the absence
of aliasing. It is not possible to alias generic attributes with conventional ones.

Version 2.0 - September 7, 2004



2.15. VERTEX SHADERS 79

Uniform Variables

Shaders can declare nameduniform variables, as described in the OpenGL Shading
Language Specification. Values for these uniforms are constant over a primitive,
and typically they are constant across many primitives. Uniforms are program
object-specific state. They retain their values once loaded, and their values are
restored whenever a program object is used, as long as the program object has not
been re-linked. A uniform is consideredactiveif it is determined by the compiler
and linker that the uniform will actually be accessed when the executable code
is executed. In cases where the compiler and linker cannot make a conclusive
determination, the uniform will be considered active.

The amount of storage available for uniform variables accessed by
a vertex shader is specified by the implementation dependent constant
MAXVERTEXUNIFORMCOMPONENTS. This value represents the number of indi-
vidual floating-point, integer, or boolean values that can be held in uniform variable
storage for a vertex shader. A link error will be generated if an attempt is made to
utilize more than the space available for vertex shader uniform variables.

When a program is successfully linked, all active uniforms belonging to the
program object are initialized to zero (FALSEfor booleans). A successful link will
also generate a location for each active uniform. The values of active uniforms can
be changed using this location and the appropriateUniform* command (see be-
low). These locations are invalidated and new ones assigned after each successful
re-link.

To find the location of an active uniform variable within a program object, use
the command

int GetUniformLocation ( uint program, const
char *name);

This command will return the location of uniform variablename. namemust be a
null terminated string, without white space. The value -1 will be returned ifname
does not correspond to an active uniform variable name inprogramor if namestarts
with the reserved prefix"gl " . If programhas not been successfully linked, the
error INVALID OPERATIONis generated. After a program is linked, the location
of a uniform variable will not change, unless the program is re-linked.

A valid namecannot be a structure, an array of structures, or any portion of
a single vector or a matrix. In order to identify a validname, the "." (dot) and
"[]" operators can be used innameto specify a member of a structure or element
of an array.

The first element of a uniform array is identified using the name of the uniform
array appended with"[0]" . Except if the last part of the stringnameindicates a

Version 2.0 - September 7, 2004



2.15. VERTEX SHADERS 80

uniform array, then the location of the first element of that array can be retrieved
by either using the name of the uniform array, or the name of the uniform array
appended with"[0]" .

To determine the set of active uniform attributes used by a program, and to
determine their sizes and types, use the command:

void GetActiveUniform ( uint program, uint index,
sizei bufSize, sizei *length, int *size, enum *type,
char *name);

This command provides information about the uniform selected byindex. An in-
dexof 0 selects the first active uniform, and anindexof ACTIVE UNIFORMS− 1
selects the last active uniform. The value ofACTIVE UNIFORMScan be queried
with GetProgramiv (see section6.1.14). If index is greater than or equal to
ACTIVE UNIFORMS, the errorINVALID VALUEis generated. Note thatindexsim-
ply identifies a member in a list of active uniforms, and has no relation to the
location assigned to the corresponding uniform variable.

The parameterprogramis a name of a program object for which the command
LinkProgram has been issued in the past. It is not necessary forprogramto have
been linked successfully. The link could have failed because the number of active
uniforms exceeded the limit.

If an error occurred, the return parameterslength, size, typeandnamewill be
unmodified.

For the selected uniform, the uniform name is returned intoname. The string
namewill be null terminated. The actual number of characters written intoname,
excluding the null terminator, is returned inlength. If lengthis NULL, no length is
returned. The maximum number of characters that may be written intoname, in-
cluding the null terminator, is specified bybufSize. The returned uniform name
can be the name of built-in uniform state as well. The complete list of built-
in uniform state is described in section 7.5 of the OpenGL Shading Language
specification. The length of the longest uniform name inprogram is given by
ACTIVE UNIFORMMAXLENGTH, which can be queried withGetProgramiv (see
section6.1.14).

Each uniform variable, declared in a shader, is broken down into one or more
strings using the"." (dot) and"[]" operators, if necessary, to the point that it
is legal to pass each string back intoGetUniformLocation . Each of these strings
constitutes one active uniform, and each string is assigned an index.

For the selected uniform, the type of the uniform is returned intotype.
The size of the uniform is returned intosize. The value insize is in units
of the type returned intype. The type returned can be any ofFLOAT,

Version 2.0 - September 7, 2004



2.15. VERTEX SHADERS 81

FLOATVEC2, FLOATVEC3, FLOATVEC4, INT , INT VEC2, INT VEC3, INT VEC4,
BOOL, BOOLVEC2, BOOLVEC3, BOOLVEC4, FLOATMAT2, FLOATMAT3,
FLOATMAT4, SAMPLER1D, SAMPLER2D, SAMPLER3D, SAMPLERCUBE,
SAMPLER1D SHADOW, or SAMPLER2D SHADOW.

If one or more elements of an array are active,GetActiveUniform will return
the name of the array inname, subject to the restrictions listed above. The type of
the array is returned intype. Thesizeparameter contains the highest array element
index used, plus one. The compiler or linker determines the highest index used.
There will be only one active uniform reported by the GL per uniform array.

GetActiveUniform will return as much information about active uniforms as
possible. If no information is available,lengthwill be set to zero andnamewill be
an empty string. This situation could arise ifGetActiveUniform is issued after a
failed link.

To load values into the uniform variables of the program object that is currently
in use, use the commands

void Uniform {1234}{if}( int location, T value);
void Uniform {1234}{if}v( int location, sizei count,

T value);
void UniformMatrix {234}{f}v( int location, sizei count,

boolean transpose, T value);

The given values are loaded into the uniform variable location identified byloca-
tion.

TheUniform*f {v} commands will loadcountsets of one to four floating-point
values into a uniform location defined as a float, a floating-point vector, an array of
floats, or an array of floating-point vectors.

TheUniform*i {v} commands will loadcountsets of one to four integer val-
ues into a uniform location defined as a sampler, an integer, an integer vector, an
array of samplers, an array of integers, or an array of integer vectors. Only the
Uniform1i {v} commands can be used to load sampler values (see below).

TheUniformMatrix {234}fv commands will loadcount2× 2, 3× 3, or 4× 4
matrices (corresponding to2, 3, or4 in the command name) of floating-point values
into a uniform location defined as a matrix or an array of matrices. Iftranspose
is FALSE, the matrix is specified in column major order, otherwise in row major
order.

When loading values for a uniform declared as a boolean, a boolean vector,
an array of booleans, or an array of boolean vectors, both theUniform*i {v} and
Uniform*f {v} set of commands can be used to load boolean values. Type con-
version is done by the GL. The uniform is set toFALSE if the input value is 0 or

Version 2.0 - September 7, 2004



2.15. VERTEX SHADERS 82

0.0f, and set toTRUEotherwise. TheUniform* command used must match the
size of the uniform, as declared in the shader. For example, to load a uniform
declared as abvec2 , eitherUniform2i {v} or Uniform2f {v} can be used. An
INVALID OPERATIONerror will be generated if an attempt is made to use a non-
matchingUniform* command. In this example usingUniform1iv would generate
an error.

For all other uniform types theUniform* command used must match the size
and type of the uniform, as declared in the shader. No type conversions are done.
For example, to load a uniform declared as avec4 , Uniform4f {v} must be used.
To load a 3x3 matrix,UniformMatrix3fv must be used. AnINVALID OPERATION

error will be generated if an attempt is made to use a non-matchingUniform*
command. In this example, usingUniform4i {v} would generate an error.

When loadingN elements starting at an arbitrary positionk in a uniform de-
clared as an array, elementsk throughk + N − 1 in the array will be replaced
with the new values. Values for any array element that exceeds the highest array
element index used, as reported byGetActiveUniform , will be ignored by the GL.

If the value oflocation is -1, theUniform* commands will silently ignore the
data passed in, and the current uniform values will not be changed.

If any of the following conditions occur, anINVALID OPERATIONerror is gen-
erated by theUniform* commands, and no uniform values are changed:

• if the size indicated in the name of theUniform* command used does not
match the size of the uniform declared in the shader,

• if the uniform declared in the shader is not of type boolean and the type
indicated in the name of theUniform* command used does not match the
type of the uniform,

• if countis greater than one, and the uniform declared in the shader is not an
array variable,

• if no variable with a location oflocation exists in the program object cur-
rently in use andlocation is not -1, or

• if there is no program object currently in use.

Samplers

Samplersare special uniforms used in the OpenGL Shading Language to identify
the texture object used for each texture lookup. The value of a sampler indicates
the texture image unit being accessed. Setting a sampler’s value toi selects texture

Version 2.0 - September 7, 2004



2.15. VERTEX SHADERS 83

image unit numberi. The values ofi range from zero to the implementation-
dependent maximum supported number of texture image units.

The type of the sampler identifies the target on the texture image unit. The
texture object bound to that texture image unit’s target is then used for the texture
lookup. For example, a variable of typesampler2D selects targetTEXTURE2D on
its texture image unit. Binding of texture objects to targets is done as usual with
BindTexture. Selecting the texture image unit to bind to is done as usual with
ActiveTexture.

The location of a sampler needs to be queried withGetUniformLocation , just
like any uniform variable. Sampler values need to be set by callingUniform1i {v}.
Loading samplers with any of the otherUniform* entry points is not allowed and
will result in anINVALID OPERATIONerror.

It is not allowed to have variables of different sampler types pointing to the
same texture image unit within a program object. This situation can only be de-
tected at the next rendering command issued, and anINVALID OPERATIONerror
will then be generated.

Active samplers are samplers actually being used in a program object. The
LinkProgram command determines if a sampler is active or not. TheLinkPro-
gram command will attempt to determine if the active samplers in the shader(s)
contained in the program object exceed the maximum allowable limits. If it de-
termines that the count of active samplers exceeds the allowable limits, then the
link fails (these limits can be different for different types of shaders). Each active
sampler variable counts against the limit, even if multiple samplers refer to the
same texture image unit. If this cannot be determined at link time, for example if
the program object only contains a vertex shader, then it will be determined at the
next rendering command issued, and anINVALID OPERATIONerror will then be
generated.

Varying Variables

A vertex shader may define one or morevaryingvariables (see the OpenGL Shad-
ing Language specification). These values are expected to be interpolated across
the primitive being rendered. The OpenGL Shading Language specification defines
a set of built-in varying variables for vertex shaders that correspond to the values
required for the fixed-function processing that occurs after vertex processing.

The number of interpolators available for processing varying variables is given
by the implementation-dependent constantMAXVARYINGFLOATS. This value rep-
resents the number of individual floating-point values that can be interpolated;
varying variables declared as vectors, matrices, and arrays will all consume multi-
ple interpolators. When a program is linked, all components of any varying vari-

Version 2.0 - September 7, 2004



2.15. VERTEX SHADERS 84

able written by a vertex shader, or read by a fragment shader, will count against
this limit. The transformed vertex position (gl Position ) is not a varying vari-
able and does not count against this limit. A program whose shaders access more
than MAXVARYINGFLOATScomponents worth of varying variables may fail to
link, unless device-dependent optimizations are able to make the program fit within
available hardware resources.

2.15.4 Shader Execution

If a successfully linked program object that contains a vertex shader is made current
by calling UseProgram, the executable version of the vertex shader is used to
process incoming vertex values rather than the fixed-function vertex processing
described in sections2.11through2.14. In particular,

• The model-view and projection matrices are not applied to vertex coordi-
nates (section2.11).

• The texture matrices are not applied to texture coordinates (section2.11.2).

• Normals are not transformed to eye coordinates, and are not rescaled or nor-
malized (section2.11.3).

• Normalization ofAUTONORMALevaluated normals is not performed. (sec-
tion 5.1).

• Texture coordinates are not generated automatically (section2.11.4).

• Per vertex lighting is not performed (section2.14.1).

• Color material computations are not performed (section2.14.3).

• Color index lighting is not performed (section2.14.5).

• All of the above applies when setting the current raster position (sec-
tion 2.13).

The following operations are applied to vertex values that are the result of
executing the vertex shader:

• Color clamping or masking (section2.14.6).

• Perspective division on clip coordinates (section2.11).

• Viewport mapping, including depth range scaling (section2.11.1).

Version 2.0 - September 7, 2004



2.15. VERTEX SHADERS 85

• Clipping, including client-defined clip planes (section2.12).

• Front face determination (section2.14.1).

• Flat-shading (section2.14.7).

• Color, texture coordinate, fog, point-size and generic attribute clipping (sec-
tion 2.14.8).

• Final color processing (section2.14.9.

There are several special considerations for vertex shader execution described
in the following sections.

Texture Access

Vertex shaders have the ability to do a lookup into a texture map, if sup-
ported by the GL implementation. The maximum number of texture image
units available to a vertex shader isMAXVERTEXTEXTUREIMAGEUNITS; a
maximum number of zero indicates that the GL implemenation does not sup-
port texture accesses in vertex shaders. The maximum number of texture image
units available to the fragment stage of the GL isMAXTEXTUREIMAGEUNITS.
Both the vertex shader and fragment processing combined cannot use more
than MAXCOMBINEDTEXTUREIMAGEUNITS texture image units. If both
the vertex shader and the fragment processing stage access the same texture
image unit, then that counts as using two texture image units against the
MAXCOMBINEDTEXTUREIMAGEUNITS limit.

When a texture lookup is performed in a vertex shader, the filtered texture value
τ is computed in the manner described in sections3.8.8and3.8.9, and converted
it to a texture source colorCs according to table3.21 (section3.8.13). A four-
component vector(Rs, Gs, Bs, As) is returned to the vertex shader.

In a vertex shader, it is not possible to perform automatic level-of-detail calcu-
lations using partial derivatives of the texture coordinates with respect to window
coordinates as described in section3.8.8. Hence, there is no automatic selection of
an image array level. Minification or magnification of a texture map is controlled
by a level-of-detail value optionally passed as an argument in the texture lookup
functions. If the texture lookup function supplies an explicit level-of-detail valuel,
then the pre-bias level-of-detail valueλbase(x, y) = l (replacing equation3.18). If
the texture lookup function does not supply an explicit level-of-detail value, then
λbase(x, y) = 0. The scale factorρ(x, y) and its approximation functionf(x, y)
(see equation3.21) are ignored.

Version 2.0 - September 7, 2004



2.15. VERTEX SHADERS 86

Texture lookups involving textures with depth component data can either re-
turn the depth data directly or return the results of a comparison with ther tex-
ture coordinate used to perform the lookup, as described in section3.8.14. The
comparison operation is requested in the shader by using the shadow sampler
types (sampler1DShadow or sampler2DShadow ) and in the texture using the
TEXTURECOMPAREMODEparameter. These requests must be consistent; the re-
sults of a texture lookup are undefined if:

• The sampler used in a texture lookup function is of typesampler1D or
sampler2D , and the texture object’s internal format isDEPTHCOMPONENT,
and theTEXTURECOMPAREMODEis notNONE.

• The sampler used in a texture lookup function is of typesampler1DShadow

or sampler2DShadow , and the texture object’s internal format is
DEPTHCOMPONENT, and theTEXTURECOMPAREMODEis NONE.

• The sampler used in a texture lookup function is of typesampler1DShadow

or sampler2DShadow , and the texture object’s internal format is not
DEPTHCOMPONENT.

If a vertex shader uses a sampler where the associated texture object is not com-
plete, as defined in section3.8.10, the texture image unit will return(R,G,B,A)
= (0, 0, 0, 1).

Position Invariance

If a vertex shader uses the built-in functionftransform to generate a vertex posi-
tion, then this generally guarantees that the transformed position will be the same
whether using this vertex shader or the fixed-function pipeline. This allows for cor-
rect multi-pass rendering algorithms, where some passes use fixed-function vertex
transformation and other passes use a vertex shader. If a vertex shader does not
useftransform to generate a position, transformed positions are not guaranteed
to match, even if the sequence of instructions used to compute the position match
the sequence of transformations described in section2.11.

Validation

It is not always possible to determine at link time if a program object actually
will execute. Therefore validation is done when the first rendering command is
issued, to determine if the currently active program object can be executed. If

Version 2.0 - September 7, 2004



2.15. VERTEX SHADERS 87

it cannot be executed then no fragments will be rendered, andBegin, Raster-
Pos, or any command that performs an implicitBegin will generate the error
INVALID OPERATION.

This error is generated byBegin, RasterPos, or any command that performs
an implicitBegin if:

• any two active samplers in the current program object are of different types,
but refer to the same texture image unit,

• any active sampler in the current program object refers to a texture image
unit where fixed-function fragment processing accesses a texture target that
does not match the sampler type, or

• the sum of the number of active samplers in the program and the number of
texture image units enabled for fixed-function fragment processing exceeds
the combined limit on the total number of texture image units allowed.

Fixed-function fragment processing operations will be performed if the pro-
gram object in use has no fragment shader.

The INVALID OPERATIONerror reported by these rendering commands may
not provide enough information to find out why the currently active program object
would not execute. No information at all is available about a program object that
would still execute, but is inefficient or suboptimal given the current GL state. As
a development aid, use the command

void ValidateProgram( uint program);

to validate the program objectprogramagainst the current GL state. Each program
object has a boolean status,VALIDATE STATUS, that is modified as a result of
validation. This status can be queried withGetProgramiv (see section6.1.14).
If validation succeeded this status will be set toTRUE, otherwise it will be set to
FALSE. If validation succeeded the program object is guaranteed to execute, given
the current GL state. If validation failed, the program object is guaranteed to not
execute, given the current GL state.

ValidateProgram will check for all the conditions that could lead to an
INVALID OPERATIONerror when rendering commands are issued, and may check
for other conditions as well. For example, it could give a hint on how to optimize
some piece of shader code. The information log ofprogram is overwritten with
information on the results of the validation, which could be an empty string. The
results written to the information log are typically only useful during application
development; an application should not expect different GL implementations to
produce identical information.

Version 2.0 - September 7, 2004



2.15. VERTEX SHADERS 88

A shader should not fail to compile, and a program object should not fail to
link due to lack of instruction space or lack of temporary variables. Implementa-
tions should ensure that all valid shaders and program objects may be successfully
compiled, linked and executed.

Undefined Behavior

When using array or matrix variables in a shader, it is possible to access a vari-
able with an index computed at run time that is outside the declared extent of the
variable. Such out-of-bounds reads will return undefined values; out-of-bounds
writes will have undefined results and could corrupt other variables used by shader
or the GL. The level of protection provided against such errors in the shader is
implementation-dependent.

2.15.5 Required State

The GL maintains state to indicate which shader and program object names are in
use. Initially, no shader or program objects exist, and no names are in use.

The state required per shader object consists of:

• An unsigned integer specifying the shader object name.

• An integer holding the value ofSHADERTYPE.

• A boolean holding the delete status, initiallyFALSE.

• A boolean holding the status of the last compile, initiallyFALSE.

• An array of typechar containing the information log, initially empty.

• An integer holding the length of the information log.

• An array of typechar containing the concatenated shader string, initially
empty.

• An integer holding the length of the concatenated shader string.

The state required per program object consists of:

• An unsigned integer indicating the program object object name.

• A boolean holding the delete status, initiallyFALSE.

• A boolean holding the status of the last link attempt, initiallyFALSE.

Version 2.0 - September 7, 2004



2.15. VERTEX SHADERS 89

• A boolean holding the status of the last validation attempt, initallyFALSE.

• An integer holding the number of attached shader objects.

• A list of unsigned integers to keep track of the names of the shader objects
attached.

• An array of typechar containing the information log, initially empty.

• An integer holding the length of the information log.

• An integer holding the number of active uniforms.

• For each active uniform, three integers, holding its location, size, and type,
and an array of typechar holding its name.

• An array of words that hold the values of each active uniform.

• An integer holding the number of active attributes.

• For each active attbribute, three integers holding its location, size, and type,
and an array of typechar holding its name.

Additional state required to support vertex shaders consists of:

• A bit indicating whether or not vertex program two-sided color mode is en-
abled, initially disabled.

• A bit indicating whether or not vertex program point size mode (sec-
tion 3.3.1) is enabled, initially disabled.

Additionally, one unsigned integer is required to hold the name of the current pro-
gram object, if any.

Version 2.0 - September 7, 2004



Chapter 3

Rasterization

Rasterization is the process by which a primitive is converted to a two-dimensional
image. Each point of this image contains such information as color and depth.
Thus, rasterizing a primitive consists of two parts. The first is to determine which
squares of an integer grid in window coordinates are occupied by the primitive. The
second is assigning a depth value and one or more color values to each such square.
The results of this process are passed on to the next stage of the GL (per-fragment
operations), which uses the information to update the appropriate locations in the
framebuffer. Figure3.1 diagrams the rasterization process. The color values
assigned to a fragment are initially determined by the rasterization operations (sec-
tions3.3 through3.7) and modified by either the execution of the texturing, color
sum, and fog operations defined in sections3.8, 3.9, and3.10, or by a fragment
shader as defined in section3.11. The final depth value is initially determined by
the rasterization operations and may be modified or replaced by a fragment shader.
The results from rasterizing a point, line, polygon, pixel rectangle or bitmap can be
routed through a fragment shader.

A grid square along with its parameters of assigned colors,z (depth), fog coor-
dinate, and texture coordinates is called afragment; the parameters are collectively
dubbed the fragment’sassociated data. A fragment is located by its lower left cor-
ner, which lies on integer grid coordinates. Rasterization operations also refer to a
fragment’scenter, which is offset by(1/2, 1/2) from its lower left corner (and so
lies on half-integer coordinates).

Grid squares need not actually be square in the GL. Rasterization rules are not
affected by the actual aspect ratio of the grid squares. Display of non-square grids,
however, will cause rasterized points and line segments to appear fatter in one
direction than the other. We assume that fragments are square, since it simplifies
antialiasing and texturing.

90



91

Point
Rasterization

Polygon
Rasterization

Line
Rasterization

Bitmap
Rasterization

Pixel
Rectangle

Rasterization

Fog

Color Sum

Texturing
Fragment
Program

From
Primitive
Assembly

DrawPixels

Bitmap
Fragments

FRAGMENT_PROGRAM enable

Figure 3.1. Rasterization.

Version 2.0 - September 7, 2004



3.1. INVARIANCE 92

Several factors affect rasterization. Lines and polygons may be stippled. Points
may be given differing diameters and line segments differing widths. A point, line
segment, or polygon may be antialiased.

3.1 Invariance

Consider a primitivep′ obtained by translating a primitivep through an offset(x, y)
in window coordinates, wherex andy are integers. As long as neitherp′ nor p is
clipped, it must be the case that each fragmentf ′ produced fromp′ is identical to
a corresponding fragmentf from p except that the center off ′ is offset by(x, y)
from the center off .

3.2 Antialiasing

Antialiasing of a point, line, or polygon is effected in one of two ways depending
on whether the GL is in RGBA or color index mode.

In RGBA mode, the R, G, and B values of the rasterized fragment are left
unaffected, but the A value is multiplied by a floating-point value in the range
[0, 1] that describes a fragment’s screen pixel coverage. The per-fragment stage of
the GL can be set up to use the A value to blend the incoming fragment with the
corresponding pixel already present in the framebuffer.

In color index mode, the least significantb bits (to the left of the binary point)
of the color index are used for antialiasing;b = min{4,m}, wherem is the number
of bits in the color index portion of the framebuffer. The antialiasing process sets
theseb bits based on the fragment’s coverage value: the bits are set to zero for no
coverage and to all ones for complete coverage.

The details of how antialiased fragment coverage values are computed are dif-
ficult to specify in general. The reason is that high-quality antialiasing may take
into account perceptual issues as well as characteristics of the monitor on which
the contents of the framebuffer are displayed. Such details cannot be addressed
within the scope of this document. Further, the coverage value computed for a
fragment of some primitive may depend on the primitive’s relationship to a num-
ber of grid squares neighboring the one corresponding to the fragment, and not just
on the fragment’s grid square. Another consideration is that accurate calculation
of coverage values may be computationally expensive; consequently we allow a
given GL implementation to approximate true coverage values by using a fast but
not entirely accurate coverage computation.

In light of these considerations, we chose to specify the behavior of exact an-
tialiasing in the prototypical case that each displayed pixel is a perfect square of

Version 2.0 - September 7, 2004



3.2. ANTIALIASING 93

uniform intensity. The square is called afragment squareand has lower left corner
(x, y) and upper right corner(x+1, y+1). We recognize that this simple box filter
may not produce the most favorable antialiasing results, but it provides a simple,
well-defined model.

A GL implementation may use other methods to perform antialiasing, subject
to the following conditions:

1. If f1 andf2 are two fragments, and the portion off1 covered by some prim-
itive is a subset of the corresponding portion off2 covered by the primitive,
then the coverage computed forf1 must be less than or equal to that com-
puted forf2.

2. The coverage computation for a fragmentf must be local: it may depend
only onf ’s relationship to the boundary of the primitive being rasterized. It
may not depend onf ’s x andy coordinates.

Another property that is desirable, but not required, is:

3. The sum of the coverage values for all fragments produced by rasterizing a
particular primitive must be constant, independent of any rigid motions in
window coordinates, as long as none of those fragments lies along window
edges.

In some implementations, varying degrees of antialiasing quality may be obtained
by providing GL hints (section5.6), allowing a user to make an image quality
versus speed tradeoff.

3.2.1 Multisampling

Multisampling is a mechanism to antialias all GL primitives: points, lines, poly-
gons, bitmaps, and images. The technique is to sample all primitives multiple times
at each pixel. The color sample values are resolved to a single, displayable color
each time a pixel is updated, so the antialiasing appears to be automatic at the
application level. Because each sample includes color, depth, and stencil informa-
tion, the color (including texture operation), depth, and stencil functions perform
equivalently to the single-sample mode.

An additional buffer, called the multisample buffer, is added to the framebuffer.
Pixel sample values, including color, depth, and stencil values, are stored in this
buffer. Samples contain separate color values for each fragment color. When
the framebuffer includes a multisample buffer, it does not include depth or stencil
buffers, even if the multisample buffer does not store depth or stencil values. Color

Version 2.0 - September 7, 2004



3.2. ANTIALIASING 94

buffers (left, right, front, back, and aux) do coexist with the multisample buffer,
however.

Multisample antialiasing is most valuable for rendering polygons, because it
requires no sorting for hidden surface elimination, and it correctly handles adjacent
polygons, object silhouettes, and even intersecting polygons. If only points or
lines are being rendered, the “smooth” antialiasing mechanism provided by the
base GL may result in a higher quality image. This mechanism is designed to
allow multisample and smooth antialiasing techniques to be alternated during the
rendering of a single scene.

If the value of SAMPLEBUFFERS is one, the rasterization of all primi-
tives is changed, and is referred to as multisample rasterization. Otherwise,
primitive rasterization is referred to as single-sample rasterization. The value
of SAMPLEBUFFERS is queried by callingGetIntegerv with pname set to
SAMPLEBUFFERS.

During multisample rendering the contents of a pixel fragment are changed
in two ways. First, each fragment includes a coverage value withSAMPLESbits.
The value ofSAMPLESis an implementation-dependent constant, and is queried by
callingGetIntegerv with pnameset toSAMPLES.

Second, each fragment includesSAMPLESdepth values, color values, and sets
of texture coordinates, instead of the single depth value, color value, and set of
texture coordinates that is maintained in single-sample rendering mode. An imple-
mentation may choose to assign the same color value and the same set of texture
coordinates to more than one sample. The location for evaluating the color value
and the set of texture coordinates can be anywhere within the pixel including the
fragment center or any of the sample locations. The color value and the set of tex-
ture coordinates need not be evaluated at the same location. Each pixel fragment
thus consists of integer x and y grid coordinates,SAMPLEScolor and depth values,
SAMPLESsets of texture coordinates, and a coverage value with a maximum of
SAMPLESbits.

Multisample rasterization is enabled or disabled by callingEnable or Disable
with the symbolic constantMULTISAMPLE.

If MULTISAMPLEis disabled, multisample rasterization of all primitives is
equivalent to single-sample (fragment-center) rasterization, except that the frag-
ment coverage value is set to full coverage. The color and depth values and the
sets of texture coordinates may all be set to the values that would have been as-
signed by single-sample rasterization, or they may be assigned as described below
for multisample rasterization.

If MULTISAMPLEis enabled, multisample rasterization of all primitives differs
substantially from single-sample rasterization. It is understood that each pixel in
the framebuffer hasSAMPLESlocations associated with it. These locations are

Version 2.0 - September 7, 2004



3.3. POINTS 95

exact positions, rather than regions or areas, and each is referred to as a sample
point. The sample points associated with a pixel may be located inside or outside
of the unit square that is considered to bound the pixel. Furthermore, the relative
locations of sample points may be identical for each pixel in the framebuffer, or
they may differ.

If the sample locations differ per pixel, they should be aligned to window, not
screen, boundaries. Otherwise rendering results will be window-position specific.
The invariance requirement described in section3.1 is relaxed for all multisample
rasterization, because the sample locations may be a function of pixel location.

It is not possible to query the actual sample locations of a pixel.

3.3 Points

If a vertex shader is not active, then the rasterization of points is controlled with

void PointSize( float size);

sizespecifies the requested size of a point. The default value is 1.0. A value less
than or equal to zero results in the errorINVALID VALUE.

The requested point size is multiplied with a distance attenuation factor,
clamped to a specified point size range, and further clamped to the implementation-
dependent point size range to produce the derived point size:

derived size = clamp

(
size ∗

√(
1

a + b ∗ d + c ∗ d2

))
whered is the eye-coordinate distance from the eye,(0, 0, 0, 1) in eye coordinates,
to the vertex, anda, b, andc are distance attenuation function coefficients.

If multisampling is not enabled, the derived size is passed on to rasterization as
the point width.

If a vertex shader is active and vertex program point size mode is enabled,
then the derived point size is taken from the (potentially clipped) shader builtin
gl PointSize and clamped to the implementation-dependent point size range. If
the value written togl PointSize is less than or equal to zero, results are unde-
fined. If a vertex shader is active and vertex program point size mode is disabled,
then the derived point size is taken from the point size state as specified by the
PointSize command. In this case no distance attenuation is performed. Vertex pro-
gram point size mode is enabled and disabled by callingEnable or Disablewith
the symbolic valueVERTEXPROGRAMPOINT SIZE .

Version 2.0 - September 7, 2004



3.3. POINTS 96

If multisampling is enabled, an implementation may optionally fade the point
alpha (see section3.13) instead of allowing the point width to go below a given
threshold. In this case, the width of the rasterized point is

width =

{
derived size derived size ≥ threshold
threshold otherwise

(3.1)

and the fade factor is computed as follows:

fade =

 1 derived size ≥ threshold(
derived size

threshold

)2
otherwise

(3.2)

The distance attenuation function coefficientsa, b, andc, the bounds of the first
point size range clamp, and the point fadethreshold, are specified with

void PointParameter{if}( enum pname, T param);
void PointParameter{if}v( enum pname, const T params);

If pname is POINT SIZE MIN or POINT SIZE MAX, then param speci-
fies, or params points to the lower or upper bound respectively to which
the derived point size is clamped. If the lower bound is greater than
the upper bound, the point size after clamping is undefined. Ifpname is
POINT DISTANCEATTENUATION, then paramspoints to the coefficientsa, b,
and c. If pname is POINT FADETHRESHOLDSIZE , then param specifies,
or params points to the point fadethreshold. Values of POINT SIZE MIN,
POINT SIZE MAX, or POINT FADETHRESHOLDSIZE less than zero result in the
error INVALID VALUE.

Point antialiasing is enabled or disabled by callingEnableor Disablewith the
symbolic constantPOINT SMOOTH. The default state is for point antialiasing to be
disabled.

Point sprites are enabled or disabled by callingEnable or Disable with the
symbolic constantPOINT SPRITE. The default state is for point sprites to be dis-
abled. When point sprites are enabled, the state of the point antialiasing enable is
ignored.

The point sprite texture coordinate replacement mode is set with one of the
TexEnv* commands described in section3.8.13, wheretarget is POINT SPRITE

and pnameis COORDREPLACE. The possible values forparam are FALSE and
TRUE. The default value for each texture coordinate set is for point sprite texture
coordinate replacement to be disabled.

The point sprite texture coordinate origin is set with thePointParame-
ter* commands wherepnameis POINT SPRITE COORDORIGIN and param is
LOWERLEFT or UPPERLEFT. The default value isUPPERLEFT.

Version 2.0 - September 7, 2004



3.3. POINTS 97

3.3.1 Basic Point Rasterization

In the default state, a point is rasterized by truncating itsxw andyw coordinates
(recall that the subscripts indicate that these arex andy window coordinates) to
integers. This(x, y) address, along with data derived from the data associated
with the vertex corresponding to the point, is sent as a single fragment to the per-
fragment stage of the GL.

The effect of a point width other than1.0 depends on the state of point antialias-
ing and point sprites. If antialiasing and point sprites are disabled, the actual width
is determined by rounding the supplied width to the nearest integer, then clamp-
ing it to the implementation-dependent maximum non-antialiased point width.
This implementation-dependent value must be no less than the implementation-
dependent maximum antialiased point width, rounded to the nearest integer value,
and in any event no less than1. If rounding the specified width results in the value
0, then it is as if the value were1. If the resulting width is odd, then the point

(x, y) = (bxwc+
1
2
, bywc+

1
2
)

is computed from the vertex’sxw andyw, and a square grid of the odd width cen-
tered at(x, y) defines the centers of the rasterized fragments (recall that fragment
centers lie at half-integer window coordinate values). If the width is even, then the
center point is

(x, y) = (bxw +
1
2
c, byw +

1
2
c);

the rasterized fragment centers are the half-integer window coordinate values
within the square of the even width centered on(x, y). See figure3.2.

Version 2.0 - September 7, 2004



3.3. POINTS 98

� � �
� � �

� � �
� � �

Odd Width Even Width

3.5 4.5 5.52.51.5 3.5 4.5 5.52.51.5

1.5

2.5

3.5

4.5

0.50.5

0.5

5.5

Figure 3.2. Rasterization of non-antialiased wide points. The crosses show fragment
centers produced by rasterization for any point that lies within the shaded region.
The dotted grid lines lie on half-integer coordinates.

Version 2.0 - September 7, 2004



3.3. POINTS 99

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

1.00.0 3.02.0 5.04.0 6.0
0.0

1.0

2.0

3.0

4.0

5.0

6.0

Figure 3.3. Rasterization of antialiased wide points. The black dot indicates the
point to be rasterized. The shaded region has the specified width. The X marks
indicate those fragment centers produced by rasterization. A fragment’s computed
coverage value is based on the portion of the shaded region that covers the corre-
sponding fragment square. Solid lines lie on integer coordinates.

Version 2.0 - September 7, 2004



3.3. POINTS 100

All fragments produced in rasterizing a non-antialiased point are assigned the
same associated data, which are those of the vertex corresponding to the point.

If antialiasing is enabled and point sprites are disabled, then point rasterization
produces a fragment for each fragment square that intersects the region lying within
the circle having diameter equal to the current point width and centered at the
point’s (xw, yw) (figure3.3). The coverage value for each fragment is the window
coordinate area of the intersection of the circular region with the corresponding
fragment square (but see section3.2). This value is saved and used in the final
step of rasterization (section3.12). The data associated with each fragment are
otherwise the data associated with the point being rasterized.

Not all widths need be supported when point antialiasing is on, but the width
1.0 must be provided. If an unsupported width is requested, the nearest supported
width is used instead. The range of supported widths and the width of evenly-
spaced gradations within that range are implementation dependent. The range and
gradations may be obtained using the query mechanism described in chapter6. If,
for instance, the width range is from 0.1 to 2.0 and the gradation width is 0.1, then
the widths0.1, 0.2, . . . , 1.9, 2.0 are supported.

If point sprites are enabled, then point rasterization produces a fragment for
each framebuffer pixel whose center lies inside a square centered at the point’s
(xw, yw), with side length equal to the current point size.

All fragments produced in rasterizing a point sprite are assigned the same as-
sociated data, which are those of the vertex corresponding to the point. How-
ever, for each texture coordinate set whereCOORDREPLACE is TRUE, these
texture coordinates are replaced with point sprite texture coordinates. Thes
coordinate varies from 0 to 1 across the point horizontally left-to-right. If
POINT SPRITE COORDORIGIN is LOWERLEFT, the t coordinate varies from 0
to 1 vertically bottom-to-top. Otherwise if the point sprite texture coordinate ori-
gin is UPPERLEFT, the t coordinate varies from 0 to 1 vertically top-to-bottom.
Ther andq coordinates are replaced with the constants 0 and 1, respectively.

The following formula is used to evaluate thes andt coordinates:

s =
1
2

+

(
xf + 1

2 − xw

)
size

(3.3)

t =

 1
2 + (yf+ 1

2
−yw)

size , POINT SPRITE COORDORIGIN = LOWERLEFT

1
2 −

(yf+ 1
2
−yw)

size , POINT SPRITE COORDORIGIN = UPPERLEFT
(3.4)

where size is the point’s size,xf andyf are the (integral) window coordinates of

Version 2.0 - September 7, 2004



3.4. LINE SEGMENTS 101

the fragment, andxw andyw are the exact, unrounded window coordinates of the
vertex for the point.

The widths supported for point sprites must be a superset of those supported
for antialiased points. There is no requirement that these widths must be equally
spaced. If an unsupported width is requested, the nearest supported width is used
instead.

3.3.2 Point Rasterization State

The state required to control point rasterization consists of the floating-point point
width, three floating-point values specifying the minimum and maximum point size
and the point fade threshold size, three floating-point values specifying the distance
attenuation coefficients, a bit indicating whether or not antialiasing is enabled, a
bit for the point sprite texture coordinate replacement mode for each texture coor-
dinate set, and a bit for the point sprite texture coordinate origin.

3.3.3 Point Multisample Rasterization

If MULTISAMPLEis enabled, and the value ofSAMPLEBUFFERSis one, then points
are rasterized using the following algorithm, regardless of whether point antialias-
ing (POINT SMOOTH) is enabled or disabled. Point rasterization produces a frag-
ment for each framebuffer pixel with one or more sample points that intersect
a region centered at the point’s(xw, yw). This region is a circle having diameter
equal to the current point width ifPOINT SPRITE is disabled, or a square with
side equal to the current point width ifPOINT SPRITE is enabled. Coverage bits
that correspond to sample points that intersect the region are 1, other coverage bits
are 0. All data associated with each sample for the fragment are the data associ-
ated with the point being rasterized, with the exception of texture coordinates when
POINT SPRITE is enabled; these texture coordinates are computed as described in
section3.3.

Point size range and number of gradations are equivalent to those supported
for antialiased points whenPOINT SPRITE is disabled. The set of point sizes
supported is equivalent to those for point sprites without multisample when
POINT SPRITE is enabled.

3.4 Line Segments

A line segment results from a line stripBegin/End object, a line loop, or a se-
ries of separate line segments. Line segment rasterization is controlled by several
variables. Line width, which may be set by calling

Version 2.0 - September 7, 2004



3.4. LINE SEGMENTS 102

void LineWidth ( float width );

with an appropriate positive floating-point width, controls the width of rasterized
line segments. The default width is1.0. Values less than or equal to0.0 generate
the errorINVALID VALUE. Antialiasing is controlled withEnable and Disable
using the symbolic constantLINE SMOOTH. Finally, line segments may be stippled.
Stippling is controlled by a GL command that sets astipple pattern(see below).

3.4.1 Basic Line Segment Rasterization

Line segment rasterization begins by characterizing the segment as eitherx-major
or y-major. x-major line segments have slope in the closed interval[−1, 1]; all
other line segments arey-major (slope is determined by the segment’s endpoints).
We shall specify rasterization only forx-major segments except in cases where the
modifications fory-major segments are not self-evident.

Ideally, the GL uses a “diamond-exit” rule to determine those fragments that
are produced by rasterizing a line segment. For each fragmentf with center at win-
dow coordinatesxf andyf , define a diamond-shaped region that is the intersection
of four half planes:

Rf = { (x, y) | |x− xf |+ |y − yf | < 1/2.}

Essentially, a line segment starting atpa and ending atpb produces those frag-
mentsf for which the segment intersectsRf , except ifpb is contained inRf . See
figure3.4.

To avoid difficulties when an endpoint lies on a boundary ofRf we (in princi-
ple) perturb the supplied endpoints by a tiny amount. Letpa andpb have window
coordinates(xa, ya) and(xb, yb), respectively. Obtain the perturbed endpointsp′a
given by(xa, ya) − (ε, ε2) andp′b given by(xb, yb) − (ε, ε2). Rasterizing the line
segment starting atpa and ending atpb produces those fragmentsf for which the
segment starting atp′a and ending onp′b intersectsRf , except ifp′b is contained in
Rf . ε is chosen to be so small that rasterizing the line segment produces the same
fragments whenδ is substituted forε for any0 < δ ≤ ε.

Whenpa andpb lie on fragment centers, this characterization of fragments
reduces to Bresenham’s algorithm with one modification: lines produced in this
description are “half-open,” meaning that the final fragment (corresponding topb)
is not drawn. This means that when rasterizing a series of connected line segments,
shared endpoints will be produced only once rather than twice (as would occur with
Bresenham’s algorithm).

Because the initial and final conditions of the diamond-exit rule may be difficult
to implement, other line segment rasterization algorithms are allowed, subject to
the following rules:

Version 2.0 - September 7, 2004



3.4. LINE SEGMENTS 103

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	


 
 
 
 


 
 
 
 


 
 
 
 


 
 
 
 

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

    
    
    
    
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

Figure 3.4. Visualization of Bresenham’s algorithm. A portion of a line segment is
shown. A diamond shaped region of height 1 is placed around each fragment center;
those regions that the line segment exits cause rasterization to produce correspond-
ing fragments.

1. The coordinates of a fragment produced by the algorithm may not deviate by
more than one unit in eitherx or y window coordinates from a corresponding
fragment produced by the diamond-exit rule.

2. The total number of fragments produced by the algorithm may differ from
that produced by the diamond-exit rule by no more than one.

3. For anx-major line, no two fragments may be produced that lie in the same
window-coordinate column (for ay-major line, no two fragments may ap-
pear in the same row).

4. If two line segments share a common endpoint, and both segments are either
x-major (both left-to-right or both right-to-left) ory-major (both bottom-to-
top or both top-to-bottom), then rasterizing both segments may not produce
duplicate fragments, nor may any fragments be omitted so as to interrupt
continuity of the connected segments.

Next we must specify how the data associated with each rasterized fragment
are obtained. Let the window coordinates of a produced fragment center be given
by pr = (xd, yd) and letpa = (xa, ya) andpb = (xb, yb). Set

Version 2.0 - September 7, 2004



3.4. LINE SEGMENTS 104

t =
(pr − pa) · (pb − pa)

‖pb − pa‖2
. (3.5)

(Note thatt = 0 at pa andt = 1 at pb.) The value of an associated datumf for
the fragment, whether it be primary or secondary R, G, B, or A (in RGBA mode)
or a color index (in color index mode), the fog coordinate, thes, t, r, or q texture
coordinate, or the clipw coordinate (the depth value, windowz, must be found
using equation3.7, below), is found as

f =
(1− t)fa/wa + tfb/wb

(1− t)/wa + t/wb
(3.6)

wherefa andfb are the data associated with the starting and ending endpoints of
the segment, respectively;wa andwb are the clipw coordinates of the starting
and ending endpoints of the segments, respectively. Note that linear interpolation
would use

f = (1− t)fa + tfb. (3.7)

The reason that this formula is incorrect (except for the depth value) is that it inter-
polates a datum in window space, which may be distorted by perspective. What is
actually desired is to find the corresponding value when interpolated in clip space,
which equation3.6does. A GL implementation may choose to approximate equa-
tion 3.6with 3.7, but this will normally lead to unacceptable distortion effects when
interpolating texture coordinates or clipw coordinates.

3.4.2 Other Line Segment Features

We have just described the rasterization of non-antialiased line segments of width
one using the default line stipple ofFFFF16. We now describe the rasterization
of line segments for general values of the line segment rasterization parameters.

Line Stipple

The command

void LineStipple( int factor, ushort pattern);

defines aline stipple. patternis an unsigned short integer. Theline stippleis taken
from the lowest order 16 bits ofpattern. It determines those fragments that are
to be drawn when the line is rasterized.factor is a count that is used to modify
the effective line stipple by causing each bit inline stippleto be usedfactor times.

Version 2.0 - September 7, 2004



3.4. LINE SEGMENTS 105

factor is clamped to the range[1, 256]. Line stippling may be enabled or disabled
usingEnableor Disablewith the constantLINE STIPPLE. When disabled, it is as
if the line stipple has its default value.

Line stippling masks certain fragments that are produced by rasterization so
that they are not sent to the per-fragment stage of the GL. The masking is achieved
using three parameters: the 16-bit line stipplep, the line repeat countr, and an
integer stipple counters. Let

b = bs/rc mod 16,

Then a fragment is produced if thebth bit of p is 1, and not produced otherwise.
The bits ofp are numbered with0 being the least significant and15 being the
most significant. The initial value ofs is zero;s is incremented after production
of each fragment of a line segment (fragments are produced in order, beginning at
the starting point and working towards the ending point).s is reset to 0 whenever
aBeginoccurs, and before every line segment in a group of independent segments
(as specified whenBegin is invoked withLINES ).

If the line segment has been clipped, then the value ofs at the beginning of the
line segment is indeterminate.

Wide Lines

The actual width of non-antialiased lines is determined by rounding the supplied
width to the nearest integer, then clamping it to the implementation-dependent
maximum non-antialiased line width. This implementation-dependent value must
be no less than the implementation-dependent maximum antialiased line width,
rounded to the nearest integer value, and in any event no less than1. If rounding
the specified width results in the value0, then it is as if the value were1.

Non-antialiased line segments of width other than one are rasterized by off-
setting them in the minor direction (for anx-major line, the minor direction is
y, and for ay-major line, the minor direction isx) and replicating fragments in
the minor direction (see figure3.5). Let w be the width rounded to the nearest
integer (if w = 0, then it is as ifw = 1). If the line segment has endpoints
given by(x0, y0) and(x1, y1) in window coordinates, the segment with endpoints
(x0, y0− (w− 1)/2) and(x1, y1− (w− 1)/2) is rasterized, but instead of a single
fragment, a column of fragments of heightw (a row of fragments of lengthw for
a y-major segment) is produced at eachx (y for y-major) location. The lowest
fragment of this column is the fragment that would be produced by rasterizing the
segment of width 1 with the modified coordinates. The whole column is not pro-
duced if the stipple bit for the column’sx location is zero; otherwise, the whole
column is produced.

Version 2.0 - September 7, 2004



3.4. LINE SEGMENTS 106

width = 2 width = 3

Figure 3.5. Rasterization of non-antialiased wide lines. x-major line segments are
shown. The heavy line segment is the one specified to be rasterized; the light seg-
ment is the offset segment used for rasterization. x marks indicate the fragment
centers produced by rasterization.

Antialiasing

Rasterized antialiased line segments produce fragments whose fragment squares
intersect a rectangle centered on the line segment. Two of the edges are parallel to
the specified line segment; each is at a distance of one-half the current width from
that segment: one above the segment and one below it. The other two edges pass
through the line endpoints and are perpendicular to the direction of the specified
line segment. Coverage values are computed for each fragment by computing the
area of the intersection of the rectangle with the fragment square (see figure3.6;
see also section3.2). Equation3.6is used to compute associated data values just as
with non-antialiased lines; equation3.5 is used to find the value oft for each frag-
ment whose square is intersected by the line segment’s rectangle. Not all widths
need be supported for line segment antialiasing, but width1.0 antialiased segments
must be provided. As with the point width, a GL implementation may be queried
for the range and number of gradations of available antialiased line widths.

For purposes of antialiasing, a stippled line is considered to be a sequence of
contiguous rectangles centered on the line segment. Each rectangle has width equal
to the current line width and length equal to 1 pixel (except the last, which may be
shorter). These rectangles are numbered from0 to n, starting with the rectangle

Version 2.0 - September 7, 2004



3.4. LINE SEGMENTS 107

� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �

Figure 3.6. The region used in rasterizing and finding corresponding coverage val-
ues for an antialiased line segment (an x-major line segment is shown).

incident on the starting endpoint of the segment. Each of these rectangles is ei-
ther eliminated or produced according to the procedure given underLine Stipple,
above, where “fragment” is replaced with “rectangle.” Each rectangle so produced
is rasterized as if it were an antialiased polygon, described below (but culling, non-
default settings ofPolygonMode, and polygon stippling are not applied).

3.4.3 Line Rasterization State

The state required for line rasterization consists of the floating-point line width, a
16-bit line stipple, the line stipple repeat count, a bit indicating whether stippling
is enabled or disabled, and a bit indicating whether line antialiasing is on or off.
In addition, during rasterization, an integer stipple counter must be maintained to
implement line stippling. The initial value of the line width is1.0. The initial value
of the line stipple isFFFF16 (a stipple of all ones). The initial value of the line
stipple repeat count is one. The initial state of line stippling is disabled. The initial
state of line segment antialiasing is disabled.

3.4.4 Line Multisample Rasterization

If MULTISAMPLEis enabled, and the value ofSAMPLEBUFFERSis one, then lines
are rasterized using the following algorithm, regardless of whether line antialiasing
(LINE SMOOTH) is enabled or disabled. Line rasterization produces a fragment for

Version 2.0 - September 7, 2004



3.5. POLYGONS 108

each framebuffer pixel with one or more sample points that intersect the rectangular
region that is described in theAntialiasing portion of section3.4.2 (Other Line
Segment Features). If line stippling is enabled, the rectangular region is subdivided
into adjacent unit-length rectangles, with some rectangles eliminated according to
the procedure given in section3.4.2, where “fragment” is replaced by “rectangle”.

Coverage bits that correspond to sample points that intersect a retained rectan-
gle are 1, other coverage bits are 0. Each color, depth, and set of texture coordinates
is produced by substituting the corresponding sample location into equation3.5,
then using the result to evaluate equation3.7. An implementation may choose to
assign the same color value and the same set of texture coordinates to more than
one sample by evaluating equation3.5 at any location within the pixel including
the fragment center or any one of the sample locations, then substituting into equa-
tion 3.6. The color value and the set of texture coordinates need not be evaluated
at the same location.

Line width range and number of gradations are equivalent to those supported
for antialiased lines.

3.5 Polygons

A polygon results from a polygonBegin/End object, a triangle resulting from a
triangle strip, triangle fan, or series of separate triangles, or a quadrilateral arising
from a quadrilateral strip, series of separate quadrilaterals, or aRect command.
Like points and line segments, polygon rasterization is controlled by several vari-
ables. Polygon antialiasing is controlled withEnable andDisablewith the sym-
bolic constantPOLYGONSMOOTH. The analog to line segment stippling for poly-
gons is polygon stippling, described below.

3.5.1 Basic Polygon Rasterization

The first step of polygon rasterization is to determine if the polygon isback facing
or front facing. This determination is made by examining the sign of the area com-
puted by equation2.6of section2.14.1(including the possible reversal of this sign
as indicated by the last call toFrontFace). If this sign is positive, the polygon is
frontfacing; otherwise, it is back facing. This determination is used in conjunction
with theCullFace enable bit and mode value to decide whether or not a particular
polygon is rasterized. TheCullFacemode is set by calling

void CullFace( enum mode);

modeis a symbolic constant: one ofFRONT, BACKor FRONTANDBACK. Culling
is enabled or disabled withEnable or Disable using the symbolic constant

Version 2.0 - September 7, 2004



3.5. POLYGONS 109

CULL FACE. Front facing polygons are rasterized if either culling is disabled or
theCullFace mode isBACKwhile back facing polygons are rasterized only if ei-
ther culling is disabled or theCullFace mode isFRONT. The initial setting of the
CullFacemode isBACK. Initially, culling is disabled.

The rule for determining which fragments are produced by polygon rasteriza-
tion is calledpoint sampling. The two-dimensional projection obtained by taking
the x andy window coordinates of the polygon’s vertices is formed. Fragment
centers that lie inside of this polygon are produced by rasterization. Special treat-
ment is given to a fragment whose center lies on a polygon boundary edge. In
such a case we require that if two polygons lie on either side of a common edge
(with identical endpoints) on which a fragment center lies, then exactly one of the
polygons results in the production of the fragment during rasterization.

As for the data associated with each fragment produced by rasterizing a poly-
gon, we begin by specifying how these values are produced for fragments in a
triangle. Definebarycentric coordinatesfor a triangle. Barycentric coordinates are
a set of three numbers,a, b, andc, each in the range[0, 1], with a + b + c = 1.
These coordinates uniquely specify any pointp within the triangle or on the trian-
gle’s boundary as

p = apa + bpb + cpc,

wherepa, pb, andpc are the vertices of the triangle.a, b, andc can be found as

a =
A(ppbpc)
A(papbpc)

, b =
A(ppapc)
A(papbpc)

, c =
A(ppapb)
A(papbpc)

,

whereA(lmn) denotes the area in window coordinates of the triangle with vertices
l, m, andn.

Denote a datum atpa, pb, or pc asfa, fb, or fc, respectively. Then the valuef
of a datum at a fragment produced by rasterizing a triangle is given by

f =
afa/wa + bfb/wb + cfc/wc

a/wa + b/wb + c/wc
(3.8)

wherewa, wb andwc are the clipw coordinates ofpa, pb, andpc, respectively.
a, b, andc are the barycentric coordinates of the fragment for which the data are
produced. a, b, andc must correspond precisely to the exact coordinates of the
center of the fragment. Another way of saying this is that the data associated with
a fragment must be sampled at the fragment’s center.

Just as with line segment rasterization, equation3.8may be approximated by

f = afa + bfb + cfc;

Version 2.0 - September 7, 2004



3.5. POLYGONS 110

this may yield acceptable results for color values (itmustbe used for depth val-
ues), but will normally lead to unacceptable distortion effects if used for texture
coordinates or clipw coordinates.

For a polygon with more than three edges, we require only that a convex com-
bination of the values of the datum at the polygon’s vertices can be used to obtain
the value assigned to each fragment produced by the rasterization algorithm. That
is, it must be the case that at every fragment

f =
n∑

i=1

aifi

wheren is the number of vertices in the polygon,fi is the value of thef at vertex
i; for eachi 0 ≤ ai ≤ 1 and

∑n
i=1 ai = 1. The values of theai may differ from

fragment to fragment, but at vertexi, aj = 0, j 6= i andai = 1.
One algorithm that achieves the required behavior is to triangulate a polygon

(without adding any vertices) and then treat each triangle individually as already
discussed. A scan-line rasterizer that linearly interpolates data along each edge
and then linearly interpolates data across each horizontal span from edge to edge
also satisfies the restrictions (in this case, the numerator and denominator of equa-
tion 3.8 should be iterated independently and a division performed for each frag-
ment).

3.5.2 Stippling

Polygon stippling works much the same way as line stippling, masking out certain
fragments produced by rasterization so that they are not sent to the next stage of
the GL. This is the case regardless of the state of polygon antialiasing. Stippling is
controlled with

void PolygonStipple( ubyte *pattern );

patternis a pointer to memory into which a32× 32 pattern is packed. The pattern
is unpacked from memory according to the procedure given in section3.6.4 for
DrawPixels; it is as if theheightandwidthpassed to that command were both equal
to 32, thetypewereBITMAP, and theformat wereCOLORINDEX. The unpacked
values (before any conversion or arithmetic would have been performed) form a
stipple pattern of zeros and ones.

If xw andyw are the window coordinates of a rasterized polygon fragment,
then that fragment is sent to the next stage of the GL if and only if the bit of the
pattern(xw mod 32, yw mod 32) is 1.

Version 2.0 - September 7, 2004



3.5. POLYGONS 111

Polygon stippling may be enabled or disabled withEnable or Disable using
the constantPOLYGONSTIPPLE. When disabled, it is as if the stipple pattern were
all ones.

3.5.3 Antialiasing

Polygon antialiasing rasterizes a polygon by producing a fragment wherever the
interior of the polygon intersects that fragment’s square. A coverage value is com-
puted at each such fragment, and this value is saved to be applied as described
in section3.12. An associated datum is assigned to a fragment by integrating the
datum’s value over the region of the intersection of the fragment square with the
polygon’s interior and dividing this integrated value by the area of the intersection.
For a fragment square lying entirely within the polygon, the value of a datum at the
fragment’s center may be used instead of integrating the value across the fragment.

Polygon stippling operates in the same way whether polygon antialiasing is
enabled or not. The polygon point sampling rule defined in section3.5.1, however,
is not enforced for antialiased polygons.

3.5.4 Options Controlling Polygon Rasterization

The interpretation of polygons for rasterization is controlled using

void PolygonMode( enum face, enum mode);

face is one ofFRONT, BACK, or FRONTANDBACK, indicating that the rasterizing
method described bymodereplaces the rasterizing method for front facing poly-
gons, back facing polygons, or both front and back facing polygons, respectively.
modeis one of the symbolic constantsPOINT, LINE , or FILL . Calling Polygon-
Mode with POINT causes certain vertices of a polygon to be treated, for rasteriza-
tion purposes, just as if they were enclosed within aBegin(POINT) andEnd pair.
The vertices selected for this treatment are those that have been tagged as having a
polygon boundary edge beginning on them (see section2.6.2). LINE causes edges
that are tagged as boundary to be rasterized as line segments. (The line stipple
counter is reset at the beginning of the first rasterized edge of the polygon, but
not for subsequent edges.)FILL is the default mode of polygon rasterization, cor-
responding to the description in sections3.5.1, 3.5.2, and3.5.3. Note that these
modes affect only the final rasterization of polygons: in particular, a polygon’s ver-
tices are lit, and the polygon is clipped and possibly culled before these modes are
applied.

Version 2.0 - September 7, 2004



3.5. POLYGONS 112

Polygon antialiasing applies only to theFILL state ofPolygonMode. For
POINT or LINE , point antialiasing or line segment antialiasing, respectively, ap-
ply.

3.5.5 Depth Offset

The depth values of all fragments generated by the rasterization of a polygon may
be offset by a single value that is computed for that polygon. The function that
determines this value is specified by calling

void PolygonOffset( float factor, float units);

factor scales the maximum depth slope of the polygon, andunits scales an im-
plementation dependent constant that relates to the usable resolution of the depth
buffer. The resulting values are summed to produce the polygon offset value. Both
factorandunitsmay be either positive or negative.

The maximum depth slopem of a triangle is

m =

√(
∂zw

∂xw

)2

+
(

∂zw

∂yw

)2

(3.9)

where(xw, yw, zw) is a point on the triangle.m may be approximated as

m = max
{∣∣∣∣ ∂zw

∂xw

∣∣∣∣ , ∣∣∣∣∂zw

∂yw

∣∣∣∣} . (3.10)

If the polygon has more than three vertices, one or more values ofm may be used
during rasterization. Each may take any value in the range [min,max], wheremin
andmax are the smallest and largest values obtained by evaluating equation3.9or
equation3.10for the triangles formed by all three-vertex combinations.

The minimum resolvable differencer is an implementation constant. It is the
smallest difference in window coordinatez values that is guaranteed to remain
distinct throughout polygon rasterization and in the depth buffer. All pairs of frag-
ments generated by the rasterization of two polygons with otherwise identical ver-
tices, butzw values that differ byr, will have distinct depth values.

The offset valueo for a polygon is

o = m ∗ factor + r ∗ units. (3.11)

m is computed as described above, as a function of depth values in the range [0,1],
ando is applied to depth values in the same range.

Version 2.0 - September 7, 2004



3.5. POLYGONS 113

Boolean state valuesPOLYGONOFFSETPOINT, POLYGONOFFSETLINE , and
POLYGONOFFSETFILL determine whethero is applied during the rasterization
of polygons inPOINT, LINE , andFILL modes. These boolean state values are
enabled and disabled as argument values to the commandsEnableandDisable. If
POLYGONOFFSETPOINT is enabled,o is added to the depth value of each frag-
ment produced by the rasterization of a polygon inPOINT mode. Likewise, if
POLYGONOFFSETLINE or POLYGONOFFSETFILL is enabled,o is added to the
depth value of each fragment produced by the rasterization of a polygon inLINE

or FILL modes, respectively.
Fragment depth values are always limited to the range [0,1], either by clamping

after offset addition is performed (preferred), or by clamping the vertex values used
in the rasterization of the polygon.

3.5.6 Polygon Multisample Rasterization

If MULTISAMPLEis enabled and the value ofSAMPLEBUFFERSis one, then poly-
gons are rasterized using the following algorithm, regardless of whether polygon
antialiasing (POLYGONSMOOTH) is enabled or disabled. Polygon rasterization pro-
duces a fragment for each framebuffer pixel with one or more sample points that
satisfy the point sampling criteria described in section3.5.1, including the special
treatment for sample points that lie on a polygon boundary edge. If a polygon is
culled, based on its orientation and theCullFacemode, then no fragments are pro-
duced during rasterization. Fragments are culled by the polygon stipple just as they
are for aliased and antialiased polygons.

Coverage bits that correspond to sample points that satisfy the point sampling
criteria are 1, other coverage bits are 0. Each color, depth, and set of texture co-
ordinates is produced by substituting the corresponding sample location into the
barycentric equations described in section3.5.1, using the approximation to equa-
tion 3.8 that omitsw components. An implementation may choose to assign the
same color value and the same set of texture coordinates to more than one sample
by barycentric evaluation using any location with the pixel including the fragment
center or one of the sample locations. The color value and the set of texture coor-
dinates need not be evaluated at the same location.

The rasterization described above applies only to theFILL state ofPolygon-
Mode. For POINT andLINE , the rasterizations described in sections3.3.3(Point
Multisample Rasterization) and3.4.4(Line Multisample Rasterization) apply.

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 114

3.5.7 Polygon Rasterization State

The state required for polygon rasterization consists of a polygon stipple pattern,
whether stippling is enabled or disabled, the current state of polygon antialiasing
(enabled or disabled), the current values of thePolygonModesetting for each of
front and back facing polygons, whether point, line, and fill mode polygon offsets
are enabled or disabled, and the factor and bias values of the polygon offset equa-
tion. The initial stipple pattern is all ones; initially stippling is disabled. The initial
setting of polygon antialiasing is disabled. The initial state forPolygonMode is
FILL for both front and back facing polygons. The initial polygon offset factor
and bias values are both 0; initially polygon offset is disabled for all modes.

3.6 Pixel Rectangles

Rectangles of color, depth, and certain other values may be converted to fragments
using theDrawPixels command (described in section3.6.4). Some of the param-
eters and operations governing the operation ofDrawPixels are shared byRead-
Pixels(used to obtain pixel values from the framebuffer) andCopyPixels(used to
copy pixels from one framebuffer location to another); the discussion ofReadPix-
elsandCopyPixels, however, is deferred until chapter4 after the framebuffer has
been discussed in detail. Nevertheless, we note in this section when parameters
and state pertaining toDrawPixelsalso pertain toReadPixelsor CopyPixels.

A number of parameters control the encoding of pixels in client memory (for
reading and writing) and how pixels are processed before being placed in or after
being read from the framebuffer (for reading, writing, and copying). These param-
eters are set with three commands:PixelStore, PixelTransfer, andPixelMap.

3.6.1 Pixel Storage Modes

Pixel storage modes affect the operation ofDrawPixelsandReadPixels(as well as
other commands; see sections3.5.2, 3.7, and3.8) when one of these commands is
issued. This may differ from the time that the command is executed if the command
is placed in a display list (see section5.4). Pixel storage modes are set with

void PixelStore{if}( enum pname, T param);

pnameis a symbolic constant indicating a parameter to be set, andparam is the
value to set it to. Table3.1 summarizes the pixel storage parameters, their types,
their initial values, and their allowable ranges. Setting a parameter to a value out-
side the given range results in the errorINVALID VALUE.

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 115

Parameter Name Type Initial Value Valid Range

UNPACKSWAPBYTES boolean FALSE TRUE/FALSE

UNPACKLSB FIRST boolean FALSE TRUE/FALSE

UNPACKROWLENGTH integer 0 [0,∞)
UNPACKSKIP ROWS integer 0 [0,∞)
UNPACKSKIP PIXELS integer 0 [0,∞)
UNPACKALIGNMENT integer 4 1,2,4,8
UNPACKIMAGEHEIGHT integer 0 [0,∞)
UNPACKSKIP IMAGES integer 0 [0,∞)

Table 3.1:PixelStoreparameters pertaining to one or more ofDrawPixels, Col-
orTable, ColorSubTable, ConvolutionFilter1D , ConvolutionFilter2D , Separa-
bleFilter2D, PolygonStipple, TexImage1D, TexImage2D, TexImage3D, Tex-
SubImage1D, TexSubImage2D, andTexSubImage3D.

The version ofPixelStore that takes a floating-point value may be used to
set any type of parameter; if the parameter is boolean, then it is set toFALSE if
the passed value is0.0 andTRUEotherwise, while if the parameter is an integer,
then the passed value is rounded to the nearest integer. The integer version of
the command may also be used to set any type of parameter; if the parameter is
boolean, then it is set toFALSE if the passed value is0 andTRUEotherwise, while
if the parameter is a floating-point value, then the passed value is converted to
floating-point.

3.6.2 The Imaging Subset

Some pixel transfer and per-fragment operations are only made available in GL
implementations which incorporate the optionalimaging subset. The imaging
subset includes both new commands, and new enumerants allowed as parame-
ters to existing commands. If the subset is supported,all of these calls and enu-
merants must be implemented as described later in the GL specification. If the
subset is not supported, calling any unsupported command generates the error
INVALID OPERATION, and using any of the new enumerants generates the error
INVALID ENUM.

The individual operations available only in the imaging subset are described in
section3.6.3. Imaging subset operations include:

1. Color tables, including all commands and enumerants described in sub-
sectionsColor Table Specification, Alternate Color Table Specification

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 116

Commands, Color Table State and Proxy State, Color Table Lookup,
Post Convolution Color Table Lookup, andPost Color Matrix Color Ta-
ble Lookup, as well as the query commands described in section6.1.7.

2. Convolution, including all commands and enumerants described in sub-
sectionsConvolution Filter Specification, Alternate Convolution Filter
Specification Commands, and Convolution, as well as the query com-
mands described in section6.1.8.

3. Color matrix, including all commands and enumerants described in subsec-
tions Color Matrix Specification andColor Matrix Transformation , as
well as the simple query commands described in section6.1.6.

4. Histogram and minmax, including all commands and enumerants described
in subsectionsHistogram Table Specification, Histogram State and
Proxy State, Histogram, Minmax Table Specification, andMinmax , as
well as the query commands described in section6.1.9and section6.1.10.

The imaging subset is supported only if theEXTENSIONSstring includes the
substring"ARB imaging" . QueryingEXTENSIONSis described in section6.1.11.

If the imaging subset is not supported, the related pixel transfer operations are
not performed; pixels are passed unchanged to the next operation.

3.6.3 Pixel Transfer Modes

Pixel transfer modes affect the operation ofDrawPixels (section3.6.4), ReadPix-
els (section4.3.2), andCopyPixels(section4.3.3) at the time when one of these
commands is executed (which may differ from the time the command is issued).
Some pixel transfer modes are set with

void PixelTransfer{if}( enum param, T value);

paramis a symbolic constant indicating a parameter to be set, andvalueis the value
to set it to. Table3.2 summarizes the pixel transfer parameters that are set with
PixelTransfer, their types, their initial values, and their allowable ranges. Setting
a parameter to a value outside the given range results in the errorINVALID VALUE.
The same versions of the command exist as forPixelStore, and the same rules
apply to accepting and converting passed values to set parameters.

The pixel map lookup tables are set with

void PixelMap{ui us f}v( enum map, sizei size, T values);

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 117

Parameter Name Type Initial Value Valid Range

MAPCOLOR boolean FALSE TRUE/FALSE

MAPSTENCIL boolean FALSE TRUE/FALSE

INDEX SHIFT integer 0 (−∞,∞)
INDEX OFFSET integer 0 (−∞,∞)
x SCALE float 1.0 (−∞,∞)
DEPTHSCALE float 1.0 (−∞,∞)
x BIAS float 0.0 (−∞,∞)
DEPTHBIAS float 0.0 (−∞,∞)
POSTCONVOLUTIONx SCALE float 1.0 (−∞,∞)
POSTCONVOLUTIONx BIAS float 0.0 (−∞,∞)
POSTCOLORMATRIX x SCALE float 1.0 (−∞,∞)
POSTCOLORMATRIX x BIAS float 0.0 (−∞,∞)

Table 3.2:PixelTransfer parameters.x is RED, GREEN, BLUE, or ALPHA.

map is a symbolic map name, indicating the map to set,sizeindicates the size of
the map, andvaluesis a pointer to an array ofsizemap values.

The entries of a table may be specified using one of three types: single-
precision floating-point, unsigned short integer, or unsigned integer, depending on
which of the three versions ofPixelMap is called. A table entry is converted
to the appropriate type when it is specified. An entry giving a color component
value is converted according to table2.9. An entry giving a color index value
is converted from an unsigned short integer or unsigned integer to floating-point.
An entry giving a stencil index is converted from single-precision floating-point
to an integer by rounding to nearest. The various tables and their initial sizes
and entries are summarized in table3.3. A table that takes an index as an ad-
dress must havesize = 2n or the errorINVALID VALUEresults. The maximum
allowablesizeof each table is specified by the implementation dependent value
MAXPIXEL MAPTABLE, but must be at least 32 (a single maximum applies to all
tables). The errorINVALID VALUE is generated if asize larger than the imple-
mented maximum, or less than one, is given toPixelMap.

Color Table Specification

Color lookup tables are specified with

void ColorTable( enum target, enum internalformat,
sizei width, enum format, enum type, void *data );

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 118

Map Name Address Value Init. Size Init. Value

PIXEL MAPI TO I color idx color idx 1 0.0
PIXEL MAPS TO S stencil idx stencil idx 1 0
PIXEL MAPI TO R color idx R 1 0.0
PIXEL MAPI TO G color idx G 1 0.0
PIXEL MAPI TO B color idx B 1 0.0
PIXEL MAPI TO A color idx A 1 0.0
PIXEL MAPR TO R R R 1 0.0
PIXEL MAPG TO G G G 1 0.0
PIXEL MAPB TO B B B 1 0.0
PIXEL MAPA TO A A A 1 0.0

Table 3.3:PixelMap parameters.

target must be one of theregular color table names listed in table3.4 to define
the table. Aproxy table name is a special case discussed later in this section.
width, format, type, anddata specify an image in memory with the same mean-
ing and allowed values as the corresponding arguments toDrawPixels (see sec-
tion 3.6.4), with height taken to be 1. The maximum allowablewidth of a table
is implementation-dependent, but must be at least 32. Theformats COLORINDEX,
DEPTHCOMPONENT, andSTENCIL INDEX and thetypeBITMAP are not allowed.

The specified image is taken from memory and processed just as ifDrawPixels
were called, stopping after the final expansion to RGBA. The R, G, B, and A com-
ponents of each pixel are then scaled by the fourCOLORTABLE SCALEparameters,
biased by the fourCOLORTABLE BIAS parameters, and clamped to[0, 1]. These
parameters are set by callingColorTableParameterfv as described below.

Components are then selected from the resulting R, G, B, and A values to
obtain a table with thebase internal formatspecified by (or derived from)inter-
nalformat, in the same manner as for textures (section3.8.1). internalformatmust
be one of the formats in table3.15or table3.16, other than theDEPTHformats in
those tables.

The color lookup table is redefined to havewidth entries, each with the speci-
fied internal format. The table is formed with indices0 throughwidth − 1. Table
locationi is specified by theith image pixel, counting from zero.

The errorINVALID VALUEis generated ifwidth is not zero or a non-negative
power of two. The errorTABLE TOOLARGEis generated if the specified color
lookup table is too large for the implementation.

The scale and bias parameters for a table are specified by calling

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 119

Table Name Type

COLORTABLE regular
POSTCONVOLUTIONCOLORTABLE

POSTCOLORMATRIX COLORTABLE

PROXYCOLORTABLE proxy
PROXYPOSTCONVOLUTIONCOLORTABLE

PROXYPOSTCOLORMATRIX COLORTABLE

Table 3.4: Color table names. Regular tables have associated image data. Proxy
tables have no image data, and are used only to determine if an image can be loaded
into the corresponding regular table.

void ColorTableParameter{if}v( enum target, enum pname,
T params);

targetmust be a regular color table name.pnameis one ofCOLORTABLE SCALE

or COLORTABLE BIAS . paramspoints to an array of four values: red, green, blue,
and alpha, in that order.

A GL implementation may vary its allocation of internal component resolution
based on anyColorTable parameter, but the allocation must not be a function of
any other factor, and cannot be changed once it is established. Allocations must
be invariant; the same allocation must be made each time a color table is specified
with the same parameter values. These allocation rules also apply to proxy color
tables, which are described later in this section.

Alternate Color Table Specification Commands

Color tables may also be specified using image data taken directly from the frame-
buffer, and portions of existing tables may be respecified.

The command

void CopyColorTable( enum target, enum internalformat,
int x, int y, sizei width );

defines a color table in exactly the manner ofColorTable, except that table data
are taken from the framebuffer, rather than from client memory.targetmust be a
regular color table name.x, y, andwidthcorrespond precisely to the corresponding
arguments ofCopyPixels(refer to section4.3.3); they specify the image’swidth
and the lower left(x, y) coordinates of the framebuffer region to be copied. The

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 120

image is taken from the framebuffer exactly as if these arguments were passed to
CopyPixelswith argumenttypeset toCOLORandheightset to 1, stopping after the
final expansion to RGBA.

Subsequent processing is identical to that described forColorTable, beginning
with scaling byCOLORTABLE SCALE. Parameterstarget, internalformatandwidth
are specified using the same values, with the same meanings, as the equivalent
arguments ofColorTable. format is taken to beRGBA.

Two additional commands,

void ColorSubTable( enum target, sizei start, sizei count,
enum format, enum type, void *data );

void CopyColorSubTable( enum target, sizei start, int x,
int y, sizei count);

respecify only a portion of an existing color table. No change is made to theinter-
nalformator widthparameters of the specified color table, nor is any change made
to table entries outside the specified portion.target must be a regular color table
name.

ColorSubTableargumentsformat, type, anddatamatch the corresponding ar-
guments toColorTable, meaning that they are specified using the same values,
and have the same meanings. Likewise,CopyColorSubTableargumentsx, y, and
countmatch thex, y, andwidtharguments ofCopyColorTable. Both of theColor-
SubTablecommands interpret and process pixel groups in exactly the manner of
their ColorTable counterparts, except that the assignment of R, G, B, and A pixel
group values to the color table components is controlled by theinternalformatof
the table, not by an argument to the command.

Argumentsstartandcountof ColorSubTableandCopyColorSubTablespec-
ify a subregion of the color table starting at indexstart and ending at index
start + count − 1. Counting from zero, thenth pixel group is assigned to the
table entry with indexcount + n. The errorINVALID VALUE is generated if
start + count > width.

Color Table State and Proxy State

The state necessary for color tables can be divided into two categories. For each
of the three tables, there is an array of values. Each array has associated with it
a width, an integer describing the internal format of the table, six integer values
describing the resolutions of each of the red, green, blue, alpha, luminance, and
intensity components of the table, and two groups of four floating-point numbers to
store the table scale and bias. Each initial array is null (zero width, internal format

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 121

RGBA, with zero-sized components). The initial value of the scale parameters is
(1,1,1,1) and the initial value of the bias parameters is (0,0,0,0).

In addition to the color lookup tables, partially instantiated proxy color lookup
tables are maintained. Each proxy table includes width and internal format state
values, as well as state for the red, green, blue, alpha, luminance, and intensity
component resolutions. Proxy tables do not include image data, nor do they in-
clude scale and bias parameters. WhenColorTable is executed withtargetspeci-
fied as one of the proxy color table names listed in table3.4, the proxy state values
of the table are recomputed and updated. If the table is too large, no error is gener-
ated, but the proxy format, width and component resolutions are set to zero. If the
color table would be accommodated byColorTable called with target set to the
corresponding regular table name (COLORTABLE is the regular name correspond-
ing to PROXYCOLORTABLE, for example), the proxy state values are set exactly
as though the regular table were being specified. CallingColorTable with a proxy
targethas no effect on the image or state of any actual color table.

There is no image associated with any of the proxy targets. They cannot be
used as color tables, and they must never be queried usingGetColorTable. The
error INVALID ENUMis generated if this is attempted.

Convolution Filter Specification

A two-dimensional convolution filter image is specified by calling

void ConvolutionFilter2D ( enum target, enum internalformat,
sizei width, sizei height, enum format, enum type,
void *data );

targetmust beCONVOLUTION2D. width, height, format, type, anddataspecify an
image in memory with the same meaning and allowed values as the corresponding
parameters toDrawPixels. The formats COLORINDEX, DEPTHCOMPONENT, and
STENCIL INDEX and thetypeBITMAP are not allowed.

The specified image is extracted from memory and processed just as if
DrawPixels were called, stopping after the final expansion to RGBA. The
R, G, B, and A components of each pixel are then scaled by the four two-
dimensionalCONVOLUTIONFILTER SCALE parameters and biased by the four
two-dimensionalCONVOLUTIONFILTER BIAS parameters. These parameters are
set by callingConvolutionParameterfv as described below. No clamping takes
place at any time during this process.

Components are then selected from the resulting R, G, B, and A values to
obtain a table with thebase internal formatspecified by (or derived from)inter-
nalformat, in the same manner as for textures (section3.8.1). internalformatmust

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 122

be one of the formats in table3.15or table3.16, other than theDEPTHformats in
those tables.

The red, green, blue, alpha, luminance, and/or intensity components of the
pixels are stored in floating point, rather than integer format. They form a two-
dimensional image indexed with coordinatesi, j such thati increases from left to
right, starting at zero, andj increases from bottom to top, also starting at zero.
Image locationi, j is specified by theN th pixel, counting from zero, where

N = i + j ∗ width

The error INVALID VALUE is generated ifwidth or height is greater
than the maximum supported value. These values are queried withGet-
ConvolutionParameteriv, setting target to CONVOLUTION2D and pname to
MAXCONVOLUTIONWIDTHor MAXCONVOLUTIONHEIGHT, respectively.

The scale and bias parameters for a two-dimensional filter are specified by
calling

void ConvolutionParameter{if}v( enum target, enum pname,
T params);

with target CONVOLUTION2D. pnameis one ofCONVOLUTIONFILTER SCALE

or CONVOLUTIONFILTER BIAS . paramspoints to an array of four values: red,
green, blue, and alpha, in that order.

A one-dimensional convolution filter is defined using

void ConvolutionFilter1D ( enum target, enum internalformat,
sizei width, enum format, enum type, void *data );

target must beCONVOLUTION1D. internalformat, width, format, and type have
identical semantics and accept the same values as do their two-dimensional coun-
terparts.datamust point to a one-dimensional image, however.

The image is extracted from memory and processed as ifConvolutionFilter2D
were called with aheight of 1, except that it is scaled and biased by the one-
dimensionalCONVOLUTIONFILTER SCALE and CONVOLUTIONFILTER BIAS

parameters. These parameters are specified exactly as the two-dimensional
parameters, except thatConvolutionParameterfv is called with target
CONVOLUTION1D.

The image is formed with coordinatesi such thati increases from left to right,
starting at zero. Image locationi is specified by theith pixel, counting from zero.

The errorINVALID VALUEis generated ifwidth is greater than the maximum
supported value. This value is queried usingGetConvolutionParameteriv, setting
targetto CONVOLUTION1D andpnameto MAXCONVOLUTIONWIDTH.

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 123

Special facilities are provided for the definition of two-dimensionalsepa-
rable filters – filters whose image can be represented as the product of two
one-dimensional images, rather than as full two-dimensional images. A two-
dimensional separable convolution filter is specified with

void SeparableFilter2D( enum target, enum internalformat,
sizei width, sizei height, enum format, enum type,
void *row, void *column);

target must beSEPARABLE2D. internalformatspecifies the formats of the table
entries of the two one-dimensional images that will be retained.row points to a
widthpixel wide image of the specifiedformatandtype. columnpoints to aheight
pixel high image, also of the specifiedformatandtype.

The two images are extracted from memory and processed as ifConvolu-
tionFilter1D were called separately for each, except that each image is scaled
and biased by the two-dimensional separableCONVOLUTIONFILTER SCALEand
CONVOLUTIONFILTER BIAS parameters. These parameters are specified exactly
as the one-dimensional and two-dimensional parameters, except thatConvolution-
Parameteriv is called withtargetSEPARABLE2D.

Alternate Convolution Filter Specification Commands

One and two-dimensional filters may also be specified using image data taken di-
rectly from the framebuffer.

The command

void CopyConvolutionFilter2D( enum target,
enum internalformat, int x, int y, sizei width,
sizei height);

defines a two-dimensional filter in exactly the manner ofConvolutionFilter2D ,
except that image data are taken from the framebuffer, rather than from client mem-
ory. targetmust beCONVOLUTION2D. x, y, width, andheightcorrespond precisely
to the corresponding arguments ofCopyPixels(refer to section4.3.3); they specify
the image’swidth andheight, and the lower left(x, y) coordinates of the frame-
buffer region to be copied. The image is taken from the framebuffer exactly as
if these arguments were passed toCopyPixelswith argumenttypeset toCOLOR,
stopping after the final expansion to RGBA.

Subsequent processing is identical to that described forConvolutionFilter2D ,
beginning with scaling byCONVOLUTIONFILTER SCALE. Parameterstarget, in-
ternalformat, width, andheightare specified using the same values, with the same

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 124

meanings, as the equivalent arguments ofConvolutionFilter2D . formatis taken to
beRGBA.

The command

void CopyConvolutionFilter1D( enum target,
enum internalformat, int x, int y, sizei width );

defines a one-dimensional filter in exactly the manner ofConvolutionFilter1D ,
except that image data are taken from the framebuffer, rather than from client mem-
ory. targetmust beCONVOLUTION1D. x, y, andwidth correspond precisely to the
corresponding arguments ofCopyPixels(refer to section4.3.3); they specify the
image’swidth and the lower left(x, y) coordinates of the framebuffer region to
be copied. The image is taken from the framebuffer exactly as if these arguments
were passed toCopyPixelswith argumenttypeset toCOLORandheightset to 1,
stopping after the final expansion to RGBA.

Subsequent processing is identical to that described forConvolutionFilter1D ,
beginning with scaling byCONVOLUTIONFILTER SCALE. Parameterstarget, in-
ternalformat, andwidth are specified using the same values, with the same mean-
ings, as the equivalent arguments ofConvolutionFilter2D . format is taken to be
RGBA.

Convolution Filter State

The required state for convolution filters includes a one-dimensional image array,
two one-dimensional image arrays for the separable filter, and a two-dimensional
image array. Each filter has associated with it a width and height (two-dimensional
and separable only), an integer describing the internal format of the filter, and two
groups of four floating-point numbers to store the filter scale and bias.

Each initial convolution filter is null (zero width and height, internal format
RGBA, with zero-sized components). The initial value of all scale parameters is
(1,1,1,1) and the initial value of all bias parameters is (0,0,0,0).

Color Matrix Specification

Setting the matrix mode toCOLORcauses the matrix operations described in sec-
tion 2.11.2to apply to the top matrix on the color matrix stack. All matrix opera-
tions have the same effect on the color matrix as they do on the other matrices.

Histogram Table Specification

The histogram table is specified with

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 125

void Histogram( enum target, sizei width,
enum internalformat, boolean sink);

target must beHISTOGRAMif a histogram table is to be specified.target value
PROXYHISTOGRAMis a special case discussed later in this section.width speci-
fies the number of entries in the histogram table, andinternalformatspecifies the
format of each table entry. The maximum allowablewidth of the histogram table
is implementation-dependent, but must be at least 32.sinkspecifies whether pixel
groups will be consumed by the histogram operation (TRUE) or passed on to the
minmax operation (FALSE).

If no error results from the execution ofHistogram, the specified histogram
table is redefined to havewidth entries, each with the specified internal format.
The entries are indexed 0 throughwidth− 1. Each component in each entry is set
to zero. The values in the previous histogram table, if any, are lost.

The errorINVALID VALUEis generated ifwidth is not zero or a non-negative
power of two. The errorTABLE TOOLARGEis generated if the specified histogram
table is too large for the implementation. The errorINVALID ENUMis generated if
internalformatis not one of the formats in table3.15or table3.16, or is 1, 2, 3, 4,
or any of theDEPTHor INTENSITY formats in those tables.

A GL implementation may vary its allocation of internal component resolution
based on anyHistogram parameter, but the allocation must not be a function of any
other factor, and cannot be changed once it is established. In particular, allocations
must be invariant; the same allocation must be made each time a histogram is
specified with the same parameter values. These allocation rules also apply to the
proxy histogram, which is described later in this section.

Histogram State and Proxy State

The state necessary for histogram operation is an array of values, with which is
associated a width, an integer describing the internal format of the histogram, five
integer values describing the resolutions of each of the red, green, blue, alpha,
and luminance components of the table, and a flag indicating whether or not pixel
groups are consumed by the operation. The initial array is null (zero width, internal
formatRGBA, with zero-sized components). The initial value of the flag is false.

In addition to the histogram table, a partially instantiated proxy histogram table
is maintained. It includes width, internal format, and red, green, blue, alpha, and
luminance component resolutions. The proxy table does not include image data or
the flag. WhenHistogram is executed withtargetset toPROXYHISTOGRAM, the
proxy state values are recomputed and updated. If the histogram array is too large,
no error is generated, but the proxy format, width, and component resolutions are

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 126

set to zero. If the histogram table would be accomodated byHistogram called
with target set toHISTOGRAM, the proxy state values are set exactly as though
the actual histogram table were being specified. CallingHistogram with target
PROXYHISTOGRAMhas no effect on the actual histogram table.

There is no image associated withPROXYHISTOGRAM. It cannot be used as
a histogram, and its image must never queried usingGetHistogram. The error
INVALID ENUMresults if this is attempted.

Minmax Table Specification

The minmax table is specified with

void Minmax ( enum target, enum internalformat,
boolean sink);

target must beMINMAX. internalformatspecifies the format of the table entries.
sink specifies whether pixel groups will be consumed by the minmax operation
(TRUE) or passed on to final conversion (FALSE).

The errorINVALID ENUMis generated ifinternalformatis not one of the for-
mats in table3.15or table3.16, or is 1, 2, 3, 4, or any of theDEPTHor INTENSITY

formats in those tables. The resulting table always has 2 entries, each with values
corresponding only to the components of the internal format.

The state necessary for minmax operation is a table containing two elements
(the first element stores the minimum values, the second stores the maximum val-
ues), an integer describing the internal format of the table, and a flag indicating
whether or not pixel groups are consumed by the operation. The initial state is
a minimum table entry set to the maximum representable value and a maximum
table entry set to the minimum representable value. Internal format is set toRGBA

and the initial value of the flag is false.

3.6.4 Rasterization of Pixel Rectangles

The process of drawing pixels encoded in host memory is diagrammed in fig-
ure3.7. We describe the stages of this process in the order in which they occur.

Pixels are drawn using

void DrawPixels( sizei width, sizei height, enum format,
enum type, void *data );

format is a symbolic constant indicating what the values in memory represent.
width andheightare the width and height, respectively, of the pixel rectangle to

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 127

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

unpack

convert
to float

convert
L to RGB

RGBA, L

Pixel Storage
Operations

byte, short, int, o r float pixel
data stream (index or component)

color
index

post
convolution

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

scale
and bias

Pixel Transfer
Operations

color table 
lookup

convolution 
scale a nd bias

histogram

minmax

color table 
lookup

RGBA to RGBA 
lookup

shift
and offset

index to index 
look up

index to RGBA 
looku p

color table 
lookup

color matrix
scale and bias

post
color matrix

color index pixel
data out

RGBA pixel
data out

clamp
to [0,1]

mask to
(2n − 1)

final
conversion

Figure 3.7. Operation ofDrawPixels. Output is RGBA pixels if the GL is in RGBA
mode, color index pixels otherwise. Operations in dashed boxes may be enabled
or disabled. RGBA and color index pixel paths are shown; depth and stencil pixel
paths are not shown.

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 128

typeParameter Corresponding Special
Token Name GL Data Type Interpretation

UNSIGNEDBYTE ubyte No
BITMAP ubyte Yes
BYTE byte No
UNSIGNEDSHORT ushort No
SHORT short No
UNSIGNEDINT uint No
INT int No
FLOAT float No
UNSIGNEDBYTE 3 3 2 ubyte Yes
UNSIGNEDBYTE 2 3 3 REV ubyte Yes
UNSIGNEDSHORT5 6 5 ushort Yes
UNSIGNEDSHORT5 6 5 REV ushort Yes
UNSIGNEDSHORT4 4 4 4 ushort Yes
UNSIGNEDSHORT4 4 4 4 REV ushort Yes
UNSIGNEDSHORT5 5 5 1 ushort Yes
UNSIGNEDSHORT1 5 5 5 REV ushort Yes
UNSIGNEDINT 8 8 8 8 uint Yes
UNSIGNEDINT 8 8 8 8 REV uint Yes
UNSIGNEDINT 10 10 10 2 uint Yes
UNSIGNEDINT 2 10 10 10 REV uint Yes

Table 3.5:DrawPixelsandReadPixelstypeparameter values and the correspond-
ing GL data types. Refer to table2.2 for definitions of GL data types. Special
interpretations are described near the end of section3.6.4.

be drawn. data is a pointer to the data to be drawn. These data are represented
with one of seven GL data types, specified bytype. The correspondence between
the twentytype token values and the GL data types they indicate is given in ta-
ble 3.5. If the GL is in color index mode andformat is not one ofCOLORINDEX,
STENCIL INDEX, orDEPTHCOMPONENT, then the errorINVALID OPERATIONoc-
curs. If typeis BITMAP andformat is notCOLORINDEX or STENCIL INDEX then
the errorINVALID ENUMoccurs. Some additional constraints on the combinations
of formatandtypevalues that are accepted is discussed below.

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 129

Format Name Element Meaning and OrderTarget Buffer

COLORINDEX Color Index Color
STENCIL INDEX Stencil Index Stencil
DEPTHCOMPONENT Depth Depth
RED R Color
GREEN G Color
BLUE B Color
ALPHA A Color
RGB R, G, B Color
RGBA R, G, B, A Color
BGR B, G, R Color
BGRA B, G, R, A Color
LUMINANCE Luminance Color
LUMINANCEALPHA Luminance, A Color

Table 3.6:DrawPixels andReadPixelsformats. The second column gives a de-
scription of and the number and order of elements in a group. Unless specified as
an index, formats yield components.

Unpacking

Data are taken from host memory as a sequence of signed or unsigned bytes (GL
data typesbyte andubyte ), signed or unsigned short integers (GL data types
short andushort ), signed or unsigned integers (GL data typesint anduint ),
or floating point values (GL data typefloat ). These elements are grouped into
sets of one, two, three, or four values, depending on theformat, to form a group.
Table3.6summarizes the format of groups obtained from memory; it also indicates
those formats that yield indices and those that yield components.

By default the values of each GL data type are interpreted as they would be
specified in the language of the client’s GL binding. IfUNPACKSWAPBYTES is
enabled, however, then the values are interpreted with the bit orderings modified
as per table3.7. The modified bit orderings are defined only if the GL data type
ubyte has eight bits, and then for each specific GL data type only if that type is
represented with 8, 16, or 32 bits.

The groups in memory are treated as being arranged in a rectangle. This
rectangle consists of a series ofrows, with the first element of the first group
of the first row pointed to by the pointer passed toDrawPixels. If the value of
UNPACKROWLENGTHis not positive, then the number of groups in a row iswidth;

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 130

Element Size Default Bit Ordering Modified Bit Ordering
8 bit [7..0] [7..0]
16 bit [15..0] [7..0][15..8]
32 bit [31..0] [7..0][15..8][23..16][31..24]

Table 3.7: Bit ordering modification of elements whenUNPACKSWAPBYTES is
enabled. These reorderings are defined only when GL data typeubyte has 8 bits,
and then only for GL data types with 8, 16, or 32 bits. Bit 0 is the least significant.

otherwise the number of groups isUNPACKROWLENGTH. If p indicates the loca-
tion in memory of the first element of the first row, then the first element of theN th
row is indicated by

p + Nk (3.12)

whereN is the row number (counting from zero) and k is defined as

k =

{
nl s ≥ a,
a/s dsnl/ae s < a

(3.13)

wheren is the number of elements in a group,l is the number of groups in
the row,a is the value ofUNPACKALIGNMENT, ands is the size, in units of GL
ubyte s, of an element. If the number of bits per element is not1, 2, 4, or 8 times
the number of bits in a GLubyte , thenk = nl for all values ofa.

There is a mechanism for selecting a sub-rectangle of groups from a
larger containing rectangle. This mechanism relies on three integer parameters:
UNPACKROWLENGTH, UNPACKSKIP ROWS, andUNPACKSKIP PIXELS . Before
obtaining the first group from memory, the pointer supplied toDrawPixels is effec-
tively advanced by(UNPACKSKIP PIXELS)n+(UNPACKSKIP ROWS)k elements.
Thenwidthgroups are obtained from contiguous elements in memory (without ad-
vancing the pointer), after which the pointer is advanced byk elements.heightsets
of widthgroups of values are obtained this way. See figure3.8.

Calling DrawPixels with a type of UNSIGNEDBYTE 3 3 2,
UNSIGNEDBYTE 2 3 3 REV, UNSIGNEDSHORT5 6 5,
UNSIGNEDSHORT5 6 5 REV, UNSIGNEDSHORT4 4 4 4,
UNSIGNEDSHORT4 4 4 4 REV, UNSIGNEDSHORT5 5 5 1,
UNSIGNEDSHORT1 5 5 5 REV, UNSIGNEDINT 8 8 8 8,
UNSIGNEDINT 8 8 8 8 REV, UNSIGNEDINT 10 10 10 2, or
UNSIGNEDINT 2 10 10 10 REV is a special case in which all the compo-
nents of each group are packed into a single unsigned byte, unsigned short, or

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 131

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

SKIP_ROWS

SKIP_PIXELS

ROW_LENGTH

subimage

Figure 3.8. Selecting a subimage from an image. The indicated parameter names
are prefixed byUNPACKfor DrawPixelsand byPACK for ReadPixels.

unsigned int, depending on the type. The number of components per packed pixel
is fixed by the type, and must match the number of components per group indicated
by theformatparameter, as listed in table3.8. The errorINVALID OPERATIONis
generated if a mismatch occurs. This constraint also holds for all other functions
that accept or return pixel data usingtypeandformatparameters to define the type
and format of that data.

Bitfield locations of the first, second, third, and fourth components of each
packed pixel type are illustrated in tables3.9, 3.10, and3.11. Each bitfield is
interpreted as an unsigned integer value. If the base GL type is supported with
more than the minimum precision (e.g. a 9-bit byte) the packed components are
right-justified in the pixel.

Components are normally packed with the first component in the most signif-
icant bits of the bitfield, and successive component occupying progressively less
significant locations. Types whose token names end withREVreverse the compo-
nent packing order from least to most significant locations. In all cases, the most
significant bit of each component is packed in the most significant bit location of
its location in the bitfield.

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 132

typeParameter GL Data Number of Matching
Token Name Type Components Pixel Formats

UNSIGNEDBYTE 3 3 2 ubyte 3 RGB

UNSIGNEDBYTE 2 3 3 REV ubyte 3 RGB

UNSIGNEDSHORT5 6 5 ushort 3 RGB

UNSIGNEDSHORT5 6 5 REV ushort 3 RGB

UNSIGNEDSHORT4 4 4 4 ushort 4 RGBA,BGRA

UNSIGNEDSHORT4 4 4 4 REV ushort 4 RGBA,BGRA

UNSIGNEDSHORT5 5 5 1 ushort 4 RGBA,BGRA

UNSIGNEDSHORT1 5 5 5 REV ushort 4 RGBA,BGRA

UNSIGNEDINT 8 8 8 8 uint 4 RGBA,BGRA

UNSIGNEDINT 8 8 8 8 REV uint 4 RGBA,BGRA

UNSIGNEDINT 10 10 10 2 uint 4 RGBA,BGRA

UNSIGNEDINT 2 10 10 10 REV uint 4 RGBA,BGRA

Table 3.8: Packed pixel formats.

UNSIGNEDBYTE 3 3 2:

7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNEDBYTE 2 3 3 REV:

7 6 5 4 3 2 1 0

3rd 2nd 1st Component

Table 3.9:UNSIGNEDBYTE formats. Bit numbers are indicated for each compo-
nent.

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 133

UNSIGNEDSHORT5 6 5:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNEDSHORT5 6 5 REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3rd 2nd 1st Component

UNSIGNEDSHORT4 4 4 4:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNEDSHORT4 4 4 4 REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

UNSIGNEDSHORT5 5 5 1:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNEDSHORT1 5 5 5 REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

Table 3.10:UNSIGNEDSHORTformats

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 134

UNSIGNEDINT 8 8 8 8:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNEDINT 8 8 8 8 REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

UNSIGNEDINT 10 10 10 2:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNEDINT 2 10 10 10 REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

Table 3.11:UNSIGNEDINT formats

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 135

Format First Second Third Fourth
Component Component Component Component

RGB red green blue
RGBA red green blue alpha
BGRA blue green red alpha

Table 3.12: Packed pixel field assignments.

The assignment of component to fields in the packed pixel is as described in
table3.12

Byte swapping, if enabled, is performed before the component are extracted
from each pixel. The above discussions of row length and image extraction are
valid for packed pixels, if “group” is substituted for “component” and the number
of components per group is understood to be one.

Calling DrawPixels with a typeof BITMAP is a special case in which the data
are a series of GLubyte values. Eachubyte value specifies 8 1-bit elements
with its 8 least-significant bits. The 8 single-bit elements are ordered from most
significant to least significant if the value ofUNPACKLSB FIRST is FALSE; other-
wise, the ordering is from least significant to most significant. The values of bits
other than the 8 least significant in eachubyte are not significant.

The first element of the first row is the first bit (as defined above) of theubyte
pointed to by the pointer passed toDrawPixels. The first element of the second
row is the first bit (again as defined above) of theubyte at locationp + k, where
k is computed as

k = a

⌈
l

8a

⌉
(3.14)

There is a mechanism for selecting a sub-rectangle of elements from aBITMAP

image as well. Before obtaining the first element from memory, the pointer sup-
plied toDrawPixels is effectively advanced byUNPACKSKIP ROWS∗ k ubyte s.
ThenUNPACKSKIP PIXELS 1-bit elements are ignored, and the subsequentwidth
1-bit elements are obtained, without advancing theubyte pointer, after which the
pointer is advanced byk ubyte s. heightsets ofwidth elements are obtained this
way.

Conversion to floating-point

This step applies only to groups of components. It is not performed on indices.
Each element in a group is converted to a floating-point value according to the ap-

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 136

propriate formula in table2.9(section2.14). For packed pixel types, each element
in the group is converted by computingc / (2N − 1), wherec is the unsigned inte-
ger value of the bitfield containing the element andN is the number of bits in the
bitfield.

Conversion to RGB

This step is applied only if theformatis LUMINANCEor LUMINANCEALPHA. If the
format is LUMINANCE, then each group of one element is converted to a group of
R, G, and B (three) elements by copying the original single element into each of
the three new elements. If theformat is LUMINANCEALPHA, then each group of
two elements is converted to a group of R, G, B, and A (four) elements by copying
the first original element into each of the first three new elements and copying the
second original element to the A (fourth) new element.

Final Expansion to RGBA

This step is performed only for non-depth component groups. Each group is con-
verted to a group of 4 elements as follows: if a group does not contain an A element,
then A is added and set to 1.0. If any of R, G, or B is missing from the group, each
missing element is added and assigned a value of 0.0.

Pixel Transfer Operations

This step is actually a sequence of steps. Because the pixel transfer operations
are performed equivalently during the drawing, copying, and reading of pixels,
and during the specification of texture images (either from memory or from the
framebuffer), they are described separately in section3.6.5. After the processing
described in that section is completed, groups are processed as described in the
following sections.

Final Conversion

For a color index, final conversion consists of masking the bits of the index to the
left of the binary point by2n − 1, wheren is the number of bits in an index buffer.
For RGBA components, each element is clamped to[0, 1]. The resulting values are
converted to fixed-point according to the rules given in section2.14.9(Final Color
Processing).

For a depth component, an element is first clamped to[0, 1] and then converted
to fixed-point as if it were a windowz value (see section2.11.1, Controlling the
Viewport).

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 137

Stencil indices are masked by2n − 1, wheren is the number of bits in the
stencil buffer.

Conversion to Fragments

The conversion of a group to fragments is controlled with

void PixelZoom( float zx, float zy );

Let (xrp, yrp) be the current raster position (section2.13). (If the current raster
position is invalid, thenDrawPixels is ignored; pixel transfer operations do not
update the histogram or minmax tables, and no fragments are generated. However,
the histogram and minmax tables are updated even if the corresponding fragments
are later rejected by the pixel ownership (section4.1.1) or scissor (section4.1.2)
tests.) If a particular group (index or components) is thenth in a row and belongs to
themth row, consider the region in window coordinates bounded by the rectangle
with corners

(xrp + zxn, yrp + zym) and (xrp + zx(n + 1), yrp + zy(m + 1))

(eitherzx or zy may be negative). Any fragments whose centers lie inside of this
rectangle (or on its bottom or left boundaries) are produced in correspondence with
this particular group of elements.

A fragment arising from a group consisting of color data takes on the color
index or color components of the group and the current raster position’s associated
depth value, while a fragment arising from a depth component takes that compo-
nent’s depth value and the current raster position’s associated color index or color
components. In both cases, the fog coordinate is taken from the current raster posi-
tion’s associated raster distance, and texture coordinates are taken from the current
raster position’s associated texture coordinates. Groups arising fromDrawPix-
els with a format of STENCIL INDEX are treated specially and are described in
section4.3.1.

3.6.5 Pixel Transfer Operations

The GL defines four kinds of pixel groups:

1. RGBA component:Each group comprises four color components: red, green,
blue, and alpha.

2. Depth component:Each group comprises a single depth component.

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 138

3. Color index:Each group comprises a single color index.

4. Stencil index:Each group comprises a single stencil index.

Each operation described in this section is applied sequentially to each pixel group
in an image. Many operations are applied only to pixel groups of certain kinds; if
an operation is not applicable to a given group, it is skipped.

Arithmetic on Components

This step applies only to RGBA component and depth component groups. Each
component is multiplied by an appropriate signed scale factor:REDSCALEfor an
R component,GREENSCALEfor a G component,BLUE SCALEfor a B component,
andALPHASCALEfor an A component, orDEPTHSCALEfor a depth component.
Then the result is added to the appropriate signed bias:REDBIAS , GREENBIAS ,
BLUE BIAS , ALPHABIAS , or DEPTHBIAS .

Arithmetic on Indices

This step applies only to color index and stencil index groups. If the index is a
floating-point value, it is converted to fixed-point, with an unspecified number of
bits to the right of the binary point and at leastdlog2(MAXPIXEL MAPTABLE)e
bits to the left of the binary point. Indices that are already integers remain so; any
fraction bits in the resulting fixed-point value are zero.

The fixed-point index is then shifted by|INDEX SHIFT | bits, left if
INDEX SHIFT > 0 and right otherwise. In either case the shift is zero-filled. Then,
the signed integer offsetINDEX OFFSETis added to the index.

RGBA to RGBA Lookup

This step applies only to RGBA component groups, and is skipped ifMAPCOLORis
FALSE. First, each component is clamped to the range[0, 1]. There is a table associ-
ated with each of the R, G, B, and A component elements:PIXEL MAPR TO R for
R, PIXEL MAPG TO G for G, PIXEL MAPB TO B for B, andPIXEL MAPA TO A

for A. Each element is multiplied by an integer one less than the size of the corre-
sponding table, and, for each element, an address is found by rounding this value
to the nearest integer. For each element, the addressed value in the corresponding
table replaces the element.

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 139

Color Index Lookup

This step applies only to color index groups. If the GL command that invokes the
pixel transfer operation requires that RGBA component pixel groups be generated,
then a conversion is performed at this step. RGBA component pixel groups are
required if

1. The groups will be rasterized, and the GL is in RGBA mode, or

2. The groups will be loaded as an image into texture memory, or

3. The groups will be returned to client memory with a format other than
COLORINDEX.

If RGBA component groups are required, then the integer part of the in-
dex is used to reference 4 tables of color components:PIXEL MAPI TO R,
PIXEL MAPI TO G, PIXEL MAPI TO B, andPIXEL MAPI TO A. Each of these
tables must have2n entries for some integer value ofn (n may be different for
each table). For each table, the index is first rounded to the nearest integer; the
result is ANDed with2n − 1, and the resulting value used as an address into the
table. The indexed value becomes an R, G, B, or A value, as appropriate. The
group of four elements so obtained replaces the index, changing the group’s type
to RGBA component.

If RGBA component groups are not required, and ifMAPCOLORis enabled,
then the index is looked up in thePIXEL MAPI TO I table (otherwise, the index
is not looked up). Again, the table must have2n entries for some integern. The
index is first rounded to the nearest integer; the result is ANDed with2n − 1, and
the resulting value used as an address into the table. The value in the table replaces
the index. The floating-point table value is first rounded to a fixed-point value with
unspecified precision. The group’s type remains color index.

Stencil Index Lookup

This step applies only to stencil index groups. IfMAPSTENCIL is enabled, then
the index is looked up in thePIXEL MAPS TO S table (otherwise, the index is not
looked up). The table must have2n entries for some integern. The integer index
is ANDed with2n − 1, and the resulting value used as an address into the table.
The integer value in the table replaces the index.

Color Table Lookup

This step applies only to RGBA component groups. Color table lookup is only
done if COLORTABLE is enabled. If a zero-width table is enabled, no lookup is

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 140

Base Internal Format R G B A

ALPHA At

LUMINANCE Lt Lt Lt

LUMINANCEALPHA Lt Lt Lt At

INTENSITY It It It It

RGB Rt Gt Bt

RGBA Rt Gt Bt At

Table 3.13: Color table lookup.Rt, Gt, Bt, At, Lt, andIt are color table values
that are assigned to pixel componentsR, G, B, andA depending on the table
format. When there is no assignment, the component value is left unchanged by
lookup.

performed.
The internal format of the table determines which components of the group

will be replaced (see table3.13). The components to be replaced are converted
to indices by clamping to[0, 1], multiplying by an integer one less than the width
of the table, and rounding to the nearest integer. Components are replaced by the
table entry at the index.

The required state is one bit indicating whether color table lookup is enabled
or disabled. In the initial state, lookup is disabled.

Convolution

This step applies only to RGBA component groups. IfCONVOLUTION1D

is enabled, the one-dimensional convolution filter is applied only to the one-
dimensional texture images passed toTexImage1D, TexSubImage1D, Copy-
TexImage1D, and CopyTexSubImage1D. If CONVOLUTION2D is enabled, the
two-dimensional convolution filter is applied only to the two-dimensional im-
ages passed toDrawPixels, CopyPixels, ReadPixels, TexImage2D, TexSubIm-
age2D, CopyTexImage2D, CopyTexSubImage2D, andCopyTexSubImage3D.
If SEPARABLE2D is enabled, andCONVOLUTION2D is disabled, the separable
two-dimensional convolution filter is instead applied these images.

The convolution operation is a sum of products of source image pixels and
convolution filter pixels. Source image pixels always have four components: red,
green, blue, and alpha, denoted in the equations below asRs, Gs, Bs, andAs.
Filter pixels may be stored in one of five formats, with 1, 2, 3, or 4 components.
These components are denoted asRf , Gf , Bf , Af , Lf , andIf in the equations
below. The result of the convolution operation is the 4-tuple R,G,B,A. Depending

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 141

Base Filter Format R G B A

ALPHA Rs Gs Bs As ∗Af

LUMINANCE Rs ∗ Lf Gs ∗ Lf Bs ∗ Lf As

LUMINANCEALPHA Rs ∗ Lf Gs ∗ Lf Bs ∗ Lf As ∗Af

INTENSITY Rs ∗ If Gs ∗ If Bs ∗ If As ∗ If

RGB Rs ∗Rf Gs ∗Gf Bs ∗Bf As

RGBA Rs ∗Rf Gs ∗Gf Bs ∗Bf As ∗Af

Table 3.14: Computation of filtered color components depending on filter image
format.C ∗ F indicates the convolution of image componentC with filter F .

on the internal format of the filter, individual color components of each source
image pixel are convolved with one filter component, or are passed unmodified.
The rules for this are defined in table3.14.

The convolution operation is defined differently for each of the three convolu-
tion filters. The variablesWf andHf refer to the dimensions of the convolution
filter. The variablesWs andHs refer to the dimensions of the source pixel image.

The convolution equations are defined as follows, whereC refers to the filtered
result,Cf refers to the one- or two-dimensional convolution filter, andCrow and
Ccolumn refer to the two one-dimensional filters comprising the two-dimensional
separable filter.C ′

s depends on the source image colorCs and the convolution bor-
der mode as described below.Cr, the filtered output image, depends on all of these
variables and is described separately for each border mode. The pixel indexing
nomenclature is decribed in theConvolution Filter Specification subsection of
section3.6.3.

One-dimensional filter:

C[i′] =
Wf−1∑
n=0

C ′
s[i

′ + n] ∗ Cf [n]

Two-dimensional filter:

C[i′, j′] =
Wf−1∑
n=0

Hf−1∑
m=0

C ′
s[i

′ + n, j′ + m] ∗ Cf [n, m]

Two-dimensional separable filter:

C[i′, j′] =
Wf−1∑
n=0

Hf−1∑
m=0

C ′
s[i

′ + n, j′ + m] ∗ Crow[n] ∗ Ccolumn[m]

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 142

If Wf of a one-dimensional filter is zero, thenC[i] is always set to zero. Like-
wise, if eitherWf or Hf of a two-dimensional filter is zero, thenC[i, j] is always
set to zero.

The convolution border mode for a specific convolution filter is specified by
calling

void ConvolutionParameter{if}( enum target, enum pname,
T param);

wheretarget is the name of the filter,pnameis CONVOLUTIONBORDERMODE, and
paramis one ofREDUCE, CONSTANTBORDERor REPLICATE BORDER.

Border Mode REDUCE

The width and height of source images convolved with border modeREDUCEare
reduced byWf − 1 andHf − 1, respectively. If this reduction would generate
a resulting image with zero or negative width and/or height, the output is simply
null, with no error generated. The coordinates of the image that results from a con-
volution with border modeREDUCEare zero throughWs −Wf in width, and zero
throughHs −Hf in height. In cases where errors can result from the specification
of invalid image dimensions, it is these resulting dimensions that are tested, not
the dimensions of the source image. (A specific example isTexImage1DandTex-
Image2D, which specify constraints for image dimensions. Even ifTexImage1D
or TexImage2D is called with a null pixel pointer, the dimensions of the result-
ing texture image are those that would result from the convolution of the specified
image).

When the border mode isREDUCE, C ′
s equals the source image colorCs and

Cr equals the filtered resultC.
For the remaining border modes, defineCw = bWf/2c andCh = bHf/2c.

The coordinates(Cw, Ch) define the center of the convolution filter.

Border Mode CONSTANTBORDER

If the convolution border mode isCONSTANTBORDER, the output image has the
same dimensions as the source image. The result of the convolution is the same
as if the source image were surrounded by pixels with the same color as the
current convolution border color. Whenever the convolution filter extends be-
yond one of the edges of the source image, the constant-color border pixels are
used as input to the filter. The current convolution border color is set by call-
ing ConvolutionParameterfv or ConvolutionParameteriv with pnameset to
CONVOLUTIONBORDERCOLORandparamscontaining four values that comprise

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 143

the RGBA color to be used as the image border. Integer color components are
interpreted linearly such that the most positive integer maps to 1.0, and the most
negative integer maps to -1.0. Floating point color components are not clamped
when they are specified.

For a one-dimensional filter, the result color is defined by

Cr[i] = C[i− Cw]

whereC[i′] is computed using the following equation forC ′
s[i

′]:

C ′
s[i

′] =

{
Cs[i′], 0 ≤ i′ < Ws

Cc, otherwise

andCc is the convolution border color.
For a two-dimensional or two-dimensional separable filter, the result color is

defined by

Cr[i, j] = C[i− Cw, j − Ch]

whereC[i′, j′] is computed using the following equation forC ′
s[i

′, j′]:

C ′
s[i

′, j′] =

{
Cs[i′, j′], 0 ≤ i′ < Ws, 0 ≤ j′ < Hs

Cc, otherwise

Border Mode REPLICATE BORDER

The convolution border modeREPLICATE BORDERalso produces an output im-
age with the same dimensions as the source image. The behavior of this mode is
identical to that of theCONSTANTBORDERmode except for the treatment of pixel
locations where the convolution filter extends beyond the edge of the source im-
age. For these locations, it is as if the outermost one-pixel border of the source
image was replicated. Conceptually, each pixel in the leftmost one-pixel column
of the source image is replicatedCw times to provide additional image data along
the left edge, each pixel in the rightmost one-pixel column is replicatedCw times
to provide additional image data along the right edge, and each pixel value in the
top and bottom one-pixel rows is replicated to createCh rows of image data along
the top and bottom edges. The pixel value at each corner is also replicated in order
to provide data for the convolution operation at each corner of the source image.

For a one-dimensional filter, the result color is defined by

Cr[i] = C[i− Cw]

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 144

whereC[i′] is computed using the following equation forC ′
s[i

′]:

C ′
s[i

′] = Cs[clamp(i′,Ws)]

and the clamping functionclamp(val, max) is defined as

clamp(val, max) =


0, val < 0
val, 0 ≤ val < max
max− 1, val ≥ max

For a two-dimensional or two-dimensional separable filter, the result color is
defined by

Cr[i, j] = C[i− Cw, j − Ch]

whereC[i′, j′] is computed using the following equation forC ′
s[i

′, j′]:

C ′
s[i

′, j′] = Cs[clamp(i′,Ws), clamp(j′,Hs)]

If a convolution operation is performed, each component of
the resulting image is scaled by the correspondingPixelTrans-
fer parameters: POSTCONVOLUTIONREDSCALE for an R com-
ponent, POSTCONVOLUTIONGREENSCALE for a G compo-
nent, POSTCONVOLUTIONBLUE SCALE for a B component, and
POSTCONVOLUTIONALPHASCALE for an A component. The result
is added to the corresponding bias: POSTCONVOLUTIONREDBIAS ,
POSTCONVOLUTIONGREENBIAS , POSTCONVOLUTIONBLUE BIAS , or
POSTCONVOLUTIONALPHABIAS .

The required state is three bits indicating whether each of one-dimensional,
two-dimensional, or separable two-dimensional convolution is enabled or disabled,
an integer describing the current convolution border mode, and four floating-point
values specifying the convolution border color. In the initial state, all convolu-
tion operations are disabled, the border mode isREDUCE, and the border color is
(0, 0, 0, 0).

Post Convolution Color Table Lookup

This step applies only to RGBA component groups. Post convolution color
table lookup is enabled or disabled by callingEnable or Disable with
the symbolic constantPOSTCONVOLUTIONCOLORTABLE. The post convo-
lution table is defined by callingColorTable with a target argument of

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 145

POSTCONVOLUTIONCOLORTABLE. In all other respects, operation is identical
to color table lookup, as defined earlier in section3.6.5.

The required state is one bit indicating whether post convolution table lookup
is enabled or disabled. In the initial state, lookup is disabled.

Color Matrix Transformation

This step applies only to RGBA component groups. The components are
transformed by the color matrix. Each transformed component is multiplied
by an appropriate signed scale factor:POSTCOLORMATRIX REDSCALE

for an R component, POSTCOLORMATRIX GREENSCALE for a G
component, POSTCOLORMATRIX BLUE SCALE for a B component,
and POSTCOLORMATRIX ALPHASCALE for an A component. The
result is added to a signed bias: POSTCOLORMATRIX REDBIAS ,
POSTCOLORMATRIX GREENBIAS , POSTCOLORMATRIX BLUE BIAS , or
POSTCOLORMATRIX ALPHABIAS . The resulting components replace each
component of the original group.

That is, ifMc is the color matrix, a subscript ofs represents the scale term for
a component, and a subscript ofb represents the bias term, then the components

R
G
B
A


are transformed to

R′

G′

B′

A′

 =


Rs 0 0 0
0 Gs 0 0
0 0 Bs 0
0 0 0 As

Mc


R
G
B
A

+


Rb

Gb

Bb

Ab

 .

Post Color Matrix Color Table Lookup

This step applies only to RGBA component groups. Post color matrix
color table lookup is enabled or disabled by callingEnable or Disable
with the symbolic constantPOSTCOLORMATRIX COLORTABLE. The post color
matrix table is defined by callingColorTable with a target argument of
POSTCOLORMATRIX COLORTABLE. In all other respects, operation is identical
to color table lookup, as defined in section3.6.5.

The required state is one bit indicating whether post color matrix lookup is
enabled or disabled. In the initial state, lookup is disabled.

Version 2.0 - September 7, 2004



3.6. PIXEL RECTANGLES 146

Histogram

This step applies only to RGBA component groups. Histogram operation is
enabled or disabled by callingEnable or Disable with the symbolic constant
HISTOGRAM.

If the width of the table is non-zero, then indicesRi, Gi, Bi, andAi are de-
rived from the red, green, blue, and alpha components of each pixel group (without
modifying these components) by clamping each component to[0, 1] , multiplying
by one less than the width of the histogram table, and rounding to the nearest in-
teger. If the format of theHISTOGRAMtable includes red or luminance, the red or
luminance component of histogram entryRi is incremented by one. If the format
of the HISTOGRAMtable includes green, the green component of histogram entry
Gi is incremented by one. The blue and alpha components of histogram entries
Bi andAi are incremented in the same way. If a histogram entry component is
incremented beyond its maximum value, its value becomes undefined; this is not
an error.

If the Histogram sinkparameter isFALSE, histogram operation has no effect
on the stream of pixel groups being processed. Otherwise, all RGBA pixel groups
are discarded immediately after the histogram operation is completed. Because
histogram precedes minmax, no minmax operation is performed. No pixel frag-
ments are generated, no change is made to texture memory contents, and no pixel
values are returned. However, texture object state is modified whether or not pixel
groups are discarded.

Minmax

This step applies only to RGBA component groups. Minmax operation is enabled
or disabled by callingEnableor Disablewith the symbolic constantMINMAX.

If the format of the minmax table includes red or luminance, the red compo-
nent value replaces the red or luminance value in the minimum table element if
and only if it is less than that component. Likewise, if the format includes red or
luminance and the red component of the group is greater than the red or luminance
value in the maximum element, the red group component replaces the red or lumi-
nance maximum component. If the format of the table includes green, the green
group component conditionally replaces the green minimum and/or maximum if
it is smaller or larger, respectively. The blue and alpha group components are
similarly tested and replaced, if the table format includes blue and/or alpha. The
internal type of the minimum and maximum component values is floating point,
with at least the same representable range as a floating point number used to rep-
resent colors (section2.1.1). There are no semantics defined for the treatment of

Version 2.0 - September 7, 2004



3.7. BITMAPS 147

group component values that are outside the representable range.
If the Minmax sink parameter isFALSE, minmax operation has no effect on

the stream of pixel groups being processed. Otherwise, all RGBA pixel groups are
discarded immediately after the minmax operation is completed. No pixel frag-
ments are generated, no change is made to texture memory contents, and no pixel
values are returned. However, texture object state is modified whether or not pixel
groups are discarded.

3.6.6 Pixel Rectangle Multisample Rasterization

If MULTISAMPLEis enabled, and the value ofSAMPLEBUFFERSis one, then pixel
rectangles are rasterized using the following algorithm. Let(Xrp, Yrp) be the cur-
rent raster position. (If the current raster position is invalid, thenDrawPixels is
ignored.) If a particular group (index or components) is thenth in a row and be-
longs to themth row, consider the region in window coordinates bounded by the
rectangle with corners

(Xrp + Zx ∗ n, Yrp + Zy ∗m)

and
(Xrp + Zx ∗ (n + 1), Yrp + Zy ∗ (m + 1))

whereZx andZy are the pixel zoom factors specified byPixelZoom, and may each
be either positive or negative. A fragment representing group(n, m) is produced
for each framebuffer pixel with one or more sample points that lie inside, or on
the bottom or left boundary, of this rectangle. Each fragment so produced takes its
associated data from the group and from the current raster position, in a manner
consistent with the discussion in theConversion to Fragmentssubsection of sec-
tion 3.6.4. All depth and color sample values are assigned the same value, taken
either from their group (for depth and color component groups) or from the cur-
rent raster position (if they are not). All sample values are assigned the same fog
coordinate and the same set of texture coordinates, taken from the current raster
position.

A single pixel rectangle will generate multiple, perhaps very many fragments
for the same framebuffer pixel, depending on the pixel zoom factors.

3.7 Bitmaps

Bitmaps are rectangles of zeros and ones specifying a particular pattern of frag-
ments to be produced. Each of these fragments has the same associated data. These
data are those associated with thecurrent raster position.

Version 2.0 - September 7, 2004



3.7. BITMAPS 148

� � �
� � �
� � �

� � �
� � �
� � �� � �

� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �� � �

� � �
� � �

� � �
� � �
� � �� � �

� � �
� � �

	 	 	
	 	 	
	 	 	


 
 


 
 


 
 


� � �
� � �
� � �� � �

� � �
� � �

  
  
  

� � �
� � �
� � �

� � �
� � �
� � �� � �

� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �� � �

� � �
� � �

� � �
� � �
� � �� � �

� � �
� � �

� � �
� � �
� � �� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � � � � �

� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

   
   
   

! ! !
! ! !
! ! !

" " "
" " "
" " "

# # #
# # #
# # #

$ $ $
$ $ $
$ $ $

% % %
% % %
% % %

& & &
& & &
& & &

' ' '
' ' '
' ' '

h = 12

w = 8

ybo = 1.0

xbo  = 2.5

Figure 3.9. A bitmap and its associated parameters.xbi andybi are not shown.

Bitmaps are sent using

void Bitmap( sizei w, sizei h, float xbo, float ybo,
float xbi, float ybi, ubyte *data );

w andh comprise the integer width and height of the rectangular bitmap, respec-
tively. (xbo, ybo) gives the floating-pointx andy values of the bitmap’s origin.
(xbi, ybi) gives the floating-pointx andy increments that are added to the raster
position after the bitmap is rasterized.data is a pointer to a bitmap.

Like a polygon pattern, a bitmap is unpacked from memory according to the
procedure given in section3.6.4for DrawPixels; it is as if thewidth andheight
passed to that command were equal tow andh, respectively, thetypewereBITMAP,
and theformatwereCOLORINDEX. The unpacked values (before any conversion
or arithmetic would have been performed) form a stipple pattern of zeros and ones.
See figure3.9.

A bitmap sent usingBitmap is rasterized as follows. First, if the current raster
position is invalid (the valid bit is reset), the bitmap is ignored. Otherwise, a rect-
angular array of fragments is constructed, with lower left corner at

(xll, yll) = (bxrp − xboc, byrp − yboc)

Version 2.0 - September 7, 2004



3.8. TEXTURING 149

and upper right corner at(xll+w, yll+h) wherew andh are the width and height of
the bitmap, respectively. Fragments in the array are produced if the corresponding
bit in the bitmap is1 and not produced otherwise. The associated data for each
fragment are those associated with the current raster position. Once the fragments
have been produced, the current raster position is updated:

(xrp, yrp)← (xrp + xbi, yrp + ybi).

Thez andw values of the current raster position remain unchanged.

Bitmap Multisample Rasterization

If MULTISAMPLEis enabled, and the value ofSAMPLEBUFFERSis one, then
bitmaps are rasterized using the following algorithm. If the current raster position
is invalid, the bitmap is ignored. Otherwise, a screen-aligned array of pixel-size
rectangles is constructed, with its lower left corner at(Xrp, Yrp), and its upper
right corner at(Xrp + w, Yrp + h), wherew andh are the width and height of
the bitmap. Rectangles in this array are eliminated if the corresponding bit in the
bitmap is 0, and are retained otherwise. Bitmap rasterization produces a fragment
for each framebuffer pixel with one or more sample points either inside or on the
bottom or left edge of a retained rectangle.

Coverage bits that correspond to sample points either inside or on the bottom
or left edge of a retained rectangle are 1, other coverage bits are 0. The associated
data for each sample are those associated with the current raster position. Once the
fragments have been produced, the current raster position is updated exactly as it
is in the single-sample rasterization case.

3.8 Texturing

Texturing maps a portion of one or more specified images onto each primitive for
which texturing is enabled. This mapping is accomplished by using the color of an
image at the location indicated by a fragment’s(s, t, r, q) coordinates to modify
the fragment’s primary RGBA color. Texturing does not affect the secondary color.

Implementations must support texturing using at least two images at a time.
The fragment carries multiple sets of texture coordinates(s, t, r, q) which are
used to index separate images to produce color values which are collectively used
to modify the fragment’s RGBA color. Texturing is specified only for RGBA mode;
its use in color index mode is undefined. The following subsections (up to and
including section3.8.8) specify the GL operation with a single texture and sec-
tion 3.8.15specifies the details of how multiple texture units interact.

Version 2.0 - September 7, 2004



3.8. TEXTURING 150

The GL provides two ways to specify the details of how texturing of a prim-
itive is effected. The first is referred to as fixed-functionality, and is described in
this section. The second is referred to as a fragment shader, and is described in
section3.11. The specification of the image to be texture mapped and the means
by which the image is filtered when applied to the primitive are common to both
methods and are discussed in this section. The fixed functionality method for de-
termining what RGBA value is produced is also described in this section. If a
fragment shader is active, the method for determining the RGBA value is specified
by an application-supplied fragment shader as described in the OpenGL Shading
Language Specification.

When no fragment shader is active, the coordinates used for texturing are
(s/q, t/q, r/q), derived from the original texture coordinates(s, t, r, q). If the q
texture coordinate is less than or equal to zero, the coordinates used for texturing
are undefined. When a fragment shader is active, the(s, t, r, q) coordinates are
available to the fragment shader. The coordinates used for texturing in a fragment
shader are defined by the OpenGL Shading Language Specification.

3.8.1 Texture Image Specification

The command

void TexImage3D( enum target, int level, int internalformat,
sizei width, sizei height, sizei depth, int border,
enum format, enum type, void *data );

is used to specify a three-dimensional texture image.target must be ei-
ther TEXTURE3D, or PROXYTEXTURE3D in the special case discussed in sec-
tion 3.8.11. format, type, anddatamatch the corresponding arguments toDraw-
Pixels (refer to section3.6.4); they specify the format of the image data, the
type of those data, and a pointer to the image data in host memory. Theformat
STENCIL INDEX is not allowed.

The groups in memory are treated as being arranged in a sequence of ad-
jacent rectangles. Each rectangle is a two-dimensional image, whose size and
organization are specified by thewidth and height parameters toTexImage3D.
The values ofUNPACKROWLENGTHandUNPACKALIGNMENTcontrol the row-to-
row spacing in these images in the same manner asDrawPixels. If the value of
the integer parameterUNPACKIMAGEHEIGHT is not positive, then the number
of rows in each two-dimensional image isheight; otherwise the number of rows
is UNPACKIMAGEHEIGHT. Each two-dimensional image comprises an integral
number of rows, and is exactly adjacent to its neighbor images.

Version 2.0 - September 7, 2004



3.8. TEXTURING 151

The mechanism for selecting a sub-volume of a three-dimensional image re-
lies on the integer parameterUNPACKSKIP IMAGES. If UNPACKSKIP IMAGES

is positive, the pointer is advanced byUNPACKSKIP IMAGEStimes the number of
elements in one two-dimensional image before obtaining the first group from mem-
ory. Thendepthtwo-dimensional images are processed, each having a subimage
extracted in the same manner asDrawPixels.

The selected groups are processed exactly as forDrawPixels, stopping just
before final conversion. Each R, G, B, A, or depth value so generated is clamped
to [0, 1].

Components are then selected from the resulting R, G, B, A, or depth values to
obtain a texture with thebase internal formatspecified by (or derived from)inter-
nalformat. Table3.15summarizes the mapping of R, G, B, A, and depth values to
texture components, as a function of the base internal format of the texture image.
internalformatmay be specified as one of the seven internal format symbolic con-
stants listed in table3.15, as one of thesized internal formatsymbolic constants
listed in table3.16, as one of the specific compressed internal format symbolic con-
stants listed in table3.17, or as one of the six generic compressed internal format
symbolic constants listed in table3.18. internalformatmay (for backwards com-
patibility with the 1.0 version of the GL) also take on the integer values1, 2, 3, and
4, which are equivalent to symbolic constantsLUMINANCE, LUMINANCEALPHA,
RGB, andRGBArespectively. Specifying a value forinternalformatthat is not one
of the above values generates the errorINVALID VALUE.

Textures with a base internal format ofDEPTHCOMPONENTare supported by
texture image specification commands only iftargetis TEXTURE1D, TEXTURE2D,
PROXYTEXTURE1D or PROXYTEXTURE2D. Using this format in conjunction
with any othertargetwill result in anINVALID OPERATIONerror.

Textures with a base internal format ofDEPTHCOMPONENTrequire depth com-
ponent data; textures with other base internal formats require RGBA component
data. The errorINVALID OPERATIONis generated if the base internal format is
DEPTHCOMPONENTandformat is not DEPTHCOMPONENT, or if the base internal
format is notDEPTHCOMPONENTandformat is DEPTHCOMPONENT.

The GL provides no specific compressed internal formats but does provide a
mechanism to obtain token values for such formats provided by extensions. The
number of specific compressed internal formats supported by the renderer can
be obtained by querying the value ofNUMCOMPRESSEDTEXTUREFORMATS. The
set of specific compressed internal formats supported by the renderer can be ob-
tained by querying the value ofCOMPRESSEDTEXTUREFORMATS. The only val-
ues returned by this query are those corresponding to formats suitable for general-
purpose usage. The renderer will not enumerate formats with restrictions that need
to be specifically understood prior to use.

Version 2.0 - September 7, 2004



3.8. TEXTURING 152

Generic compressed internal formats are never used directly as the internal for-
mats of texture images. Ifinternalformat is one of the six generic compressed
internal formats, its value is replaced by the symbolic constant for a specific com-
pressed internal format of the GL’s choosing with the same base internal format.
If no specific compressed format is available,internalformatis instead replaced by
the corresponding base internal format. Ifinternalformatis given as or mapped
to a specific compressed internal format, but the GL can not support images com-
pressed in the chosen internal format for any reason (e.g., the compression format
might not support 3D textures or borders),internalformatis replaced by the corre-
sponding base internal format and the texture image will not be compressed by the
GL.

Theinternal component resolutionis the number of bits allocated to each value
in a texture image. Ifinternalformatis specified as a base internal format, the GL
stores the resulting texture with internal component resolutions of its own choos-
ing. If a sized internal format is specified, the mapping of the R, G, B, A, and
depth values to texture components is equivalent to the mapping of the correspond-
ing base internal format’s components, as specified in table3.15, and the memory
allocation per texture component is assigned by the GL to match the allocations
listed in table3.16as closely as possible. (The definition of closely is left up to the
implementation. However, a non-zero number of bits must be allocated for each
component whosedesiredallocation in table3.16is non-zero, and zero bits must
be allocated for all other components. Implementations are required to support at
least one allocation of internal component resolution for each base internal format.

If a compressed internal format is specified, the mapping of the R, G, B, A, and
depth values to texture components is equivalent to the mapping of the correspond-
ing base internal format’s components, as specified in table3.15. The specified
image is compressed using a (possibly lossy) compression algorithm chosen by the
GL.

A GL implementation may vary its allocation of internal component resolution
or compressed internal format based on anyTexImage3D, TexImage2D(see be-
low), or TexImage1D(see below) parameter (excepttarget), but the allocation and
chosen compressed image format must not be a function of any other state and can-
not be changed once they are established. In addition, the choice of a compressed
image format may not be affected by thedataparameter. Allocations must be in-
variant; the same allocation and compressed image format must be chosen each
time a texture image is specified with the same parameter values. These allocation
rules also apply to proxy textures, which are described in section3.8.11.

The image itself (pointed to bydata) is a sequence of groups of values. The
first group is the lower left back corner of the texture image. Subsequent groups
fill out rows of widthwidth from left to right;heightrows are stacked from bottom

Version 2.0 - September 7, 2004



3.8. TEXTURING 153

Base Internal Format RGBA and Depth Values Internal Components

ALPHA A A

DEPTHCOMPONENT Depth D

LUMINANCE R L

LUMINANCEALPHA R,A L,A
INTENSITY R I

RGB R,G,B R,G,B
RGBA R,G,B,A R,G,B,A

Table 3.15: Conversion from RGBA and depth pixel components to internal tex-
ture, table, or filter components. See section3.8.13for a description of the texture
componentsR, G, B, A, L, I, andD.

to top forming a single two-dimensional image slice; anddepthslices are stacked
from back to front. When the final R, G, B, and A components have been computed
for a group, they are assigned to components of atexelas described by table3.15.
Counting from zero, each resultingN th texel is assigned internal integer coordi-
nates(i, j, k), where

i = (N mod width)− bs

j = (b N

width
c mod height)− bs

k = (b N

width× height
c mod depth)− bs

andbs is the specifiedborderwidth. Thus the last two-dimensional image slice of
the three-dimensional image is indexed with the highest value ofk.

Each color component is converted (by rounding to nearest) to a fixed-point
value withn bits, wheren is the number of bits of storage allocated to that com-
ponent in the image array. We assume that the fixed-point representation used
represents each valuek/(2n − 1), wherek ∈ {0, 1, . . . , 2n − 1}, ask (e.g. 1.0 is
represented in binary as a string of all ones).

Thelevelargument toTexImage3Dis an integerlevel-of-detailnumber. Levels
of detail are discussed below, underMipmapping . The main texture image has a
level of detail number of 0. If a level-of-detail less than zero is specified, the error
INVALID VALUEis generated.

The border argument toTexImage3D is a border width. The significance of
borders is described below. The border width affects the dimensions of the texture
image: let

Version 2.0 - September 7, 2004



3.8. TEXTURING 154

Sized Base R G B A L I D
Internal Format Internal Format bits bits bits bits bits bits bits

ALPHA4 ALPHA 4
ALPHA8 ALPHA 8
ALPHA12 ALPHA 12
ALPHA16 ALPHA 16
DEPTHCOMPONENT16 DEPTHCOMPONENT 16
DEPTHCOMPONENT24 DEPTHCOMPONENT 24
DEPTHCOMPONENT32 DEPTHCOMPONENT 32
LUMINANCE4 LUMINANCE 4
LUMINANCE8 LUMINANCE 8
LUMINANCE12 LUMINANCE 12
LUMINANCE16 LUMINANCE 16
LUMINANCE4ALPHA4 LUMINANCEALPHA 4 4
LUMINANCE6ALPHA2 LUMINANCEALPHA 2 6
LUMINANCE8ALPHA8 LUMINANCEALPHA 8 8
LUMINANCE12ALPHA4 LUMINANCEALPHA 4 12
LUMINANCE12ALPHA12 LUMINANCEALPHA 12 12
LUMINANCE16ALPHA16 LUMINANCEALPHA 16 16
INTENSITY4 INTENSITY 4
INTENSITY8 INTENSITY 8
INTENSITY12 INTENSITY 12
INTENSITY16 INTENSITY 16
R3 G3 B2 RGB 3 3 2
RGB4 RGB 4 4 4
RGB5 RGB 5 5 5
RGB8 RGB 8 8 8
RGB10 RGB 10 10 10
RGB12 RGB 12 12 12
RGB16 RGB 16 16 16
RGBA2 RGBA 2 2 2 2
RGBA4 RGBA 4 4 4 4
RGB5A1 RGBA 5 5 5 1
RGBA8 RGBA 8 8 8 8
RGB10A2 RGBA 10 10 10 2
RGBA12 RGBA 12 12 12 12
RGBA16 RGBA 16 16 16 16

Table 3.16: Correspondence of sized internal formats to base internal formats, and
desiredcomponent resolutions for each sized internal format.

Version 2.0 - September 7, 2004



3.8. TEXTURING 155

Compressed Internal FormatBase Internal Format

(none)

Table 3.17: Specific compressed internal formats. None are defined by OpenGL
1.3; however, several specific compression types are defined in GL extensions.

Generic Compressed Internal FormatBase Internal Format

COMPRESSEDALPHA ALPHA

COMPRESSEDLUMINANCE LUMINANCE

COMPRESSEDLUMINANCEALPHA LUMINANCEALPHA

COMPRESSEDINTENSITY INTENSITY

COMPRESSEDRGB RGB

COMPRESSEDRGBA RGBA

Table 3.18: Generic compressed internal formats.

ws = wt + 2bs (3.15)

hs = ht + 2bs (3.16)

ds = dt + 2bs (3.17)

where ws, hs, andds are the specified imagewidth, depth, anddepth, andwt,
ht, anddt are the dimensions of the texture image internal to the border. Ifwt, ht,
or dt are less than zero, then the errorINVALID VALUEis generated.

An image with zero width, height, or depth indicates the null texture. If
the null texture is specified for the level-of-detail specified by texture parameter
TEXTUREBASELEVEL (see section3.8.4), it is as if texturing were disabled.

Currently, the maximum border widthbt is 1. If bs is less than zero, or greater
thanbt, then the errorINVALID VALUEis generated.

The maximum allowable width, height, or depth of a three-dimensional texture
image is an implementation dependent function of the level-of-detail and internal
format of the resulting image array. It must be at least2k−lod+2bt for image arrays
of level-of-detail0 throughk, wherek is the log base 2 ofMAX3D TEXTURESIZE ,
lod is the level-of-detail of the image array, andbt is the maximum border width.
It may be zero for image arrays of any level-of-detail greater thank. The error

Version 2.0 - September 7, 2004



3.8. TEXTURING 156

INVALID VALUEis generated if the specified image is too large to be stored under
any conditions.

In a similar fashion, the maximum allowable width of a one- or two-
dimensional texture image, and the maximum allowable height of a two-
dimensional texture image, must be at least2k−lod + 2bt for image arrays of level
0 throughk, wherek is the log base 2 ofMAXTEXTURESIZE . The maximum al-
lowable width and height of a cube map texture must be the same, and must be at
least2k−lod + 2bt for image arrays level 0 throughk, wherek is the log base 2 of
MAXCUBEMAPTEXTURESIZE .

An implementation may allow an image array of level 0 to be created only if
that single image array can be supported. Additional constraints on the creation of
image arrays of level 1 or greater are described in more detail in section3.8.10.

The command

void TexImage2D( enum target, int level,
int internalformat, sizei width, sizei height,
int border, enum format, enum type, void *data );

is used to specify a two-dimensional texture image. target must
be one of TEXTURE2D for a two-dimensional texture, or one of
TEXTURECUBEMAPPOSITIVE X, TEXTURECUBEMAPNEGATIVEX,
TEXTURECUBEMAPPOSITIVE Y, TEXTURECUBEMAPNEGATIVEY,
TEXTURECUBEMAPPOSITIVE Z, or TEXTURECUBEMAPNEGATIVEZ for
a cube map texture. Additionally,target may be eitherPROXYTEXTURE2D for
a two-dimensional proxy texture orPROXYTEXTURECUBEMAPfor a cube map
proxy texture in the special case discussed in section3.8.11. The other parameters
match the corresponding parameters ofTexImage3D.

For the purposes of decoding the texture image,TexImage2Dis equivalent to
callingTexImage3Dwith corresponding arguments anddepthof 1, except that

• Thedepthof the image is always 1 regardless of the value ofborder.

• Convolution will be performed on the image (possibly changing itswidth
andheight) if SEPARABLE2D or CONVOLUTION2D is enabled.

• UNPACKSKIP IMAGESis ignored.

A two-dimensional texture consists of a single two-dimensional texture image.
A cube map texture is a set of six two-dimensional texture images. The six cube
map texture targets form a single cube map texture though each target names a
distinct face of the cube map. TheTEXTURECUBEMAP* targets listed above up-
date their appropriate cube map face 2D texture image. Note that the six cube map

Version 2.0 - September 7, 2004



3.8. TEXTURING 157

two-dimensional image tokens such asTEXTURECUBEMAPPOSITIVE X are used
when specifying, updating, or querying one of a cube map’s six two-dimensional
images, but when enabling cube map texturing or binding to a cube map texture
object (that is when the cube map is accessed as a whole as opposed to a particular
two-dimensional image), theTEXTURECUBEMAPtarget is specified.

When thetarget parameter toTexImage2D is one of the six cube map two-
dimensional image targets, the errorINVALID VALUEis generated if thewidthand
heightparameters are not equal.

Finally, the command

void TexImage1D( enum target, int level,
int internalformat, sizei width, int border,
enum format, enum type, void *data );

is used to specify a one-dimensional texture image.target must be either
TEXTURE1D, or PROXYTEXTURE1D in the special case discussed in sec-
tion 3.8.11.)

For the purposes of decoding the texture image,TexImage1Dis equivalent to
callingTexImage2Dwith corresponding arguments andheightof 1, except that

• Theheightof the image is always 1 regardless of the value ofborder.

• Convolution will be performed on the image (possibly changing itswidth)
only if CONVOLUTION1D is enabled.

The image indicated to the GL by the image pointer is decoded and copied into
the GL’s internal memory. This copying effectively places the decoded image in-
side a border of the maximum allowable widthbt whether or not a border has been
specified (see figure3.10) 1. If no border or a border smaller than the maximum
allowable width has been specified, then the image is still stored as if it were sur-
rounded by a border of the maximum possible width. Any excess border (which
surrounds the specified image, including any border) is assigned unspecified val-
ues. A two-dimensional texture has a border only at its left, right, top, and bottom
ends, and a one-dimensional texture has a border only at its left and right ends.

We shall refer to the (possibly border augmented) decoded image as thetexture
array. A three-dimensional texture array has width, height, and depthws, hs, and
ds as defined respectively in equations3.15, 3.16, and3.17. A two-dimensional
texture array has depthds = 1, with heighths and widthws as above, and a one-
dimensional texture array has depthds = 1, heighths = 1, and widthws as above.

1 Figure3.10needs to show a three-dimensional texture image.

Version 2.0 - September 7, 2004



3.8. TEXTURING 158

i−1 0 1 2 3 4 5 6 7 8

u−1.0 9.0

0.0 1.0s

−1

0

2

1

3

4

j

−1.0

5.0

vt

0.0

1.0

α

β

Figure 3.10. A texture image and the coordinates used to access it. This is a two-
dimensional texture withn = 3 andm = 2. A one-dimensional texture would
consist of a single horizontal strip.α andβ, values used in blending adjacent texels
to obtain a texture value, are also shown.

An element(i, j, k) of the texture array is called atexel(for a two-dimensional
texture,k is irrelevant; for a one-dimensional texture,j andk are both irrelevant).
The texture valueused in texturing a fragment is determined by that fragment’s
associated(s, t, r) coordinates, but may not correspond to any actual texel. See
figure3.10.

If the dataargument ofTexImage1D, TexImage2D, or TexImage3Dis a null
pointer (a zero-valued pointer in the C implementation), a one-, two-, or three-
dimensional texture array is created with the specifiedtarget, level, internalformat,
width, height, anddepth, but with unspecified image contents. In this case no pixel
values are accessed in client memory, and no pixel processing is performed. Errors
are generated, however, exactly as though thedatapointer were valid.

Version 2.0 - September 7, 2004



3.8. TEXTURING 159

3.8.2 Alternate Texture Image Specification Commands

Two-dimensional and one-dimensional texture images may also be specified us-
ing image data taken directly from the framebuffer, and rectangular subregions of
existing texture images may be respecified.

The command

void CopyTexImage2D( enum target, int level,
enum internalformat, int x, int y, sizei width,
sizei height, int border);

defines a two-dimensional texture array in exactly the manner ofTexIm-
age2D, except that the image data are taken from the framebuffer rather
than from client memory. Currently,target must be one ofTEXTURE2D,
TEXTURECUBEMAPPOSITIVE X, TEXTURECUBEMAPNEGATIVEX,
TEXTURECUBEMAPPOSITIVE Y, TEXTURECUBEMAPNEGATIVEY,
TEXTURECUBEMAPPOSITIVE Z, or TEXTURECUBEMAPNEGATIVEZ. x, y,
width, andheightcorrespond precisely to the corresponding arguments toCopyP-
ixels (refer to section4.3.3); they specify the image’swidth andheight, and the
lower left (x, y) coordinates of the framebuffer region to be copied. The im-
age is taken from the framebuffer exactly as if these arguments were passed to
CopyPixelswith argumenttypeset toCOLORor DEPTH, depending oninternal-
format, stopping after pixel transfer processing is complete. RGBA data is taken
from the current color buffer while depth component data is taken from the depth
buffer. If depth component data is required and no depth buffer is present, the
error INVALID OPERATIONis generated. Subsequent processing is identical to
that described forTexImage2D, beginning with clamping of the R, G, B, A, or
depth values from the resulting pixel groups. Parameterslevel, internalformat, and
borderare specified using the same values, with the same meanings, as the equiv-
alent arguments ofTexImage2D, except thatinternalformatmay not be specified
as1, 2, 3, or 4. An invalid value specified forinternalformatgenerates the error
INVALID ENUM. The constraints onwidth, height, andborderare exactly those for
the equivalent arguments ofTexImage2D.

When thetarget parameter toCopyTexImage2Dis one of the six cube map
two-dimensional image targets, the errorINVALID VALUEis generated if thewidth
andheightparameters are not equal.

The command

void CopyTexImage1D( enum target, int level,
enum internalformat, int x, int y, sizei width,
int border);

Version 2.0 - September 7, 2004



3.8. TEXTURING 160

defines a one-dimensional texture array in exactly the manner ofTexImage1D,
except that the image data are taken from the framebuffer, rather than from client
memory. Currently,target must beTEXTURE1D. For the purposes of decoding
the texture image,CopyTexImage1Dis equivalent to callingCopyTexImage2D
with corresponding arguments andheightof 1, except that theheightof the image
is always 1, regardless of the value ofborder. level, internalformat, andborder
are specified using the same values, with the same meanings, as the equivalent
arguments ofTexImage1D, except thatinternalformatmay not be specified as1,
2, 3, or 4. The constraints onwidth andborderare exactly those of the equivalent
arguments ofTexImage1D.

Six additional commands,

void TexSubImage3D( enum target, int level, int xoffset,
int yoffset, int zoffset, sizei width, sizei height,
sizei depth, enum format, enum type, void *data );

void TexSubImage2D( enum target, int level, int xoffset,
int yoffset, sizei width, sizei height, enum format,
enum type, void *data );

void TexSubImage1D( enum target, int level, int xoffset,
sizei width, enum format, enum type, void *data );

void CopyTexSubImage3D( enum target, int level,
int xoffset, int yoffset, int zoffset, int x, int y,
sizei width, sizei height);

void CopyTexSubImage2D( enum target, int level,
int xoffset, int yoffset, int x, int y, sizei width,
sizei height);

void CopyTexSubImage1D( enum target, int level,
int xoffset, int x, int y, sizei width );

respecify only a rectangular subregion of an existing texture array. No change
is made to theinternalformat, width, height, depth, or border parameters
of the specified texture array, nor is any change made to texel values out-
side the specified subregion. Currently thetarget arguments ofTexSubIm-
age1Dand CopyTexSubImage1Dmust beTEXTURE1D, the target arguments
of TexSubImage2Dand CopyTexSubImage2Dmust be one ofTEXTURE2D,
TEXTURECUBEMAPPOSITIVE X, TEXTURECUBEMAPNEGATIVEX,
TEXTURECUBEMAPPOSITIVE Y, TEXTURECUBEMAPNEGATIVEY,
TEXTURECUBEMAPPOSITIVE Z, or TEXTURECUBEMAPNEGATIVEZ, and the
target arguments ofTexSubImage3D and CopyTexSubImage3D must be
TEXTURE3D. The levelparameter of each command specifies the level of the tex-

Version 2.0 - September 7, 2004



3.8. TEXTURING 161

ture array that is modified. Iflevel is less than zero or greater than the base 2 log-
arithm of the maximum texture width, height, or depth, the errorINVALID VALUE

is generated.
TexSubImage3Dargumentswidth, height, depth, format, type, anddatamatch

the corresponding arguments toTexImage3D, meaning that they are specified us-
ing the same values, and have the same meanings. Likewise,TexSubImage2D
argumentswidth, height, format, type, anddata match the corresponding argu-
ments toTexImage2D, andTexSubImage1Dargumentswidth, format, type, and
datamatch the corresponding arguments toTexImage1D.

CopyTexSubImage3Dand CopyTexSubImage2Dargumentsx, y, width,
andheightmatch the corresponding arguments toCopyTexImage2D2. CopyTex-
SubImage1Dargumentsx, y, andwidth match the corresponding arguments to
CopyTexImage1D. Each of theTexSubImagecommands interprets and processes
pixel groups in exactly the manner of itsTexImagecounterpart, except that the as-
signment of R, G, B, A, and depth pixel group values to the texture components
is controlled by theinternalformatof the texture array, not by an argument to the
command. The same constraints and errors apply to theTexSubImagecommands’
argumentformat and theinternalformatof the texture array being respecified as
apply to theformatandinternalformatarguments of itsTexImagecounterparts.

Argumentsxoffset, yoffset, and zoffsetof TexSubImage3Dand CopyTex-
SubImage3Dspecify the lower left texel coordinates of awidth-wide by height-
high bydepth-deep rectangular subregion of the texture array. Thedepthargument
associated withCopyTexSubImage3Dis always 1, because framebuffer memory
is two-dimensional - only a portion of a singles, t slice of a three-dimensional
texture is replaced byCopyTexSubImage3D.

Negative values ofxoffset, yoffset, andzoffsetcorrespond to the coordinates
of border texels, addressed as in figure3.10. Takingws, hs, ds, andbs to be the
specified width, height, depth, and border width of the texture array, and takingx,
y, z, w, h, andd to be thexoffset, yoffset, zoffset, width, height, anddepthargument
values, any of the following relationships generates the errorINVALID VALUE:

x < −bs

x + w > ws − bs

y < −bs

y + h > hs − bs

z < −bs

2 Because the framebuffer is inherently two-dimensional, there is noCopyTexImage3Dcom-
mand.

Version 2.0 - September 7, 2004



3.8. TEXTURING 162

z + d > ds − bs

Counting from zero, thenth pixel group is assigned to the texel with internal
integer coordinates[i, j, k], where

i = x + (n mod w)

j = y + (b n
w
c mod h)

k = z + (b n

width ∗ height
c mod d

Argumentsxoffsetandyoffsetof TexSubImage2DandCopyTexSubImage2D
specify the lower left texel coordinates of awidth-wide byheight-high rectangular
subregion of the texture array. Negative values ofxoffsetandyoffsetcorrespond to
the coordinates of border texels, addressed as in figure3.10. Takingws, hs, andbs

to be the specified width, height, and border width of the texture array, and taking
x, y, w, andh to be thexoffset, yoffset, width, andheightargument values, any of
the following relationships generates the errorINVALID VALUE:

x < −bs

x + w > ws − bs

y < −bs

y + h > hs − bs

Counting from zero, thenth pixel group is assigned to the texel with internal
integer coordinates[i, j], where

i = x + (n mod w)

j = y + (b n
w
c mod h)

The xoffsetargument ofTexSubImage1DandCopyTexSubImage1Dspeci-
fies the left texel coordinate of awidth-wide subregion of the texture array. Neg-
ative values ofxoffsetcorrespond to the coordinates of border texels. Takingws

andbs to be the specified width and border width of the texture array, andx and
w to be thexoffsetandwidthargument values, either of the following relationships
generates the errorINVALID VALUE:

x < −bs

x + w > ws − bs

Version 2.0 - September 7, 2004



3.8. TEXTURING 163

Counting from zero, thenth pixel group is assigned to the texel with internal integer
coordinates[i], where

i = x + (n mod w)

Texture images with compressed internal formats may be stored in such a way
that it is not possible to modify an image with subimage commands without having
to decompress and recompress the texture image. Even if the image were modi-
fied in this manner, it may not be possible to preserve the contents of some of
the texels outside the region being modified. To avoid these complications, the
GL does not support arbitrary modifications to texture images with compressed
internal formats. CallingTexSubImage3D, CopyTexSubImage3D, TexSubIm-
age2D, CopyTexSubImage2D, TexSubImage1D, or CopyTexSubImage1Dwill
result in anINVALID OPERATIONerror if xoffset, yoffset, or zoffsetis not equal to
−bs (border width). In addition, the contents of any texel outside the region mod-
ified by such a call are undefined. These restrictions may be relaxed for specific
compressed internal formats whose images are easily modified.

3.8.3 Compressed Texture Images

Texture images may also be specified or modified using image data already stored
in a known compressed image format. The GL currently defines no such formats,
but provides mechanisms for GL extensions that do.

The commands

void CompressedTexImage1D( enum target, int level,
enum internalformat, sizei width, int border,
sizei imageSize, void *data );

void CompressedTexImage2D( enum target, int level,
enum internalformat, sizei width, sizei height,
int border, sizei imageSize, void *data );

void CompressedTexImage3D( enum target, int level,
enum internalformat, sizei width, sizei height,
sizei depth, int border, sizei imageSize, void *data );

define one-, two-, and three-dimensional texture images, respectively, with incom-
ing data stored in a specific compressed image format. Thetarget, level, internal-
format, width, height, depth, andborderparameters have the same meaning as in
TexImage1D, TexImage2D, andTexImage3D. datapoints to compressed image
data stored in the compressed image format corresponding tointernalformat. Since

Version 2.0 - September 7, 2004



3.8. TEXTURING 164

the GL provides no specific image formats, using any of the six generic compressed
internal formats asinternalformatwill result in anINVALID ENUMerror.

For all other compressed internal formats, the compressed image will be de-
coded according to the specification defining theinternalformat token. Com-
pressed texture images are treated as an array ofimageSizeubyte s beginning at
addressdata. All pixel storage and pixel transfer modes are ignored when decoding
a compressed texture image. If theimageSizeparameter is not consistent with the
format, dimensions, and contents of the compressed image, anINVALID VALUE

error results. If the compressed image is not encoded according to the defined
image format, the results of the call are undefined.

Specific compressed internal formats may impose format-specific restrictions
on the use of the compressed image specification calls or parameters. For example,
the compressed image format might be supported only for 2D textures, or might
not allow non-zerobordervalues. Any such restrictions will be documented in the
extension specification defining the compressed internal format; violating these
restrictions will result in anINVALID OPERATIONerror.

Any restrictions imposed by specific compressed internal formats will be
invariant, meaning that if the GL accepts and stores a texture image in
compressed form, providing the same image toCompressedTexImage1D,
CompressedTexImage2D, or CompressedTexImage3Dwill not result in an
INVALID OPERATIONerror if the following restrictions are satisfied:

• datapoints to a compressed texture image returned byGetCompressedTex-
Image (section6.1.4).

• target, level, andinternalformatmatch thetarget, levelandformatparame-
ters provided to theGetCompressedTexImagecall returningdata.

• width, height, depth, border, internalformat, and image-
Size match the values of TEXTUREWIDTH, TEXTUREHEIGHT,
TEXTUREDEPTH, TEXTUREBORDER, TEXTUREINTERNAL FORMAT,
andTEXTURECOMPRESSEDIMAGESIZE for image levellevel in effect at
the time of theGetCompressedTexImagecall returningdata.

This guarantee applies not just to images returned byGetCompressedTexImage,
but also to any other properly encoded compressed texture image of the same size
and format.

The commands

void CompressedTexSubImage1D( enum target, int level,
int xoffset, sizei width, enum format, sizei imageSize,
void *data );

Version 2.0 - September 7, 2004



3.8. TEXTURING 165

void CompressedTexSubImage2D( enum target, int level,
int xoffset, int yoffset, sizei width, sizei height,
enum format, sizei imageSize, void *data );

void CompressedTexSubImage3D( enum target, int level,
int xoffset, int yoffset, int zoffset, sizei width,
sizei height, sizei depth, enum format,
sizei imageSize, void *data );

respecify only a rectangular region of an existing texture array, with incoming data
stored in a known compressed image format. Thetarget, level, xoffset, yoffset, zoff-
set, width, height, anddepthparameters have the same meaning as inTexSubIm-
age1D, TexSubImage2D, andTexSubImage3D. data points to compressed im-
age data stored in the compressed image format corresponding toformat. Since
the core GL provides no specific image formats, using any of these six generic
compressed internal formats asformatwill result in anINVALID ENUMerror.

The image pointed to bydata and theimageSizeparameter are interpreted
as though they were provided toCompressedTexImage1D, CompressedTexIm-
age2D, andCompressedTexImage3D. These commands do not provide for im-
age format conversion, so anINVALID OPERATIONerror results ifformat does
not match the internal format of the texture image being modified. If theimage-
Sizeparameter is not consistent with the format, dimensions, and contents of the
compressed image (too little or too much data), anINVALID VALUEerror results.

As with CompressedTexImagecalls, compressed internal formats may have
additional restrictions on the use of the compressed image specification calls or
parameters. Any such restrictions will be documented in the specification defin-
ing the compressed internal format; violating these restrictions will result in an
INVALID OPERATIONerror.

Any restrictions imposed by specific compressed internal formats will be
invariant, meaning that if the GL accepts and stores a texture image in com-
pressed form, providing the same image toCompressedTexSubImage1D, Com-
pressedTexSubImage2D, CompressedTexSubImage3Dwill not result in an
INVALID OPERATIONerror if the following restrictions are satisfied:

• datapoints to a compressed texture image returned byGetCompressedTex-
Image (section6.1.4).

• target, level, andformatmatch thetarget, levelandformatparameters pro-
vided to theGetCompressedTexImagecall returningdata.

• width, height, depth, format, and imageSize match the val-
ues of TEXTUREWIDTH, TEXTUREHEIGHT, TEXTUREDEPTH,

Version 2.0 - September 7, 2004



3.8. TEXTURING 166

TEXTUREINTERNAL FORMAT, and TEXTURECOMPRESSEDIMAGESIZE

for image levellevel in effect at the time of theGetCompressedTexImage
call returningdata.

• width, height, depth, format match the values ofTEXTUREWIDTH,
TEXTUREHEIGHT, TEXTUREDEPTH, and TEXTUREINTERNAL FORMAT

currently in effect for image levellevel.

• xoffset, yoffset, and zoffset are all −b, where b is the value of
TEXTUREBORDERcurrently in effect for image levellevel.

This guarantee applies not just to images returned byGetCompressedTexIm-
age, but also to any other properly encoded compressed texture image of the same
size.

Calling CompressedTexSubImage3D, CompressedTexSubImage2D, or
CompressedTexSubImage1Dwill result in anINVALID OPERATIONerror if xoff-
set, yoffset, or zoffsetis not equal to−bs (border width), or ifwidth, height,
and depth do not match the values ofTEXTUREWIDTH, TEXTUREHEIGHT, or
TEXTUREDEPTH, respectively. The contents of any texel outside the region modi-
fied by the call are undefined. These restrictions may be relaxed for specific com-
pressed internal formats whose images are easily modified.

3.8.4 Texture Parameters

Various parameters control how the texture array is treated when specified or
changed, and when applied to a fragment. Each parameter is set by calling

void TexParameter{if}( enum target, enum pname, T param);
void TexParameter{if}v( enum target, enum pname,

T params);

target is the target, eitherTEXTURE1D, TEXTURE2D, TEXTURE3D, or
TEXTURECUBEMAP. pnameis a symbolic constant indicating the parameter to
be set; the possible constants and corresponding parameters are summarized in ta-
ble 3.19. In the first form of the command,param is a value to which to set a
single-valued parameter; in the second form of the command,paramsis an array
of parameters whose type depends on the parameter being set. If the values for
TEXTUREBORDERCOLOR, or the value forTEXTUREPRIORITY are specified as
integers, the conversion for signed integers from table2.9 is applied to convert
these values to floating-point, followed by clamping each value to lie in[0, 1].

In the remainder of section3.8, denote by lodmin, lodmax, levelbase,
and levelmax the values of the texture parametersTEXTUREMIN LOD,

Version 2.0 - September 7, 2004



3.8. TEXTURING 167

Name Type Legal Values

TEXTUREWRAPS integer CLAMP, CLAMPTO EDGE, REPEAT,
CLAMPTO BORDER,
MIRROREDREPEAT

TEXTUREWRAPT integer CLAMP, CLAMPTO EDGE, REPEAT,
CLAMPTO BORDER,
MIRROREDREPEAT

TEXTUREWRAPR integer CLAMP, CLAMPTO EDGE, REPEAT,
CLAMPTO BORDER,
MIRROREDREPEAT

TEXTUREMIN FILTER integer NEAREST,
LINEAR,
NEARESTMIPMAPNEAREST,
NEARESTMIPMAPLINEAR,
LINEAR MIPMAPNEAREST,
LINEAR MIPMAPLINEAR,

TEXTUREMAGFILTER integer NEAREST,
LINEAR

TEXTUREBORDERCOLOR 4 floats any 4 values in[0, 1]
TEXTUREPRIORITY float any value in[0, 1]
TEXTUREMIN LOD float any value
TEXTUREMAXLOD float any value
TEXTUREBASELEVEL integer any non-negative integer
TEXTUREMAXLEVEL integer any non-negative integer
TEXTURELODBIAS float any value
DEPTHTEXTUREMODE enum LUMINANCE, INTENSITY , ALPHA

TEXTURECOMPAREMODE enum NONE, COMPARER TO TEXTURE

TEXTURECOMPAREFUNC enum LEQUAL, GEQUAL

LESS, GREATER,
EQUAL, NOTEQUAL,
ALWAYS, NEVER

GENERATEMIPMAP boolean TRUEor FALSE

Table 3.19: Texture parameters and their values.

Version 2.0 - September 7, 2004



3.8. TEXTURING 168

Major Axis Direction Target sc tc ma

+rx TEXTURECUBEMAPPOSITIVE X −rz −ry rx

−rx TEXTURECUBEMAPNEGATIVEX rz −ry rx

+ry TEXTURECUBEMAPPOSITIVE Y rx rz ry

−ry TEXTURECUBEMAPNEGATIVEY rx −rz ry

+rz TEXTURECUBEMAPPOSITIVE Z rx −ry rz

−rz TEXTURECUBEMAPNEGATIVEZ −rx −ry rz

Table 3.20: Selection of cube map images based on major axis direction of texture
coordinates.

TEXTUREMAXLOD, TEXTUREBASELEVEL, and TEXTUREMAXLEVEL respec-
tively.

Texture parameters for a cube map texture apply to the cube map as a whole;
the six distinct two-dimensional texture images use the texture parameters of the
cube map itself.

If the value of texture parameterGENERATEMIPMAPis TRUE, specifying or
changing texture arrays may have side effects, which are discussed in theAuto-
matic Mipmap Generation discussion of section3.8.8.

3.8.5 Depth Component Textures

Depth textures can be treated asLUMINANCE, INTENSITY or ALPHAtextures dur-
ing texture filtering and application. The initial state for depth textures treats them
asLUMINANCEtextures.

3.8.6 Cube Map Texture Selection

When cube map texturing is enabled, the( s t r ) texture coordinates are treated
as a direction vector( rx ry rz ) emanating from the center of a cube (theq
coordinate can be ignored, since it merely scales the vector without affecting the
direction.) At texture application time, the interpolated per-fragment direction vec-
tor selects one of the cube map face’s two-dimensional images based on the largest
magnitude coordinate direction (the major axis direction). If two or more coor-
dinates have the identical magnitude, the implementation may define the rule to
disambiguate this situation. The rule must be deterministic and depend only on
( rx ry rz ). The target column in table3.20explains how the major axis direc-
tion maps to the two-dimensional image of a particular cube map target.

Version 2.0 - September 7, 2004



3.8. TEXTURING 169

Using thesc, tc, andma determined by the major axis direction as specified in
table3.20, an updated( s t ) is calculated as follows:

s =
1
2

(
sc

|ma|
+ 1

)

t =
1
2

(
tc
|ma|

+ 1
)

This new( s t ) is used to find a texture value in the determined face’s two-
dimensional texture image using the rules given in sections3.8.7through3.8.9.

3.8.7 Texture Wrap Modes

Wrap modes defined by the values ofTEXTUREWRAPS, TEXTUREWRAPT, or
TEXTUREWRAPR respectively affect the interpretation ofs, t, andr texture co-
ordinates. The effect of each mode is described below.

Wrap Mode REPEAT

Wrap modeREPEATignores the integer part of texture coordinates, using only the
fractional part. (For a numberf , the fractional part isf − bfc, regardless of the
sign off ; recall that thebc function truncates towards−∞.)

REPEATis the default behavior for all texture coordinates.

Wrap Mode CLAMP

Wrap modeCLAMPclamps texture coordinates to range[0, 1].

Wrap Mode CLAMPTO EDGE

Wrap modeCLAMPTO EDGEclamps texture coordinates at all mipmap levels such
that the texture filter never samples a border texel. The color returned when clamp-
ing is derived only from texels at the edge of the texture image.

Texture coordinates are clamped to the range[min,max]. The minimum value
is defined as

min =
1

2N

whereN is the size of the one-, two-, or three-dimensional texture image in the
direction of clamping. The maximum value is defined as

Version 2.0 - September 7, 2004



3.8. TEXTURING 170

max = 1−min

so that clamping is always symmetric about the[0, 1] mapped range of a texture
coordinate.

Wrap Mode CLAMPTO BORDER

Wrap modeCLAMPTO BORDERclamps texture coordinates at all mipmaps such
that the texture filter always samples border texels for fragments whose correspond-
ing texture coordinate is sufficiently far outside the range[0, 1]. The color returned
when clamping is derived only from the border texels of the texture image, or from
the constant border color if the texture image does not have a border.

Texture coordinates are clamped to the range[min,max]. The minimum value
is defined as

min =
−1
2N

whereN is the size (not including borders) of the one-, two-, or three-dimensional
texture image in the direction of clamping. The maximum value is defined as

max = 1−min

so that clamping is always symmetric about the[0, 1] mapped range of a texture
coordinate.

Wrap Mode MIRROREDREPEAT

Wrap modeMIRROREDREPEATfirst mirrors the texture coordinate, where mirror-
ing a valuef computes

mirror(f) =

{
f − bfc, bfc is even
1− (f − bfc), bfc is odd

The mirrored coordinate is then clamped as described above for wrap mode
CLAMPTO EDGE.

3.8.8 Texture Minification

Applying a texture to a primitive implies a mapping from texture image space to
framebuffer image space. In general, this mapping involves a reconstruction of
the sampled texture image, followed by a homogeneous warping implied by the

Version 2.0 - September 7, 2004



3.8. TEXTURING 171

mapping to framebuffer space, then a filtering, followed finally by a resampling
of the filtered, warped, reconstructed image before applying it to a fragment. In
the GL this mapping is approximated by one of two simple filtering schemes. One
of these schemes is selected based on whether the mapping from texture space to
framebuffer space is deemed tomagnifyor minify the texture image.

Scale Factor and Level of Detail

The choice is governed by a scale factorρ(x, y) and thelevel-of-detailparameter
λ(x, y), defined as

λbase(x, y) = log2[ρ(x, y)] (3.18)

λ′(x, y) = λbase(x, y) + clamp(biastexobj + biastexunit + biasshader) (3.19)

λ =


lodmax, λ′ > lodmax

λ′, lodmin ≤ λ′ ≤ lodmax

lodmin, λ′ < lodmin

undefined, lodmin > lodmax

(3.20)

biastexobj is the value ofTEXTURELODBIAS for the bound texture object (as
described in section3.8.4). biastexunit is the value ofTEXTURELODBIAS for the
current texture unit (as described in section3.8.13). biasshader is the value of
the optional bias parameter in the texture lookup functions available to fragment
shaders. If the texture access is performed in a fragment shader without a provided
bias, or outside a fragment shader, thenbiasshader is zero. The sum of these values
is clamped to the range[−biasmax, biasmax] wherebiasmax is the value of the
implementation defined constantMAXTEXTURELODBIAS .

If λ(x, y) is less than or equal to the constantc (described below in sec-
tion 3.8.9) the texture is said to be magnified; if it is greater, the texture is minified.

The initial values oflodmin and lodmax are chosen so as to never clamp the
normal range ofλ. They may be respecified for a specific texture by callingTex-
Parameter[if] with pname set toTEXTUREMIN LODor TEXTUREMAXLOD re-
spectively.

Let s(x, y) be the function that associates ans texture coordinate with each
set of window coordinates(x, y) that lie within a primitive; definet(x, y) and
r(x, y) analogously. Letu(x, y) = wt × s(x, y), v(x, y) = ht × t(x, y), and
w(x, y) = dt×r(x, y), wherewt, ht, anddt are as defined by equations3.15, 3.16,
and3.17with ws, ws, andds equal to the width, height, and depth of the image

Version 2.0 - September 7, 2004



3.8. TEXTURING 172

array whose level islevelbase. For a one-dimensional texture, definev(x, y) ≡
0 andw(x, y) ≡ 0; for a two-dimensional texture, definew(x, y) ≡ 0. For a
polygon,ρ is given at a fragment with window coordinates(x, y) by

ρ = max


√(

∂u

∂x

)2

+
(

∂v

∂x

)2

+
(

∂w

∂x

)2

,

√(
∂u

∂y

)2

+
(

∂v

∂y

)2

+
(

∂w

∂y

)2


(3.21)
where∂u/∂x indicates the derivative ofu with respect to windowx, and similarly
for the other derivatives.

For a line, the formula is

ρ =

√(
∂u

∂x
∆x +

∂u

∂y
∆y

)2

+
(

∂v

∂x
∆x +

∂v

∂y
∆y

)2

+
(

∂w

∂x
∆x +

∂w

∂y
∆y

)2/
l,

(3.22)
where∆x = x2 − x1 and∆y = y2 − y1 with (x1, y1) and (x2, y2) being the
segment’s window coordinate endpoints andl =

√
∆x2 + ∆y2. For a point, pixel

rectangle, or bitmap,ρ ≡ 1.
While it is generally agreed that equations3.21and3.22give the best results

when texturing, they are often impractical to implement. Therefore, an imple-
mentation may approximate the idealρ with a functionf(x, y) subject to these
conditions:

1. f(x, y) is continuous and monotonically increasing in each of|∂u/∂x|,
|∂u/∂y|, |∂v/∂x|, |∂v/∂y|, |∂w/∂x|, and|∂w/∂y|

2. Let

mu = max
{∣∣∣∣∂u

∂x

∣∣∣∣ , ∣∣∣∣∂u

∂y

∣∣∣∣}

mv = max
{∣∣∣∣∂v

∂x

∣∣∣∣ , ∣∣∣∣∂v

∂y

∣∣∣∣}

mw = max
{∣∣∣∣∂w

∂x

∣∣∣∣ , ∣∣∣∣∂w

∂y

∣∣∣∣} .

Thenmax{mu,mv,mw} ≤ f(x, y) ≤ mu + mv + mw.

Whenλ indicates minification, the value assigned toTEXTUREMIN FILTER

is used to determine how the texture value for a fragment is selected. When

Version 2.0 - September 7, 2004



3.8. TEXTURING 173

TEXTUREMIN FILTER is NEAREST, the texel in the image array of levellevelbase

that is nearest (in Manhattan distance) to that specified by(s, t, r) is obtained. This
means the texel at location(i, j, k) becomes the texture value, withi given by

i =

{
buc, s < 1
wt − 1, s = 1

(3.23)

(Recall that ifTEXTUREWRAPS is REPEAT, then0 ≤ s < 1.) Similarly, j is found
as

j =

{
bvc, t < 1
ht − 1, t = 1

(3.24)

andk is found as

k =

{
bwc, r < 1
dt − 1, r = 1

(3.25)

For a one-dimensional texture,j andk are irrelevant; the texel at locationi be-
comes the texture value. For a two-dimensional texture,k is irrelevant; the texel at
location(i, j) becomes the texture value.

When TEXTUREMIN FILTER is LINEAR, a 2 × 2 × 2 cube of texels in the
image array of levellevelbase is selected. This cube is obtained by first wrapping
texture coordinates as described in section3.8.7, then computing

i0 =

{
bu− 1/2c mod wt, TEXTUREWRAPS is REPEAT

bu− 1/2c, otherwise

j0 =

{
bv − 1/2c mod ht, TEXTUREWRAPT is REPEAT

bv − 1/2c, otherwise

and

k0 =

{
bw − 1/2c mod dt, TEXTUREWRAPR is REPEAT

bw − 1/2c, otherwise

Then

i1 =

{
(i0 + 1) mod wt, TEXTUREWRAPS is REPEAT

i0 + 1, otherwise

j1 =

{
(j0 + 1) mod ht, TEXTUREWRAPT is REPEAT

j0 + 1, otherwise

Version 2.0 - September 7, 2004



3.8. TEXTURING 174

and

k1 =

{
(k0 + 1) mod dt, TEXTUREWRAPR is REPEAT

k0 + 1, otherwise

Let
α = frac(u− 1/2)

β = frac(v − 1/2)

γ = frac(w − 1/2)

wherefrac(x) denotes the fractional part ofx.
For a three-dimensional texture, the texture valueτ is found as

τ = (1− α)(1− β)(1− γ)τi0j0k0 + α(1− β)(1− γ)τi1j0k0

+ (1− α)β(1− γ)τi0j1k0 + αβ(1− γ)τi1j1k0

+ (1− α)(1− β)γτi0j0k1 + α(1− β)γτi1j0k1

+ (1− α)βγτi0j1k1 + αβγτi1j1k1

whereτijk is the texel at location(i, j, k) in the three-dimensional texture image.
For a two-dimensional texture,

τ = (1− α)(1− β)τi0j0 + α(1− β)τi1j0 + (1− α)βτi0j1 + αβτi1j1 (3.26)

whereτij is the texel at location(i, j) in the two-dimensional texture image.
And for a one-dimensional texture,

τ = (1− α)τi0 + ατi1

whereτi is the texel at locationi in the one-dimensional texture.
If any of the selectedτijk, τij , or τi in the above equations refer to a border

texel withi < −bs, j < −bs, k < −bs, i ≥ ws − bs, j ≥ hs − bs, or j ≥ ds − bs,
then the border values defined byTEXTUREBORDERCOLORare used instead of the
unspecified value or values. If the texture contains color components, the values of
TEXTUREBORDERCOLORare interpreted as an RGBA color to match the texture’s
internal format in a manner consistent with table3.15. If the texture contains depth
components, the first component ofTEXTUREBORDERCOLORis interpreted as a
depth value.

Version 2.0 - September 7, 2004



3.8. TEXTURING 175

Mipmapping

TEXTUREMIN FILTER values NEARESTMIPMAPNEAREST,
NEARESTMIPMAPLINEAR, LINEAR MIPMAPNEAREST,
and LINEAR MIPMAPLINEAR each require the use of amipmap. A mipmap is
an ordered set of arrays representing the same image; each array has a resolution
lower than the previous one. If the image array of levellevelbase, excluding its
border, has dimensionswb × hb × db, then there areblog2(max(wb, hb, db))c + 1
image arrays in the mipmap. Numbering the levels such that levellevelbase is the
0th level, theith array has dimensions

max(1, bwb

2i
c)×max(1, bhb

2i
c)×max(1, bdb

2i
c)

until the last array is reached with dimension1× 1× 1.
Each array in a mipmap is defined usingTexImage3D, TexImage2D, Copy-

TexImage2D, TexImage1D, orCopyTexImage1D; the array being set is indicated
with the level-of-detail argumentlevel. Level-of-detail numbers proceed from
levelbase for the original texture array throughp = blog2(max(wb, hb, db))c +
levelbase with each unit increase indicating an array of half the dimensions of the
previous one (rounded down to the next integer if fractional) as already described.
All arrays fromlevelbase throughq = min{p, levelmax} must be defined, as dis-
cussed in section3.8.10.

The values oflevelbase and levelmax may be respecified for a specific tex-
ture by callingTexParameter[if] with pname set toTEXTUREBASELEVEL or
TEXTUREMAXLEVEL respectively.

The errorINVALID VALUEis generated if either value is negative.
The mipmap is used in conjunction with the level of detail to approximate the

application of an appropriately filtered texture to a fragment. Letc be the value
of λ at which the transition from minification to magnification occurs (since this
discussion pertains to minification, we are concerned only with values ofλ where
λ > c).

For mipmap filters NEARESTMIPMAPNEAREST and
LINEAR MIPMAPNEAREST, thedth mipmap array is selected, where

d =


levelbase, λ ≤ 1

2
dlevelbase + λ + 1

2e − 1, λ > 1
2 , levelbase + λ ≤ q + 1

2
q, λ > 1

2 , levelbase + λ > q + 1
2

(3.27)

The rules forNEARESTor LINEAR filtering are then applied to the selected
array.

Version 2.0 - September 7, 2004



3.8. TEXTURING 176

For mipmap filtersNEARESTMIPMAPLINEAR andLINEAR MIPMAPLINEAR,
the leveld1 andd2 mipmap arrays are selected, where

d1 =

{
q, levelbase + λ ≥ q
blevelbase + λc, otherwise

(3.28)

d2 =

{
q, levelbase + λ ≥ q
d1 + 1, otherwise

(3.29)

The rules forNEARESTor LINEAR filtering are then applied to each of the
selected arrays, yielding two corresponding texture valuesτ1 and τ2. The final
texture value is then found as

τ = [1− frac(λ)]τ1 + frac(λ)τ2.

Automatic Mipmap Generation

If the value of texture parameterGENERATEMIPMAPis TRUE, making any change
to the interior or border texels of thelevelbase array of a mipmap will also compute
a complete set of mipmap arrays (as defined in section3.8.10) derived from the
modified levelbase array. Array levelslevelbase + 1 throughp are replaced with
the derived arrays, regardless of their previous contents. All other mipmap arrays,
including thelevelbase array, are left unchanged by this computation.

The internal formats and border widths of the derived mipmap arrays all match
those of thelevelbase array, and the dimensions of the derived arrays follow the
requirements described in section3.8.10.

The contents of the derived arrays are computed by repeated, filtered reduction
of thelevelbase array. No particular filter algorithm is required, though a box filter
is recommended as the default filter. In some implementations, filter quality may
be affected by hints (section5.6).

Automatic mipmap generation is available only for non-proxy texture image
targets.

3.8.9 Texture Magnification

When λ indicates magnification, the value assigned toTEXTUREMAGFILTER

determines how the texture value is obtained. There are two possible values
for TEXTUREMAGFILTER : NEARESTandLINEAR. NEARESTbehaves exactly as
NEARESTfor TEXTUREMIN FILTER (equations3.23, 3.24, and3.25 are used);
LINEAR behaves exactly asLINEAR for TEXTUREMIN FILTER (equation3.26is
used). The level-of-detaillevelbase texture array is always used for magnification.

Version 2.0 - September 7, 2004



3.8. TEXTURING 177

Finally, there is the choice ofc, the minification vs. magnification switch-
over point. If the magnification filter is given byLINEAR and the minification
filter is given byNEARESTMIPMAPNEARESTor NEARESTMIPMAPLINEAR, then
c = 0.5. This is done to ensure that a minified texture does not appear “sharper”
than a magnified texture. Otherwisec = 0.

3.8.10 Texture Completeness

A texture is said to be complete if all the image arrays and texture parameters
required to utilize the texture for texture application is consistently defined. The
definition of completeness varies depending on the texture dimensionality.

For one-, two-, or three-dimensional textures, a texture iscompleteif the fol-
lowing conditions all hold true:

• The set of mipmap arrayslevelbase throughq (whereq is defined in the
Mipmapping discussion of section3.8.8) were each specified with the same
internal format.

• The border widths of each array are the same.

• The dimensions of the arrays follow the sequence described in theMipmap-
ping discussion of section3.8.8.

• levelbase ≤ levelmax

• Each dimension of thelevelbase array is positive.

Array levelsk wherek < levelbase or k > q are insignificant to the definition of
completeness.

For cube map textures, a texture iscube completeif the following conditions
all hold true:

• The levelbase arrays of each of the six texture images making up the cube
map have identical, positive, and square dimensions.

• Thelevelbase arrays were each specified with the same internal format.

• Thelevelbase arrays each have the same border width.

Finally, a cube map texture ismipmap cube completeif, in addition to being
cube complete, each of the six texture images considered individually is complete.

Version 2.0 - September 7, 2004



3.8. TEXTURING 178

Effects of Completeness on Texture Application

If one-, two-, or three-dimensional texturing (but not cube map textur-
ing) is enabled for a texture unit at the time a primitive is rasterized, if
TEXTUREMIN FILTER is one that requires a mipmap, and if the texture image
bound to the enabled texture target is not complete, then it is as if texture mapping
were disabled for that texture unit.

If cube map texturing is enabled for a texture unit at the time a primitive
is rasterized, and if the bound cube map texture is not cube complete, then it
is as if texture mapping were disabled for that texture unit. Additionally, if
TEXTUREMIN FILTER is one that requires a mipmap, and if the texture is not
mipmap cube complete, then it is as if texture mapping were disabled for that tex-
ture unit.

Effects of Completeness on Texture Image Specification

An implementation may allow a texture image array of level 1 or greater to be cre-
ated only if amipmap completeset of image arrays consistent with the requested
array can be supported. A mipmap complete set of arrays is equivalent to a com-
plete set of arrays wherelevelbase = 0 andlevelmax = 1000, and where, excluding
borders, the dimensions of the image array being created are understood to be half
the corresponding dimensions of the next lower numbered array (rounded down
to the next integer if fractional).

3.8.11 Texture State and Proxy State

The state necessary for texture can be divided into two categories. First, there are
the nine sets of mipmap arrays (one each for the one-, two-, and three-dimensional
texture targets and six for the cube map texture targets) and their number. Each
array has associated with it a width, height (two- and three-dimensional and cube
map only), and depth (three-dimensional only), a border width, an integer de-
scribing the internal format of the image, six integer values describing the res-
olutions of each of the red, green, blue, alpha, luminance, and intensity com-
ponents of the image, a boolean describing whether the image is compressed or
not, and an integer size of a compressed image. Each initial texture array is
null (zero width, height, and depth, zero border width, internal format1, with
the compressed flag set toFALSE, a zero compressed size, and zero-sized com-
ponents). Next, there are the two sets of texture properties; each consists of
the selected minification and magnification filters, the wrap modes fors, t (two-
and three-dimensional and cube map only), andr (three-dimensional only), the
TEXTUREBORDERCOLOR, two integers describing the minimum and maximum

Version 2.0 - September 7, 2004



3.8. TEXTURING 179

level of detail, two integers describing the base and maximum mipmap array,
a boolean flag indicating whether the texture is resident, a boolean indicating
whether automatic mipmap generation should be performed, three integers de-
scribing the depth texture mode, compare mode, and compare function, and the
priority associated with each set of properties. The value of the resident flag is
determined by the GL and may change as a result of other GL operations. The flag
may only be queried, not set, by applications (see section3.8.12). In the initial
state, the value assigned toTEXTUREMIN FILTER is NEARESTMIPMAPLINEAR,
and the value forTEXTUREMAGFILTER is LINEAR. s, t, and r wrap modes
are all set toREPEAT. The values ofTEXTUREMIN LODandTEXTUREMAXLOD

are -1000 and 1000 respectively. The values ofTEXTUREBASELEVEL and
TEXTUREMAXLEVEL are 0 and 1000 respectively.TEXTUREPRIORITY is 1.0,
and TEXTUREBORDERCOLORis (0,0,0,0). The value ofGENERATEMIPMAP

is false. The values ofDEPTHTEXTUREMODE, TEXTURECOMPAREMODE, and
TEXTURECOMPAREFUNCareLUMINANCE, NONE, andLEQUALrespectively. The
initial value ofTEXTURERESIDENTis determined by the GL.

In addition to the one-, two-, and three-dimensional and the six cube map sets
of image arrays, the partially instantiated one-, two-, and three-dimensional and
one cube map set of proxy image arrays are maintained. Each proxy array includes
width, height (two- and three-dimensional arrays only), depth (three-dimensional
arrays only), border width, and internal format state values, as well as state for
the red, green, blue, alpha, luminance, and intensity component resolutions. Proxy
arrays do not include image data, nor do they include texture properties. When
TexImage3D is executed withtargetspecified asPROXYTEXTURE3D, the three-
dimensional proxy state values of the specified level-of-detail are recomputed and
updated. If the image array would not be supported byTexImage3Dcalled with
targetset toTEXTURE3D, no error is generated, but the proxy width, height, depth,
border width, and component resolutions are set to zero. If the image array would
be supported by such a call toTexImage3D, the proxy state values are set exactly
as though the actual image array were being specified. No pixel data are transferred
or processed in either case.

One- and two-dimensional proxy arrays are operated on in the same way when
TexImage1Dis executed withtargetspecified asPROXYTEXTURE1D, or TexIm-
age2Dis executed withtargetspecified asPROXYTEXTURE2D.

The cube map proxy arrays are operated on in the same manner whenTexIm-
age2Dis executed with thetarget field specified asPROXYTEXTURECUBEMAP,
with the addition that determining that a given cube map texture is supported with
PROXYTEXTURECUBEMAPindicates that all six of the cube map 2D images are
supported. Likewise, if the specifiedPROXYTEXTURECUBEMAPis not supported,
none of the six cube map 2D images are supported.

Version 2.0 - September 7, 2004



3.8. TEXTURING 180

There is no image associated with any of the proxy textures. There-
fore PROXYTEXTURE1D, PROXYTEXTURE2D, and PROXYTEXTURE3D, and
PROXYTEXTURECUBEMAPcannot be used as textures, and their images must
never be queried usingGetTexImage. The errorINVALID ENUMis generated if
this is attempted. Likewise, there is no non level-related state associated with a
proxy texture, andGetTexParameterivor GetTexParameterfvmay not be called
with a proxy texturetarget. The errorINVALID ENUMis generated if this is at-
tempted.

3.8.12 Texture Objects

In addition to the default texturesTEXTURE1D, TEXTURE2D, TEXTURE3D, and
TEXTURECUBEMAP, named one-, two-, and three-dimensional and cube map tex-
ture objects can be created and operated upon. The name space for texture objects
is the unsigned integers, with zero reserved by the GL.

A texture object is created bybinding an unused name toTEXTURE1D,
TEXTURE2D, TEXTURE3D, or TEXTURECUBEMAP. The binding is effected by
calling

void BindTexture( enum target, uint texture);

with target set to the desired texture target andtextureset to the unused name.
The resulting texture object is a new state vector, comprising all the state values
listed in section3.8.11, set to the same initial values. If the new texture object is
bound toTEXTURE1D, TEXTURE2D, TEXTURE3D, or TEXTURECUBEMAP, it is
and remains a one-, two-, three-dimensional, or cube map texture respectively until
it is deleted.

BindTexture may also be used to bind an existing texture object to ei-
therTEXTURE1D, TEXTURE2D, TEXTURE3D, or TEXTURECUBEMAP. The error
INVALID OPERATIONis generated if an attempt is made to bind a texture object
of different dimensionality than the specifiedtarget. If the bind is successful no
change is made to the state of the bound texture object, and any previous binding
to target is broken.

While a texture object is bound, GL operations on the target to which it is
bound affect the bound object, and queries of the target to which it is bound return
state from the bound object. If texture mapping of the dimensionality of the target
to which a texture object is bound is enabled, the state of the bound texture object
directs the texturing operation.

In the initial state, TEXTURE1D, TEXTURE2D, TEXTURE3D,
andTEXTURECUBEMAPhave one-, two-, three-dimensional, and cube map tex-
ture state vectors respectively associated with them. In order that access to these

Version 2.0 - September 7, 2004



3.8. TEXTURING 181

initial textures not be lost, they are treated as texture objects all of whose names
are 0. The initial one-, two-, three-dimensional, and cube map texture is therefore
operated upon, queried, and applied asTEXTURE1D, TEXTURE2D, TEXTURE3D,
or TEXTURECUBEMAPrespectively while 0 is bound to the corresponding targets.

Texture objects are deleted by calling

void DeleteTextures( sizei n, uint *textures);

texturescontainsn names of texture objects to be deleted. After a texture object
is deleted, it has no contents or dimensionality, and its name is again unused. If
a texture that is currently bound to one of the targetsTEXTURE1D, TEXTURE2D,
TEXTURE3D, or TEXTURECUBEMAPis deleted, it is as thoughBindTexture had
been executed with the sametargetandtexturezero. Unused names intexturesare
silently ignored, as is the value zero.

The command

void GenTextures( sizei n, uint *textures);

returnsn previously unused texture object names intextures. These names are
marked as used, for the purposes ofGenTexturesonly, but they acquire texture
state and a dimensionality only when they are first bound, just as if they were
unused.

An implementation may choose to establish a working set of texture objects on
which binding operations are performed with higher performance. A texture object
that is currently part of the working set is said to beresident. The command

boolean AreTexturesResident( sizei n, uint *textures,
boolean *residences);

returnsTRUEif all of the n texture objects named intexturesare resident, or if the
implementation does not distinguish a working set. If at least one of the texture
objects named intexturesis not resident, thenFALSE is returned, and the residence
of each texture object is returned inresidences. Otherwise the contents ofresi-
dencesare not changed. If any of the names intexturesare unused or are zero,
FALSE is returned, the errorINVALID VALUEis generated, and the contents ofres-
idencesare indeterminate. The residence status of a single bound texture object
can also be queried by callingGetTexParameterivor GetTexParameterfvwith
target set to the target to which the texture object is bound, andpname set to
TEXTURERESIDENT.

AreTexturesResidentindicates only whether a texture object is currently resi-
dent, not whether it could not be made resident. An implementation may choose to

Version 2.0 - September 7, 2004



3.8. TEXTURING 182

make a texture object resident only on first use, for example. The client may guide
the GL implementation in determining which texture objects should be resident by
specifying a priority for each texture object. The command

void PrioritizeTextures( sizei n, uint *textures,
clampf *priorities );

sets the priorities of then texture objects named intexturesto the values inpriori-
ties. Each priority value is clamped to the range [0,1] before it is assigned. Zero in-
dicates the lowest priority, with the least likelihood of being resident. One indicates
the highest priority, with the greatest likelihood of being resident. The priority of a
single bound texture object may also be changed by callingTexParameteri, Tex-
Parameterf, TexParameteriv, or TexParameterfvwith target set to the target to
which the texture object is bound,pname set toTEXTUREPRIORITY, andparam
or params specifying the new priority value (which is clamped to the range [0,1]
before being assigned).PrioritizeTextures silently ignores attempts to prioritize
unused texture object names or zero (default textures).

The texture object name space, including the initial one-, two-, and three-
dimensional texture objects, is shared among all texture units. A texture object
may be bound to more than one texture unit simultaneously. After a texture object
is bound, any GL operations on that target object affect any other texture units to
which the same texture object is bound.

Texture binding is affected by the setting of the stateACTIVE TEXTURE.
If a texture object is deleted, it as if all texture units which are bound to that

texture object are rebound to texture object zero.

3.8.13 Texture Environments and Texture Functions

The command

void TexEnv{if}( enum target, enum pname, T param);
void TexEnv{if}v( enum target, enum pname, T params);

sets parameters of thetexture environmentthat specifies how texture values are
interpreted when texturing a fragment, or sets per-texture-unit filtering parameters.

target must be one of POINT SPRITE, TEXTUREENV or
TEXTUREFILTER CONTROL. pname is a symbolic constant indicating the
parameter to be set. In the first form of the command,paramis a value to which to
set a single-valued parameter; in the second form,paramsis a pointer to an array
of parameters: either a single symbolic constant or a value or group of values to
which the parameter should be set.

Version 2.0 - September 7, 2004



3.8. TEXTURING 183

Whentarget is POINT SPRITE, point sprite rasterization behavior is affected
as described in section3.3.

When target is TEXTUREFILTER CONTROL, pname must be
TEXTURELODBIAS . In this case the parameter is a single signed floating
point value,biastexunit, that biases the level of detail parameterλ as described in
section3.8.8.

When target is TEXTUREENV, the possible environment parame-
ters are TEXTUREENVMODE, TEXTUREENVCOLOR, COMBINERGB, and
COMBINEALPHA. TEXTUREENVMODE may be set to one ofREPLACE,
MODULATE, DECAL, BLEND, ADD, or COMBINE. TEXTUREENVCOLOR is set
to an RGBA color by providing four single-precision floating-point values in the
range[0, 1] (values outside this range are clamped to it). If integers are provided
for TEXTUREENVCOLOR, then they are converted to floating-point as specified in
table2.9for signed integers.

The value ofTEXTUREENVMODEspecifies atexture function. The result of
this function depends on the fragment and the texture array value. The precise
form of the function depends on the base internal formats of the texture arrays that
were last specified.

Cf andAf
3 are the primary color components of the incoming fragment;Cs

andAs are the components of the texture source color, derived from the filtered
texture valuesRt, Gt, Bt, At, Lt, andIt as shown in table3.21; Cc andAc are
the components of the texture environment color;Cp andAp are the components
resulting from the previous texture environment (for texture environment 0,Cp and
Ap are identical toCf andAf , respectively); andCv andAv are the primary color
components computed by the texture function.

All of these color values are in the range[0, 1]. The texture functions are spec-
ified in tables3.22, 3.23, and3.24.

If the value ofTEXTUREENVMODEis COMBINE, the form of the texture func-
tion depends on the values ofCOMBINERGBandCOMBINEALPHA, according to
table 3.24. The RGBand ALPHA results of the texture function are then multi-
plied by the values ofRGBSCALEandALPHASCALE, respectively. The results are
clamped to[0, 1].

The argumentsArg0, Arg1, and Arg2 are determined by the values of
SRCn RGB, SRCn ALPHA, OPERANDn RGBand OPERANDn ALPHA, wheren = 0,
1, or 2, as shown in tables3.25and 3.26. Cs

n andAs
n denote the texture source

color and alpha from the texture image bound to texture unitn

3In the remainder of section3.8.13, the notationCx is used to denote each of the three components
Rx, Gx, andBx of a color specified byx. Operations onCx are performed independently for each
color component. TheA component of colors is usually operated on in a different fashion, and is
therefore denoted separately byAx.

Version 2.0 - September 7, 2004



3.8. TEXTURING 184

Texture Base Texture source color
Internal Format Cs As

ALPHA (0, 0, 0) At

LUMINANCE (Lt, Lt, Lt) 1
LUMINANCEALPHA (Lt, Lt, Lt) At

INTENSITY (It, It, It) It

RGB (Rt, Gt, Bt) 1
RGBA (Rt, Gt, Bt) At

Table 3.21: Correspondence of filtered texture components to texture source com-
ponents.

Texture Base REPLACE MODULATE DECAL

Internal Format Function Function Function

ALPHA Cv = Cp Cv = Cp undefined
Av = As Av = ApAs

LUMINANCE Cv = Cs Cv = CpCs undefined
(or 1) Av = Ap Av = Ap

LUMINANCEALPHA Cv = Cs Cv = CpCs undefined
(or 2) Av = As Av = ApAs

INTENSITY Cv = Cs Cv = CpCs undefined
Av = As Av = ApAs

RGB Cv = Cs Cv = CpCs Cv = Cs

(or 3) Av = Ap Av = Ap Av = Ap

RGBA Cv = Cs Cv = CpCs Cv = Cp(1−As) + CsAs

(or 4) Av = As Av = ApAs Av = Ap

Table 3.22: Texture functionsREPLACE, MODULATE, andDECAL.

Version 2.0 - September 7, 2004



3.8. TEXTURING 185

Texture Base BLEND ADD

Internal Format Function Function

ALPHA Cv = Cp Cv = Cp

Av = ApAs Av = ApAs

LUMINANCE Cv = Cp(1− Cs) + CcCs Cv = Cp + Cs

(or 1) Av = Ap Av = Ap

LUMINANCEALPHA Cv = Cp(1− Cs) + CcCs Cv = Cp + Cs

(or 2) Av = ApAs Av = ApAs

INTENSITY Cv = Cp(1− Cs) + CcCs Cv = Cp + Cs

Av = Ap(1−As) + AcAs Av = Ap + As

RGB Cv = Cp(1− Cs) + CcCs Cv = Cp + Cs

(or 3) Av = Ap Av = Ap

RGBA Cv = Cp(1− Cs) + CcCs Cv = Cp + Cs

(or 4) Av = ApAs Av = ApAs

Table 3.23: Texture functionsBLENDandADD.

The state required for the current texture environment, for each texture unit,
consists of a six-valued integer indicating the texture function, an eight-valued in-
teger indicating theRGBcombiner function and a six-valued integer indicating the
ALPHAcombiner function, six four-valued integers indicating the combinerRGB

andALPHAsource arguments, three four-valued integers indicating the combiner
RGBoperands, three two-valued integers indicating the combinerALPHAoperands,
and four floating-point environment color values. In the initial state, the texture
and combiner functions are eachMODULATE, the combinerRGBandALPHAsources
are eachTEXTURE, PREVIOUS, andCONSTANTfor sources 0, 1, and 2 respectively,
the combinerRGBoperands for sources 0 and 1 are eachSRCCOLOR, the combiner
RGBoperand for source 2, as well as for the combinerALPHAoperands, are each
SRCALPHA, and the environment color is(0, 0, 0, 0).

The state required for the texture filtering parameters, for each texture unit,
consists of a single floating-point level of detail bias. The initial value of the bias
is 0.0.

3.8.14 Texture Comparison Modes

Texture values can also be computed according to a specified comparison func-
tion. Texture parameterTEXTURECOMPAREMODEspecifies the comparison
operands, and parameterTEXTURECOMPAREFUNCspecifies the comparison func-
tion. The format of the resulting texture sample is determined by the value of

Version 2.0 - September 7, 2004



3.8. TEXTURING 186

COMBINERGB Texture Function

REPLACE Arg0
MODULATE Arg0 ∗Arg1
ADD Arg0 + Arg1
ADDSIGNED Arg0 + Arg1− 0.5
INTERPOLATE Arg0 ∗Arg2 + Arg1 ∗ (1−Arg2)
SUBTRACT Arg0−Arg1
DOT3RGB 4× ((Arg0r − 0.5) ∗ (Arg1r − 0.5)+

(Arg0g − 0.5) ∗ (Arg1g − 0.5)+
(Arg0b − 0.5) ∗ (Arg1b − 0.5))

DOT3RGBA 4× ((Arg0r − 0.5) ∗ (Arg1r − 0.5)+
(Arg0g − 0.5) ∗ (Arg1g − 0.5)+
(Arg0b − 0.5) ∗ (Arg1b − 0.5))

COMBINEALPHA Texture Function

REPLACE Arg0
MODULATE Arg0 ∗Arg1
ADD Arg0 + Arg1
ADDSIGNED Arg0 + Arg1− 0.5
INTERPOLATE Arg0 ∗Arg2 + Arg1 ∗ (1−Arg2)
SUBTRACT Arg0−Arg1

Table 3.24:COMBINEtexture functions. The scalar expression computed for the
DOT3RGBandDOT3RGBAfunctions is placed into each of the 3 (RGB) or 4 (RGBA)
components of the output. The result generated fromCOMBINEALPHAis ignored
for DOT3RGBA.

Version 2.0 - September 7, 2004



3.8. TEXTURING 187

SRCn RGB OPERANDn RGB Argument

TEXTURE SRCCOLOR Cs

ONEMINUSSRCCOLOR 1− Cs

SRCALPHA As

ONEMINUSSRCALPHA 1−As

TEXTUREn SRCCOLOR Cs
n

ONEMINUSSRCCOLOR 1− Cs
n

SRCALPHA As
n

ONEMINUSSRCALPHA 1−As
n

CONSTANT SRCCOLOR Cc

ONEMINUSSRCCOLOR 1− Cc

SRCALPHA Ac
ONEMINUSSRCALPHA 1−Ac

PRIMARYCOLOR SRCCOLOR Cf

ONEMINUSSRCCOLOR 1− Cf

SRCALPHA Af

ONEMINUSSRCALPHA 1−Af

PREVIOUS SRCCOLOR Cp

ONEMINUSSRCCOLOR 1− Cp

SRCALPHA Ap

ONEMINUSSRCALPHA 1−Ap

Table 3.25: Arguments forCOMBINERGBfunctions.

SRCn ALPHA OPERANDn ALPHA Argument

TEXTURE SRCALPHA As

ONEMINUSSRCALPHA 1−As

TEXTUREn SRCALPHA As
n

ONEMINUSSRCALPHA 1−As
n

CONSTANT SRCALPHA Ac

ONEMINUSSRCALPHA 1−Ac

PRIMARYCOLOR SRCALPHA Af

ONEMINUSSRCALPHA 1−Af

PREVIOUS SRCALPHA Ap

ONEMINUSSRCALPHA 1−Ap

Table 3.26: Arguments forCOMBINEALPHAfunctions.

Version 2.0 - September 7, 2004



3.8. TEXTURING 188

DEPTHTEXTUREMODE.

Depth Texture Comparison Mode

If the currently bound texture’s base internal format isDEPTHCOMPONENT, then
TEXTURECOMPAREMODE, TEXTURECOMPAREFUNCandDEPTHTEXTUREMODE

control the output of the texture unit as described below. Otherwise, the texture
unit operates in the normal manner and texture comparison is bypassed.

Let Dt be the depth texture value, in the range[0, 1], andR be the interpolated
texture coordinate clamped to the range[0, 1]. Then the effective texture valueLt,
It, or At is computed as follows:

If the value ofTEXTURECOMPAREMODEis NONE, then

r = Dt

If the value ofTEXTURECOMPAREMODEis COMPARER TO TEXTURE), thenr
depends on the texture comparison function as shown in table3.27.

Texture Comparison FunctionComputed resultr

LEQUAL r =

{
1.0, R ≤ Dt

0.0, R > Dt

GEQUAL r =

{
1.0, R ≥ Dt

0.0, R < Dt

LESS r =

{
1.0, R < Dt

0.0, R ≥ Dt

GREATER r =

{
1.0, R > Dt

0.0, R ≤ Dt

EQUAL r =

{
1.0, R = Dt

0.0, R 6= Dt

NOTEQUAL r =

{
1.0, R 6= Dt

0.0, R = Dt

ALWAYS r = 1.0
NEVER r = 0.0

Table 3.27: Depth texture comparison functions.

The resulting r is assigned to Lt, It, or At if the value of
DEPTHTEXTUREMODEis respectivelyLUMINANCE, INTENSITY , or ALPHA.

Version 2.0 - September 7, 2004



3.8. TEXTURING 189

If the value of TEXTUREMAGFILTER is not NEAREST, or the value of
TEXTUREMIN FILTER is not NEARESTor NEARESTMIPMAPNEAREST, then r
may be computed by comparing more than one depth texture value to the texture
R coordinate. The details of this are implementation-dependent, butr should be a
value in the range[0, 1] which is proportional to the number of comparison passes
or failures.

3.8.15 Texture Application

Texturing is enabled or disabled using the genericEnable and Disable com-
mands, respectively, with the symbolic constantsTEXTURE1D, TEXTURE2D,
TEXTURE3D, or TEXTURECUBEMAPto enable the one-, two-, three-dimensional,
or cube map texture, respectively. If both two- and one-dimensional textures are
enabled, the two-dimensional texture is used. If the three-dimensional and either
of the two- or one-dimensional textures is enabled, the three-dimensional texture
is used. If the cube map texture and any of the three-, two-, or one-dimensional
textures is enabled, then cube map texturing is used. If all texturing is disabled, a
rasterized fragment is passed on unaltered to the next stage of the GL (although its
texture coordinates may be discarded). Otherwise, a texture value is found accord-
ing to the parameter values of the currently bound texture image of the appropriate
dimensionality using the rules given in sections3.8.6through3.8.9. This texture
value is used along with the incoming fragment in computing the texture function
indicated by the currently bound texture environment. The result of this function
replaces the incoming fragment’s primary R, G, B, and A values. These are the
color values passed to subsequent operations. Other data associated with the in-
coming fragment remain unchanged, except that the texture coordinates may be
discarded.

Each texture unit is enabled and bound to texture objects independently from
the other texture units. Each texture unit follows the precedence rules for one-, two-
, three-dimensional, and cube map textures. Thus texture units can be performing
texture mapping of different dimensionalities simultaneously. Each unit has its
own enable and binding states.

Each texture unit is paired with an environment function, as shown in fig-
ure 3.11. The second texture function is computed using the texture value from
the second texture, the fragment resulting from the first texture function computa-
tion and the second texture unit’s environment function. If there is a third texture,
the fragment resulting from the second texture function is combined with the third
texture value using the third texture unit’s environment function and so on. The tex-
ture unit selected byActiveTexture determines which texture unit’s environment
is modified byTexEnv calls.

Version 2.0 - September 7, 2004



3.8. TEXTURING 190

TE0

TE1

TE2

TE3

CT0

CT1

CT2

CT3

C’f

CTi  = texture color from texture lookup i

Cf     = fragment primary color input to texturing

C’f   = fragment color output from texturing

TEi  = texture environment i 

Cf

Figure 3.11. Multitexture pipeline. Four texture units are shown; however, multi-
texturing may support a different number of units depending on the implementation.
The input fragment color is successively combined with each texture according to
the state of the corresponding texture environment, and the resulting fragment color
passed as input to the next texture unit in the pipeline.

If the value ofTEXTUREENVMODEis COMBINE, the texture function associated
with a given texture unit is computed using the values specified bySRCn RGB,
SRCn ALPHA, OPERANDn RGBandOPERANDn ALPHA. If TEXTUREn is specified as
SRCn RGBor SRCn ALPHA, the texture value from texture unitn will be used in
computing the texture function for this texture unit.

Texturing is enabled and disabled individually for each texture unit. If texturing
is disabled for one of the units, then the fragment resulting from the previous unit
is passed unaltered to the following unit. Individual texture units beyond those
specified byMAXTEXTUREUNITS are always treated as disabled.

If a texture unit is disabled or has an invalid or incomplete texture (as defined
in section3.8.10) bound to it, then blending is disabled for that texture unit. If the
texture environment for a given enabled texture unit references a disabled texture
unit, or an invalid or incomplete texture that is bound to another unit, then the

Version 2.0 - September 7, 2004



3.9. COLOR SUM 191

results of texture blending are undefined.
The required state, per texture unit, is four bits indicating whether each of one-,

two-, three-dimensional, or cube map texturing is enabled or disabled. In the intial
state, all texturing is disabled for all texture units.

3.9 Color Sum

At the beginning of color sum, a fragment has two RGBA colors: a primary color
cpri (which texturing, if enabled, may have modified) and a secondary colorcsec.

If color sum is enabled, the R, G, and B components of these two colors are
summed to produce a single post-texturing RGBA colorc. The A component ofc
is taken from the A component ofcpri; the A component ofcsec is unused. The
components ofc are then clamped to the range[0, 1]. If color sum is disabled, then
cpri is assigned toc.

Color sum is enabled or disabled using the genericEnable andDisablecom-
mands, respectively, with the symbolic constantCOLORSUM. If lighting is enabled
and if a vertex shader is not active, the color sum stage is always applied, ignoring
the value ofCOLORSUM.

The state required is a single bit indicating whether color sum is enabled or
disabled. In the initial state, color sum is disabled.

Color sum has no effect in color index mode, or if a fragment shader is active.

3.10 Fog

If enabled, fog blends a fog color with a rasterized fragment’s post-texturing color
using a blending factorf . Fog is enabled and disabled with theEnableandDisable
commands using the symbolic constantFOG.

This factorf is computed according to one of three equations:

f = exp(−d · c), (3.30)

f = exp(−(d · c)2), or (3.31)

f =
e− c

e− s
(3.32)

If a vertex shader is active, or if the fog source, as defined below, is
FOGCOORDINATE, thenc is the interpolated value of the fog coordinate for this

Version 2.0 - September 7, 2004



3.10. FOG 192

fragment. Otherwise, if the fog source isFRAGMENTDEPTH, thenc is the eye-
coordinate distance from the eye,(0, 0, 0, 1) in eye coordinates, to the fragment
center. The equation and the fog source, along with eitherd or e ands, is specified
with

void Fog{if}( enum pname, T param);
void Fog{if}v( enum pname, T params);

If pnameis FOGMODE, then param must be, orparamsmust point to an inte-
ger that is one of the symbolic constantsEXP, EXP2, or LINEAR, in which case
equation3.30, 3.31, or 3.32, respectively, is selected for the fog calculation (if,
when3.32is selected,e = s, results are undefined). Ifpnameis FOGCOORDSRC,
thenparammust be, orparamsmust point to an integer that is one of the sym-
bolic constantsFRAGMENTDEPTHor FOGCOORD. If pname is FOGDENSITY,
FOGSTART, or FOGEND, thenparam is or paramspoints to a value that isd, s,
or e, respectively. Ifd is specified less than zero, the errorINVALID VALUEre-
sults.

An implementation may choose to approximate the eye-coordinate distance
from the eye to each fragment center by|ze|. Further,f need not be computed at
each fragment, but may be computed at each vertex and interpolated as other data
are.

No matter which equation and approximation is used to computef , the result
is clamped to[0, 1] to obtain the finalf .

f is used differently depending on whether the GL is in RGBA or color index
mode. In RGBA mode, ifCr represents a rasterized fragment’s R, G, or B value,
then the corresponding value produced by fog is

C = fCr + (1− f)Cf .

(The rasterized fragment’s A value is not changed by fog blending.) The R, G, B,
and A values ofCf are specified by callingFog with pnameequal toFOGCOLOR;
in this caseparamspoints to four values comprisingCf . If these are not floating-
point values, then they are converted to floating-point using the conversion given
in table2.9 for signed integers. Each component ofCf is clamped to[0, 1] when
specified.

In color index mode, the formula for fog blending is

I = ir + (1− f)if

where ir is the rasterized fragment’s color index andif is a single-precision
floating-point value.(1 − f)if is rounded to the nearest fixed-point value with

Version 2.0 - September 7, 2004



3.11. FRAGMENT SHADERS 193

the same number of bits to the right of the binary point asir, and the integer por-
tion of I is masked (bitwise ANDed) with2n− 1, wheren is the number of bits in
a color in the color index buffer (buffers are discussed in chapter4). The value of
if is set by callingFog with pnameset toFOGINDEX andparambeing orparams
pointing to a single value for the fog index. The integer part ofif is masked with
2n − 1.

The state required for fog consists of a three valued integer to select the fog
equation, three floating-point valuesd, e, ands, an RGBA fog color and a fog
color index, a two-valued integer to select the fog coordinate source, and a single
bit to indicate whether or not fog is enabled. In the initial state, fog is disabled,
FOGCOORDSRCis FRAGMENTDEPTH, FOGMODEis EXP, d = 1.0, e = 1.0, and
s = 0.0; Cf = (0, 0, 0, 0) andif = 0.

Fog has no effect if a fragment shader is active.

3.11 Fragment Shaders

The sequence of operations that are applied to fragments that result from raster-
izing a point, line segment, polygon, pixel rectangle or bitmap as described in
sections3.8 through3.10is a fixed functionality method for processing such frag-
ments. Applications can more generally describe the operations that occur on such
fragments by using afragment shader.

A fragment shader is an array of strings containing source code for the opera-
tions that are meant to occur on each fragment that results from rasterizing a point,
line segment, polygon, pixel rectangle or bitmap. The language used for fragment
shaders is described in the OpenGL Shading Language Specification.

A fragment shader only applies when the GL is in RGBA mode. Its operation
in color index mode is undefined.

Fragment shaders are created as described in section2.15.1using atypepa-
rameter ofFRAGMENTSHADER. They are attached to and used in program objects
as described in section2.15.2.

When the program object currently in use includes a fragment shader, its frag-
ment shader is consideredactive, and is used to process fragments. If the program
object has no fragment shader, or no program object is currently in use, the fixed-
function fragment processing operations described in previous sections are used.

3.11.1 Shader Variables

Fragment shaders can access uniforms belonging to the current shader object. The
amount of storage available for fragment shader uniform variables is specified by

Version 2.0 - September 7, 2004



3.11. FRAGMENT SHADERS 194

the implementation dependent constantMAXFRAGMENTUNIFORMCOMPONENTS.
This value represents the number of individual floating-point, integer, or boolean
values that can be held in uniform variable storage for a fragment shader. A link
error will be generated if an attempt is made to utilize more than the space available
for fragment shader uniform variables.

Fragment shaders can read varying variables that correspond to the attributes
of the fragments produced by rasterization. The OpenGL Shading Language Spec-
ification defines a set of built-in varying variables that can be be accessed by a
fragment shader. These built-in varying variables include the data associated with
a fragment that are used for fixed-function fragment processing, such as the frag-
ment’s position, color, secondary color, texture coordinates, fog coordinate, and
eyez coordinate.

Additionally, when a vertex shader is active, it may define one or morevarying
variables (see section2.15.3and the OpenGL Shading Language Specification).
These values are interpolated across the primitive being rendered. The results of
these interpolations are available when varying variables of the same name are
defined in the fragment shader.

User-defined varying variables are not saved in the current raster position.
When processing fragments generated by the rasterization of a pixel rectangle or
bitmap, that values of user-defined varying variables are undefined. Built-in vary-
ing variables have well-defined values.

3.11.2 Shader Execution

If a fragment shader is active, the executable version of the fragment shader is used
to process incoming fragment values that are the result of point, line segment, poly-
gon, pixel rectangle or bitmap rasterization rather than the fixed-function fragment
processing described in sections3.8through3.10. In particular,

• The texture environments and texture functions described in section3.8.13
are not applied.

• Texture application as described in section3.8.15is not applied.

• Color sum as described in section3.9 is not applied.

• Fog as described in section3.10is not applied.

Texture Access

When a texture lookup is performed in a fragment shader, the GL computes the
filtered texture valueτ in the manner described in sections3.8.8and3.8.9, and

Version 2.0 - September 7, 2004



3.11. FRAGMENT SHADERS 195

converts it to a texture source colorCs according to table3.21 (section3.8.13).
The GL returns a four-component vector(Rs, Gs, Bs, As) to the fragment shader.
For the purposes of level-of-detail calculations, the derivatesdu

dx , du
dy , dv

dx , dv
dy , dw

dx

anddw
dy may be approximated by a differencing algorithm as detailed in section 8.8

of the OpenGL Shading Language specification.
Texture lookups involving textures with depth component data can either re-

turn the depth data directly or return the results of a comparison with ther tex-
ture coordinate used to perform the lookup. The comparison operation is re-
quested in the shader by using the shadow sampler types (sampler1DShadow

or sampler2DShadow ) and in the texture using theTEXTURECOMPAREMODEpa-
rameter. These requests must be consistent; the results of a texture lookup are
undefined if:

• The sampler used in a texture lookup function is of typesampler1D or
sampler2D , and the texture object’s internal format isDEPTHCOMPONENT,
and theTEXTURECOMPAREMODEis notNONE.

• The sampler used in a texture lookup function is of typesampler1DShadow

or sampler2DShadow , and the texture object’s internal format is
DEPTHCOMPONENT, and theTEXTURECOMPAREMODEis NONE.

• The sampler used in a texture lookup function is of typesampler1DShadow

or sampler2DShadow , and the texture object’s internal format is not
DEPTHCOMPONENT.

If a fragment shader uses a sampler whose associated texture object is not com-
plete, as defined in section3.8.10, the texture image unit will return(R,G,B,A)
= (0, 0, 0, 1).

The number of separate texture units that can be accessed from within a
fragment shader during the rendering of a single primitive is specified by the
implementation- dependent constantMAXTEXTUREIMAGEUNITS.

Shader Inputs

The OpenGL Shading Language specification describes the values that are avail-
able as inputs to the fragment shader.

The built-in variablegl FragCoord holds the window coordinatesx, y, z,
and 1

w for the fragment. Thez component ofgl FragCoord undergoes an im-
plied conversion to floating-point. This conversion must leave the values 0 and
1 invariant. Note that thisz component already has a polygon offset added in, if
enabled (see section3.5.5. The 1

w value is computed from thewc coordinate (see

Version 2.0 - September 7, 2004



3.11. FRAGMENT SHADERS 196

section2.11), which is the result of the product of the projection matrix and the
vertex’s eye coordinates.

The built-in variablesgl Color andgl SecondaryColor hold the R, G, B,
and A components, respectively, of the fragment color and secondary color. Each
fixed-point color component undergoes an implied conversion to floating-point.
This conversion must leave the values 0 and 1 invariant.

The built-in variablegl FrontFacing is set toTRUEif the fragment is gener-
ated from a front facing primitive, andFALSEotherwise. For fragments generated
from polygon, triangle, or quadrilateral primitives (including ones resulting from
polygons rendered as points or lines), the determination is made by examining the
sign of the area computed by equation2.6of section2.14.1(including the possible
reversal of this sign controlled byFrontFace). If the sign is positive, fragments
generated by the primitive are front facing; otherwise, they are back facing. All
other fragments are considered front facing.

Shader Outputs

The OpenGL Shading Language specification describes the values that may be
output by a fragment shader. These aregl FragColor , gl FragData[n] , and
gl FragDepth . The final fragment color values or the final fragment data values
written by a fragment shader are clamped to the range[0, 1] and then converted to
fixed-point as described in section2.14.9. The final fragment depth written by a
fragment shader is first clamped to[0, 1] and then converted to fixed-point as if it
were a windowz value (see section2.11.1). Note that the depth range computation
is not applied here, only the conversion to fixed-point.

Writing to gl FragColor specifies the fragment color (color number
zero) that will be used by subsequent stages of the pipeline. Writing to
gl FragData[n] specifies the value of fragment color numbern. Any colors,
or color components, associated with a fragment that are not written by the frag-
ment shader are undefined. A fragment shader may not statically assign values to
bothgl FragColor andgl FragData . In this case, a compile or link error will
result. A shader statically assigns a value to a variable if, after pre-processing, it
contains a statement that would write to the variable, whether or not run-time flow
of control will cause that statement to be executed.

Writing to gl FragDepth specifies the depth value for the fragment being
processed. If the active fragment shader does not statically assign a value to
gl FragDepth , then the depth value generated during rasterization is used by sub-
sequent stages of the pipeline. Otherwise, the value assigned togl FragDepth is
used, and is undefined for any fragments where statements assigning a value to
gl FragDepth are not executed. Thus, if a shader statically assigns a value to

Version 2.0 - September 7, 2004



3.12. ANTIALIASING APPLICATION 197

gl FragDepth , then it is responsible for always writing it.

3.12 Antialiasing Application

If antialiasing is enabled for the primitive from which a rasterized fragment was
produced, then the computed coverage value is applied to the fragment. In RGBA
mode, the value is multiplied by the fragment’s alpha (A) value to yield a final
alpha value. In color index mode, the value is used to set the low order bits of
the color index value as described in section3.2. The coverage value is applied
separately to each fragment color.

3.13 Multisample Point Fade

Finally, if multisampling is enabled and the rasterized fragment results from a point
primitive, then the computed fade factor from equation3.2 is applied to the frag-
ment. In RGBA mode, the fade factor is multiplied by the fragment’s alpha value
to yield a final alpha value. In color index mode, the fade factor has no effect. The
fade factor is applied separately to each fragment color.

Version 2.0 - September 7, 2004



Chapter 4

Per-Fragment Operations and the
Framebuffer

The framebuffer consists of a set of pixels arranged as a two-dimensional array.
The height and width of this array may vary from one GL implementation to an-
other. For purposes of this discussion, each pixel in the framebuffer is simply a set
of some number of bits. The number of bits per pixel may also vary depending on
the particular GL implementation or context.

Corresponding bits from each pixel in the framebuffer are grouped together
into abitplane; each bitplane contains a single bit from each pixel. These bitplanes
are grouped into severallogical buffers. These are thecolor, depth, stencil, and
accumulationbuffers. The color buffer actually consists of a number of buffers:
thefront leftbuffer, thefront right buffer, theback leftbuffer, theback rightbuffer,
and some number ofauxiliary buffers. Typically the contents of the front buffers
are displayed on a color monitor while the contents of the back buffers are invisi-
ble. (Monoscopic contexts display only the front left buffer; stereoscopic contexts
display both the front left and the front right buffers.) The contents of the aux-
iliary buffers are never visible. All color buffers must have the same number of
bitplanes, although an implementation or context may choose not to provide right
buffers, back buffers, or auxiliary buffers at all. Further, an implementation or
context may not provide depth, stencil, or accumulation buffers.

Color buffers consist of either unsigned integer color indices or R, G, B, and,
optionally, A unsigned integer values. The number of bitplanes in each of the color
buffers, the depth buffer, the stencil buffer, and the accumulation buffer is fixed and
window dependent. If an accumulation buffer is provided, it must have at least as
many bitplanes per R, G, and B color component as do the color buffers.

The initial state of all provided bitplanes is undefined.

198



4.1. PER-FRAGMENT OPERATIONS 199

Fragment
+

Associated
Data

Pixel
Ownership

Test

Scissor
Test

Stencil 
Test

Framebuffer

Alpha
Test

Depth buffer
Test

Blending
(RGBA Only)

Dithering

Framebuffer

Framebuffer

Logicop To
Framebuffer

Framebuffer

(RGBA Only)

Figure 4.1. Per-fragment operations.

4.1 Per-Fragment Operations

A fragment produced by rasterization with window coordinates of(xw, yw) mod-
ifies the pixel in the framebuffer at that location based on a number of parame-
ters and conditions. We describe these modifications and tests, diagrammed in
figure 4.1, in the order in which they are performed. Figure4.1 diagrams these
modifications and tests.

4.1.1 Pixel Ownership Test

The first test is to determine if the pixel at location(xw, yw) in the framebuffer
is currently owned by the GL (more precisely, by this GL context). If it is not,
the window system decides the fate the incoming fragment. Possible results are
that the fragment is discarded or that some subset of the subsequent per-fragment
operations are applied to the fragment. This test allows the window system to
control the GL’s behavior, for instance, when a GL window is obscured.

Version 2.0 - September 7, 2004



4.1. PER-FRAGMENT OPERATIONS 200

4.1.2 Scissor Test

The scissor test determines if(xw, yw) lies within the scissor rectangle defined by
four values. These values are set with

void Scissor( int left, int bottom, sizei width,
sizei height);

If left ≤ xw < left + width andbottom≤ yw < bottom+ height, then the scissor
test passes. Otherwise, the test fails and the fragment is discarded. The test is
enabled or disabled usingEnable or Disable using the constantSCISSORTEST.
When disabled, it is as if the scissor test always passes. If eitherwidth or height
is less than zero, then the errorINVALID VALUEis generated. The state required
consists of four integer values and a bit indicating whether the test is enabled or
disabled. In the initial stateleft = bottom = 0; width andheight are determined
by the size of the GL window. Initially, the scissor test is disabled.

4.1.3 Multisample Fragment Operations

This step modifies fragment alpha and coverage values based on the values
of SAMPLEALPHATO COVERAGE, SAMPLEALPHATO ONE, SAMPLECOVERAGE,
SAMPLECOVERAGEVALUE, andSAMPLECOVERAGEINVERT. No changes to the
fragment alpha or coverage values are made at this step ifMULTISAMPLEis dis-
abled, or if the value ofSAMPLEBUFFERSis not one.

SAMPLEALPHATO COVERAGE, SAMPLEALPHATO ONE, and
SAMPLECOVERAGEare enabled and disabled by callingEnable and Disable
with cap specified as one of the three token values. All three values are
queried by callingIsEnabled with cap set to the desired token value. If
SAMPLEALPHATO COVERAGEis enabled, a temporary coverage value is gen-
erated where each bit is determined by the alpha value at the corresponding
sample location. The temporary coverage value is then ANDed with the fragment
coverage value. Otherwise the fragment coverage value is unchanged at this point.
If multiple colors are written by a fragment shader, the alpha value of fragment
color zero is used to determine the temporary coverage value.

No specific algorithm is required for converting the sample alpha values to a
temporary coverage value. It is intended that the number of 1’s in the temporary
coverage be proportional to the set of alpha values for the fragment, with all 1’s
corresponding to the maximum of all alpha values, and all 0’s corresponding to
all alpha values being 0. It is also intended that the algorithm be pseudo-random
in nature, to avoid image artifacts due to regular coverage sample locations. The
algorithm can and probably should be different at different pixel locations. If it

Version 2.0 - September 7, 2004



4.1. PER-FRAGMENT OPERATIONS 201

does differ, it should be defined relative to window, not screen, coordinates, so that
rendering results are invariant with respect to window position.

Next, if SAMPLEALPHATO ONEis enabled, each alpha value is replaced by the
maximum representable alpha value. Otherwise, the alpha values are not changed.

Finally, if SAMPLECOVERAGEis enabled, the fragment coverage is ANDed
with another temporary coverage. This temporary coverage is generated
in the same manner as the one described above, but as a function of
the value ofSAMPLECOVERAGEVALUE. The function need not be identical,
but it must have the same properties of proportionality and invariance. If
SAMPLECOVERAGEINVERT is TRUE, the temporary coverage is inverted (all bit
values are inverted) before it is ANDed with the fragment coverage.

The values ofSAMPLECOVERAGEVALUE and SAMPLECOVERAGEINVERT

are specified by calling

void SampleCoverage( clampf value, boolean invert );

with value set to the desired coverage value, andinvert set toTRUEor FALSE.
value is clamped to [0,1] before being stored asSAMPLECOVERAGEVALUE.
SAMPLECOVERAGEVALUE is queried by callingGetFloatv with pnameset to
SAMPLECOVERAGEVALUE. SAMPLECOVERAGEINVERT is queried by calling
GetBooleanvwith pnameset toSAMPLECOVERAGEINVERT.

4.1.4 Alpha Test

This step applies only in RGBA mode. In color index mode, proceed to the next
operation. The alpha test discards a fragment conditional on the outcome of a
comparison between the incoming fragment’s alpha value and a constant value. If
multiple colors are written by a fragment shader, the alpha value of fragment color
zero is used to determine the result of the alpha test. The comparison is enabled
or disabled with the genericEnable andDisable commands using the symbolic
constantALPHATEST. When disabled, it is as if the comparison always passes.
The test is controlled with

void AlphaFunc( enum func, clampf ref );

func is a symbolic constant indicating the alpha test function;ref is a reference
value. ref is clamped to lie in[0, 1], and then converted to a fixed-point value ac-
cording to the rules given for an A component in section2.14.9. For purposes
of the alpha test, the fragment’s alpha value is also rounded to the nearest inte-
ger. The possible constants specifying the test function areNEVER, ALWAYS, LESS,
LEQUAL, EQUAL, GEQUAL, GREATER, or NOTEQUAL, meaning pass the fragment

Version 2.0 - September 7, 2004



4.1. PER-FRAGMENT OPERATIONS 202

never, always, if the fragment’s alpha value is less than, less than or equal to, equal
to, greater than or equal to, greater than, or not equal to the reference value, respec-
tively.

The required state consists of the floating-point reference value, an eight-
valued integer indicating the comparison function, and a bit indicating if the com-
parison is enabled or disabled. The initial state is for the reference value to be0
and the function to beALWAYS. Initially, the alpha test is disabled.

4.1.5 Stencil Test

The stencil test conditionally discards a fragment based on the outcome of a com-
parison between the value in the stencil buffer at location(xw, yw) and a reference
value. The test is enabled or disabled with theEnable andDisable commands,
using the symbolic constantSTENCIL TEST. When disabled, the stencil test and
associated modifications are not made, and the fragment is always passed.

The stencil test is controlled with

void StencilFunc( enum func, int ref, uint mask);
void StencilFuncSeparate( enum face, enum func, int ref,

uint mask);
void StencilOp( enum sfail, enum dpfail, enum dppass);
void StencilOpSeparate( enum face, enum sfail, enum dpfail,

enum dppass);

There are two sets of stencil-related state, the front stencil state set and the back
stencil state set. Stencil tests and writes use the front set of stencil state when pro-
cessing fragments rasterized from non-polygon primitives (points, lines, bitmaps,
image rectangles) and front-facing polygon primitives while the back set of stencil
state is used when processing fragments rasterized from back-facing polygon prim-
itives. For the purposes of stencil testing, a primitive is still considered a polygon
even if the polygon is to be rasterized as points or lines due to the current poly-
gon mode. Whether a polygon is front- or back-facing is determined in the same
manner used for two-sided lighting and face culling (see sections2.14.1and3.5.1).

StencilFuncSeparateandStencilOpSeparatetake afaceargument which can
beFRONT, BACK, or FRONTANDBACKand indicates which set of state is affected.
StencilFuncandStencilOpset front and back stencil state to identical values.

StencilFunc and StencilFuncSeparate take three arguments that control
whether the stencil test passes or fails.ref is an integer reference value that is
used in the unsigned stencil comparison. It is clamped to the range[0, 2s − 1],
wheres is the number of bits in the stencil buffer. Thes least significant bits of

Version 2.0 - September 7, 2004



4.1. PER-FRAGMENT OPERATIONS 203

maskare bitwise ANDed with both the reference and the stored stencil value, and
the resulting masked values are those that participate in the comparison controlled
by func. func is a symbolic constant that determines the stencil comparison func-
tion; the eight symbolic constants areNEVER, ALWAYS, LESS, LEQUAL, EQUAL,
GEQUAL, GREATER, or NOTEQUAL. Accordingly, the stencil test passes never, al-
ways, and if the masked reference value is less than, less than or equal to, equal to,
greater than or equal to, greater than, or not equal to the masked stored value in the
stencil buffer.

StencilOp and StencilOpSeparatetake three arguments that indicate what
happens to the stored stencil value if this or certain subsequent tests fail or pass.
sfail indicates what action is taken if the stencil test fails. The symbolic constants
areKEEP, ZERO, REPLACE, INCR, DECR, INVERT, INCR WRAP, andDECRWRAP.
These correspond to keeping the current value, setting to zero, replacing with the
reference value, incrementing with saturation, decrementing with saturation, bit-
wise inverting it, incrementing without saturation, and decrementing without satu-
ration.

For purposes of increment and decrement, the stencil bits are considered as an
unsigned integer. Incrementing or decrementing with saturation clamps the stencil
value at0 and the maximum representable value. Incrementing or decrementing
without saturation will wrap such that incrementing the maximum representable
value results in0, and decrementing0 results in the maximum representable value.

The same symbolic values are given to indicate the stencil action if the depth
buffer test (see section4.1.6) fails (dpfail), or if it passes (dppass).

If the stencil test fails, the incoming fragment is discarded. The state required
consists of the most recent values passed toStencilFuncor StencilFuncSeparate
and toStencilOp or StencilOpSeparate, and a bit indicating whether stencil test-
ing is enabled or disabled. In the initial state, stenciling is disabled, the front and
back stencil reference value are both zero, the front and back stencil comparison
functions are bothALWAYS, and the front and back stencil mask are both all ones.
Initially, all three front and back stencil operations areKEEP.

If there is no stencil buffer, no stencil modification can occur, and it is as if the
stencil tests always pass, regardless of any calls toStencilFunc.

4.1.6 Depth Buffer Test

The depth buffer test discards the incoming fragment if a depth comparison fails.
The comparison is enabled or disabled with the genericEnable andDisablecom-
mands using the symbolic constantDEPTHTEST. When disabled, the depth com-
parison and subsequent possible updates to the depth buffer value are bypassed and
the fragment is passed to the next operation. The stencil value, however, is modi-

Version 2.0 - September 7, 2004



4.1. PER-FRAGMENT OPERATIONS 204

fied as indicated below as if the depth buffer test passed. If enabled, the comparison
takes place and the depth buffer and stencil value may subsequently be modified.

The comparison is specified with

void DepthFunc( enum func);

This command takes a single symbolic constant: one ofNEVER, ALWAYS, LESS,
LEQUAL, EQUAL, GREATER, GEQUAL, NOTEQUAL. Accordingly, the depth buffer
test passes never, always, if the incoming fragment’szw value is less than, less
than or equal to, equal to, greater than, greater than or equal to, or not equal to
the depth value stored at the location given by the incoming fragment’s(xw, yw)
coordinates.

If the depth buffer test fails, the incoming fragment is discarded. The stencil
value at the fragment’s(xw, yw) coordinates is updated according to the function
currently in effect for depth buffer test failure. Otherwise, the fragment continues
to the next operation and the value of the depth buffer at the fragment’s(xw, yw)
location is set to the fragment’szw value. In this case the stencil value is updated
according to the function currently in effect for depth buffer test success.

The necessary state is an eight-valued integer and a single bit indicating
whether depth buffering is enabled or disabled. In the initial state the function
is LESSand the test is disabled.

If there is no depth buffer, it is as if the depth buffer test always passes.

4.1.7 Occlusion Queries

Occlusion queries can be used to track the number of fragments or samples that
pass the depth test.

Occlusion queries are associated with query objects.
An occlusion query can be started and finished by calling

void BeginQuery( enum target, uint id );
void EndQuery( enum target);

wheretargetis SAMPLESPASSED. If BeginQuery is called with an unusedid, that
name is marked as used and associated with a new query object.

BeginQuery with a target of SAMPLESPASSEDresets the current samples-
passed count to zero and sets the query active state toTRUEand the active query
id to id. EndQuery with a target ofSAMPLESPASSEDinitializes a copy of the
current samples-passed count into the active occlusion query object’s results value,
sets the active occlusion query object’s result available toFALSE, sets the query
active state toFALSE, and the active query id to 0.

Version 2.0 - September 7, 2004



4.1. PER-FRAGMENT OPERATIONS 205

If BeginQuery is called with anid of zero, while another query is already in
progress with the sametarget, or whereid is the name of a query currently in
progress, anINVALID OPERATIONerror is generated.

If EndQuery is called while no query with the sametarget is in progress, an
INVALID OPERATIONerror is generated.

When an occlusion query is active, the samples-passed count increases by
a certain quantity for each fragment that passes the depth test. If the value of
SAMPLEBUFFERSis 0, then the samples-passed count increases by 1 for each
fragment. If the value ofSAMPLEBUFFERSis 1, then the samples-passed count
increases by the number of samples whose coverage bit is set. However, imple-
mentations, at their discretion, are allowed to instead increase the samples-passed
count by the value ofSAMPLESif any sample in the fragment is covered.

If the samples-passed count overflows, i.e., exceeds the value2n − 1 (wheren
is the number of bits in the samples-passed count), its value becomes undefined. It
is recommended, but not required, that implementations handle this overflow case
by saturating at2n − 1 and incrementing no further.

The command

void GenQueries( sizei n, uint *ids );

returnsn previously unused query object names inids. These names are marked
as used, but no object is associated with them until the first time they are used by
BeginQuery. Query objects contain one piece of state, an integer result value. This
result value is initialized to zero when the object is created. Any positive integer
except for zero (which is reserved for the GL) is a valid query object name.

Query objects are deleted by calling

void DeleteQueries( sizei n, const uint *ids );

idscontainsn names of query objects to be deleted. After a query object is deleted,
its name is again unused. Unused names inidsare silently ignored.

Calling eitherGenQueriesor DeleteQuerieswhile any query of any target is
active causes anINVALID OPERATIONerror to be generated.

The necessary state is a single bit indicating whether an occlusion query is
active, the identifier of the currently active occlusion query, and a counter keeping
track of the number of samples that have passed.

4.1.8 Blending

Blending combines the incomingsourcefragment’s R, G, B, and A values with
the destinationR, G, B, and A values stored in the framebuffer at the fragment’s
(xw, yw) location.

Version 2.0 - September 7, 2004



4.1. PER-FRAGMENT OPERATIONS 206

Source and destination values are combined according to theblend equation,
quadruplets of source and destination weighting factors determined by theblend
functions, and a constantblend colorto obtain a new set of R, G, B, and A values,
as described below. Each of these floating-point values is clamped to[0, 1] and
converted back to a fixed-point value in the manner described in section2.14.9.
The resulting four values are sent to the next operation.

Blending is dependent on the incoming fragment’s alpha value and that of the
corresponding currently stored pixel. Blending applies only in RGBA mode; in
color index mode it is bypassed. Blending is enabled or disabled usingEnable or
Disablewith the symbolic constantBLEND. If it is disabled, or if logical operation
on color values is enabled (section4.1.10), proceed to the next operation.

If multiple fragment colors are being written to multiple buffers (see sec-
tion 4.2.1), blending is computed and applied separately for each fragment color
and the corresponding buffer.

Blend Equation

Blending is controlled by theblend equations, defined by the commands

void BlendEquation( enum mode);
void BlendEquationSeparate( enum modeRGB,

enum modeAlpha);

BlendEquationSeparateargumentmodeRGBdetermines the RGB blend func-
tion while modeAlphadetermines the alpha blend equation.BlendEqua-
tion argument mode determines both the RGB and alpha blend equations.
modeRGBand modeAlphamust each be one ofFUNCADD, FUNCSUBTRACT,
FUNCREVERSESUBTRACT, MIN, MAX, or LOGIC OP.

Destination (framebuffer) components are taken to be fixed-point values rep-
resented according to the scheme in section2.14.9(Final Color Processing), as
are source (fragment) components. Constant color components are taken to be
floating-point values.

Prior to blending, each fixed-point color component undergoes an implied con-
version to floating-point. This conversion must leave the values 0 and 1 invariant.
Blending components are treated as if carried out in floating-point.

Table4.1provides the corresponding per-component blend equations for each
mode, whether acting on RGB components formodeRGBor the alpha component
for modeAlpha.

In the table, thes subscript on a color component abbreviation (R, G, B, or
A) refers to the source color component for an incoming fragment, thed subscript

Version 2.0 - September 7, 2004



4.1. PER-FRAGMENT OPERATIONS 207

Mode RGB Components Alpha Compoonent
FUNCADD Rc = Rs ∗ Sr + Rd ∗Dr Ac = As ∗ Sa + Ad ∗Da

Gc = Gs ∗ Sg + Gd ∗Dg

Bc = Bs ∗ Sb + Bd ∗Db

FUNCSUBTRACT Rc = Rs ∗ Sr −Rd ∗Dr Ac = As ∗ Sa −Ad ∗Da

Gc = Gs ∗ Sg −Gd ∗Dg

Bc = Bs ∗ Sb −Bd ∗Db

FUNCREVERSESUBTRACT Rc = Rd ∗ Sr −Rs ∗Dr Ac = Ad ∗ Sa −As ∗Da

Gc = Gd ∗ Sg −Gs ∗Dg

Bc = Bd ∗ Sb −Bs ∗Db

MIN Rc = min(Rs, Rd) Ac = min(As, Ad)
Gc = min(Gs, Gd)
Bc = min(Bs, Bd)

MAX Rc = max(Rs, Rd) Ac = max(As, Ad)
Gc = max(Gs, Gd)
Bc = max(Bs, Bd)

LOGIC OP Rc = Rs OP Rd Ac = As OP Ad

Gc = Gs OP Gd

Bc = Bs OP Bd

Table 4.1: RGB and alpha blend equations. OP denotes the logical operation spec-
ified with LogicOp (see table4.3; the same logical operation is used for both RGB
and alpha components.

on a color component abbreviation refers to the destination color component at
the corresponding framebuffer location, and thec subscript on a color component
abbreviation refers to the constant blend color component. A color component ab-
breviation without a subscript refers to the new color component resulting from
blending. Additionally,Sr, Sg, Sb, andSa are the red, green, blue, and alpha com-
ponents of the source weighting factors determined by the source blend function,
andDr, Dg, Db, andDa are the red, green, blue, and alpha components of the
destination weighting factors determined by the destination blend function. Blend
functions are described below.

Blend Functions

The weighting factors used by the blend equation are determined by the blend
functions. Blend functions are specified with the commands

Version 2.0 - September 7, 2004



4.1. PER-FRAGMENT OPERATIONS 208

Function RGB Blend Factors Alpha Blend Factor
(Sr, Sg, Sb) or (Dr, Dg, Db) Sa or Da

ZERO (0, 0, 0) 0
ONE (1, 1, 1) 1
SRCCOLOR (Rs, Gs, Bs) As

ONEMINUSSRCCOLOR (1, 1, 1)− (Rs, Gs, Bs) 1−As

DST COLOR (Rd, Gd, Bd) Ad

ONEMINUSDST COLOR (1, 1, 1)− (Rd, Gd, Bd) 1−Ad

SRCALPHA (As, As, As) As

ONEMINUSSRCALPHA (1, 1, 1)− (As, As, As) 1−As

DST ALPHA (Ad, Ad, Ad) Ad

ONEMINUSDST ALPHA (1, 1, 1)− (Ad, Ad, Ad) 1−Ad

CONSTANTCOLOR (Rc, Gc, Bc) Ac

ONEMINUSCONSTANTCOLOR (1, 1, 1)− (Rc, Gc, Bc) 1−Ac

CONSTANTALPHA (Ac, Ac, Ac) Ac

ONEMINUSCONSTANTALPHA (1, 1, 1)− (Ac, Ac, Ac) 1−Ac

SRCALPHASATURATE1 (f, f, f)2 1

Table 4.2: RGBand ALPHA source and destination blending functions and the
corresponding blend factors. Addition and subtraction of triplets is performed
component-wise.
1 SRCALPHASATURATEis valid only for source RGB and alpha blending func-
tions.
2 f = min(As, 1−Ad).

void BlendFuncSeparate( enum srcRGB, enum dstRGB,
enum srcAlpha, enum dstAlpha);

void BlendFunc( enum src, enum dst);

BlendFuncSeparateargumentssrcRGBanddstRGBdetermine the source and
destination RGB blend functions, respectively, whilesrcAlphaanddstAlphadeter-
mine the source and destination alpha blend functions.BlendFunc argumentsrc
determines both RGB and alpha source functions, whiledstdetermines both RGB
and alpha destination functions.

The possible source and destination blend functions and their corresponding
computed blend factors are summarized in table4.2.

Version 2.0 - September 7, 2004



4.1. PER-FRAGMENT OPERATIONS 209

Blend Color

The constant colorCc to be used in blending is specified with the command

void BlendColor( clampf red, clampf green, clampf blue,
clampf alpha);

The four parameters are clamped to the range[0, 1] before being stored. The
constant color can be used in both the source and destination blending functions

Blending State

The state required for blending is two integers for the RGB and alpha blend equa-
tions, four integers indicating the source and destination RGB and alpha blending
functions, four floating-point values to store the RGBA constant blend color, and a
bit indicating whether blending is enabled or disabled. The initial blend equations
for RGB and alpha are bothFUNCADD. The initial blending functions areONEfor
the source RGB and alpha functions andZEROfor the destination RGB and alpha
functions. The initial constant blend color is(R,G,B,A) = (0, 0, 0, 0). Initially,
blending is disabled.

Blending occurs once for each color buffer currently enabled for writing (sec-
tion 4.2.1) using each buffer’s color forCd. If a color buffer has no A value, then
Ad is taken to be1.

4.1.9 Dithering

Dithering selects between two color values or indices. In RGBA mode, consider
the value of any of the color components as a fixed-point value withm bits to the
left of the binary point, wherem is the number of bits allocated to that component
in the framebuffer; call each such valuec. For eachc, dithering selects a value
c1 such thatc1 ∈ {max{0, dce − 1}, dce} (after this selection, treatc1 as a fixed
point value in [0,1] withm bits). This selection may depend on thexw andyw

coordinates of the pixel. In color index mode, the same rule applies withc being a
single color index.c must not be larger than the maximum value representable in
the framebuffer for either the component or the index, as appropriate.

Many dithering algorithms are possible, but a dithered value produced by any
algorithm must depend only the incoming value and the fragment’sx andy window
coordinates. If dithering is disabled, then each color component is truncated to a
fixed-point value with as many bits as there are in the corresponding component in
the framebuffer; a color index is rounded to the nearest integer representable in the
color index portion of the framebuffer.

Version 2.0 - September 7, 2004



4.1. PER-FRAGMENT OPERATIONS 210

Dithering is enabled withEnableand disabled withDisableusing the symbolic
constantDITHER. The state required is thus a single bit. Initially, dithering is
enabled.

4.1.10 Logical Operation

Finally, a logical operation is applied between the incoming fragment’s color or
index values and the color or index values stored at the corresponding location in
the framebuffer. The result replaces the values in the framebuffer at the fragment’s
(xw, yw) coordinates. The logical operation on color indices is enabled or dis-
abled withEnableor Disableusing the symbolic constantINDEX LOGIC OP. (For
compatibility with GL version 1.0, the symbolic constantLOGIC OPmay also be
used.) The logical operation on color values is enabled or disabled withEnableor
Disableusing the symbolic constantCOLORLOGIC OP. If the logical operation is
enabled for color values, it is as if blending were disabled, regardless of the value
of BLEND. If multiple fragment colors are being written to multiple buffers (see
section4.2.1), the logical operation is computed and applied separately for each
fragment color and the corresponding buffer.

The logical operation is selected by

void LogicOp( enum op );

op is a symbolic constant; the possible constants and corresponding operations are
enumerated in table4.3. In this table,s is the value of the incoming fragment andd
is the value stored in the framebuffer. The numeric values assigned to the symbolic
constants are the same as those assigned to the corresponding symbolic values in
the X window system.

Logical operations are performed independently for each color index buffer
that is selected for writing, or for each red, green, blue, and alpha value of each
color buffer that is selected for writing. The required state is an integer indicating
the logical operation, and two bits indicating whether the logical operation is en-
abled or disabled. The initial state is for the logic operation to be given byCOPY,
and to be disabled.

4.1.11 Additional Multisample Fragment Operations

If the DrawBuffer mode isNONE, no change is made to any multisample or color
buffer. Otherwise, fragment processing is as described below.

If MULTISAMPLEis enabled, and the value ofSAMPLEBUFFERSis one, the
alpha test, stencil test, depth test, blending, and dithering operations are performed
for each pixel sample, rather than just once for each fragment. Failure of the alpha,

Version 2.0 - September 7, 2004



4.1. PER-FRAGMENT OPERATIONS 211

Argument value Operation
CLEAR 0
AND s ∧ d
ANDREVERSE s ∧ ¬d
COPY s
ANDINVERTED ¬s ∧ d
NOOP d
XOR s xor d
OR s ∨ d
NOR ¬(s ∨ d)
EQUIV ¬(s xor d)
INVERT ¬d
ORREVERSE s ∨ ¬d
COPYINVERTED ¬s
ORINVERTED ¬s ∨ d
NAND ¬(s ∧ d)
SET all 1’s

Table 4.3: Arguments toLogicOp and their corresponding operations.

stencil, or depth test results in termination of the processing of that sample, rather
than discarding of the fragment. All operations are performed on the color, depth,
and stencil values stored in the multisample buffer (to be described in a following
section). The contents of the color buffers are not modified at this point.

Stencil, depth, blending, and dithering operations are performed for a pixel
sample only if that sample’s fragment coverage bit is a value of 1. If the corre-
sponding coverage bit is 0, no operations are performed for that sample.

If MULTISAMPLEis disabled, and the value ofSAMPLEBUFFERSis one, the
fragment may be treated exactly as described above, with optimization possible
because the fragment coverage must be set to full coverage. Further optimization is
allowed, however. An implementation may choose to identify a centermost sample,
and to perform alpha, stencil, and depth tests on only that sample. Regardless of
the outcome of the stencil test, all multisample buffer stencil sample values are set
to the appropriate new stencil value. If the depth test passes, all multisample buffer
depth sample values are set to the depth of the fragment’s centermost sample’s
depth value, and all multisample buffer color sample values are set to the color
value of the incoming fragment. Otherwise, no change is made to any multisample
buffer color or depth value.

After all operations have been completed on the multisample buffer, the sample

Version 2.0 - September 7, 2004



4.2. WHOLE FRAMEBUFFER OPERATIONS 212

values for each color in the multisample buffer are combined to produce a single
color value, and that value is written into the corresponding color buffers selected
by DrawBuffer or DrawBuffers. An implementation may defer the writing of the
color buffers until a later time, but the state of the framebuffer must behave as if
the color buffers were updated as each fragment was processed. The method of
combination is not specified, though a simple average computed independently for
each color component is recommended.

4.2 Whole Framebuffer Operations

The preceding sections described the operations that occur as individual fragments
are sent to the framebuffer. This section describes operations that control or affect
the whole framebuffer.

4.2.1 Selecting a Buffer for Writing

The first such operation is controlling the color buffers into which each of the frag-
ment colors are written. This is accomplished with eitherDrawBuffer or Draw-
Buffers.

The command

void DrawBuffer ( enum buf );

defines the set of color buffers to which fragment color zero is written.buf is a
symbolic constant specifying zero, one, two, or four buffers for writing. The con-
stants areNONE, FRONTLEFT, FRONTRIGHT, BACKLEFT, BACKRIGHT, FRONT,
BACK, LEFT, RIGHT, FRONTANDBACK, andAUX0 throughAUXm, wherem + 1
is the number of available auxiliary buffers.

The constants refer to the four potentially visible buffersfront left, front right,
back left, andback right, and to theauxiliary buffers. Arguments other thanAUXi

that omit reference toLEFT or RIGHT refer to both left and right buffers. Argu-
ments other thanAUXi that omit reference toFRONTor BACKrefer to both front and
back buffers.AUXi enables drawing only toauxiliary buffer i. EachAUXi adheres
to AUXi = AUX0+ i. The constants and the buffers they indicate are summarized
in table4.4. If DrawBuffer is is supplied with a constant (other thanNONE) that
does not indicate any of the color buffers allocated to the GL context, the error
INVALID OPERATIONresults.

DrawBuffer will set the draw buffer for fragment colors other than zero to
NONE.

The command

Version 2.0 - September 7, 2004



4.2. WHOLE FRAMEBUFFER OPERATIONS 213

symbolic front front back back aux
constant left right left right i

NONE

FRONTLEFT •
FRONTRIGHT •
BACKLEFT •
BACKRIGHT •
FRONT • •
BACK • •
LEFT • •
RIGHT • •
FRONTANDBACK • • • •
AUXi •

Table 4.4: Arguments toDrawBuffer and the buffers that they indicate.

void DrawBuffers( sizei n, const enum *bufs );

defines the draw buffers to which all fragment colors are written.n specifies the
number of buffers inbufs. bufs is a pointer to an array of symbolic constants
specifying the buffer to which each fragment color is written. The constants may be
NONE, FRONTLEFT, FRONTRIGHT, BACKLEFT, BACKRIGHT, andAUX0through
AUXm, wherem+1 is the number of available auxiliary buffers. The draw buffers
being defined correspond in order to the respective fragment colors. The draw
buffer for fragment colors beyondn is set toNONE.

Except for NONE, a buffer may not appear more then once in the array
pointed to bybufs. Specifying a buffer more then once will result in the error
INVALID OPERATION.

If fixed-function fragment shading is being performed,DrawBuffers specifies
a set of draw buffers into which the fragment color is written.

If a fragment shader writes togl FragColor , DrawBuffers specifies a set
of draw buffers into which the single fragment color defined bygl FragColor

is written. If a fragment shader writes togl FragData , DrawBuffers specifies
a set of draw buffers into which each of the multiple fragment colors defined
by gl FragData are separately written. If a fragment shader writes to neither
gl FragColor nor gl FragData , the values of the fragment colors following
shader execution are undefined, and may differ for each fragment color.

The maximum number of draw buffers is implementation dependent and must
be at least 1. The number of draw buffers supported can be queried by calling

Version 2.0 - September 7, 2004



4.2. WHOLE FRAMEBUFFER OPERATIONS 214

GetIntegerv with the symbolic constantMAXDRAWBUFFERS.
The constantsFRONT, BACK, LEFT, RIGHT, and FRONTANDBACK are not

valid in the bufs array passed toDrawBuffers, and will result in the error
INVALID OPERATION. This restriction is because these constants may themselves
refer to multiple buffers, as shown in table4.4.

If DrawBuffers is supplied with a constant (other thanNONE) that does
not indicate any of the color buffers allocated to the GL context, the error
INVALID OPERATIONwill be generated. If n is greater than the value of
MAXDRAWBUFFERS, the errorINVALID VALUEwill be generated.

Indicating a buffer or buffers usingDrawBuffer or DrawBuffers causes sub-
sequent pixel color value writes to affect the indicated buffers.

SpecifyingNONEas the draw buffer for an fragment color will inhibit that frag-
ment color from being written to any buffer.

Monoscopic contexts include only left buffers, while stereoscopic contexts in-
clude both left and right buffers. Likewise, single buffered contexts include only
front buffers, while double buffered contexts include both front and back buffers.
The type of context is selected at GL initialization.

The state required to handle color buffer selection is an integer for each sup-
ported fragment color. In the initial state, the draw buffer for fragment color zero
is FRONTif there are no back buffers; otherwise it isBACK. The initial state of draw
buffers for fragment colors other then zero isNONE.

4.2.2 Fine Control of Buffer Updates

Four commands are used to mask the writing of bits to each of the logical frame-
buffers after all per-fragment operations have been performed. The commands

void IndexMask( uint mask);
void ColorMask( boolean r, boolean g, boolean b,

boolean a );

control the color buffer or buffers (depending on which buffers are currently indi-
cated for writing). The least significantn bits of mask, wheren is the number of
bits in a color index buffer, specify a mask. Where a1 appears in this mask, the
corresponding bit in the color index buffer (or buffers) is written; where a0 ap-
pears, the bit is not written. This mask applies only in color index mode. In RGBA
mode,ColorMask is used to mask the writing of R, G, B and A values to the color
buffer or buffers.r, g, b, anda indicate whether R, G, B, or A values, respectively,
are written or not (a value ofTRUEmeans that the corresponding value is written).
In the initial state, all bits (in color index mode) and all color values (in RGBA
mode) are enabled for writing.

Version 2.0 - September 7, 2004



4.2. WHOLE FRAMEBUFFER OPERATIONS 215

The depth buffer can be enabled or disabled for writingzw values using

void DepthMask( boolean mask);

If maskis non-zero, the depth buffer is enabled for writing; otherwise, it is disabled.
In the initial state, the depth buffer is enabled for writing.

The commands

void StencilMask( uint mask);
void StencilMaskSeparate( enum face, uint mask);

control the writing of particular bits into the stencil planes.
The least significants bits of maskcomprise an integer mask (s is the number

of bits in the stencil buffer), just as forIndexMask. Thefaceparameter ofStencil-
MaskSeparatecan beFRONT, BACK, or FRONTANDBACKand indicates whether
the front or back stencil mask state is affected.StencilMask sets both front and
back stencil mask state to identical values.

Fragments generated by front facing primitives use the front mask and frag-
ments generated by back facing primitives use the back mask (see section4.1.5).
The clear operation always uses the front stencil write mask when clearing the
stencil buffer.

The state required for the various masking operations is three integers and a
bit: an integer for color indices, an integer for the front and back stencil values,
and a bit for depth values. A set of four bits is also required indicating which color
components of an RGBA value should be written. In the initial state, the integer
masks are all ones, as are the bits controlling depth value and RGBA component
writing.

Fine Control of Multisample Buffer Updates

When the value ofSAMPLEBUFFERSis one,ColorMask, DepthMask, andSten-
cilMask or StencilMaskSeparatecontrol the modification of values in the mul-
tisample buffer. The color mask has no effect on modifications to the color buffers.
If the color mask is entirely disabled, the color sample values must still be com-
bined (as described above) and the result used to replace the color values of the
buffers enabled byDrawBuffer .

4.2.3 Clearing the Buffers

The GL provides a means for setting portions of every pixel in a particular buffer
to the same value. The argument to

Version 2.0 - September 7, 2004



4.2. WHOLE FRAMEBUFFER OPERATIONS 216

void Clear( bitfield buf );

is the bitwise OR of a number of values indicating which buffers are
to be cleared. The values areCOLORBUFFERBIT , DEPTHBUFFERBIT ,
STENCIL BUFFERBIT , andACCUMBUFFERBIT , indicating the buffers currently
enabled for color writing, the depth buffer, the stencil buffer, and the accumulation
buffer (see below), respectively. The value to which each buffer is cleared depends
on the setting of the clear value for that buffer. If the mask is not a bitwise OR of
the specified values, then the errorINVALID VALUEis generated.

void ClearColor( clampf r, clampf g, clampf b,
clampf a );

sets the clear value for the color buffers in RGBA mode. Each of the specified
components is clamped to[0, 1] and converted to fixed-point according to the rules
of section2.14.9.

void ClearIndex( float index);

sets the clear color index.indexis converted to a fixed-point value with unspecified
precision to the left of the binary point; the integer part of this value is then masked
with 2m − 1, wherem is the number of bits in a color index value stored in the
framebuffer.

void ClearDepth( clampd d );

takes a floating-point value that is clamped to the range[0, 1] and converted to
fixed-point according to the rules for a windowz value given in section2.11.1.
Similarly,

void ClearStencil( int s );

takes a single integer argument that is the value to which to clear the stencil buffer.
s is masked to the number of bitplanes in the stencil buffer.

void ClearAccum( float r, float g, float b, float a );

takes four floating-point arguments that are the values, in order, to which to set the
R, G, B, and A values of the accumulation buffer (see the next section). These
values are clamped to the range[−1, 1] when they are specified.

When Clear is called, the only per-fragment operations that are applied (if
enabled) are the pixel ownership test, the scissor test, and dithering. The masking

Version 2.0 - September 7, 2004



4.2. WHOLE FRAMEBUFFER OPERATIONS 217

operations described in the last section (4.2.2) are also effective. If a buffer is not
present, then aClear directed at that buffer has no effect.

The state required for clearing is a clear value for each of the color buffer, the
depth buffer, the stencil buffer, and the accumulation buffer. Initially, the RGBA
color clear value is (0,0,0,0), the clear color index is 0, and the stencil buffer and
accumulation buffer clear values are all 0. The depth buffer clear value is initially
1.0.

Clearing the Multisample Buffer

The color samples of the multisample buffer are cleared when one or more color
buffers are cleared, as specified by theClear mask bitCOLORBUFFERBIT and
theDrawBuffer mode. If theDrawBuffer mode isNONE, the color samples of the
multisample buffer cannot be cleared.

If the Clear mask bitsDEPTHBUFFERBIT or STENCIL BUFFERBIT are set,
then the corresponding depth or stencil samples, respectively, are cleared.

4.2.4 The Accumulation Buffer

Each portion of a pixel in the accumulation buffer consists of four values: one for
each of R, G, B, and A. The accumulation buffer is controlled exclusively through
the use of

void Accum( enum op, float value);

(except for clearing it).op is a symbolic constant indicating an accumulation buffer
operation, andvalue is a floating-point value to be used in that operation. The
possible operations areACCUM, LOAD, RETURN, MULT, andADD.

When the scissor test is enabled (section4.1.2), then only those pixels within
the current scissor box are updated by anyAccum operation; otherwise, all pixels
in the window are updated. The accumulation buffer operations apply identically
to every affected pixel, so we describe the effect of each operation on an individ-
ual pixel. Accumulation buffer values are taken to be signed values in the range
[−1, 1]. UsingACCUMobtains R, G, B, and A components from the buffer currently
selected for reading (section4.3.2). Each component, considered as a fixed-point
value in [0, 1]. (see section2.14.9), is converted to floating-point. Each result is
then multiplied byvalue. The results of this multiplication are then added to the
corresponding color component currently in the accumulation buffer, and the re-
sulting color value replaces the current accumulation buffer color value.

Version 2.0 - September 7, 2004



4.3. DRAWING, READING, AND COPYING PIXELS 218

The LOADoperation has the same effect asACCUM, but the computed values
replace the corresponding accumulation buffer components rather than being added
to them.

The RETURNoperation takes each color value from the accumulation buffer,
multiplies each of the R, G, B, and A components byvalue, and clamps the re-
sults to the range[0, 1] The resulting color value is placed in the buffers currently
enabled for color writing as if it were a fragment produced from rasterization, ex-
cept that the only per-fragment operations that are applied (if enabled) are the pixel
ownership test, the scissor test (section4.1.2), and dithering (section4.1.9). Color
masking (section4.2.2) is also applied.

TheMULToperation multiplies each R, G, B, and A in the accumulation buffer
by valueand then returns the scaled color components to their corresponding ac-
cumulation buffer locations.ADDis the same asMULTexcept thatvalueis added
to each of the color components.

The color components operated on byAccum must be clamped only if the
operation isRETURN. In this case, a value sent to the enabled color buffers is first
clamped to[0, 1]. Otherwise, results are undefined if the result of an operation on a
color component is out of the range[−1, 1]. If there is no accumulation buffer, or if
the GL is in color index mode,Accum generates the errorINVALID OPERATION.

No state (beyond the accumulation buffer itself) is required for accumulation
buffering.

4.3 Drawing, Reading, and Copying Pixels

Pixels may be written to and read from the framebuffer using theDrawPixels and
ReadPixelscommands.CopyPixelscan be used to copy a block of pixels from
one portion of the framebuffer to another.

4.3.1 Writing to the Stencil Buffer

The operation ofDrawPixels was described in section3.6.4, except if theformat
argument wasSTENCIL INDEX. In this case, all operations described forDraw-
Pixels take place, but window(x, y) coordinates, each with the corresponding
stencil index, are produced in lieu of fragments. Each coordinate-stencil index
pair is sent directly to the per-fragment operations, bypassing the texture, fog, and
antialiasing application stages of rasterization. Each pair is then treated as a frag-
ment for purposes of the pixel ownership and scissor tests; all other per-fragment
operations are bypassed. Finally, each stencil index is written to its indicated
location in the framebuffer, subject to the current front stencil mask (set withSten-

Version 2.0 - September 7, 2004



4.3. DRAWING, READING, AND COPYING PIXELS 219

cilMask or StencilMaskSeparate). If a depth component is present, and the set-
ting of DepthMask is notFALSE, is also written to the framebuffer; the setting of
DepthTest is ignored.

The errorINVALID OPERATIONresults if there is no stencil buffer.

4.3.2 Reading Pixels

The method for reading pixels from the framebuffer and placing them in client
memory is diagrammed in figure4.2. We describe the stages of the pixel reading
process in the order in which they occur.

Pixels are read using

void ReadPixels( int x, int y, sizei width, sizei height,
enum format, enum type, void *data );

The arguments afterx andy to ReadPixelscorrespond to those ofDrawPixels.
The pixel storage modes that apply toReadPixelsand other commands that query
images (see section6.1) are summarized in table4.5.

Obtaining Pixels from the Framebuffer

If the formatis DEPTHCOMPONENT, then values are obtained from the depth buffer.
If there is no depth buffer, the errorINVALID OPERATIONoccurs.

If there is a multisample buffer (the value ofSAMPLEBUFFERSis one), then
values are obtained from the depth samples in this buffer. It is recommended that
the depth value of the centermost sample be used, though implementations may
choose any function of the depth sample values at each pixel.

If the format is STENCIL INDEX, then values are taken from the stencil buffer;
again, if there is no stencil buffer, the errorINVALID OPERATIONoccurs.

If there is a multisample buffer, then values are obtained from the stencil sam-
ples in this buffer. It is recommended that the stencil value of the centermost sam-
ple be used, though implementations may choose any function of the stencil sample
values at each pixel.

For all other formats, the buffer from which values are obtained is one of the
color buffers; the selection of color buffer is controlled withReadBuffer.

The command

void ReadBuffer( enum src );

takes a symbolic constant as argument. The possible values areFRONTLEFT,
FRONTRIGHT, BACKLEFT, BACKRIGHT, FRONT, BACK, LEFT, RIGHT, andAUX0

Version 2.0 - September 7, 2004



4.3. DRAWING, READING, AND COPYING PIXELS 220

post
convolution

convert
to float

RGBA pixel
data in

color index pixel
data in

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

scale
and bias

Pixel Transfer
Operations

color table 
lookup

convolution 
scale a nd bias

histogram

minmax

color table 
lookup

RGBA to RGBA 
lookup

shift
and offset

index to index 
look up

index to RGBA 
looku p

color table 
lookup

color matrix
scale and bias

post
color matrix

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

pack

convert
RGB to L

clamp
to [0,1]

mask to
(2n − 1)

byte, short, int, o r float pixel
data stream (index or component)

Pixel Storage
Operations

Figure 4.2. Operation ofReadPixels. Operations in dashed boxes may be enabled
or disabled. RGBA and color index pixel paths are shown; depth and stencil pixel
paths are not shown.

Version 2.0 - September 7, 2004



4.3. DRAWING, READING, AND COPYING PIXELS 221

Parameter Name Type Initial Value Valid Range

PACKSWAPBYTES boolean FALSE TRUE/FALSE

PACKLSB FIRST boolean FALSE TRUE/FALSE

PACKROWLENGTH integer 0 [0,∞)
PACKSKIP ROWS integer 0 [0,∞)
PACKSKIP PIXELS integer 0 [0,∞)
PACKALIGNMENT integer 4 1,2,4,8
PACKIMAGEHEIGHT integer 0 [0,∞)
PACKSKIP IMAGES integer 0 [0,∞)

Table 4.5:PixelStoreparameters pertaining toReadPixels, GetColorTable, Get-
ConvolutionFilter , GetSeparableFilter, GetHistogram, GetMinmax, GetPoly-
gonStipple, andGetTexImage.

throughAUXn. FRONTandLEFT refer to the front left buffer,BACKrefers to the
back left buffer, andRIGHT refers to the front right buffer. The other constants cor-
respond directly to the buffers that they name. If the requested buffer is missing,
then the errorINVALID OPERATIONis generated. The initial setting forRead-
Buffer is FRONTif there is no back buffer andBACKotherwise.

ReadPixelsobtains values from the selected buffer from each pixel with lower
left hand corner at(x+ i, y + j) for 0 ≤ i < width and0 ≤ j < height; this pixel
is said to be theith pixel in thejth row. If any of these pixels lies outside of the
window allocated to the current GL context, the values obtained for those pixels
are undefined. Results are also undefined for individual pixels that are not owned
by the current context. Otherwise,ReadPixelsobtains values from the selected
buffer, regardless of how those values were placed there.

If the GL is in RGBA mode, andformat is one ofRED, GREEN, BLUE, ALPHA,
RGB, RGBA, BGR, BGRA, LUMINANCE, or LUMINANCEALPHA, then red, green, blue,
and alpha values are obtained from the selected buffer at each pixel location.
If the framebuffer does not support alpha values then the A that is obtained is
1.0. If format is COLORINDEX and the GL is in RGBA mode then the error
INVALID OPERATIONoccurs. If the GL is in color index mode, andformat is
not DEPTHCOMPONENTor STENCIL INDEX, then the color index is obtained at
each pixel location.

Conversion of RGBA values

This step applies only if the GL is in RGBA mode, and then only ifformat is
neitherSTENCIL INDEX norDEPTHCOMPONENT. The R, G, B, and A values form

Version 2.0 - September 7, 2004



4.3. DRAWING, READING, AND COPYING PIXELS 222

a group of elements. Each element is taken to be a fixed-point value in[0, 1] with
m bits, wherem is the number of bits in the corresponding color component of the
selected buffer (see section2.14.9).

Conversion of Depth values

This step applies only ifformat is DEPTHCOMPONENT. An element is taken to be a
fixed-point value in [0,1] withm bits, wherem is the number of bits in the depth
buffer (see section2.11.1).

Pixel Transfer Operations

This step is actually the sequence of steps that was described separately in sec-
tion 3.6.5. After the processing described in that section is completed, groups are
processed as described in the following sections.

Conversion to L

This step applies only to RGBA component groups, and only if theformatis either
LUMINANCEor LUMINANCEALPHA. A value L is computed as

L = R + G + B

whereR, G, andB are the values of the R, G, and B components. The single
computed L component replaces the R, G, and B components in the group.

Final Conversion

For an index, if thetype is not FLOAT, final conversion consists of masking the
index with the value given in table4.6; if the typeis FLOAT, then the integer index
is converted to a GL float data value.

For an RGBA color, each component is first clamped to[0, 1]. Then the
appropriate conversion formula from table4.7 is applied to the component.

Placement in Client Memory

Groups of elements are placed in memory just as they are taken from memory for
DrawPixels. That is, theith group of thejth row (corresponding to theith pixel in
thejth row) is placed in memory just where theith group of thejth row would be
taken from forDrawPixels. SeeUnpacking under section3.6.4. The only differ-
ence is that the storage mode parameters whose names begin withPACK are used
instead of those whose names begin withUNPACK. If the format is RED, GREEN,

Version 2.0 - September 7, 2004



4.3. DRAWING, READING, AND COPYING PIXELS 223

typeParameter Index Mask

UNSIGNEDBYTE 28 − 1
BITMAP 1
BYTE 27 − 1
UNSIGNEDSHORT 216 − 1
SHORT 215 − 1
UNSIGNEDINT 232 − 1
INT 231 − 1

Table 4.6: Index masks used byReadPixels. Floating point data are not masked.

BLUE, ALPHA, or LUMINANCE, only the corresponding single element is written.
Likewise if theformatis LUMINANCEALPHA, RGB, or BGR, only the corresponding
two or three elements are written. Otherwise all the elements of each group are
written.

4.3.3 Copying Pixels

CopyPixelstransfers a rectangle of pixel values from one region of the framebuffer
to another. Pixel copying is diagrammed in figure4.3.

void CopyPixels( int x, int y, sizei width, sizei height,
enum type);

typeis a symbolic constant that must be one ofCOLOR, STENCIL, or DEPTH, indi-
cating that the values to be transferred are colors, stencil values, or depth values,
respectively. The first four arguments have the same interpretation as the corre-
sponding arguments toReadPixels.

Values are obtained from the framebuffer, converted (if appropriate), then sub-
jected to the pixel transfer operations described in section3.6.5, just as ifRead-
Pixels were called with the corresponding arguments. If thetype is STENCIL

or DEPTH, then it is as if theformat for ReadPixelswere STENCIL INDEX or
DEPTHCOMPONENT, respectively. If thetypeis COLOR, then if the GL is in RGBA
mode, it is as if theformatwereRGBA, while if the GL is in color index mode, it is
as if theformatwereCOLORINDEX.

The groups of elements so obtained are then written to the framebuffer just as
if DrawPixels had been givenwidth andheight, beginning with final conversion
of elements. The effectiveformat is the same as that already described.

Version 2.0 - September 7, 2004



4.3. DRAWING, READING, AND COPYING PIXELS 224

typeParameter GL Data Type Component
Conversion Formula

UNSIGNEDBYTE ubyte c = (28 − 1)f
BYTE byte c = [(28 − 1)f − 1]/2
UNSIGNEDSHORT ushort c = (216 − 1)f
SHORT short c = [(216 − 1)f − 1]/2
UNSIGNEDINT uint c = (232 − 1)f
INT int c = [(232 − 1)f − 1]/2
FLOAT float c = f

UNSIGNEDBYTE 3 3 2 ubyte c = (2N − 1)f
UNSIGNEDBYTE 2 3 3 REV ubyte c = (2N − 1)f
UNSIGNEDSHORT5 6 5 ushort c = (2N − 1)f
UNSIGNEDSHORT5 6 5 REV ushort c = (2N − 1)f
UNSIGNEDSHORT4 4 4 4 ushort c = (2N − 1)f
UNSIGNEDSHORT4 4 4 4 REV ushort c = (2N − 1)f
UNSIGNEDSHORT5 5 5 1 ushort c = (2N − 1)f
UNSIGNEDSHORT1 5 5 5 REV ushort c = (2N − 1)f
UNSIGNEDINT 8 8 8 8 uint c = (2N − 1)f
UNSIGNEDINT 8 8 8 8 REV uint c = (2N − 1)f
UNSIGNEDINT 10 10 10 2 uint c = (2N − 1)f
UNSIGNEDINT 2 10 10 10 REV uint c = (2N − 1)f

Table 4.7: Reversed component conversions, used when component data are being
returned to client memory. Color, normal, and depth components are converted
from the internal floating-point representation (f ) to a datum of the specified GL
data type (c) using the specified equation. All arithmetic is done in the internal
floating point format. These conversions apply to component data returned by GL
query commands and to components of pixel data returned to client memory. The
equations remain the same even if the implemented ranges of the GL data types are
greater than the minimum required ranges. (See table2.2.) Equations withN as
the exponent are performed for each bitfield of the packed data type, withN set to
the number of bits in the bitfield.

Version 2.0 - September 7, 2004



4.3. DRAWING, READING, AND COPYING PIXELS 225

post
convolution

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

scale
and bias

Pixel Transfer
Operations

color table 
lookup

convolution 
scale a nd bias

histogram

minmax

color table 
lookup

RGBA to RGBA 
lookup

shift
and offset

index to index 
look up

index to RGBA 
looku p

color table 
lookup

color matrix
scale and bias

post
color matrix

convert
to float

RGBA pixel
data from framebuff er

color index pixel
data from framebuff er

color index pixel
data out

RGBA pixel
data out

clamp
to [0,1]

mask to
(2n − 1)

final
conversion

Figure 4.3. Operation ofCopyPixels. Operations in dashed boxes may be enabled
or disabled. Index-to-RGBA lookup is currently never performed. RGBA and color
index pixel paths are shown; depth and stencil pixel paths are not shown.

Version 2.0 - September 7, 2004



4.3. DRAWING, READING, AND COPYING PIXELS 226

4.3.4 Pixel Draw/Read State

The state required for pixel operations consists of the parameters that are set with
PixelStore, PixelTransfer, andPixelMap. This state has been summarized in
tables3.1, 3.2, and3.3. The current setting ofReadBuffer, an integer, is also
required, along with the current raster position (section2.13). State set withPixel-
Store is GL client state.

Version 2.0 - September 7, 2004



Chapter 5

Special Functions

This chapter describes additional GL functionality that does not fit easily into any
of the preceding chapters. This functionality consists of evaluators (used to model
curves and surfaces), selection (used to locate rendered primitives on the screen),
feedback (which returns GL results before rasterization), display lists (used to des-
ignate a group of GL commands for later execution by the GL), flushing and fin-
ishing (used to synchronize the GL command stream), and hints.

5.1 Evaluators

Evaluators provide a means to use a polynomial or rational polynomial mapping
to produce vertex, normal, and texture coordinates, and colors. The values so pro-
duced are sent on to further stages of the GL as if they had been provided directly
by the client. Transformations, lighting, primitive assembly, rasterization, and per-
pixel operations are not affected by the use of evaluators.

Consider theRk-valued polynomialp(u) defined by

p(u) =
n∑

i=0

Bn
i (u)Ri (5.1)

with Ri ∈ Rk and

Bn
i (u) =

(
n

i

)
ui(1− u)n−i,

the ith Bernstein polynomial of degreen (recall that00 ≡ 1 and
(n
0

)
≡ 1). Each

Ri is acontrol point. The relevant command is

void Map1{fd}( enum target, T u1, T u2, int stride,
int order, T points);

227



5.1. EVALUATORS 228

target k Values

MAP1VERTEX3 3 x, y, z vertex coordinates
MAP1VERTEX4 4 x, y, z, w vertex coordinates
MAP1INDEX 1 color index
MAP1COLOR4 4 R, G, B, A
MAP1NORMAL 3 x, y, z normal coordinates
MAP1TEXTURECOORD1 1 s texture coordinate
MAP1TEXTURECOORD2 2 s, t texture coordinates
MAP1TEXTURECOORD3 3 s, t, r texture coordinates
MAP1TEXTURECOORD4 4 s, t, r, q texture coordinates

Table 5.1: Values specified by thetargetto Map1. Values are given in the order in
which they are taken.

target is a symbolic constant indicating the range of the defined polynomial. Its
possible values, along with the evaluations that each indicates, are given in ta-
ble 5.1. order is equal ton + 1; The errorINVALID VALUEis generated iforder
is less than one or greater thanMAXEVAL ORDER. points is a pointer to a set of
n + 1 blocks of storage. Each block begins withk single-precision floating-point
or double-precision floating-point values, respectively. The rest of the block may
be filled with arbitrary data. Table5.1indicates howk depends ontargetand what
thek values represent in each case.

stride is the number of single- or double-precision values (as appropriate) in
each block of storage. The errorINVALID VALUE results if stride is less than
k. The order of the polynomial,order, is also the number of blocks of storage
containing control points.

u1 andu2 give two floating-point values that define the endpoints of the pre-
image of the map. When a valueu′ is presented for evaluation, the formula used
is

p′(u′) = p(
u′ − u1

u2 − u1
).

The errorINVALID VALUEresults ifu1 = u2.
Map2 is analogous toMap1, except that it describes bivariate polynomials of

the form

p(u, v) =
n∑

i=0

m∑
j=0

Bn
i (u)Bm

j (v)Rij .

The form of theMap2 command is

Version 2.0 - September 7, 2004



5.1. EVALUATORS 229

EvalMesh
EvalPoint

MapGrid Map
EvalCoord

k

l

[u1,u2]

[v1,v2]

[0,1]

[0,1]
ΣBiRiAx+b

Vertices

Normals

Texture Coordinates

Colors

Integers Reals

Figure 5.1. Map Evaluation.

void Map2{fd}( enum target, T u1, T u2, int ustride,
int uorder, T v1, T v2, int vstride, int vorder, T points);

target is a range type selected from the same group as is used forMap1, ex-
cept that the stringMAP1 is replaced withMAP2. points is a pointer to(n +
1)(m + 1) blocks of storage (uorder = n + 1 andvorder = m + 1; the er-
ror INVALID VALUE is generated if eitheruorder or vorder is less than one or
greater thanMAXEVAL ORDER). The values comprisingRij are located

(ustride)i + (vstride)j

values (either single- or double-precision floating-point, as appropriate) past the
first value pointed to bypoints. u1, u2, v1, andv2 define the pre-image rectangle
of the map; a domain point(u′, v′) is evaluated as

p′(u′, v′) = p(
u′ − u1

u2 − u1
,
v′ − v1

v2 − v1
).

The evaluation of a defined map is enabled or disabled withEnable and
Disable using the constant corresponding to the map as described above. The
evaluator map generates only coordinates for texture unitTEXTURE0. The error
INVALID VALUEresults if eitherustride or vstride is less thank, or if u1 is equal
to u2, or if v1 is equal tov2. If the value ofACTIVE TEXTUREis notTEXTURE0,
callingMap{12} generates the errorINVALID OPERATION.

Figure5.1 describes map evaluation schematically; an evaluation of enabled
maps is effected in one of two ways. The first way is to use

void EvalCoord{12}{fd}( T arg );
void EvalCoord{12}{fd}v( T arg );

Version 2.0 - September 7, 2004



5.1. EVALUATORS 230

EvalCoord1 causes evaluation of the enabled one-dimensional maps. The argu-
ment is the value (or a pointer to the value) that is the domain coordinate,u′. Eval-
Coord2 causes evaluation of the enabled two-dimensional maps. The two values
specify the two domain coordinates,u′ andv′, in that order.

When one of theEvalCoord commands is issued, all currently enabled maps
of the indicated dimension are evaluated. Then, for each enabled map, it is as if a
corresponding GL command were issued with the resulting coordinates, with one
important difference. The difference is that when an evaluation is performed, the
GL uses evaluated values instead of current values for those evaluations that are
enabled (otherwise, the current values are used). The order of the effective com-
mands is immaterial, except thatVertex (for vertex coordinate evaluation) must be
issued last. Use of evaluators has no effect on the current color, normal, or texture
coordinates. IfColorMaterial is enabled, evaluated color values affect the result
of the lighting equation as if the current color was being modified, but no change
is made to the tracking lighting parameters or to the current color.

No command is effectively issued if the corresponding map (of the indicated
dimension) is not enabled. If more than one evaluation is enabled for a particu-
lar dimension (e.g.MAP1TEXTURECOORD1 andMAP1TEXTURECOORD2), then
only the result of the evaluation of the map with the highest number of coordinates
is used.

Finally, if eitherMAP2VERTEX3 or MAP2VERTEX4 is enabled, then the nor-
mal to the surface is computed. Analytic computation, which sometimes yields
normals of length zero, is one method which may be used. If automatic normal
generation is enabled, then this computed normal is used as the normal associated
with a generated vertex. Automatic normal generation is controlled withEnable
andDisablewith the symbolic constantAUTONORMAL. If automatic normal gener-
ation is disabled, then a corresponding normal map, if enabled, is used to produce
a normal. If neither automatic normal generation nor a normal map are enabled,
then no normal is sent with a vertex resulting from an evaluation (the effect is that
the current normal is used).

For MAPVERTEX3, letq = p. ForMAPVERTEX4, letq = (x/w, y/w, z/w),
where(x, y, z, w) = p. Then let

m =
∂q
∂u
× ∂q

∂v
.

Then the generated analytic normal,n, is given byn = m if a vertex shader is
active, or else byn = m

‖m‖ .
The second way to carry out evaluations is to use a set of commands that pro-

vide for efficient specification of a series of evenly spaced values to be mapped.
This method proceeds in two steps. The first step is to define a grid in the domain.

Version 2.0 - September 7, 2004



5.1. EVALUATORS 231

This is done using

void MapGrid1 {fd}( int n, T u′1, T u′2 );

for a one-dimensional map or

void MapGrid2 {fd}( int nu, T u′1, T u′2, int nv, T v′1,
T v′2 );

for a two-dimensional map. In the case ofMapGrid1 u′1 and u′2 describe an
interval, while n describes the number of partitions of the interval. The error
INVALID VALUE results ifn ≤ 0. For MapGrid2 , (u′1, v

′
1) specifies one two-

dimensional point and(u′2, v
′
2) specifies another.nu gives the number of partitions

betweenu′1 andu′2, andnv gives the number of partitions betweenv′1 andv′2. If
eithernu ≤ 0 or nv ≤ 0, then the errorINVALID VALUEoccurs.

Once a grid is defined, an evaluation on a rectangular subset of that grid may
be carried out by calling

void EvalMesh1( enum mode, int p1, int p2 );

modeis eitherPOINT or LINE . The effect is the same as performing the following
code fragment, with∆u′ = (u′2 − u′1)/n:

Begin( type);
for i = p1 to p2 step1.0

EvalCoord1( i * ∆u′ + u′1);
End();

whereEvalCoord1f or EvalCoord1d is substituted forEvalCoord1 as appro-
priate. If modeis POINT, then type is POINTS; if modeis LINE , then type is
LINE STRIP. The one requirement is that if eitheri = 0 or i = n, then the value
computed fromi ∗∆u′ + u′1 is preciselyu′1 or u′2, respectively.

The corresponding commands for two-dimensional maps are

void EvalMesh2( enum mode, int p1, int p2, int q1,
int q2 );

modemust beFILL , LINE , or POINT. Whenmodeis FILL , then these commands
are equivalent to the following, with∆u′ = (u′2−u′1)/n and∆v′ = (v′2− v′1)/m:

Version 2.0 - September 7, 2004



5.1. EVALUATORS 232

for i = q1 to q2 − 1 step1.0
Begin(QUADSTRIP);

for j = p1 to p2 step1.0
EvalCoord2( j * ∆u′ + u′1 , i * ∆v′ + v′1);
EvalCoord2( j * ∆u′ + u′1 , (i + 1) * ∆v′ + v′1);

End();

If modeis LINE , then a call toEvalMesh2 is equivalent to

for i = q1 to q2 step1.0
Begin(LINE STRIP);
for j = p1 to p2 step1.0

EvalCoord2( j * ∆u′ + u′1 , i * ∆v′ + v′1);
End(); ;

for i = p1 to p2 step1.0
Begin(LINE STRIP);
for j = q1 to q2 step1.0

EvalCoord2( i * ∆u′ + u′1 , j * ∆v′ + v′1);
End();

If modeis POINT, then a call toEvalMesh2 is equivalent to

Begin(POINTS);
for i = q1 to q2 step1.0

for j = p1 to p2 step1.0
EvalCoord2( j * ∆u′ + u′1 , i * ∆v′ + v′1);

End();

Again, in all three cases, there is the requirement that0∗∆u′+u′1 = u′1, n∗∆u′+
u′1 = u′2, 0 ∗∆v′ + v′1 = v′1, andm ∗∆v′ + v′1 = v′2.

An evaluation of a single point on the grid may also be carried out:

void EvalPoint1( int p );

Calling it is equivalent to the command

EvalCoord1( p * ∆u′ + u′1);

with ∆u′ andu′1 defined as above.

void EvalPoint2( int p, int q );

is equivalent to the command

Version 2.0 - September 7, 2004



5.2. SELECTION 233

EvalCoord2( p * ∆u′ + u′1 , q * ∆v′ + v′1);

The state required for evaluators potentially consists of 9 one-dimensional map
specifications and 9 two-dimensional map specifications, as well as corresponding
flags for each specification indicating which are enabled. Each map specification
consists of one or two orders, an appropriately sized array of control points, and a
set of two values (for a one-dimensional map) or four values (for a two-dimensional
map) to describe the domain. The maximum possible order, for eitheru or v, is
implementation dependent (one maximum applies to bothu andv), but must be at
least 8. Each control point consists of between one and four floating-point values
(depending on the type of the map). Initially, all maps have order 1 (making them
constant maps). All vertex coordinate maps produce the coordinates(0, 0, 0, 1)
(or the appropriate subset); all normal coordinate maps produce(0, 0, 1); RGBA
maps produce(1, 1, 1, 1); color index maps produce 1.0; and texture coordinate
maps produce(0, 0, 0, 1). In the initial state, all maps are disabled. A flag indi-
cates whether or not automatic normal generation is enabled for two-dimensional
maps. In the initial state, automatic normal generation is disabled. Also required
are two floating-point values and an integer number of grid divisions for the one-
dimensional grid specification and four floating-point values and two integer grid
divisions for the two-dimensional grid specification. In the initial state, the bounds
of the domain interval for 1-D is0 and1.0, respectively; for 2-D, they are(0, 0)
and (1.0, 1.0), respectively. The number of grid divisions is 1 for 1-D and 1 in
both directions for 2-D. If any evaluation command is issued when no vertex map
is enabled for the map dimension being evaluated, nothing happens.

5.2 Selection

Selection is used to determine which primitives are drawn into some region of a
window. The region is defined by the current model-view and perspective matrices.

Selection works by returning an array of integer-valuednames. This array
represents the current contents of thename stack. This stack is controlled with the
commands

void InitNames( void );
void PopName( void );
void PushName( uint name);
void LoadName( uint name);

InitNames empties (clears) the name stack.PopNamepops one name off the top
of the name stack.PushNamecausesnameto be pushed onto the name stack.

Version 2.0 - September 7, 2004



5.2. SELECTION 234

LoadNamereplaces the value on the top of the stack withname. Loading a name
onto an empty stack generates the errorINVALID OPERATION. Popping a name off
of an empty stack generatesSTACKUNDERFLOW; pushing a name onto a full stack
generatesSTACKOVERFLOW. The maximum allowable depth of the name stack is
implementation dependent but must be at least 64.

In selection mode, framebuffer updates as described in chapter4 are not per-
formed. The GL is placed in selection mode with

int RenderMode( enum mode);

modeis a symbolic constant: one ofRENDER, SELECT, or FEEDBACK. RENDERis
the default, corresponding to rendering as described until now.SELECTspecifies
selection mode, andFEEDBACKspecifies feedback mode (described below). Use
of any of the name stack manipulation commands while the GL is not in selection
mode has no effect.

Selection is controlled using

void SelectBuffer( sizei n, uint *buffer );

buffer is a pointer to an array of unsigned integers (called the selection array) to be
potentially filled with names, andn is an integer indicating the maximum number
of values that can be stored in that array. Placing the GL in selection mode before
SelectBufferhas been called results in an error ofINVALID OPERATIONas does
callingSelectBufferwhile in selection mode.

In selection mode, if a point, line, polygon, or the valid coordinates produced
by aRasterPoscommand intersects the clip volume (section2.12) then this prim-
itive (or RasterPoscommand) causes a selectionhit. WindowPoscommands al-
ways generate a selection hit, since the resulting raster position is always valid.
In the case of polygons, no hit occurs if the polygon would have been culled, but
selection is based on the polygon itself, regardless of the setting ofPolygonMode.
When in selection mode, whenever a name stack manipulation command is exe-
cuted orRenderModeis called and there has been a hit since the last time the stack
was manipulated orRenderModewas called, then ahit record is written into the
selection array.

A hit record consists of the following items in order: a non-negative integer
giving the number of elements on the name stack at the time of the hit, a minimum
depth value, a maximum depth value, and the name stack with the bottommost el-
ement first. The minimum and maximum depth values are the minimum and max-
imum taken over all the window coordinatez values of each (post-clipping) vertex
of each primitive that intersects the clipping volume since the last hit record was

Version 2.0 - September 7, 2004



5.3. FEEDBACK 235

written. The minimum and maximum (each of which lies in the range[0, 1]) are
each multiplied by232−1 and rounded to the nearest unsigned integer to obtain the
values that are placed in the hit record. No depth offset arithmetic (section3.5.5)
is performed on these values.

Hit records are placed in the selection array by maintaining a pointer into that
array. When selection mode is entered, the pointer is initialized to the beginning
of the array. Each time a hit record is copied, the pointer is updated to point at
the array element after the one into which the topmost element of the name stack
was stored. If copying the hit record into the selection array would cause the total
number of values to exceedn, then as much of the record as fits in the array is
written and an overflow flag is set.

Selection mode is exited by callingRenderModewith an argument value other
thanSELECT. When called while in selection mode,RenderMode returns the
number of hit records copied into the selection array and resets theSelectBuffer
pointer to its last specified value. Values are not guaranteed to be written into the
selection array untilRenderMode is called. If the selection array overflow flag
was set, thenRenderMode returns−1 and clears the overflow flag. The name
stack is cleared and the stack pointer reset wheneverRenderMode is called.

The state required for selection consists of the address of the selection array
and its maximum size, the name stack and its associated pointer, a minimum and
maximum depth value, and several flags. One flag indicates the currentRender-
Mode value. In the initial state, the GL is in theRENDERmode. Another flag is
used to indicate whether or not a hit has occurred since the last name stack ma-
nipulation. This flag is reset upon entering selection mode and whenever a name
stack manipulation takes place. One final flag is required to indicate whether the
maximum number of copied names would have been exceeded. This flag is reset
upon entering selection mode. This flag, the address of the selection array, and its
maximum size are GL client state.

5.3 Feedback

The GL is placed in feedback mode by callingRenderMode with FEEDBACK.
When in feedback mode, framebuffer updates as described in chapter4 are not
performed. Instead, information about primitives that would have otherwise been
rasterized is returned to the application via thefeedback buffer.

Feedback is controlled using

void FeedbackBuffer( sizei n, enum type, float *buffer );

Version 2.0 - September 7, 2004



5.3. FEEDBACK 236

bufferis a pointer to an array of floating-point values into which feedback informa-
tion will be placed, andn is a number indicating the maximum number of values
that can be written to that array.typeis a symbolic constant describing the informa-
tion to be fed back for each vertex (see figure5.2). The errorINVALID OPERATION

results if the GL is placed in feedback mode before a call toFeedbackBufferhas
been made, or if a call toFeedbackBuffer is made while in feedback mode.

While in feedback mode, each primitive that would be rasterized (or bitmap
or call to DrawPixels or CopyPixels, if the raster position is valid) generates a
block of values that get copied into the feedback array. If doing so would cause
the number of entries to exceed the maximum, the block is partially written so as
to fill the array (if there is any room left at all). The first block of values gener-
ated after the GL enters feedback mode is placed at the beginning of the feedback
array, with subsequent blocks following. Each block begins with a code indicat-
ing the primitive type, followed by values that describe the primitive’s vertices and
associated data. Entries are also written for bitmaps and pixel rectangles. Feed-
back occurs after polygon culling (section3.5.1) andPolygonModeinterpretation
of polygons (section3.5.4) has taken place. It may also occur after polygons with
more than three edges are broken up into triangles (if the GL implementation ren-
ders polygons by performing this decomposition).x, y, andz coordinates returned
by feedback are window coordinates; ifw is returned, it is in clip coordinates. No
depth offset arithmetic (section3.5.5) is performed on thez values. In the case
of bitmaps and pixel rectangles, the coordinates returned are those of the current
raster position.

The texture coordinates and colors returned are those resulting from the clip-
ping operations described in section2.14.8. Only coordinates for texture unit
TEXTURE0are returned even for implementations which support multiple texture
units. The colors returned are the primary colors.

The ordering rules for GL command interpretation also apply in feedback
mode. Each command must be fully interpreted and its effects on both GL state
and the values to be written to the feedback buffer completed before a subsequent
command may be executed.

Feedback mode is exited by callingRenderMode with an argument value
other thanFEEDBACK. When called while in feedback mode,RenderModereturns
the number of values placed in the feedback array and resets the feedback array
pointer to bebuffer. The return value never exceeds the maximum number of
values passed toFeedbackBuffer.

If writing a value to the feedback buffer would cause more values to be written
than the specified maximum number of values, then the value is not written and an
overflow flag is set. In this case,RenderMode returns−1 when it is called, after
which the overflow flag is reset. While in feedback mode, values are not guaranteed

Version 2.0 - September 7, 2004



5.4. DISPLAY LISTS 237

Type coordinates color texture total values

2D x, y – – 2
3D x, y, z – – 3

3D COLOR x, y, z k – 3 + k

3D COLORTEXTURE x, y, z k 4 7 + k

4D COLORTEXTURE x, y, z, w k 4 8 + k

Table 5.2: Correspondence of feedback type to number of values per vertex.k is 1
in color index mode and4 in RGBA mode.

to be written into the feedback buffer beforeRenderMode is called.
Figure5.2gives a grammar for the array produced by feedback. Each primitive

is indicated with a unique identifying value followed by some number of vertices.
A vertex is fed back as some number of floating-point values determined by the
feedbacktype. Table5.2 gives the correspondence between feedbackbuffer and
the number of values returned for each vertex.

The command

void PassThrough( float token);

may be used as a marker in feedback mode.tokenis returned as if it were a prim-
itive; it is indicated with its own unique identifying value. The ordering of any
PassThroughcommands with respect to primitive specification is maintained by
feedback.PassThroughmay not occur betweenBegin andEnd. It has no effect
when the GL is not in feedback mode.

The state required for feedback is the pointer to the feedback array, the maxi-
mum number of values that may be placed there, and the feedbacktype. An over-
flow flag is required to indicate whether the maximum allowable number of feed-
back values has been written; initially this flag is cleared. These state variables are
GL client state. Feedback also relies on the same mode flag as selection to indicate
whether the GL is in feedback, selection, or normal rendering mode.

5.4 Display Lists

A display list is simply a group of GL commands and arguments that has been
stored for subsequent execution. The GL may be instructed to process a particular
display list (possibly repeatedly) by providing a number that uniquely specifies it.
Doing so causes the commands within the list to be executed just as if they were
given normally. The only exception pertains to commands that rely upon client

Version 2.0 - September 7, 2004



5.4. DISPLAY LISTS 238

feedback-list:
feedback-item feedback-list
feedback-item

feedback-item:
point
line-segment
polygon
bitmap
pixel-rectangle
passthrough

point:
POINT TOKENvertex

line-segment:
LINE TOKENvertex vertex
LINE RESETTOKENvertex vertex

polygon:
POLYGONTOKENn polygon-spec

polygon-spec:
polygon-spec vertex
vertex vertex vertex

bitmap:
BITMAP TOKENvertex

pixel-rectangle:
DRAWPIXEL TOKENvertex
COPYPIXEL TOKENvertex

passthrough:
PASSTHROUGHTOKENf

vertex:
2D:

f f
3D:

f f f
3D COLOR:

f f f color
3D COLORTEXTURE:

f f f color tex
4D COLORTEXTURE:

f f f f color tex

color:
f f f f
f

tex:
f f f f

Figure 5.2: Feedback syntax.f is a floating-point number.n is a floating-point in-
teger giving the number of vertices in a polygon. The symbols ending withTOKEN
are symbolic floating-point constants. The labels under the “vertex” rule show the
different data returned for vertices depending on the feedbacktype. LINE TOKEN

andLINE RESETTOKENare identical except that the latter is returned only when
the line stipple is reset for that line segment.

Version 2.0 - September 7, 2004



5.4. DISPLAY LISTS 239

state. When such a command is accumulated into the display list (that is, when
issued, not when executed), the client state in effect at that time applies to the com-
mand. Only server state is affected when the command is executed. As always,
pointers which are passed as arguments to commands are dereferenced when the
command is issued. (Vertex array pointers are dereferenced when the commands
ArrayElement , DrawArrays , DrawElements, or DrawRangeElementsare ac-
cumulated into a display list.)

A display list is begun by calling

void NewList( uint n, enum mode);

n is a positive integer to which the display list that follows is assigned, andmodeis a
symbolic constant that controls the behavior of the GL during display list creation.
If modeis COMPILE, then commands are not executed as they are placed in the
display list. If modeis COMPILEANDEXECUTEthen commands are executed as
they are encountered, then placed in the display list. Ifn = 0, then the error
INVALID VALUEis generated.

After calling NewList all subsequent GL commands are placed in the display
list (in the order the commands are issued) until a call to

void EndList ( void );

occurs, after which the GL returns to its normal command execution state. It is
only whenEndList occurs that the specified display list is actually associated with
the index indicated withNewList. The errorINVALID OPERATIONis generated
if EndList is called without a previous matchingNewList, or if NewList is called
a second time before callingEndList . The errorOUTOF MEMORYis generated if
EndList is called and the specified display list cannot be stored because insufficient
memory is available. In this case GL implementations of revision 1.1 or greater
insure that no change is made to the previous contents of the display list, if any,
and that no other change is made to the GL state, except for the state changed by
execution of GL commands when the display list mode isCOMPILEANDEXECUTE.

Once defined, a display list is executed by calling

void CallList ( uint n );

n gives the index of the display list to be called. This causes the commands saved
in the display list to be executed, in order, just as if they were issued without using
a display list. Ifn = 0, then the errorINVALID VALUEis generated.

The command

Version 2.0 - September 7, 2004



5.4. DISPLAY LISTS 240

void CallLists( sizei n, enum type, void *lists );

provides an efficient means for executing a number of display lists.n is an in-
teger indicating the number of display lists to be called, andlists is a pointer
that points to an array of offsets. Each offset is constructed as determined by
lists as follows. First,typemay be one of the constantsBYTE, UNSIGNEDBYTE,
SHORT, UNSIGNEDSHORT, INT , UNSIGNEDINT , or FLOATindicating that the ar-
ray pointed to bylists is an array of bytes, unsigned bytes, shorts, unsigned shorts,
integers, unsigned integers, or floats, respectively. In this case each offset is found
by simply converting each array element to an integer (floating point values are
truncated). Further,typemay be one of2 BYTES, 3 BYTES, or 4 BYTES, indicat-
ing that the array contains sequences of 2, 3, or 4 unsigned bytes, in which case
each integer offset is constructed according to the following algorithm:

offset← 0
for i = 1 to b

offset← offset shifted left 8 bits
offset← offset + byte
advance to nextbytein the array

b is 2, 3, or 4, as indicated bytype. If n = 0, CallLists does nothing.
Each of then constructed offsets is taken in order and added to a display list

base to obtain a display list number. For each number, the indicated display list is
executed. The base is set by calling

void ListBase( uint base);

to specify the offset.
Indicating a display list index that does not correspond to any display list has no

effect.CallList or CallLists may appear inside a display list. (If themodesupplied
to NewList is COMPILEANDEXECUTE, then the appropriate lists are executed,
but theCallList or CallLists, rather than those lists’ constituent commands, is
placed in the list under construction.) To avoid the possibility of infinite recursion
resulting from display lists calling one another, an implementation dependent limit
is placed on the nesting level of display lists during display list execution. This
limit must be at least64.

Two commands are provided to manage display list indices.

uint GenLists( sizei s );

returns an integern such that the indicesn, . . . , n+s−1 are previously unused (i.e.
there ares previously unused display list indices starting atn). GenLists also has

Version 2.0 - September 7, 2004



5.4. DISPLAY LISTS 241

the effect of creating an empty display list for each of the indicesn, . . . , n+ s− 1,
so that these indices all become used.GenLists returns 0 if there is no group ofs
contiguous previously unused display list indices, or ifs = 0.

boolean IsList ( uint list );

returnsTRUEif list is the index of some display list.
A contiguous group of display lists may be deleted by calling

void DeleteLists( uint list, sizei range);

wherelist is the index of the first display list to be deleted andrangeis the number
of display lists to be deleted. All information about the display lists is lost, and the
indices become unused. Indices to which no display list corresponds are ignored.
If range = 0, nothing happens.

Certain commands, when called while compiling a display list, are not com-
piled into the display list but are executed immediately. These commands fall in
several categories including

Display lists: GenListsandDeleteLists.
Render modes: FeedbackBuffer, SelectBuffer, andRenderMode.
Vertex arrays: ClientActiveTexture, ColorPointer, EdgeFlagPointer, Fog-

CoordPointer, IndexPointer, InterleavedArrays, NormalPointer, Secondary-
ColorPointer, TexCoordPointer, VertexAttribPointer , andVertexPointer.

Client state: EnableClientState, DisableClientState, EnableVertexAttrib-
Array , DisableVertexAttribArray , PushClientAttrib , andPopClientAttrib .

Pixels and textures:PixelStore, ReadPixels, GenTextures, DeleteTextures,
andAreTexturesResident.

Occlusion queries:GenQueriesandDeleteQueries.
Vertex buffer objects:GenBuffers, DeleteBuffers, BindBuffer , BufferData,

BufferSubData, MapBuffer , andUnmapBuffer.
Program and shader objects: CreateProgram, CreateShader, DeletePro-

gram, DeleteShader, AttachShader, DetachShader, BindAttribLocation ,
CompileShader, ShaderSource, LinkProgram , andValidateProgram.

GL command stream management:Finish andFlush.
Other queries:All query commands whose names begin withGet andIs (see

chapter6).
GL commands that source data from buffer objects dereference the buffer ob-

ject data in question at display list compile time, rather than encoding the buffer
ID and buffer offset into the display list. Only GL commands that are executed
immediately, rather than being compiled into a display list, are permitted to use a
buffer object as a data sink.

Version 2.0 - September 7, 2004



5.5. FLUSH AND FINISH 242

TexImage3D, TexImage2D, TexImage1D, Histogram, and Col-
orTable are executed immediately when called with the correspond-
ing proxy arguments PROXYTEXTURE3D; PROXYTEXTURE2D or
PROXYTEXTURECUBEMAP; PROXYTEXTURE1D; PROXYHISTOGRAM;
and PROXYCOLORTABLE, PROXYPOSTCONVOLUTIONCOLORTABLE, or
PROXYPOSTCOLORMATRIX COLORTABLE.

When a program object is in use, a display list may be executed whose vertex
attribute calls do not match up exactly with what is expected by the vertex shader
contained in that program object. Handling of this mismatch is described in sec-
tion 2.15.3.

Display lists require one bit of state to indicate whether a GL command should
be executed immediately or placed in a display list. In the initial state, commands
are executed immediately. If the bit indicates display list creation, an index is
required to indicate the current display list being defined. Another bit indicates,
during display list creation, whether or not commands should be executed as they
are compiled into the display list. One integer is required for the currentListBase
setting; its initial value is zero. Finally, state must be maintained to indicate which
integers are currently in use as display list indices. In the initial state, no indices
are in use.

5.5 Flush and Finish

The command

void Flush( void );

indicates that all commands that have previously been sent to the GL must complete
in finite time.

The command

void Finish( void );

forces all previous GL commands to complete.Finish does not return until all
effects from previously issued commands on GL client and server state and the
framebuffer are fully realized.

5.6 Hints

Certain aspects of GL behavior, when there is room for variation, may be controlled
with hints. A hint is specified using

Version 2.0 - September 7, 2004



5.6. HINTS 243

Target Hint description

PERSPECTIVECORRECTIONHINT Quality of parameter interpolation
POINT SMOOTHHINT Point sampling quality
LINE SMOOTHHINT Line sampling quality
POLYGONSMOOTHHINT Polygon sampling quality
FOGHINT Fog quality

(calculated per-pixel or per-vertex)
GENERATEMIPMAPHINT Quality and performance of

automatic mipmap level generation
TEXTURECOMPRESSIONHINT Quality and performance of

texture image compression
FRAGMENTSHADERDERIVATIVE HINT Derivative accuracy for fragment

processing built-in functions
dFdx , dFdy andfwidth

Table 5.3: Hint targets and descriptions.

void Hint ( enum target, enum hint );

target is a symbolic constant indicating the behavior to be controlled, andhint is
a symbolic constant indicating what type of behavior is desired. The possible
targetsare described in table5.3; for eachtarget, hint must be one ofFASTEST,
indicating that the most efficient option should be chosen;NICEST, indicating that
the highest quality option should be chosen; andDONTCARE, indicating no prefer-
ence in the matter.

For the texture compression hint, ahint of FASTESTindicates that texture im-
ages should be compressed as quickly as possible, whileNICEST indicates that
the texture images be compressed with as little image degradation as possible.
FASTESTshould be used for one-time texture compression, andNICEST should
be used if the compression results are to be retrieved byGetCompressedTexIm-
age(section6.1.4) for reuse.

The interpretation of hints is implementation dependent. An implementation
may ignore them entirely.

The initial value of all hints isDONTCARE.

Version 2.0 - September 7, 2004



Chapter 6

State and State Requests

The state required to describe the GL machine is enumerated in section6.2. Most
state is set through the calls described in previous chapters, and can be queried
using the calls described in section6.1.

6.1 Querying GL State

6.1.1 Simple Queries

Much of the GL state is completely identified by symbolic constants. The values
of these state variables can be obtained using a set ofGet commands. There are
four commands for obtaining simple state variables:

void GetBooleanv( enum value, boolean *data );
void GetIntegerv( enum value, int *data );
void GetFloatv( enum value, float *data );
void GetDoublev( enum value, double *data );

The commands obtain boolean, integer, floating-point, or double-precision state
variables.valueis a symbolic constant indicating the state variable to return.data
is a pointer to a scalar or array of the indicated type in which to place the returned
data. In addition

boolean IsEnabled( enum value);

can be used to determine ifvalueis currently enabled (as withEnable) or disabled.

244



6.1. QUERYING GL STATE 245

6.1.2 Data Conversions

If a Get command is issued that returns value types different from the type of the
value being obtained, a type conversion is performed. IfGetBooleanvis called,
a floating-point or integer value converts toFALSE if and only if it is zero (oth-
erwise it converts toTRUE). If GetIntegerv (or any of theGet commands below)
is called, a boolean value is interpreted as either1 or 0, and a floating-point value
is rounded to the nearest integer, unless the value is an RGBA color component,
a DepthRangevalue, a depth buffer clear value, or a normal coordinate. In these
cases, theGet command converts the floating-point value to an integer according
the INT entry of table4.7; a value not in[−1, 1] converts to an undefined value.
If GetFloatv is called, a boolean value is interpreted as either1.0 or 0.0, an in-
teger is coerced to floating-point, and a double-precision floating-point value is
converted to single-precision. Analogous conversions are carried out in the case of
GetDoublev. If a value is so large in magnitude that it cannot be represented with
the requested type, then the nearest value representable using the requested type is
returned.

Unless otherwise indicated, multi-valued state variables return their multiple
values in the same order as they are given as arguments to the commands that set
them. For instance, the twoDepthRangeparameters are returned in the ordern
followed by f. Similarly, points for evaluator maps are returned in the order that
they appeared when passed toMap1. Map2 returnsRij in the [(uorder)i + j]th
block of values (see page228for i, j, uorder, andRij).

Matrices may be queried and returned in transposed form by callingGet-
Booleanv, GetIntegerv, GetFloatv, and GetDoublev with pname set to
one of TRANSPOSEMODELVIEWMATRIX, TRANSPOSEPROJECTIONMATRIX,
TRANSPOSETEXTUREMATRIX, or TRANSPOSECOLORMATRIX. The effect of

GetFloatv( TRANSPOSEMODELVIEWMATRIX, m);

is the same as the effect of the command sequence

GetFloatv( MODELVIEWMATRIX, m);
m = mT ;

Similar conversions occur when queryingTRANSPOSEPROJECTIONMATRIX,
TRANSPOSETEXTUREMATRIX, andTRANSPOSECOLORMATRIX.

Most texture state variables are qualified by the value ofACTIVE TEXTURE

to determine which server texture state vector is queried. Client texture
state variables such as texture coordinate array pointers are qualified by
the value of CLIENT ACTIVE TEXTURE. Tables 6.5, 6.6, 6.9, 6.15, 6.18,

Version 2.0 - September 7, 2004



6.1. QUERYING GL STATE 246

and6.33 indicate those state variables which are qualified byACTIVE TEXTURE

or CLIENT ACTIVE TEXTURE during state queries. Queries
of texture state variables corresponding to texture coordinate processing
units (namely, TexGen state and enables, and matrices) will generate an
INVALID OPERATIONerror if the value ofACTIVE TEXTUREis greater than or
equal toMAXTEXTURECOORDS. All other texture state queries will result in an
INVALID OPERATIONerror if the value ofACTIVE TEXTUREis greater than or
equal toMAXCOMBINEDTEXTUREIMAGEUNITS.

6.1.3 Enumerated Queries

Other commands exist to obtain state variables that are identified by a category
(clip plane, light, material, etc.) as well as a symbolic constant. These are

void GetClipPlane( enum plane, double eqn[4] );
void GetLight{if}v( enum light, enum value, T data);
void GetMaterial{if}v( enum face, enum value, T data);
void GetTexEnv{if}v( enum env, enum value, T data);
void GetTexGen{ifd}v( enum coord, enum value, T data);
void GetTexParameter{if}v( enum target, enum value,

T data);
void GetTexLevelParameter{if}v( enum target, int lod,

enum value, T data);
void GetPixelMap{ui us f}v( enum map, T data);
void GetMap{ifd}v( enum map, enum value, T data);
void GetBufferParameteriv( enum target, enum value,

T data);

GetClipPlane always returns four double-precision values ineqn; these are the
coefficients of the plane equation ofplane in eye coordinates (these coordinates
are those that were computed when the plane was specified).

GetLight places information aboutvalue(a symbolic constant) forlight (also a
symbolic constant) indata. POSITION or SPOTDIRECTION returns values in eye
coordinates (again, these are the coordinates that were computed when the position
or direction was specified).

GetMaterial , GetTexGen, GetTexEnv, GetTexParameter, andGetBuffer-
Parameter are similar toGetLight , placing information aboutvalue for the tar-
get indicated by their first argument intodata. The face argument toGetMa-
terial must be eitherFRONTor BACK, indicating the front or back material, re-
spectively. Theenv argument toGetTexEnv must be eitherTEXTUREENV or

Version 2.0 - September 7, 2004



6.1. QUERYING GL STATE 247

TEXTUREFILTER CONTROL. Thecoordargument toGetTexGenmust be one of
S, T, R, or Q. For GetTexGen, EYE LINEAR coefficients are returned in the eye
coordinates that were computed when the plane was specified;OBJECTLINEAR

coefficients are returned in object coordinates.
GetTexParameter

parametertarget may be one ofTEXTURE1D, TEXTURE2D, TEXTURE3D, or
TEXTURECUBEMAP, indicating the currently bound one-, two-, three-dimensional,
or cube map texture object.GetTexLevelParameterparametertargetmay be one
of TEXTURE1D, TEXTURE2D, TEXTURE3D, TEXTURECUBEMAPPOSITIVE X,
TEXTURECUBEMAPNEGATIVEX, TEXTURECUBEMAPPOSITIVE Y,
TEXTURECUBEMAPNEGATIVEY, TEXTURECUBEMAPPOSITIVE Z,
TEXTURECUBEMAPNEGATIVEZ, PROXYTEXTURE1D, PROXYTEXTURE2D,
PROXYTEXTURE3D, or PROXYTEXTURECUBEMAP, indicating the one-, two-, or
three-dimensional texture object, or one of the six distinct 2D images making up
the cube map texture object or one-, two-, three-dimensional, or cube map proxy
state vector. Note thatTEXTURECUBEMAPis not a validtarget parameter for
GetTexLevelParameter, because it does not specify a particular cube map face.
value is a symbolic value indicating which texture parameter is to be obtained.
For GetTexParameter, valuemust be eitherTEXTURERESIDENT, or one of the
symbolic values in table3.19. The lod argument toGetTexLevelParameterde-
termines which level-of-detail’s state is returned. If thelod argument is less than
zero or if it is larger than the maximum allowable level-of-detail then the error
INVALID VALUEoccurs.

For texture images with uncompressed internal formats, queries of
value of TEXTUREREDSIZE , TEXTUREGREENSIZE , TEXTUREBLUE SIZE ,
TEXTUREALPHASIZE , TEXTURELUMINANCESIZE , TEXTUREDEPTHSIZE ,
and TEXTUREINTENSITY SIZE return the actual resolutions of the stored im-
age array components, not the resolutions specified when the image array was
defined. For texture images with a compressed internal format, the resolutions
returned specify the component resolution of an uncompressed internal format that
produces an image of roughly the same quality as the compressed image in ques-
tion. Since the quality of the implementation’s compression algorithm is likely
data-dependent, the returned component sizes should be treated only as rough ap-
proximations.

Querying value TEXTURECOMPRESSEDIMAGESIZE returns the
size (in ubyte s) of the compressed texture image that would be
returned by GetCompressedTexImage (section 6.1.4). Querying
TEXTURECOMPRESSEDIMAGESIZE is not allowed on texture images with
an uncompressed internal format or on proxy targets and will result in an
INVALID OPERATIONerror if attempted.

Version 2.0 - September 7, 2004



6.1. QUERYING GL STATE 248

Queries ofvalueTEXTUREWIDTH, TEXTUREHEIGHT, TEXTUREDEPTH, and
TEXTUREBORDERreturn the width, height, depth, and border as specified when
the image array was created. The internal format of the image array is queried
asTEXTUREINTERNAL FORMAT, or asTEXTURECOMPONENTSfor compatibility
with GL version 1.0.

ForGetPixelMap, themapmust be a map name from table3.3. ForGetMap,
mapmust be one of the map types described in section5.1, andvaluemust be one
of ORDER, COEFF, or DOMAIN.

6.1.4 Texture Queries

The command

void GetTexImage( enum tex, int lod, enum format,
enum type, void *img );

is used to obtain texture images. It is somewhat different from the other get com-
mands;tex is a symbolic value indicating which texture (or texture face in the case
of a cube map texture target name) is to be obtained.TEXTURE1D, TEXTURE2D,
andTEXTURE3D indicate a one-, two-, or three-dimensional texture respectively,
while TEXTURECUBEMAPPOSITIVE X, TEXTURECUBEMAPNEGATIVEX,
TEXTURECUBEMAPPOSITIVE Y, TEXTURECUBEMAPNEGATIVEY,
TEXTURECUBEMAPPOSITIVE Z, and TEXTURECUBEMAPNEGATIVEZ indi-
cate the respective face of a cube map texture.lod is a level-of-detail number,
format is a pixel format from table3.6, typeis a pixel type from table3.5, andimg
is a pointer to a block of memory.

GetTexImageobtains component groups from a texture image with the indi-
cated level-of-detail. The components are assigned among R, G, B, and A ac-
cording to table6.1, starting with the first group in the first row, and continuing
by obtaining groups in order from each row and proceeding from the first row to
the last, and from the first image to the last for three-dimensional textures. These
groups are then packed and placed in client memory. No pixel transfer operations
are performed on this image, but pixel storage modes that are applicable toRead-
Pixelsare applied.

For three-dimensional textures, pixel storage operations are applied as if the
image were two-dimensional, except that the additional pixel storage state values
PACKIMAGEHEIGHT andPACKSKIP IMAGESare applied. The correspondence
of texels to memory locations is as defined forTexImage3Din section3.8.1.

The row length, number of rows, image depth, and number of images are de-
termined by the size of the texture image (including any borders). CallingGet-
TexImage with lod less than zero or larger than the maximum allowable causes

Version 2.0 - September 7, 2004



6.1. QUERYING GL STATE 249

Base Internal Format R G B A

ALPHA 0 0 0 Ai

LUMINANCE(or 1) Li 0 0 1
LUMINANCEALPHA(or 2) Li 0 0 Ai

INTENSITY Ii 0 0 1
RGB(or 3) Ri Gi Bi 1

RGBA(or 4) Ri Gi Bi Ai

Table 6.1: Texture, table, and filter return values.Ri, Gi, Bi, Ai, Li, andIi are
components of the internal format that are assigned to pixel values R, G, B, and A.
If a requested pixel value is not present in the internal format, the specified constant
value is used.

the errorINVALID VALUECalling GetTexImagewith format of COLORINDEX,
STENCIL INDEX, or DEPTHCOMPONENTcauses the errorINVALID ENUM.

The command

void GetCompressedTexImage( enum target, int lod,
void *img );

is used to obtain texture images stored in compressed form. The parameterstarget,
lod, andimgare interpreted in the same manner as inGetTexImage. When called,
GetCompressedTexImagewritesTEXTURECOMPRESSEDIMAGESIZE ubyte s
of compressed image data to the memory pointed to byimg. The compressed
image data is formatted according to the definition of the texture’s internal format.
All pixel storage and pixel transfer modes are ignored when returning a compressed
texture image.

Calling GetCompressedTexImagewith an lod value less than zero or greater
than the maximum allowable causes anINVALID VALUEerror. CallingGetCom-
pressedTexImagewith a texture image stored with an uncompressed internal for-
mat causes anINVALID OPERATIONerror.

The command

boolean IsTexture( uint texture);

returnsTRUEif textureis the name of a texture object. Iftextureis zero, or is a non-
zero value that is not the name of a texture object, or if an error condition occurs,
IsTexture returnsFALSE. A name returned byGenTextures, but not yet bound, is
not the name of a texture object.

Version 2.0 - September 7, 2004



6.1. QUERYING GL STATE 250

6.1.5 Stipple Query

The command

void GetPolygonStipple( void *pattern );

obtains the polygon stipple. The pattern is packed into memory according to the
procedure given in section4.3.2 for ReadPixels; it is as if theheightandwidth
passed to that command were both equal to 32, thetypewere BITMAP, and the
formatwereCOLORINDEX.

6.1.6 Color Matrix Query

The scale and bias variables are queried usingGetFloatv with pname set
to the appropriate variable name. The top matrix on the color matrix
stack is returned byGetFloatv called with pnameset to COLORMATRIX or
TRANSPOSECOLORMATRIX. The depth of the color matrix stack, and the maxi-
mum depth of the color matrix stack, are queried withGetIntegerv, settingpname
to COLORMATRIX STACKDEPTHandMAXCOLORMATRIX STACKDEPTHrespec-
tively.

6.1.7 Color Table Query

The current contents of a color table are queried using

void GetColorTable( enum target, enum format, enum type,
void *table );

targetmust be one of theregular color table names listed in table3.4. formatand
typeaccept the same values as do the corresponding parameters ofGetTexImage.
The one-dimensional color table image is returned to client memory starting at
table. No pixel transfer operations are performed on this image, but pixel storage
modes that are applicable toReadPixelsare performed. Color components that are
requested in the specifiedformat, but which are not included in the internal format
of the color lookup table, are returned as zero. The assignments of internal color
components to the components requested byformatare described in table6.1.

The functions

void GetColorTableParameter{if}v( enum target,
enum pname, T params);

Version 2.0 - September 7, 2004



6.1. QUERYING GL STATE 251

are used for integer and floating point query.
target must be one of the regular or proxy color table names listed

in table 3.4. pname is one of COLORTABLE SCALE, COLORTABLE BIAS ,
COLORTABLE FORMAT, COLORTABLE WIDTH, COLORTABLE REDSIZE ,
COLORTABLE GREENSIZE , COLORTABLE BLUE SIZE ,
COLORTABLE ALPHASIZE , COLORTABLE LUMINANCESIZE ,
or COLORTABLE INTENSITY SIZE . The value of the specified parameter is re-
turned inparams.

6.1.8 Convolution Query

The current contents of a convolution filter image are queried with the command

void GetConvolutionFilter ( enum target, enum format,
enum type, void *image);

target must beCONVOLUTION1D or CONVOLUTION2D. format and type accept
the same values as do the corresponding parameters ofGetTexImage. The one-
dimensional or two-dimensional images is returned to client memory starting at
image. Pixel processing and component mapping are identical to those ofGetTex-
Image.

The current contents of a separable filter image are queried using

void GetSeparableFilter( enum target, enum format,
enum type, void *row, void *column, void *span);

targetmust beSEPARABLE2D. formatandtypeaccept the same values as do the
corresponding parameters ofGetTexImage. The row and column images are re-
turned to client memory starting atrow andcolumnrespectively.spanis currently
unused. Pixel processing and component mapping are identical to those ofGet-
TexImage.

The functions

void GetConvolutionParameter{if}v( enum target,
enum pname, T params);

are used for integer and floating point query. target must be
CONVOLUTION1D, CONVOLUTION2D, or SEPARABLE2D. pname is
one of CONVOLUTIONBORDERCOLOR, CONVOLUTIONBORDERMODE,
CONVOLUTIONFILTER SCALE, CONVOLUTIONFILTER BIAS ,
CONVOLUTIONFORMAT, CONVOLUTIONWIDTH, CONVOLUTIONHEIGHT,
MAXCONVOLUTIONWIDTH, or MAXCONVOLUTIONHEIGHT. The value of the
specified parameter is returned inparams.

Version 2.0 - September 7, 2004



6.1. QUERYING GL STATE 252

6.1.9 Histogram Query

The current contents of the histogram table are queried using

void GetHistogram( enum target, boolean reset,
enum format, enum type, void* values);

targetmust beHISTOGRAM. typeandformataccept the same values as do the cor-
responding parameters ofGetTexImage. The one-dimensional histogram table
image is returned tovalues. Pixel processing and component mapping are identi-
cal to those ofGetTexImage, except that instead of applying the Final Conversion
pixel storage mode, component values are simply clamped to the range of the target
data type.

If resetis TRUE, then all counters of all elements of the histogram are reset to
zero. Counters are reset whether returned or not.

No counters are modified ifresetis FALSE.
Calling

void ResetHistogram( enum target);

resets all counters of all elements of the histogram table to zero.target must be
HISTOGRAM.

It is not an error to reset or query the contents of a histogram table with zero
entries.

The functions

void GetHistogramParameter{if}v( enum target,
enum pname, T params);

are used for integer and floating point query.target must beHISTOGRAMor
PROXYHISTOGRAM. pnameis one ofHISTOGRAMFORMAT, HISTOGRAMWIDTH,
HISTOGRAMREDSIZE , HISTOGRAMGREENSIZE , HISTOGRAMBLUE SIZE ,
HISTOGRAMALPHASIZE , or HISTOGRAMLUMINANCESIZE . pname may be
HISTOGRAMSINK only for target HISTOGRAM. The value of the specified
parameter is returned inparams.

6.1.10 Minmax Query

The current contents of the minmax table are queried using

void GetMinmax( enum target, boolean reset, enum format,
enum type, void* values);

Version 2.0 - September 7, 2004



6.1. QUERYING GL STATE 253

target must beMINMAX. typeand format accept the same values as do the corre-
sponding parameters ofGetTexImage. A one-dimensional image of width 2 is
returned tovalues. Pixel processing and component mapping are identical to those
of GetTexImage.

If reset is TRUE, then each minimum value is reset to the maximum repre-
sentable value, and each maximum value is reset to the minimum representable
value. All values are reset, whether returned or not.

No values are modified ifresetis FALSE.
Calling

void ResetMinmax( enum target);

resets all minimum and maximum values oftarget to to their maximum and mini-
mum representable values, respectively,targetmust beMINMAX.

The functions

void GetMinmaxParameter{if}v( enum target, enum pname,
T params);

are used for integer and floating point query.target must beMINMAX. pnameis
MINMAXFORMATor MINMAXSINK. The value of the specified parameter is re-
turned inparams.

6.1.11 Pointer and String Queries

The command

void GetPointerv( enum pname, void **params );

obtains the pointer or pointers namedpname in the
array params. The possible values for pname are
SELECTIONBUFFERPOINTER, FEEDBACKBUFFERPOINTER,
VERTEXARRAYPOINTER, NORMALARRAYPOINTER, COLORARRAYPOINTER,
SECONDARYCOLORARRAYPOINTER, INDEX ARRAYPOINTER,
TEXTURECOORDARRAYPOINTER, FOGCOORDARRAYPOINTER, and
EDGEFLAG ARRAYPOINTER. Each returns a single pointer value.

Finally,

ubyte *GetString ( enum name);

Version 2.0 - September 7, 2004



6.1. QUERYING GL STATE 254

returns a pointer to a static string describing some aspect of the current GL con-
nection1. The possible values fornameare VENDOR, RENDERER, VERSION,
SHADINGLANGUAGEVERSION, andEXTENSIONS. The format of theRENDERER

andVENDORstrings is implementation dependent. TheEXTENSIONSstring con-
tains a space separated list of extension names (the extension names themselves do
not contain any spaces). TheVERSIONandSHADINGLANGUAGEVERSIONstrings
are laid out as follows:

<version number><space><vendor-specific information>

The version number is either of the formmajor number.minornumberor ma-
jor number.minornumber.releasenumber, where the numbers all have one or
more digits. The releasenumberand vendor specific information are optional.
However, if present, then they pertain to the server and their format and contents
are implementation dependent.

GetString returns the version number (returned in theVERSIONstring) and
the extension names (returned in theEXTENSIONSstring) that can be supported
on the connection. Thus, if the client and server support different versions and/or
extensions, a compatible version and list of extensions is returned.

6.1.12 Occlusion Queries

The command

boolean IsQuery( uint id );

returnsTRUEif id is the name of a query object. Ifid is zero, or ifid is a non-zero
value that is not the name of a query object,IsQuery returnsFALSE.

Information about a query target can be queried with the command

void GetQueryiv( enum target, enum pname, int *params);

If pnameis CURRENTQUERY, the name of the currently active query fortarget, or
zero if no query is active, will be placed inparams.

If pnameis QUERYCOUNTERBITS , the number of bits in the counter fortarget
will be placed inparams. The number of query counter bits may be zero, in which
case the counter contains no useful information. Otherwise, the minimum number

1Applications making copies of these static strings should never use a fixed-length buffer, because
the strings may grow unpredictably between releases, resulting in buffer overflow when copying.
This is particularly true of theEXTENSIONSstring, which has become extremely long in some
GL implementations.

Version 2.0 - September 7, 2004



6.1. QUERYING GL STATE 255

of bits allowed is a function of the implementation’s maximum viewport dimen-
sions (MAXVIEWPORTDIMS). In this case, the counter must be able to represent
at least two overdraws for every pixel in the viewport The formula to compute the
allowable minimum value (where n is the minimum number of bits) is:

n = min{32, dlog2(maxV iewportWidth ∗maxV iewportHeight ∗ 2)e}

The state of a query object can be queried with the commands

void GetQueryObjectiv( uint id, enum pname,
int *params);

void GetQueryObjectuiv( uint id, enum pname,
uint *params);

If id is not the name of a query object, or if the query object named byid is currently
active, then anINVALID OPERATIONerror is generated.

If pnameis QUERYRESULT, then the query object’s result value is placed in
params. If the number of query counter bits fortarget is zero, then the result value
is always 0.

There may be an indeterminate delay before the above query returns. If
pnameis QUERYRESULTAVAILABLE, it immediately returnsFALSE if such a de-
lay would be required,TRUEotherwise. It must always be true that if any query
object returns result available ofTRUE, all queries issued prior to that query must
also returnTRUE.

Querying the state for any given query object forces that occlusion query to
complete within a finite amount of time.

If multiple queries are issued on the same target and id prior to callingGet-
QueryObject[u]iv , the result returned will always be from the last query issued.
The results from any queries before the last one will be lost if the results are not
retrieved before starting a new query on the same target and id.

6.1.13 Buffer Object Queries

The command

boolean IsBuffer ( uint buffer);

returnsTRUEif bufferis the name of an buffer object. Ifbufferis zero, or ifbufferis
a non-zero value that is not the name of an buffer object,IsBuffer returnsFALSE.

The command

Version 2.0 - September 7, 2004



6.1. QUERYING GL STATE 256

void GetBufferSubData( enum target, intptr offset,
sizeiptr size, void *data );

queries the data contents of a buffer object.target is ARRAYBUFFER or
ELEMENTARRAYBUFFER. offsetandsizeindicate the range of data in the buffer
object that is to be queried, in terms of basic machine units.dataspecifies a region
of client memory,sizebasic machine units in length, into which the data is to be
retrieved.

An error is generated ifGetBufferSubData is executed for a buffer object that
is currently mapped.

While the data store of a buffer object is mapped, the pointer to the data store
can be queried by calling

void GetBufferPointerv( enum target, enum pname,
void **params );

with target set toARRAYBUFFERor ELEMENTARRAYBUFFERandpnameset to
BUFFERMAPPOINTER. The single buffer map pointer is returned in*params.
GetBufferPointerv returns theNULLpointer value if the buffer’s data store is not
currently mapped, or if the requesting client did not map the buffer object’s data
store, and the implementation is unable to support mappings on multiple clients.

6.1.14 Shader and Program Queries

State stored in shader or program objects can be queried by commands that ac-
cept shader or program object names. These commands will generate the error
INVALID VALUEif the provided name is not the name of either a shader or pro-
gram object andINVALID OPERATIONif the provided name identifies a shader of
the other type. If an error is generated, variables used to hold return values are not
modified.

The command

boolean IsShader( uint shader); ;

returnsTRUEif shaderis the name of a shader object. Ifshaderis zero, or a non-
zero value that is not the name of a shader object,IsShader returns FALSE. No
error is generated ifshaderis not a valid shader object name.

The command

void GetShaderiv( uint shader, enum pname, T params);

Version 2.0 - September 7, 2004



6.1. QUERYING GL STATE 257

returns properties of the shader object namedshaderin params. The parameter
value to return is specified bypname.

If pnameis SHADERTYPE, VERTEXSHADERis returned ifshaderis a ver-
tex shader object, andFRAGMENTSHADERis returned ifshader is a fragment
shader object. Ifpname is DELETESTATUS, TRUE is returned if the shader
has been flagged for deletion andFALSE is returned otherwise. Ifpname is
COMPILESTATUS, TRUEis returned if the shader was last compiled sucessfully,
andFALSE is returned otherwise. Ifpnameis INFO LOGLENGTH, the length of
the info log, including a null terminator, is returned. If there is no info log, zero
is returned. Ifpnameis SHADERSOURCELENGTH, the length of the concatenation
of the source strings making up the shader source, including a null terminator, is
returned. If no source has been defined, zero is returned.

The command

boolean IsProgram( uint program); ;

returnsTRUE if program is the name of a program object. Ifprogram is zero,
or a non-zero value that is not the name of a program object,IsProgram returns
FALSE. No error is generated ifprogramis not a valid program object name.

The command

void GetProgramiv( uint program, enum pname, T params);

returns properties of the program object namedprogramin params. The parameter
value to return is specified bypname.

If pnameis DELETESTATUS, TRUEis returned if the shader has been flagged
for deletion andFALSE is returned otherwise. Ifpnameis LINK STATUS, TRUEis
returned if the shader was last compiled sucessfully, andFALSE is returned oth-
erwise. Ifpnameis VALIDATE STATUS, TRUEis returned if the last call toVali-
dateProgram with programwas successful, andFALSE is returned otherwise. If
pnameis INFO LOGLENGTH, the length of the info log, including a null terminator,
is returned. If there is no info log, 0 is returned. Ifpnameis ATTACHEDSHADERS,
the number of objects attached is returned. Ifpnameis ACTIVE ATTRIBUTES,
the number of active attributes inprogram is returned. If no active attributes ex-
ist, 0 is returned. Ifpnameis ACTIVE ATTRIBUTE MAXLENGTH, the length of
the longest active attribute name, including a null terminator, is returned. If no
active attributes exist, 0 is returned. Ifpnameis ACTIVE UNIFORMS, the number
of active uniforms is returned. If no active uniforms exist, 0 is returned. Ifpname
is ACTIVE UNIFORMMAXLENGTH, the length of the longest active uniform name,
including a null terminator, is returned. If no active uniforms exist, 0 is returned.

The command

Version 2.0 - September 7, 2004



6.1. QUERYING GL STATE 258

void GetAttachedShaders( uint program, sizei maxCount,
sizei *count, uint *shaders);

returns the names of shader objects attached toprogram in shaders. The actual
number of shader names written intoshadersis returned incount. If no shaders are
attached,count is set to zero. Ifcount is NULL then it is ignored. The maximum
number of shader names that may be written intoshadersis specified bymaxCount.
The number of objects attached toprogram is given by can be queried by calling
GetProgramiv with ATTACHEDSHADERS.

A string that contains information about the last compilation attempt on a
shader object or last link or validation attempt on a program object, called the
info log, can be obtained with the commands

void GetShaderInfoLog( uint shader, sizei bufSize,
sizei *length, char *infoLog );

void GetProgramInfoLog( uint program, sizei bufSize,
sizei *length, char *infoLog );

These commands return the info log string ininfoLog. This string will be null
terminated. The actual number of characters written intoinfoLog, excluding the
null terminator, is returned inlength. If lengthis NULL, then no length is returned.
The maximum number of characters that may be written intoinfoLog, including
the null terminator, is specified bybufSize. The number of characters in the info
log can be queried withGetShaderivor GetProgramiv with INFO LOGLENGTH.
If program is a shader object, the returned info log will either be an empty string
or it will contain information about the last compilation attempt for that object. If
programis a program object, the returned info log will either be an empty string or
it will contain information about the last link attempt or last validation attempt for
that object.

The info log is typically only useful during application development and an
application should not expect different GL implementations to produce identical
info logs.

The command

void GetShaderSource( uint shader, sizei bufSize,
sizei *length, char *source);

returns insourcethe string making up the source code for the shader objectshader.
The stringsourcewill be null terminated. The actual number of characters written
into source, excluding the null terminator, is returned inlength. If lengthis NULL,
no length is returned. The maximum number of characters that may be written into

Version 2.0 - September 7, 2004



6.1. QUERYING GL STATE 259

source, including the null terminator, is specified bybufSize. The stringsourceis
a concatenation of the strings passed to the GL usingShaderSource. The length
of this concatenation is given bySHADERSOURCELENGTH, which can be queried
with GetShaderiv.

The commands

void GetVertexAttribdv ( uint index, enum pname,
double *params);

void GetVertexAttribfv ( uint index, enum pname,
float *params);

void GetVertexAttribiv ( uint index, enum pname,
int *params);

obtain the vertex attribute state named bypnamefor the generic vertex attribute
numberedindex and places the information in the arrayparams. pnamemust
be one of VERTEXATTRIB ARRAYENABLED, VERTEXATTRIB ARRAYSIZE ,
VERTEXATTRIB ARRAYSTRIDE, VERTEXATTRIB ARRAYTYPE,
VERTEXATTRIB ARRAYNORMALIZED, or CURRENTVERTEXATTRIB. Note that
all the queries exceptCURRENTVERTEXATTRIB return client state. The
error INVALID VALUE is generated if index is greater than or equal to
MAXVERTEXATTRIBS.

All but CURRENTVERTEXATTRIB return information about generic vertex at-
tribute arrays. The enable state of a generic vertex attribute array is set by the
commandEnableVertexAttribArray and cleared byDisableVertexAttribArray .
The size, stride, type and normalized flag are set by the commandVertexAttrib-
Pointer. The queryCURRENTVERTEXATTRIB returns the current value for the
generic attributeindex. In this case the errorINVALID OPERATIONis generated
if indexis zero, as there is no current value for generic attribute zero.

The command

void GetVertexAttribPointerv ( uint index, enum pname,
void **pointer );

obtains the pointer namedpname for vertex attribute numberedindex
and places the information in the arraypointer. pname must be
VERTEXATTRIB ARRAYPOINTER. TheINVALID VALUEerror is generated ifin-
dexis greater than or equal toMAXVERTEXATTRIBS.

The commands

void GetUniformfv ( uint program, int location,
float *params);

Version 2.0 - September 7, 2004



6.1. QUERYING GL STATE 260

void GetUniformiv ( uint program, int location,
int *params);

return the value or values of the uniform at locationlocation for program object
program in the arrayparams. The type of the uniform atlocationdetermines the
number of values returned. The errorINVALID OPERATIONis generated ifpro-
gram has not been linked successfully, or iflocation is not a valid location for
program. In order to query the values of an array of uniforms, aGetUniform*
command needs to be issued for each array element. If the uniform queried is a
matrix, the values of the matrix are returned in column major order. If an error
occurred, the return parameterparamswill be unmodified.

6.1.15 Saving and Restoring State

Besides providing a means to obtain the values of state variables, the GL also
provides a means to save and restore groups of state variables. ThePushAttrib ,
PushClientAttrib , PopAttrib andPopClientAttrib commands are used for this
purpose. The commands

void PushAttrib ( bitfield mask);
void PushClientAttrib ( bitfield mask);

take a bitwise OR of symbolic constants indicating which groups of state variables
to push onto an attribute stack.PushAttrib uses a server attribute stack while
PushClientAttrib uses a client attribute stack. Each constant refers to a group
of state variables. The classification of each variable into a group is indicated
in the following tables of state variables. The errorSTACKOVERFLOWis gener-
ated ifPushAttrib or PushClientAttrib is executed while the corresponding stack
depth isMAXATTRIB STACKDEPTHor MAXCLIENT ATTRIB STACKDEPTHre-
spectively. Bits set inmaskthat do not correspond to an attribute group are ignored.
The specialmaskvaluesALL ATTRIB BITS andCLIENT ALL ATTRIB BITS may
be used to push all stackable server and client state, respectively.

The commands

void PopAttrib ( void );
void PopClientAttrib ( void );

reset the values of those state variables that were saved with the last corresponding
PushAttrib or PopClientAttrib . Those not saved remain unchanged. The er-
ror STACKUNDERFLOWis generated ifPopAttrib or PopClientAttrib is executed
while the respective stack is empty.

Version 2.0 - September 7, 2004



6.1. QUERYING GL STATE 261

Stack Attribute Constant
server accum-buffer ACCUMBUFFERBIT

server color-buffer COLORBUFFERBIT

server current CURRENTBIT

server depth-buffer DEPTHBUFFERBIT

server enable ENABLEBIT

server eval EVAL BIT

server fog FOGBIT

server hint HINT BIT

server lighting LIGHTING BIT

server line LINE BIT

server list LIST BIT

server multisample MULTISAMPLEBIT

server pixel PIXEL MODEBIT

server point POINT BIT

server polygon POLYGONBIT

server polygon-stipple POLYGONSTIPPLE BIT

server scissor SCISSORBIT

server stencil-buffer STENCIL BUFFERBIT

server texture TEXTUREBIT

server transform TRANSFORMBIT

server viewport VIEWPORTBIT

server ALL ATTRIB BITS

client vertex-array CLIENT VERTEXARRAYBIT

client pixel-store CLIENT PIXEL STOREBIT

client select can’t be pushed or pop’d
client feedback can’t be pushed or pop’d
client CLIENT ALL ATTRIB BITS

Table 6.2: Attribute groups

Version 2.0 - September 7, 2004



6.1. QUERYING GL STATE 262

table6.2shows the attribute groups with their corresponding symbolic constant
names and stacks.

WhenPushAttrib is called withTEXTUREBIT set, the priorities, border col-
ors, filter modes, and wrap modes of the currently bound texture objects, as well
as the current texture bindings and enables, are pushed onto the attribute stack.
(Unbound texture objects are not pushed or restored.) When an attribute set that
includes texture information is popped, the bindings and enables are first restored
to their pushed values, then the bound texture objects’ priorities, border colors,
filter modes, and wrap modes are restored to their pushed values.

Operations on attribute groups push or pop texture state within that group for
all texture units. When state for a group is pushed, all state corresponding to
TEXTURE0is pushed first, followed by state corresponding toTEXTURE1, and so
on up to and including the state corresponding toTEXTUREk wherek + 1 is the
value ofMAXTEXTUREUNITS. When state for a group is popped, texture state is
restored in the opposite order that it was pushed, starting with state corresponding
to TEXTUREk and ending withTEXTURE0. Identical rules are observed for client
texture state push and pop operations. Matrix stacks are never pushed or popped
with PushAttrib , PushClientAttrib , PopAttrib , or PopClientAttrib .

The depth of each attribute stack is implementation dependent but must be at
least 16. The state required for each attribute stack is potentially 16 copies of each
state variable, 16 masks indicating which groups of variables are stored in each
stack entry, and an attribute stack pointer. In the initial state, both attribute stacks
are empty.

In the tables that follow, a type is indicated for each variable. table6.3explains
these types. The type actually identifies all state associated with the indicated
description; in certain cases only a portion of this state is returned. This is the
case with all matrices, where only the top entry on the stack is returned; with clip
planes, where only the selected clip plane is returned, with parameters describing
lights, where only the value pertaining to the selected light is returned; with tex-
tures, where only the selected texture or texture parameter is returned; and with
evaluator maps, where only the selected map is returned. Finally, a “–” in the at-
tribute column indicates that the indicated value is not included in any attribute
group (and thus can not be pushed or popped withPushAttrib , PushClientAttrib ,
PopAttrib , or PopClientAttrib ).

TheM andm entries for initial minmax table values represent the maximum
and minimum possible representable values, respectively.

Version 2.0 - September 7, 2004



6.1. QUERYING GL STATE 263

Type code Explanation

B Boolean
BMU Basic machine units

C Color (floating-point R, G, B, and A values)
CI Color index (floating-point index value)
T Texture coordinates (floating-points, t, r, q val-

ues)
N Normal coordinates (floating-pointx, y, z values)
V Vertex, including associated data
Z Integer
Z+ Non-negative integer

Zk, Zk∗ k-valued integer (k∗ indicatesk is minimum)
R Floating-point number
R+ Non-negative floating-point number

R[a,b] Floating-point number in the range[a, b]
Rk k-tuple of floating-point numbers
P Position (x, y, z, w floating-point coordinates)
D Direction (x, y, z floating-point coordinates)
M4 4× 4 floating-point matrix
S NULL-terminated string
I Image
A Attribute stack entry, including mask
Y Pointer (data type unspecified)

n× type n copies of typetype (n∗ indicatesn is minimum)

Table 6.3: State Variable Types

Version 2.0 - September 7, 2004



6.2. STATE TABLES 264

6.2 State Tables

The tables on the following pages indicate which state variables are obtained with
what commands. State variables that can be obtained using any ofGetBooleanv,
GetIntegerv, GetFloatv, or GetDoublev are listed with just one of these com-
mands – the one that is most appropriate given the type of the data to be returned.
These state variables cannot be obtained usingIsEnabled. However, state vari-
ables for whichIsEnabled is listed as the query command can also be obtained
usingGetBooleanv, GetIntegerv, GetFloatv, andGetDoublev. State variables
for which any other command is listed as the query command can be obtained only
by using that command.

State table entries which are required only by the imaging subset (see sec-
tion 3.6.2) are typesetagainst a gray background.

Version 2.0 - September 7, 2004



6.2. STATE TABLES 265

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

–
Z

1
1

–
0

W
he

n
6=

0,
in

di
ca

te
sb

eg
in

/e
nd

ob
je

ct
2.

6.
1

–

–
V

–
–

P
re

vi
ou

s
ve

rt
ex

inB
eg

in
/E

nd
lin

e
2.

6.
1

–
–

B
–

–
In

di
ca

te
s

ifl
in

e
-v

e
rt

ex
is

th
e

fir
st

2.
6.

1
–

–
V

–
–

F
irs

tv
er

te
x

of
aB

eg
in

/E
nd

lin
e

lo
op

2.
6.

1
–

–
Z

+
–

–
Li

ne
st

ip
pl

e
co

un
te

r
3.

4
–

–
n
×

V
–

–
Ve

rt
ic

es
in

si
de

of
B

eg
in

/E
nd

po
ly

go
n

2.
6.

1
–

–
Z

+
–

–
N

um
be

r
of

p
o

ly
g

o
n

-v
e

rt
ic

e
s

2.
6.

1
–

–
2
×

V
–

–
P

re
vi

ou
s

tw
o

ve
rt

ic
es

in
a

B
eg

in
/E

nd
tr

ia
ng

le
st

rip
2.

6.
1

–

–
Z

3
–

–
N

um
be

r
of

ve
rt

ic
es

so
fa

r
in

tr
ia

ng
le

st
rip

:
0,

1,
or

m
or

e
2.

6.
1

–

–
Z

2
–

–
T

ria
ng

le
st

rip
A

/B
ve

rt
ex

po
in

te
r

2.
6.

1
–

–
3
×

V
–

–
Ve

rt
ic

es
of

th
e

qu
ad

un
de

r
co

ns
tr

uc
tio

n
2.

6.
1

–

–
Z

4
–

–
N

um
be

r
of

ve
rt

ic
es

so
fa

r
in

qu
ad

st
rip

:
0,

1,
2,

or
m

or
e

2.
6.

1
–

Table 6.4. GL Internal begin-end state variables (inaccessible)

Version 2.0 - September 7, 2004



6.2. STATE TABLES 266

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

C
U

R
R

E
N

T
C

O
LO

R
C

G
et

In
te

ge
rv

,
G

et
F

lo
at

v
1,

1,
1,

1
C

ur
re

nt
co

lo
r

2.
7

cu
rr

en
t

C
U

R
R

E
N

T
S

E
C

O
N

D
A

R
Y

C
O

LO
R

C
G

et
In

te
ge

rv
,

G
et

F
lo

at
v

0,
0,

0,
1

C
ur

re
nt

se
co

nd
ar

y
co

lo
r

2.
7

cu
rr

en
t

C
U

R
R

E
N

T
IN

D
E

X
C

I
G

et
In

te
ge

rv
,

G
et

F
lo

at
v

1
C

ur
re

nt
co

lo
r

in
de

x
2.

7
cu

rr
en

t
C

U
R

R
E

N
T

T
E

X
T

U
R

E
C

O
O

R
D

S
2
∗
×

T
G

et
F

lo
at

v
0,

0,
0,

1
C

ur
re

nt
te

xt
ur

e
co

or
di

na
te

s
2.

7
cu

rr
en

t
C

U
R

R
E

N
T

N
O

R
M

A
L

N
G

et
F

lo
at

v
0,

0,
1

C
ur

re
nt

no
rm

al
2.

7
cu

rr
en

t

C
U

R
R

E
N

T
F

O
G

C
O

O
R

D
R

G
et

In
te

ge
rv

,
G

et
F

lo
at

v
0

C
ur

re
nt

fo
g

co
or

di
na

te
2.

7
cu

rr
en

t
–

C
–

-
C

ol
or

as
so

ci
at

ed
w

ith
la

st
ve

rt
ex

2.
6

–
–

C
I

–
-

C
ol

or
in

de
x

as
so

ci
at

ed
w

ith
la

st
ve

rt
ex

2.
6

–

–
T

–
-

Te
xt

ur
e

co
or

di
na

te
s

as
so

ci
at

ed
w

ith
la

st
ve

rt
ex

2.
6

–

C
U

R
R

E
N

T
R

A
S

T
E

R
P

O
S

IT
IO

N
R

4
G

et
F

lo
at

v
0,

0,
0,

1
C

ur
re

nt
ra

st
er

po
si

tio
n

2.
13

cu
rr

en
t

C
U

R
R

E
N

T
R

A
S

T
E

R
D

IS
TA

N
C

E
R

+
G

et
F

lo
at

v
0

C
ur

re
nt

ra
st

er
di

st
an

ce
2.

13
cu

rr
en

t

C
U

R
R

E
N

T
R

A
S

T
E

R
C

O
LO

R
C

G
et

In
te

ge
rv

,
G

et
F

lo
at

v
1,

1,
1,

1
C

ol
or

as
so

ci
at

ed
w

ith
ra

st
er

po
si

tio
n

2.
13

cu
rr

en
t

C
U

R
R

E
N

T
R

A
S

T
E

R
IN

D
E

X
C

I
G

et
In

te
ge

rv
,

G
et

F
lo

at
v

1
C

ol
or

in
de

x
as

so
ci

at
ed

w
ith

ra
st

er
po

si
tio

n
2.

13
cu

rr
en

t

C
U

R
R

E
N

T
R

A
S

T
E

R
T

E
X

T
U

R
E

C
O

O
R

D
S

2
∗
×

T
G

et
F

lo
at

v
0,

0,
0,

1
Te

xt
ur

e
co

or
di

na
te

s
as

so
ci

at
ed

w
ith

ra
st

er
po

si
tio

n
2.

13
cu

rr
en

t

C
U

R
R

E
N

T
R

A
S

T
E

R
P

O
S

IT
IO

N
VA

LI
D

B
G

et
B

oo
le

an
v

T
ru

e
R

as
te

r
po

si
tio

n
va

lid
bi

t
2.

13
cu

rr
en

t
E

D
G

E
F

LA
G

B
G

et
B

oo
le

an
v

T
ru

e
E

dg
e

fla
g

2.
6.

2
cu

rr
en

t

Table 6.5. Current Values and Associated Data

Version 2.0 - September 7, 2004



6.2. STATE TABLES 267

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

C
LI

E
N

T
A

C
T

IV
E

T
E

X
T

U
R

E
Z

2
∗

G
et

In
te

ge
rv

T
E

X
T

U
R

E
0

C
lie

nt
ac

tiv
e

te
xt

ur
e

un
it

se
le

ct
or

2.
7

ve
rt

ex
-a

rr
ay

V
E

R
T

E
X

A
R

R
A

Y
B

Is
E

na
bl

ed
Fa

ls
e

Ve
rt

ex
ar

ra
y

en
ab

le
2.

8
ve

rt
ex

-a
rr

ay
V

E
R

T
E

X
A

R
R

A
Y

S
IZ

E
Z

+
G

et
In

te
ge

rv
4

C
oo

rd
in

at
es

pe
r

ve
rt

ex
2.

8
ve

rt
ex

-a
rr

ay
V

E
R

T
E

X
A

R
R

A
Y

T
Y

P
E

Z
4

G
et

In
te

ge
rv

F
L

O
A

T
Ty

pe
of

ve
rt

ex
co

or
di

na
te

s
2.

8
ve

rt
ex

-a
rr

ay
V

E
R

T
E

X
A

R
R

A
Y

S
T

R
ID

E
Z

+
G

et
In

te
ge

rv
0

S
tr

id
e

be
tw

ee
n

ve
rt

ic
es

2.
8

ve
rt

ex
-a

rr
ay

V
E

R
T

E
X

A
R

R
A

Y
P

O
IN

T
E

R
Y

G
et

P
oi

nt
er

v
0

P
oi

nt
er

to
th

e
ve

rt
ex

ar
ra

y
2.

8
ve

rt
ex

-a
rr

ay
N

O
R

M
A

L
A

R
R

A
Y

B
Is

E
na

bl
ed

Fa
ls

e
N

or
m

al
ar

ra
y

en
ab

le
2.

8
ve

rt
ex

-a
rr

ay
N

O
R

M
A

L
A

R
R

A
Y

T
Y

P
E

Z
5

G
et

In
te

ge
rv

F
L

O
A

T
Ty

pe
of

no
rm

al
co

or
di

na
te

s
2.

8
ve

rt
ex

-a
rr

ay
N

O
R

M
A

L
A

R
R

A
Y

S
T

R
ID

E
Z

+
G

et
In

te
ge

rv
0

S
tr

id
e

be
tw

ee
n

no
rm

al
s

2.
8

ve
rt

ex
-a

rr
ay

N
O

R
M

A
L

A
R

R
A

Y
P

O
IN

T
E

R
Y

G
et

P
oi

nt
er

v
0

P
oi

nt
er

to
th

e
no

rm
al

ar
ra

y
2.

8
ve

rt
ex

-a
rr

ay
F

O
G

C
O

O
R

D
A

R
R

A
Y

B
Is

E
na

bl
ed

Fa
ls

e
F

og
co

or
d

ar
ra

y
en

ab
le

2.
8

ve
rt

ex
-a

rr
ay

F
O

G
C

O
O

R
D

A
R

R
A

Y
T

Y
P

E
Z

2
G

et
In

te
ge

rv
F

L
O

A
T

Ty
pe

of
fo

g
co

or
d

co
m

po
ne

nt
s

2.
8

ve
rt

ex
-a

rr
ay

F
O

G
C

O
O

R
D

A
R

R
A

Y
S

T
R

ID
E

Z
+

G
et

In
te

ge
rv

0
S

tr
id

e
be

tw
ee

n
fo

g
co

or
ds

2.
8

ve
rt

ex
-a

rr
ay

F
O

G
C

O
O

R
D

A
R

R
A

Y
P

O
IN

T
E

R
Y

G
et

P
oi

nt
er

v
0

P
oi

nt
er

to
th

e
fo

g
co

or
d

ar
ra

y
2.

8
ve

rt
ex

-a
rr

ay
C

O
LO

R
A

R
R

A
Y

B
Is

E
na

bl
ed

Fa
ls

e
C

ol
or

ar
ra

y
en

ab
le

2.
8

ve
rt

ex
-a

rr
ay

C
O

LO
R

A
R

R
A

Y
S

IZ
E

Z
+

G
et

In
te

ge
rv

4
C

ol
or

co
m

po
ne

nt
s

pe
r

ve
rt

ex
2.

8
ve

rt
ex

-a
rr

ay
C

O
LO

R
A

R
R

A
Y

T
Y

P
E

Z
8

G
et

In
te

ge
rv

F
L

O
A

T
Ty

pe
of

co
lo

r
co

m
po

ne
nt

s
2.

8
ve

rt
ex

-a
rr

ay
C

O
LO

R
A

R
R

A
Y

S
T

R
ID

E
Z

+
G

et
In

te
ge

rv
0

S
tr

id
e

be
tw

ee
n

co
lo

rs
2.

8
ve

rt
ex

-a
rr

ay
C

O
LO

R
A

R
R

A
Y

P
O

IN
T

E
R

Y
G

et
P

oi
nt

er
v

0
P

oi
nt

er
to

th
e

co
lo

r
ar

ra
y

2.
8

ve
rt

ex
-a

rr
ay

S
E

C
O

N
D

A
R

Y
C

O
LO

R
A

R
R

A
Y

B
Is

E
na

bl
ed

Fa
ls

e
S

ec
on

da
ry

co
lo

r
ar

ra
y

en
ab

le
2.

8
ve

rt
ex

-a
rr

ay
S

E
C

O
N

D
A

R
Y

C
O

LO
R

A
R

R
A

Y
S

IZ
E

Z
+

G
et

In
te

ge
rv

3
S

ec
on

da
ry

co
lo

r
co

m
po

ne
nt

s
pe

r
ve

rt
ex

2.
8

ve
rt

ex
-a

rr
ay

S
E

C
O

N
D

A
R

Y
C

O
LO

R
A

R
R

A
Y

T
Y

P
E

Z
8

G
et

In
te

ge
rv

F
L

O
A

T
Ty

pe
of

se
co

nd
ar

y
co

lo
r

co
m

po
ne

nt
s

2.
8

ve
rt

ex
-a

rr
ay

S
E

C
O

N
D

A
R

Y
C

O
LO

R
A

R
R

A
Y

S
T

R
ID

E
Z

+
G

et
In

te
ge

rv
0

S
tr

id
e

be
tw

ee
n

se
co

nd
ar

y
co

lo
rs

2.
8

ve
rt

ex
-a

rr
ay

S
E

C
O

N
D

A
R

Y
C

O
LO

R
A

R
R

A
Y

P
O

IN
T

E
R

Y
G

et
P

oi
nt

er
v

0
P

oi
nt

er
to

th
e

se
co

nd
ar

y
co

lo
r

ar
ra

y
2.

8
ve

rt
ex

-a
rr

ay
IN

D
E

X
A

R
R

A
Y

B
Is

E
na

bl
ed

Fa
ls

e
In

de
x

ar
ra

y
en

ab
le

2.
8

ve
rt

ex
-a

rr
ay

IN
D

E
X

A
R

R
A

Y
T

Y
P

E
Z

4
G

et
In

te
ge

rv
F

L
O

A
T

Ty
pe

of
in

di
ce

s
2.

8
ve

rt
ex

-a
rr

ay
IN

D
E

X
A

R
R

A
Y

S
T

R
ID

E
Z

+
G

et
In

te
ge

rv
0

S
tr

id
e

be
tw

ee
n

in
di

ce
s

2.
8

ve
rt

ex
-a

rr
ay

IN
D

E
X

A
R

R
A

Y
P

O
IN

T
E

R
Y

G
et

P
oi

nt
er

v
0

P
oi

nt
er

to
th

e
in

de
x

ar
ra

y
2.

8
ve

rt
ex

-a
rr

ay

Table 6.6. Vertex Array Data

Version 2.0 - September 7, 2004



6.2. STATE TABLES 268

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

T
E

X
T

U
R

E
C

O
O

R
D

A
R

R
A

Y
2
∗
×

B
Is

E
na

bl
ed

Fa
ls

e
Te

xt
ur

e
co

or
di

na
te

ar
ra

y
en

ab
le

2.
8

ve
rt

ex
-a

rr
ay

T
E

X
T

U
R

E
C

O
O

R
D

A
R

R
A

Y
S

IZ
E

2
∗
×

Z
+

G
et

In
te

ge
rv

4
C

oo
rd

in
at

es
pe

r
el

em
en

t
2.

8
ve

rt
ex

-a
rr

ay
T

E
X

T
U

R
E

C
O

O
R

D
A

R
R

A
Y

T
Y

P
E

2
∗
×

Z
4

G
et

In
te

ge
rv

F
L

O
A

T
Ty

pe
of

te
xt

ur
e

co
or

di
na

te
s

2.
8

ve
rt

ex
-a

rr
ay

T
E

X
T

U
R

E
C

O
O

R
D

A
R

R
A

Y
S

T
R

ID
E

2
∗
×

Z
+

G
et

In
te

ge
rv

0
S

tr
id

e
be

tw
ee

n
te

xt
ur

e
co

or
di

na
te

s
2.

8
ve

rt
ex

-a
rr

ay
T

E
X

T
U

R
E

C
O

O
R

D
A

R
R

A
Y

P
O

IN
T

E
R

2
∗
×

Y
G

et
P

oi
nt

er
v

0
P

oi
nt

er
to

th
e

te
xt

ur
e

co
or

di
na

te
ar

ra
y

2.
8

ve
rt

ex
-a

rr
ay

V
E

R
T

E
X

AT
T

R
IB

A
R

R
A

Y
E

N
A

B
LE

D
16

+
×

B
G

et
Ve

rt
ex

A
ttr

ib
Fa

ls
e

Ve
rt

ex
at

tr
ib

ar
ra

y
en

ab
le

2.
8

ve
rt

ex
-a

rr
ay

V
E

R
T

E
X

AT
T

R
IB

A
R

R
A

Y
S

IZ
E

16
+
×

Z
G

et
Ve

rt
ex

A
ttr

ib
4

Ve
rt

ex
at

tr
ib

ar
ra

y
si

ze
2.

8
ve

rt
ex

-a
rr

ay
V

E
R

T
E

X
AT

T
R

IB
A

R
R

A
Y

S
T

R
ID

E
16

+
×

Z
+

G
et

Ve
rt

ex
A

ttr
ib

0
Ve

rt
ex

at
tr

ib
ar

ra
y

st
rid

e
2.

8
ve

rt
ex

-a
rr

ay
V

E
R

T
E

X
AT

T
R

IB
A

R
R

A
Y

T
Y

P
E

16
+
×

Z
4

G
et

Ve
rt

ex
A

ttr
ib

F
LO

AT
Ve

rt
ex

at
tr

ib
ar

ra
y

ty
pe

2.
8

ve
rt

ex
-a

rr
ay

V
E

R
T

E
X

AT
T

R
IB

A
R

R
A

Y
N

O
R

M
A

LI
Z

E
D

16
+
×

B
G

et
Ve

rt
ex

A
ttr

ib
Fa

ls
e

Ve
rt

ex
at

tr
ib

ar
ra

y
no

rm
al

iz
ed

2.
8

ve
rt

ex
-a

rr
ay

V
E

R
T

E
X

AT
T

R
IB

A
R

R
A

Y
P

O
IN

T
E

R
16

+
×

P
G

et
Ve

rt
ex

-
A

ttr
ib

P
oi

nt
er

N
U

LL
Ve

rt
ex

at
tr

ib
ar

ra
y

po
in

te
r

2.
8

ve
rt

ex
-a

rr
ay

E
D

G
E

F
LA

G
A

R
R

A
Y

B
Is

E
na

bl
ed

Fa
ls

e
E

dg
e

fla
g

ar
ra

y
en

ab
le

2.
8

ve
rt

ex
-a

rr
ay

E
D

G
E

F
LA

G
A

R
R

A
Y

S
T

R
ID

E
Z

+
G

et
In

te
ge

rv
0

S
tr

id
e

be
tw

ee
n

ed
ge

fla
gs

2.
8

ve
rt

ex
-a

rr
ay

E
D

G
E

F
LA

G
A

R
R

A
Y

P
O

IN
T

E
R

Y
G

et
P

oi
nt

er
v

0
P

oi
nt

er
to

th
e

ed
ge

fla
g

ar
ra

y
2.

8
ve

rt
ex

-a
rr

ay
A

R
R

A
Y

B
U

F
F

E
R

B
IN

D
IN

G
Z

+
G

et
In

te
ge

rv
0

C
ur

re
nt

bu
ffe

r
bi

nd
in

g
2.

9
ve

rt
ex

-a
rr

ay
V

E
R

T
E

X
A

R
R

A
Y

B
U

F
F

E
R

B
IN

D
IN

G
Z

+
G

et
In

te
ge

rv
0

Ve
rt

ex
ar

ra
y

bu
ffe

r
bi

nd
in

g
2.

9
ve

rt
ex

-a
rr

ay
N

O
R

M
A

L
A

R
R

A
Y

B
U

F
F

E
R

B
IN

D
IN

G
Z

+
G

et
In

te
ge

rv
0

N
or

m
al

ar
ra

y
bu

ffe
r

bi
nd

in
g

2.
9

ve
rt

ex
-a

rr
ay

C
O

LO
R

A
R

R
A

Y
B

U
F

F
E

R
B

IN
D

IN
G

Z
+

G
et

In
te

ge
rv

0
C

ol
or

ar
ra

y
bu

ffe
r

bi
nd

in
g

2.
9

ve
rt

ex
-a

rr
ay

IN
D

E
X

A
R

R
A

Y
B

U
F

F
E

R
B

IN
D

IN
G

Z
+

G
et

In
te

ge
rv

0
In

de
x

ar
ra

y
bu

ffe
r

bi
nd

in
g

2.
9

ve
rt

ex
-a

rr
ay

T
E

X
T

U
R

E
C

O
O

R
D

A
R

R
A

Y
B

U
F

F
E

R
B

IN
D

IN
G

2
∗
×

Z
+

G
et

In
te

ge
rv

0
Te

xc
oo

rd
ar

ra
y

bu
ffe

r
bi

nd
in

g
2.

9
ve

rt
ex

-a
rr

ay
E

D
G

E
F

LA
G

A
R

R
A

Y
B

U
F

F
E

R
B

IN
D

IN
G

Z
+

G
et

In
te

ge
rv

0
E

dg
e

fla
g

ar
ra

y
bu

ffe
r

bi
nd

in
g

2.
9

ve
rt

ex
-a

rr
ay

S
E

C
O

N
D

A
R

Y
C

O
LO

R
A

R
R

A
Y

B
U

F
F

E
R

B
IN

D
IN

G
Z

+
G

et
In

te
ge

rv
0

S
ec

on
da

ry
co

lo
r

ar
ra

y
bu

ffe
r

bi
nd

in
g

2.
9

ve
rt

ex
-a

rr
ay

F
O

G
C

O
O

R
D

A
R

R
A

Y
B

U
F

F
E

R
B

IN
D

IN
G

Z
+

G
et

In
te

ge
rv

0
F

og
co

or
di

na
te

ar
ra

y
bu

ffe
r

bi
nd

in
g

2.
9

ve
rt

ex
-a

rr
ay

E
LE

M
E

N
T

A
R

R
A

Y
B

U
F

F
E

R
B

IN
D

IN
G

Z
+

G
et

In
te

ge
rv

0
E

le
m

en
ta

rr
ay

bu
ffe

r
bi

nd
in

g
2.

9.
2

ve
rt

ex
-a

rr
ay

Table 6.7. Vertex Array Data (cont.)

Version 2.0 - September 7, 2004



6.2. STATE TABLES 269

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

n
×

B
M

U
G

et
B

uf
fe

rS
ub

D
at

a
-

bu
ffe

r
da

ta
2.

9
-

B
U

F
F

E
R

S
IZ

E
n
×

Z
+

G
et

B
uf

fe
rP

ar
am

et
er

iv
0

B
uf

fe
r

da
ta

si
ze

2.
9

-
B

U
F

F
E

R
U

S
A

G
E

n
×

Z
9

G
et

B
uf

fe
rP

ar
am

et
er

iv
S

TA
T

IC
D

R
A

W
B

uf
fe

r
us

ag
e

pa
tte

rn
2.

9
-

B
U

F
F

E
R

A
C

C
E

S
S

n
×

Z
3

G
et

B
uf

fe
rP

ar
am

et
er

iv
R

E
A

D
W

R
IT

E
B

uf
fe

r
ac

ce
ss

fla
g

2.
9

-
B

U
F

F
E

R
M

A
P

P
E

D
n
×

B
G

et
B

uf
fe

rP
ar

am
et

er
iv

FA
LS

E
B

uf
fe

r
m

ap
fla

g
2.

9
-

B
U

F
F

E
R

M
A

P
P

O
IN

T
E

R
n
×

Y
G

et
B

uf
fe

rP
oi

nt
er

v
N

U
LL

M
ap

pe
d

bu
ffe

r
po

in
te

r
2.

9
-

Table 6.8. Buffer Object State

Version 2.0 - September 7, 2004



6.2. STATE TABLES 270

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

C
O

LO
R

M
AT

R
IX

(T
R

A
N

S
P

O
S

E
C

O
LO

R
M

AT
R

IX
)

2
∗
×

M
4

G
et

F
lo

at
v

Id
en

tit
y

C
ol

or
m

at
rix

st
ac

k
3.

6.
3

–

M
O

D
E

LV
IE

W
M

AT
R

IX

(T
R

A
N

S
P

O
S

E
M

O
D

E
LV

IE
W

M
AT

R
IX

)

32
∗
×

M
4

G
et

F
lo

at
v

Id
en

tit
y

M
od

el
-v

ie
w

m
at

rix
st

ac
k

2.
11

.2
–

P
R

O
JE

C
T

IO
N

M
AT

R
IX

(T
R

A
N

S
P

O
S

E
P

R
O

JE
C

T
IO

N
M

AT
R

IX
)

2
∗
×

M
4

G
et

F
lo

at
v

Id
en

tit
y

P
ro

je
ct

io
n

m
at

rix
st

ac
k

2.
11

.2
–

T
E

X
T

U
R

E
M

AT
R

IX

(T
R

A
N

S
P

O
S

E
T

E
X

T
U

R
E

M
AT

R
IX

)

2
∗
×

2
∗
×

M
4

G
et

F
lo

at
v

Id
en

tit
y

Te
xt

ur
e

m
at

rix
st

ac
k

2.
11

.2
–

V
IE

W
P

O
R

T
4
×

Z
G

et
In

te
ge

rv
se

e2
.1

1.
1

V
ie

w
po

rt
or

ig
in

&
ex

te
nt

2.
11

.1
vi

ew
po

rt
D

E
P

T
H

R
A

N
G

E
2
×

R
+

G
et

F
lo

at
v

0,
1

D
ep

th
ra

ng
e

ne
ar

&
fa

r
2.

11
.1

vi
ew

po
rt

C
O

LO
R

M
AT

R
IX

S
TA

C
K

D
E

P
T

H
Z

+
G

et
In

te
ge

rv
1

C
ol

or
m

at
rix

st
ac

k
po

in
te

r
3.

6.
3

–

M
O

D
E

LV
IE

W
S

TA
C

K
D

E
P

T
H

Z
+

G
et

In
te

ge
rv

1
M

od
el

-v
ie

w
m

at
rix

st
ac

k
po

in
te

r
2.

11
.2

–

P
R

O
JE

C
T

IO
N

S
TA

C
K

D
E

P
T

H
Z

+
G

et
In

te
ge

rv
1

P
ro

je
ct

io
n

m
at

rix
st

ac
k

po
in

te
r

2.
11

.2
–

T
E

X
T

U
R

E
S

TA
C

K
D

E
P

T
H

2
∗
×

Z
+

G
et

In
te

ge
rv

1
Te

xt
ur

e
m

at
rix

st
ac

k
po

in
te

r
2.

11
.2

–

M
AT

R
IX

M
O

D
E

Z
4

G
et

In
te

ge
rv

M
O

D
E

L
V

IE
W

C
ur

re
nt

m
at

rix
m

od
e

2.
11

.2
tr

an
sf

or
m

N
O

R
M

A
LI

Z
E

B
Is

E
na

bl
ed

Fa
ls

e
C

ur
re

nt
no

rm
al

no
rm

al
iz

at
io

n
on

/o
ff

2.
11

.3
tr

an
sf

or
m

/e
na

bl
e

R
E

S
C

A
LE

N
O

R
M

A
L

B
Is

E
na

bl
ed

Fa
ls

e
C

ur
re

nt
no

rm
al

re
sc

al
in

g
on

/o
ff

2.
11

.3
tr

an
sf

or
m

/e
na

bl
e

C
LI

P
P

LA
N

E
i

6
∗
×

R
4

G
et

C
lip

P
la

ne
0,

0,
0,

0
U

se
r

cl
ip

pi
ng

pl
an

e
co

ef
fic

ie
nt

s
2.

12
tr

an
sf

or
m

C
LI

P
P

LA
N

E
i

6
∗
×

B
Is

E
na

bl
ed

Fa
ls

e
it

h
us

er
cl

ip
pi

ng
pl

an
e

en
ab

le
d

2.
12

tr
an

sf
or

m
/e

na
bl

e

Table 6.9. Transformation state

Version 2.0 - September 7, 2004



6.2. STATE TABLES 271

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

F
O

G
C

O
LO

R
C

G
et

F
lo

at
v

0,
0,

0,
0

F
og

co
lo

r
3.

10
fo

g
F

O
G

IN
D

E
X

C
I

G
et

F
lo

at
v

0
F

og
in

de
x

3.
10

fo
g

F
O

G
D

E
N

S
IT

Y
R

G
et

F
lo

at
v

1.
0

E
xp

on
en

tia
lf

og
de

ns
ity

3.
10

fo
g

F
O

G
S

TA
R

T
R

G
et

F
lo

at
v

0.
0

Li
ne

ar
fo

g
st

ar
t

3.
10

fo
g

F
O

G
E

N
D

R
G

et
F

lo
at

v
1.

0
Li

ne
ar

fo
g

en
d

3.
10

fo
g

F
O

G
M

O
D

E
Z

3
G

et
In

te
ge

rv
E

X
P

F
og

m
od

e
3.

10
fo

g
F

O
G

B
Is

E
na

bl
ed

Fa
ls

e
T

ru
e

if
fo

g
en

ab
le

d
3.

10
fo

g/
en

ab
le

F
O

G
C

O
O

R
D

S
R

C
Z

2
G

et
In

te
ge

rv
F

R
A

G
M

E
N

TD
E

P
T

H
S

ou
rc

e
of

co
or

di
na

te
fo

r
fo

g
ca

lc
ul

at
io

n
3.

10
fo

g

C
O

LO
R

S
U

M
B

Is
E

na
bl

ed
Fa

ls
e

T
ru

e
if

co
lo

r
su

m
en

ab
le

d
3.

9
fo

g/
en

ab
le

S
H

A
D

E
M

O
D

E
L

Z
+

G
et

In
te

ge
rv

S
M

O
O

T
H

S
ha

de
M

od
el

se
tti

ng
2.

14
.7

lig
ht

in
g

Table 6.10. Coloring

Version 2.0 - September 7, 2004



6.2. STATE TABLES 272

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

LI
G

H
T

IN
G

B
Is

E
na

bl
ed

Fa
ls

e
T

ru
e

if
lig

ht
in

g
is

en
ab

le
d

2.
14

.1
lig

ht
in

g/
en

ab
le

C
O

LO
R

M
AT

E
R

IA
L

B
Is

E
na

bl
ed

Fa
ls

e
T

ru
e

if
co

lo
r

tr
ac

ki
ng

is
en

ab
le

d

2.
14

.3
lig

ht
in

g/
en

ab
le

C
O

LO
R

M
AT

E
R

IA
L

P
A

R
A

M
E

T
E

R
Z

5
G

et
In

te
ge

rv
A

M
B

IE
N

T
A

N
D

D
IF

F
U

S
E

M
at

er
ia

l
pr

op
er

tie
s

tr
ac

ki
ng

cu
rr

en
t

co
lo

r

2.
14

.3
lig

ht
in

g

C
O

LO
R

M
AT

E
R

IA
L

FA
C

E
Z

3
G

et
In

te
ge

rv
F

R
O

N
TA

N
D

B
A

C
K

F
ac

e(
s)

af
fe

ct
ed

by
co

lo
r

tr
ac

ki
ng

2.
14

.3
lig

ht
in

g

A
M

B
IE

N
T

2
×

C
G

et
M

at
er

ia
lfv

(0
.2

,0
.2

,0
.2

,1
.0

)
A

m
bi

en
tm

at
er

ia
l

co
lo

r
2.

14
.1

lig
ht

in
g

D
IF

F
U

S
E

2
×

C
G

et
M

at
er

ia
lfv

(0
.8

,0
.8

,0
.8

,1
.0

)
D

iff
us

e
m

at
er

ia
l

co
lo

r
2.

14
.1

lig
ht

in
g

S
P

E
C

U
LA

R
2
×

C
G

et
M

at
er

ia
lfv

(0
.0

,0
.0

,0
.0

,1
.0

)
S

pe
cu

la
r

m
at

er
ia

l
co

lo
r

2.
14

.1
lig

ht
in

g

E
M

IS
S

IO
N

2
×

C
G

et
M

at
er

ia
lfv

(0
.0

,0
.0

,0
.0

,1
.0

)
E

m
is

si
ve

m
at

.
co

lo
r

2.
14

.1
lig

ht
in

g

S
H

IN
IN

E
S

S
2
×

R
G

et
M

at
er

ia
lfv

0.
0

S
pe

cu
la

r
ex

po
ne

nt
of

m
at

er
ia

l

2.
14

.1
lig

ht
in

g

LI
G

H
T

M
O

D
E

L
A

M
B

IE
N

T
C

G
et

F
lo

at
v

(0
.2

,0
.2

,0
.2

,1
.0

)
A

m
bi

en
ts

ce
ne

co
lo

r
2.

14
.1

lig
ht

in
g

LI
G

H
T

M
O

D
E

L
LO

C
A

L
V

IE
W

E
R

B
G

et
B

oo
le

an
v

Fa
ls

e
V

ie
w

er
is

lo
ca

l
2.

14
.1

lig
ht

in
g

LI
G

H
T

M
O

D
E

L
T

W
O

S
ID

E
B

G
et

B
oo

le
an

v
Fa

ls
e

U
se

tw
o-

si
de

d
lig

ht
in

g
2.

14
.1

lig
ht

in
g

LI
G

H
T

M
O

D
E

L
C

O
LO

R
C

O
N

T
R

O
L

Z
2

G
et

In
te

ge
rv

S
IN

G
L

E
C

O
L

O
R

C
ol

or
co

nt
ro

l
2.

14
.1

lig
ht

in
g

Table 6.11. Lighting (see also table2.10for defaults)

Version 2.0 - September 7, 2004



6.2. STATE TABLES 273

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

A
M

B
IE

N
T

8
∗
×

C
G

et
Li

gh
tfv

(0
.0

,0
.0

,0
.0

,1
.0

)
A

m
bi

en
ti

nt
en

si
ty

of
lig

ht
i

2.
14

.1
lig

ht
in

g
D

IF
F

U
S

E
8
∗
×

C
G

et
Li

gh
tfv

se
e

ta
bl

e2
.1

0
D

iff
us

e
in

te
ns

ity
of

lig
ht

i
2.

14
.1

lig
ht

in
g

S
P

E
C

U
LA

R
8
∗
×

C
G

et
Li

gh
tfv

se
e

ta
bl

e2
.1

0
S

pe
cu

la
r

in
te

ns
ity

of
lig

hti
2.

14
.1

lig
ht

in
g

P
O

S
IT

IO
N

8
∗
×

P
G

et
Li

gh
tfv

(0
.0

,0
.0

,1
.0

,0
.0

)
P

os
iti

on
of

lig
ht

i
2.

14
.1

lig
ht

in
g

C
O

N
S

TA
N

T
AT

T
E

N
U

AT
IO

N
8
∗
×

R
+

G
et

Li
gh

tfv
1.

0
C

on
st

an
ta

tte
n.

fa
ct

or
2.

14
.1

lig
ht

in
g

LI
N

E
A

R
AT

T
E

N
U

AT
IO

N
8
∗
×

R
+

G
et

Li
gh

tfv
0.

0
Li

ne
ar

at
te

n.
fa

ct
or

2.
14

.1
lig

ht
in

g
Q

U
A

D
R

AT
IC

AT
T

E
N

U
AT

IO
N

8
∗
×

R
+

G
et

Li
gh

tfv
0.

0
Q

ua
dr

at
ic

at
te

n.
fa

ct
or

2.
14

.1
lig

ht
in

g
S

P
O

T
D

IR
E

C
T

IO
N

8
∗
×

D
G

et
Li

gh
tfv

(0
.0

,0
.0

,-
1.

0)
S

po
tli

gh
td

ire
ct

io
n

of
lig

ht
i

2.
14

.1
lig

ht
in

g
S

P
O

T
E

X
P

O
N

E
N

T
8
∗
×

R
+

G
et

Li
gh

tfv
0.

0
S

po
tli

gh
te

xp
on

en
to

fl
ig

hti
2.

14
.1

lig
ht

in
g

S
P

O
T

C
U

T
O

F
F

8
∗
×

R
+

G
et

Li
gh

tfv
18

0.
0

S
po

t.
an

gl
e

of
lig

hti
2.

14
.1

lig
ht

in
g

LI
G

H
T
i

8
∗
×

B
Is

E
na

bl
ed

Fa
ls

e
T

ru
e

if
lig

ht
i

en
ab

le
d

2.
14

.1
lig

ht
in

g/
en

ab
le

C
O

LO
R

IN
D

E
X

E
S

2
×

3
×

R
G

et
M

at
er

ia
lfv

0,
1,

1
a

m
,d

m
,a

nd
s m

fo
r

co
lo

r
in

de
x

lig
ht

in
g

2.
14

.1
lig

ht
in

g

Table 6.12. Lighting (cont.)

Version 2.0 - September 7, 2004



6.2. STATE TABLES 274

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

P
O

IN
T

S
IZ

E
R

+
G

et
F

lo
at

v
1.

0
P

oi
nt

si
ze

3.
3

po
in

t
P

O
IN

T
S

M
O

O
T

H
B

Is
E

na
bl

ed
Fa

ls
e

P
oi

nt
an

tia
lia

si
ng

on
3.

3
po

in
t/e

na
bl

e
P

O
IN

T
S

P
R

IT
E

B
Is

E
na

bl
ed

Fa
ls

e
P

oi
nt

sp
rit

e
en

ab
le

3.
3

po
in

t/e
na

bl
e

P
O

IN
T

S
IZ

E
M

IN
R

+
G

et
F

lo
at

v
0.

0
A

tte
nu

at
ed

m
in

im
um

po
in

ts
iz

e
3.

3
po

in
t

P
O

IN
T

S
IZ

E
M

A
X

R
+

G
et

F
lo

at
v

1
A

tte
nu

at
ed

m
ax

im
um

po
in

ts
iz

e.1

M
ax

.
of

th
e

im
pl

.
de

pe
nd

en
tm

ax
.

al
ia

se
d

an
d

sm
oo

th
po

in
ts

iz
es

.

3.
3

po
in

t

P
O

IN
T

FA
D

E
T

H
R

E
S

H
O

LD
S

IZ
E

R
+

G
et

F
lo

at
v

1.
0

T
hr

es
ho

ld
fo

r
al

ph
a

at
te

nu
at

io
n

3.
3

po
in

t
P

O
IN

T
D

IS
TA

N
C

E
AT

T
E

N
U

AT
IO

N
3
×

R
+

G
et

F
lo

at
v

1,
0,

0
A

tte
nu

at
io

n
co

ef
fic

ie
nt

s
3.

3
po

in
t

LI
N

E
W

ID
T

H
R

+
G

et
F

lo
at

v
1.

0
Li

ne
w

id
th

3.
4

lin
e

LI
N

E
S

M
O

O
T

H
B

Is
E

na
bl

ed
Fa

ls
e

Li
ne

an
tia

lia
si

ng
on

3.
4

lin
e/

en
ab

le
LI

N
E

S
T

IP
P

LE
P

AT
T

E
R

N
Z

+
G

et
In

te
ge

rv
1’

s
Li

ne
st

ip
pl

e
3.

4.
2

lin
e

LI
N

E
S

T
IP

P
LE

R
E

P
E

AT
Z

+
G

et
In

te
ge

rv
1

Li
ne

st
ip

pl
e

re
pe

at
3.

4.
2

lin
e

LI
N

E
S

T
IP

P
LE

B
Is

E
na

bl
ed

Fa
ls

e
Li

ne
st

ip
pl

e
en

ab
le

3.
4.

2
lin

e/
en

ab
le

C
U

LL
FA

C
E

B
Is

E
na

bl
ed

Fa
ls

e
P

ol
yg

on
cu

lli
ng

en
ab

le
d

3.
5.

1
po

ly
go

n/
en

ab
le

C
U

LL
FA

C
E

M
O

D
E

Z
3

G
et

In
te

ge
rv

B
A

C
K

C
ul

lf
ro

nt
/b

ac
k

fa
ci

ng
po

ly
go

ns
3.

5.
1

po
ly

go
n

F
R

O
N

T
FA

C
E

Z
2

G
et

In
te

ge
rv

C
C

W
P

ol
yg

on
fr

on
tfa

ce
C

W
/C

C
W

in
di

ca
to

r
3.

5.
1

po
ly

go
n

P
O

LY
G

O
N

S
M

O
O

T
H

B
Is

E
na

bl
ed

Fa
ls

e
P

ol
yg

on
an

tia
lia

si
ng

on
3.

5
po

ly
go

n/
en

ab
le

P
O

LY
G

O
N

M
O

D
E

2
×

Z
3

G
et

In
te

ge
rv

F
IL

L
P

ol
yg

on
ra

st
er

iz
at

io
n

m
od

e
(f

ro
nt

&
ba

ck
)

3.
5.

4
po

ly
go

n

P
O

LY
G

O
N

O
F

F
S

E
T

FA
C

T
O

R
R

G
et

F
lo

at
v

0
P

ol
yg

on
of

fs
et

fa
ct

or
3.

5.
5

po
ly

go
n

P
O

LY
G

O
N

O
F

F
S

E
T

U
N

IT
S

R
G

et
F

lo
at

v
0

P
ol

yg
on

of
fs

et
un

its
3.

5.
5

po
ly

go
n

P
O

LY
G

O
N

O
F

F
S

E
T

P
O

IN
T

B
Is

E
na

bl
ed

Fa
ls

e
P

ol
yg

on
of

fs
et

en
ab

le
fo

rP
O

IN
T

m
od

e
ra

st
er

iz
at

io
n

3.
5.

5
po

ly
go

n/
en

ab
le

P
O

LY
G

O
N

O
F

F
S

E
T

LI
N

E
B

Is
E

na
bl

ed
Fa

ls
e

P
ol

yg
on

of
fs

et
en

ab
le

fo
rLI

N
E

m
od

e
ra

st
er

iz
at

io
n

3.
5.

5
po

ly
go

n/
en

ab
le

P
O

LY
G

O
N

O
F

F
S

E
T

F
IL

L
B

Is
E

na
bl

ed
Fa

ls
e

P
ol

yg
on

of
fs

et
en

ab
le

fo
rF
IL

L
m

od
e

ra
st

er
iz

at
io

n
3.

5.
5

po
ly

go
n/

en
ab

le

–
I

G
et

P
ol

yg
on

S
tip

pl
e

1’
s

P
ol

yg
on

st
ip

pl
e

3.
5

po
ly

go
n-

st
ip

pl
e

P
O

LY
G

O
N

S
T

IP
P

LE
B

Is
E

na
bl

ed
Fa

ls
e

P
ol

yg
on

st
ip

pl
e

en
ab

le
3.

5.
2

po
ly

go
n/

en
ab

le

Table 6.13. Rasterization

Version 2.0 - September 7, 2004



6.2. STATE TABLES 275

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

M
U

LT
IS

A
M

P
LE

B
Is

E
na

bl
ed

T
ru

e
M

ul
tis

am
pl

e
ra

st
er

iz
at

io
n

3.
2.

1
m

ul
tis

am
pl

e/
en

ab
le

S
A

M
P

LE
A

LP
H

A
T

O
C

O
V

E
R

A
G

E
B

Is
E

na
bl

ed
Fa

ls
e

M
od

ify
co

ve
ra

ge
fr

om
al

ph
a

4.
1.

3
m

ul
tis

am
pl

e/
en

ab
le

S
A

M
P

LE
A

LP
H

A
T

O
O

N
E

B
Is

E
na

bl
ed

Fa
ls

e
S

et
al

ph
a

to
m

ax
im

um
4.

1.
3

m
ul

tis
am

pl
e/

en
ab

le
S

A
M

P
LE

C
O

V
E

R
A

G
E

B
Is

E
na

bl
ed

Fa
ls

e
M

as
k

to
m

od
ify

co
ve

ra
ge

4.
1.

3
m

ul
tis

am
pl

e/
en

ab
le

S
A

M
P

LE
C

O
V

E
R

A
G

E
VA

LU
E

R
+

G
et

F
lo

at
v

1
C

ov
er

ag
e

m
as

k
va

lu
e

4.
1.

3
m

ul
tis

am
pl

e
S

A
M

P
LE

C
O

V
E

R
A

G
E

IN
V

E
R

T
B

G
et

B
oo

le
an

v
Fa

ls
e

In
ve

rt
co

ve
ra

ge
m

as
k

va
lu

e
4.

1.
3

m
ul

tis
am

pl
e

Table 6.14. Multisampling

Version 2.0 - September 7, 2004



6.2. STATE TABLES 276

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

T
E

X
T

U
R

E
x

D
2
∗
×

3
×

B
Is

E
na

bl
ed

Fa
ls

e
T

ru
e

if
x

D
te

xt
ur

in
g

is
en

ab
le

d;
x

is
1

,2
,o

r3
3.

8.
15

te
xt

ur
e/

en
ab

le

T
E

X
T

U
R

E
C

U
B

E
M

A
P

2
∗
×

B
Is

E
na

bl
ed

Fa
ls

e
T

ru
e

if
cu

be
m

ap
te

xt
ur

in
g

is
en

ab
le

d
3.

8.
13

te
xt

ur
e/

en
ab

le

T
E

X
T

U
R

E
B

IN
D

IN
G

x
D

2
∗
×

3
×

Z
+

G
et

In
te

ge
rv

0
Te

xt
ur

e
ob

je
ct

bo
un

d
to

T
E

X
T

U
R

E
x

D
3.

8.
12

te
xt

ur
e

T
E

X
T

U
R

E
B

IN
D

IN
G

C
U

B
E

M
A

P
2
∗
×

Z
+

G
et

In
te

ge
rv

0
Te

xt
ur

e
ob

je
ct

bo
un

d
to

T
E

X
T

U
R

E
C

U
B

E
M

A
P

3.
8.

11
te

xt
ur

e

T
E

X
T

U
R

E
x

D
n
×

I
G

et
Te

xI
m

ag
e

se
e3

.8
x

D
te

xt
ur

e
im

ag
e

at
l.o

.d
.i

3.
8

–

T
E

X
T

U
R

E
C

U
B

E
M

A
P

P
O

S
IT

IV
E

X
n
×

I
G

et
Te

xI
m

ag
e

se
e3

.8
.1

+
x

fa
ce

cu
be

m
ap

te
xt

ur
e

im
ag

e
at

l.o
.d

.i
3.

8.
1

–

T
E

X
T

U
R

E
C

U
B

E
M

A
P

N
E

G
AT

IV
E

X
n
×

I
G

et
Te

xI
m

ag
e

se
e3

.8
.1
−

x
fa

ce
cu

be
m

ap
te

xt
ur

e
im

ag
e

at
l.o

.d
.i

3.
8.

1
–

T
E

X
T

U
R

E
C

U
B

E
M

A
P

P
O

S
IT

IV
E

Y
n
×

I
G

et
Te

xI
m

ag
e

se
e3

.8
.1

+
y

fa
ce

cu
be

m
ap

te
xt

ur
e

im
ag

e
at

l.o
.d

.i
3.

8.
1

–

T
E

X
T

U
R

E
C

U
B

E
M

A
P

N
E

G
AT

IV
E

Y
n
×

I
G

et
Te

xI
m

ag
e

se
e3

.8
.1
−

y
fa

ce
cu

be
m

ap
te

xt
ur

e
im

ag
e

at
l.o

.d
.i

3.
8.

1
–

T
E

X
T

U
R

E
C

U
B

E
M

A
P

P
O

S
IT

IV
E

Z
n
×

I
G

et
Te

xI
m

ag
e

se
e3

.8
.1

+
z

fa
ce

cu
be

m
ap

te
xt

ur
e

im
ag

e
at

l.o
.d

.i
3.

8.
1

–

T
E

X
T

U
R

E
C

U
B

E
M

A
P

N
E

G
AT

IV
E

Z
n
×

I
G

et
Te

xI
m

ag
e

se
e3

.8
.1
−

z
fa

ce
cu

be
m

ap
te

xt
ur

e
im

ag
e

at
l.o

.d
.i

3.
8.

1
–

Table 6.15. Textures (state per texture unit and binding point)

Version 2.0 - September 7, 2004



6.2. STATE TABLES 277

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

T
E

X
T

U
R

E
B

O
R

D
E

R
C

O
LO

R
n
×

C
G

et
Te

xP
ar

am
et

er
0,

0,
0,

0
Te

xt
ur

e
bo

rd
er

co
lo

r
3.

8
te

xt
ur

e
T

E
X

T
U

R
E

M
IN

F
IL

T
E

R
n
×

Z
6

G
et

Te
xP

ar
am

et
er

se
e3

.8
Te

xt
ur

e
m

in
ifi

ca
tio

n
fu

nc
tio

n
3.

8.
8

te
xt

ur
e

T
E

X
T

U
R

E
M

A
G

F
IL

T
E

R
n
×

Z
2

G
et

Te
xP

ar
am

et
er

se
e3

.8
Te

xt
ur

e
m

ag
ni

fic
at

io
n

fu
nc

tio
n

3.
8.

9
te

xt
ur

e

T
E

X
T

U
R

E
W

R
A

P
S

n
×

Z
5

G
et

Te
xP

ar
am

et
er

R
E

P
E

A
T

Te
xc

oo
rd

s
w

ra
p

m
od

e
3.

8.
7

te
xt

ur
e

T
E

X
T

U
R

E
W

R
A

P
T

n
×

Z
5

G
et

Te
xP

ar
am

et
er

R
E

P
E

A
T

Te
xc

oo
rd

t
w

ra
p

m
od

e
(2

D
,3

D
,c

ub
e

m
ap

te
xt

ur
es

on
ly

)

3.
8.

7
te

xt
ur

e

T
E

X
T

U
R

E
W

R
A

P
R

n
×

Z
5

G
et

Te
xP

ar
am

et
er

R
E

P
E

A
T

Te
xc

oo
rd

r
w

ra
p

m
od

e
(3

D
te

xt
ur

es
on

ly
)

3.
8.

7
te

xt
ur

e

T
E

X
T

U
R

E
P

R
IO

R
IT

Y
n
×

R
[0

,1
]

G
et

Te
xP

ar
am

et
er

fv
1

Te
xt

ur
e

ob
je

ct
pr

io
rit

y
3.

8.
12

te
xt

ur
e

T
E

X
T

U
R

E
R

E
S

ID
E

N
T

n
×

B
G

et
Te

xP
ar

am
et

er
iv

se
e3

.8
.1

2
Te

xt
ur

e
re

si
de

nc
y

3.
8.

12
te

xt
ur

e
T

E
X

T
U

R
E

M
IN

LO
D

n
×

R
G

et
Te

xP
ar

am
et

er
fv

-1
00

0
M

in
im

um
le

ve
lo

fd
et

ai
l

3.
8

te
xt

ur
e

T
E

X
T

U
R

E
M

A
X

LO
D

n
×

R
G

et
Te

xP
ar

am
et

er
fv

10
00

M
ax

im
um

le
ve

lo
fd

et
ai

l
3.

8
te

xt
ur

e
T

E
X

T
U

R
E

B
A

S
E

LE
V

E
L

n
×

Z
+

G
et

Te
xP

ar
am

et
er

fv
0

B
as

e
te

xt
ur

e
ar

ra
y

3.
8

te
xt

ur
e

T
E

X
T

U
R

E
M

A
X

LE
V

E
L

n
×

Z
+

G
et

Te
xP

ar
am

et
er

fv
10

00
M

ax
im

um
te

xt
ur

e
ar

ra
y

le
ve

l
3.

8
te

xt
ur

e

T
E

X
T

U
R

E
LO

D
B

IA
S

n
×

R
G

et
Te

xP
ar

am
et

er
fv

0.
0

Te
xt

ur
e

le
ve

lo
fd

et
ai

l
bi

as
bi

a
s t

e
x
o
b
j

3.
8.

8
te

xt
ur

e

D
E

P
T

H
T

E
X

T
U

R
E

M
O

D
E

n
×

Z
3

G
et

Te
xP

ar
am

et
er

iv
L

U
M

IN
A

N
C

E
D

ep
th

te
xt

ur
e

m
od

e
3.

8.
5

te
xt

ur
e

T
E

X
T

U
R

E
C

O
M

P
A

R
E

M
O

D
E

n
×

Z
2

G
et

Te
xP

ar
am

et
er

iv
N

O
N

E
Te

xt
ur

e
co

m
pa

ris
on

m
od

e
3.

8.
14

te
xt

ur
e

T
E

X
T

U
R

E
C

O
M

P
A

R
E

F
U

N
C

n
×

Z
8

G
et

Te
xP

ar
am

et
er

iv
L

E
Q

U
A

L
Te

xt
ur

e
co

m
pa

ris
on

fu
nc

tio
n

3.
8.

14
te

xt
ur

e

G
E

N
E

R
AT

E
M

IP
M

A
P

n
×

B
G

et
Te

xP
ar

am
et

er
F

A
L

S
E

A
ut

om
at

ic
m

ip
m

ap
ge

ne
ra

tio
n

3.
8.

8
te

xt
ur

e

Table 6.16. Textures (state per texture object)

Version 2.0 - September 7, 2004



6.2. STATE TABLES 278

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

T
E

X
T

U
R

E
W

ID
T

H
n
×

Z
+

G
et

Te
xL

ev
el

P
ar

am
et

er
0

te
xt

ur
e

im
ag

e’
s

sp
ec

ifi
ed

w
id

th
3.

8
–

T
E

X
T

U
R

E
H

E
IG

H
T

n
×

Z
+

G
et

Te
xL

ev
el

P
ar

am
et

er
0

2D
/3

D
te

xt
ur

e
im

ag
e’

s
sp

ec
ifi

ed
he

ig
ht

3.
8

–

T
E

X
T

U
R

E
D

E
P

T
H

n
×

Z
+

G
et

Te
xL

ev
el

P
ar

am
et

er
0

3D
te

xt
ur

e
im

ag
e’

s
sp

ec
ifi

ed
de

pt
h

3.
8

–

T
E

X
T

U
R

E
B

O
R

D
E

R
n
×

Z
+

G
et

Te
xL

ev
el

P
ar

am
et

er
0

te
xt

ur
e

im
ag

e’
s

sp
ec

ifi
ed

bo
rd

er
w

id
th

3.
8

–

T
E

X
T

U
R

E
IN

T
E

R
N

A
L

F
O

R
M

AT

(T
E

X
T

U
R

E
C

O
M

P
O

N
E

N
T

S
)

n
×

Z
4
2
∗

G
et

Te
xL

ev
el

P
ar

am
et

er
1

te
xt

ur
e

im
ag

e’
s

in
te

rn
al

im
ag

e
fo

rm
at

3.
8

–

T
E

X
T

U
R

E
R

E
D

S
IZ

E
n
×

Z
+

G
et

Te
xL

ev
el

P
ar

am
et

er
0

te
xt

ur
e

im
ag

e’
s

re
d

re
so

lu
tio

n
3.

8
–

T
E

X
T

U
R

E
G

R
E

E
N

S
IZ

E
n
×

Z
+

G
et

Te
xL

ev
el

P
ar

am
et

er
0

te
xt

ur
e

im
ag

e’
s

gr
ee

n
re

so
lu

tio
n

3.
8

–

T
E

X
T

U
R

E
B

LU
E

S
IZ

E
n
×

Z
+

G
et

Te
xL

ev
el

P
ar

am
et

er
0

te
xt

ur
e

im
ag

e’
s

bl
ue

re
so

lu
tio

n
3.

8
–

T
E

X
T

U
R

E
A

LP
H

A
S

IZ
E

n
×

Z
+

G
et

Te
xL

ev
el

P
ar

am
et

er
0

te
xt

ur
e

im
ag

e’
s

al
ph

a
re

so
lu

tio
n

3.
8

–

T
E

X
T

U
R

E
LU

M
IN

A
N

C
E

S
IZ

E
n
×

Z
+

G
et

Te
xL

ev
el

P
ar

am
et

er
0

te
xt

ur
e

im
ag

e’
s

lu
m

in
an

ce
re

so
lu

tio
n

3.
8

–

T
E

X
T

U
R

E
IN

T
E

N
S

IT
Y

S
IZ

E
n
×

Z
+

G
et

Te
xL

ev
el

P
ar

am
et

er
0

te
xt

ur
e

im
ag

e’
s

in
te

ns
ity

re
so

lu
tio

n
3.

8
–

T
E

X
T

U
R

E
D

E
P

T
H

S
IZ

E
n
×

Z
+

G
et

Te
xL

ev
el

P
ar

am
et

er
0

te
xt

ur
e

im
ag

e’
s

de
pt

h
re

so
lu

tio
n

3.
8

–

T
E

X
T

U
R

E
C

O
M

P
R

E
S

S
E

D
n
×

B
G

et
Te

xL
ev

el
P

ar
am

et
er

Fa
ls

e
T

ru
e

if
te

xt
ur

e
im

ag
e

ha
s

a
co

m
pr

es
se

d
in

te
rn

al
fo

rm
at

3.
8.

3
-

T
E

X
T

U
R

E
C

O
M

P
R

E
S

S
E

DI
M

A
G

E
S

IZ
E

n
×

Z
+

G
et

Te
xL

ev
el

P
ar

am
et

er
0

si
ze

(in
u

b
yt

e
s)

of
co

m
pr

es
se

d
te

xt
ur

e
im

ag
e

3.
8.

3
-

Table 6.17. Textures (state per texture image)

Version 2.0 - September 7, 2004



6.2. STATE TABLES 279

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

C
O

O
R

D
R

E
P

LA
C

E
2
∗
×

B
G

et
Te

xE
nv

iv
Fa

ls
e

C
oo

rd
in

at
e

re
pl

ac
em

en
te

na
bl

e
3.

3
po

in
t

A
C

T
IV

E
T

E
X

T
U

R
E

Z
2
∗

G
et

In
te

ge
rv

T
E

X
T

U
R

E
0

A
ct

iv
e

te
xt

ur
e

un
it

se
le

ct
or

2.
7

te
xt

ur
e

T
E

X
T

U
R

E
E

N
V

M
O

D
E

2
∗
×

Z
6

G
et

Te
xE

nv
iv

M
O

D
U

L
A

T
E

Te
xt

ur
e

ap
pl

ic
at

io
n

fu
nc

tio
n

3.
8.

13
te

xt
ur

e
T

E
X

T
U

R
E

E
N

V
C

O
LO

R
2
∗
×

C
G

et
Te

xE
nv

fv
0,

0,
0,

0
Te

xt
ur

e
en

vi
ro

nm
en

tc
ol

or
3.

8.
13

te
xt

ur
e

T
E

X
T

U
R

E
LO

D
B

IA
S

2
∗
×

R
G

et
Te

xE
nv

fv
0.

0
Te

xt
ur

e
le

ve
lo

fd
et

ai
lb

ia
s

bi
a
s t

e
x
u

n
it

3.
8.

8
te

xt
ur

e

T
E

X
T

U
R

E
G

E
N

x
2
∗
×

4
×

B
Is

E
na

bl
ed

Fa
ls

e
Te

xg
en

en
ab

le
d

(x
is

S
,T

,R
,o

r
Q

)
2.

11
.4

te
xt

ur
e/

en
ab

le
E

Y
E

P
LA

N
E

2
∗
×

4
×

R
4

G
et

Te
xG

en
fv

se
e2

.1
1.

4
Te

xg
en

pl
an

e
eq

ua
tio

n
co

ef
fic

ie
nt

s
(f

or
S

,T
,R

,a
nd

Q
)

2.
11

.4
te

xt
ur

e

O
B

JE
C

T
P

LA
N

E
2
∗
×

4
×

R
4

G
et

Te
xG

en
fv

se
e2

.1
1.

4
Te

xg
en

ob
je

ct
lin

ea
r

co
ef

fic
ie

nt
s

(f
or

S
,T

,R
,a

nd
Q

)
2.

11
.4

te
xt

ur
e

T
E

X
T

U
R

E
G

E
N

M
O

D
E

2
∗
×

4
×

Z
5

G
et

Te
xG

en
iv

E
Y

E
L

IN
E

A
R

F
un

ct
io

n
us

ed
fo

r
te

xg
en

(f
or

S
,T

,
R

,a
nd

Q
2.

11
.4

te
xt

ur
e

C
O

M
B

IN
E

R
G

B
2
∗
×

Z
8

G
et

Te
xE

nv
iv

M
O

D
U

L
A

T
E

R
G

B
co

m
bi

ne
r

fu
nc

tio
n

3.
8.

13
te

xt
ur

e
C

O
M

B
IN

E
A

LP
H

A
2
∗
×

Z
6

G
et

Te
xE

nv
iv

M
O

D
U

L
A

T
E

A
lp

ha
co

m
bi

ne
r

fu
nc

tio
n

3.
8.

13
te

xt
ur

e
S

R
C

0
R

G
B

2
∗
×

Z
3

G
et

Te
xE

nv
iv

T
E

X
T

U
R

E
R

G
B

so
ur

ce
0

3.
8.

13
te

xt
ur

e
S

R
C

1
R

G
B

2
∗
×

Z
3

G
et

Te
xE

nv
iv

P
R

E
V

IO
U

S
R

G
B

so
ur

ce
1

3.
8.

13
te

xt
ur

e
S

R
C

2
R

G
B

2
∗
×

Z
3

G
et

Te
xE

nv
iv

C
O

N
S

T
A

N
T

R
G

B
so

ur
ce

2
3.

8.
13

te
xt

ur
e

S
R

C
0

A
LP

H
A

2
∗
×

Z
3

G
et

Te
xE

nv
iv

T
E

X
T

U
R

E
A

lp
ha

so
ur

ce
0

3.
8.

13
te

xt
ur

e
S

R
C

1
A

LP
H

A
2
∗
×

Z
3

G
et

Te
xE

nv
iv

P
R

E
V

IO
U

S
A

lp
ha

so
ur

ce
1

3.
8.

13
te

xt
ur

e
S

R
C

2
A

LP
H

A
2
∗
×

Z
3

G
et

Te
xE

nv
iv

C
O

N
S

T
A

N
T

A
lp

ha
so

ur
ce

2
3.

8.
13

te
xt

ur
e

O
P

E
R

A
N

D
0

R
G

B
2
∗
×

Z
4

G
et

Te
xE

nv
iv

S
R

C
C

O
L

O
R

R
G

B
op

er
an

d
0

3.
8.

13
te

xt
ur

e
O

P
E

R
A

N
D

1
R

G
B

2
∗
×

Z
4

G
et

Te
xE

nv
iv

S
R

C
C

O
L

O
R

R
G

B
op

er
an

d
1

3.
8.

13
te

xt
ur

e
O

P
E

R
A

N
D

2
R

G
B

2
∗
×

Z
4

G
et

Te
xE

nv
iv

S
R

C
A

L
P

H
A

R
G

B
op

er
an

d
2

3.
8.

13
te

xt
ur

e
O

P
E

R
A

N
D

0
A

LP
H

A
2
∗
×

Z
2

G
et

Te
xE

nv
iv

S
R

C
A

L
P

H
A

A
lp

ha
op

er
an

d
0

3.
8.

13
te

xt
ur

e
O

P
E

R
A

N
D

1
A

LP
H

A
2
∗
×

Z
2

G
et

Te
xE

nv
iv

S
R

C
A

L
P

H
A

A
lp

ha
op

er
an

d
1

3.
8.

13
te

xt
ur

e
O

P
E

R
A

N
D

2
A

LP
H

A
2
∗
×

Z
2

G
et

Te
xE

nv
iv

S
R

C
A

L
P

H
A

A
lp

ha
op

er
an

d
2

3.
8.

13
te

xt
ur

e
R

G
B

S
C

A
LE

2
∗
×

R
3

G
et

Te
xE

nv
fv

1.
0

R
G

B
po

st
-c

om
bi

ne
r

sc
al

in
g

3.
8.

13
te

xt
ur

e
A

LP
H

A
S

C
A

LE
2
∗
×

R
3

G
et

Te
xE

nv
fv

1.
0

A
lp

ha
po

st
-c

om
bi

ne
r

sc
al

in
g

3.
8.

13
te

xt
ur

e

Table 6.18. Texture Environment and Generation

Version 2.0 - September 7, 2004



6.2. STATE TABLES 280

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

S
C

IS
S

O
R

T
E

S
T

B
Is

E
na

bl
ed

Fa
ls

e
S

ci
ss

or
in

g
en

ab
le

d
4.

1.
2

sc
is

so
r/

en
ab

le
S

C
IS

S
O

R
B

O
X

4
×

Z
G

et
In

te
ge

rv
se

e4
.1

.2
S

ci
ss

or
bo

x
4.

1.
2

sc
is

so
r

A
LP

H
A

T
E

S
T

B
Is

E
na

bl
ed

Fa
ls

e
A

lp
ha

te
st

en
ab

le
d

4.
1.

4
co

lo
r-

bu
ffe

r/
en

ab
le

A
LP

H
A

T
E

S
T

F
U

N
C

Z
8

G
et

In
te

ge
rv

A
L

W
A

Y
S

A
lp

ha
te

st
fu

nc
tio

n
4.

1.
4

co
lo

r-
bu

ffe
r

A
LP

H
A

T
E

S
T

R
E

F
R

+
G

et
In

te
ge

rv
0

A
lp

ha
te

st
re

fe
re

nc
e

va
lu

e
4.

1.
4

co
lo

r-
bu

ffe
r

S
T

E
N

C
IL

T
E

S
T

B
Is

E
na

bl
ed

Fa
ls

e
S

te
nc

ili
ng

en
ab

le
d

4.
1.

5
st

en
ci

l-b
uf

fe
r/

en
ab

le
S

T
E

N
C

IL
F

U
N

C
Z

8
G

et
In

te
ge

rv
A

L
W

A
Y

S
F

ro
nt

st
en

ci
lf

un
ct

io
n

4.
1.

5
st

en
ci

l-b
uf

fe
r

S
T

E
N

C
IL

VA
LU

E
M

A
S

K
Z

+
G

et
In

te
ge

rv
1’

s
F

ro
nt

st
en

ci
lm

as
k

4.
1.

5
st

en
ci

l-b
uf

fe
r

S
T

E
N

C
IL

R
E

F
Z

+
G

et
In

te
ge

rv
0

F
ro

nt
st

en
ci

lr
ef

er
en

ce
va

lu
e

4.
1.

5
st

en
ci

l-b
uf

fe
r

S
T

E
N

C
IL

FA
IL

Z
8

G
et

In
te

ge
rv

K
E

E
P

F
ro

nt
st

en
ci

lf
ai

la
ct

io
n

4.
1.

5
st

en
ci

l-b
uf

fe
r

S
T

E
N

C
IL

P
A

S
S

D
E

P
T

H
FA

IL
Z

8
G

et
In

te
ge

rv
K

E
E

P
F

ro
nt

st
en

ci
ld

ep
th

bu
ffe

r
fa

il
ac

tio
n

4.
1.

5
st

en
ci

l-b
uf

fe
r

S
T

E
N

C
IL

P
A

S
S

D
E

P
T

H
P

A
S

S
Z

8
G

et
In

te
ge

rv
K

E
E

P
F

ro
nt

st
en

ci
ld

ep
th

bu
ffe

r
pa

ss
ac

tio
n

4.
1.

5
st

en
ci

l-b
uf

fe
r

S
T

E
N

C
IL

B
A

C
K

F
U

N
C

Z
8

G
et

In
te

ge
rv

A
L

W
A

Y
S

B
ac

k
st

en
ci

lf
un

ct
io

n
4.

1.
5

st
en

ci
l-b

uf
fe

r
S

T
E

N
C

IL
B

A
C

K
VA

LU
E

M
A

S
K

Z
+

G
et

In
te

ge
rv

1’
s

B
ac

k
st

en
ci

lm
as

k
4.

1.
5

st
en

ci
l-b

uf
fe

r
S

T
E

N
C

IL
B

A
C

K
R

E
F

Z
+

G
et

In
te

ge
rv

0
B

ac
k

st
en

ci
lr

ef
er

en
ce

va
lu

e
4.

1.
5

st
en

ci
l-b

uf
fe

r
S

T
E

N
C

IL
B

A
C

K
FA

IL
Z

8
G

et
In

te
ge

rv
K

E
E

P
B

ac
k

st
en

ci
lf

ai
la

ct
io

n
4.

1.
5

st
en

ci
l-b

uf
fe

r
S

T
E

N
C

IL
B

A
C

K
P

A
S

S
D

E
P

T
H

FA
IL

Z
8

G
et

In
te

ge
rv

K
E

E
P

B
ac

k
st

en
ci

ld
ep

th
bu

ffe
r

fa
il

ac
tio

n
4.

1.
5

st
en

ci
l-b

uf
fe

r
S

T
E

N
C

IL
B

A
C

K
P

A
S

S
D

E
P

T
H

P
A

S
S

Z
8

G
et

In
te

ge
rv

K
E

E
P

B
ac

k
st

en
ci

ld
ep

th
bu

ffe
r

pa
ss

ac
tio

n
4.

1.
5

st
en

ci
l-b

uf
fe

r

D
E

P
T

H
T

E
S

T
B

Is
E

na
bl

ed
Fa

ls
e

D
ep

th
bu

ffe
r

en
ab

le
d

4.
1.

6
de

pt
h-

bu
ffe

r/
en

ab
le

D
E

P
T

H
F

U
N

C
Z

8
G

et
In

te
ge

rv
L

E
S

S
D

ep
th

bu
ffe

r
te

st
fu

nc
tio

n
4.

1.
6

de
pt

h-
bu

ffe
r

Table 6.19. Pixel Operations

Version 2.0 - September 7, 2004



6.2. STATE TABLES 281

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

B
LE

N
D

B
Is

E
na

bl
ed

Fa
ls

e
B

le
nd

in
g

en
ab

le
d

4.
1.

8
co

lo
r-

bu
ffe

r/
en

ab
le

B
LE

N
D

S
R

C
R

G
B

(v
1.

3:
B

LE
N

D
S

R
C

)
Z

1
5

G
et

In
te

ge
rv

O
N

E
B

le
nd

in
g

so
ur

ce
R

G
B

fu
nc

tio
n

4.
1.

8
co

lo
r-

bu
ffe

r
B

LE
N

D
S

R
C

A
LP

H
A

Z
1
5

G
et

In
te

ge
rv

O
N

E
B

le
nd

in
g

so
ur

ce
A

fu
nc

tio
n

4.
1.

8
co

lo
r-

bu
ffe

r
B

LE
N

D
D

S
T

R
G

B
(v

1.
3:

B
LE

N
D

D
S

T
)

Z
1
4

G
et

In
te

ge
rv

Z
E

R
O

B
le

nd
in

g
de

st
.

R
G

B
fu

nc
tio

n
4.

1.
8

co
lo

r-
bu

ffe
r

B
LE

N
D

D
S

T
A

LP
H

A
Z

1
4

G
et

In
te

ge
rv

Z
E

R
O

B
le

nd
in

g
de

st
.

A
fu

nc
tio

n
4.

1.
8

co
lo

r-
bu

ffe
r

B
LE

N
D

E
Q

U
AT

IO
N

R
G

B
(v

1.
5:

B
LE

N
D

E
Q

U
AT

IO
N

)
Z

G
et

In
te

ge
rv

F
U

N
C

A
D

D
R

G
B

bl
en

di
ng

eq
ua

tio
n

4.
1.

8
co

lo
r-

bu
ffe

r
B

LE
N

D
E

Q
U

AT
IO

N
A

LP
H

A
Z

G
et

In
te

ge
rv

F
U

N
C

A
D

D
A

lp
ha

bl
en

di
ng

eq
ua

tio
n

4.
1.

8
co

lo
r-

bu
ffe

r
B

LE
N

D
C

O
LO

R
C

G
et

F
lo

at
v

0,
0,

0,
0

C
on

st
an

tb
le

nd
co

lo
r

4.
1.

8
co

lo
r-

bu
ffe

r
D

IT
H

E
R

B
Is

E
na

bl
ed

T
ru

e
D

ith
er

in
g

en
ab

le
d

4.
1.

9
co

lo
r-

bu
ffe

r/
en

ab
le

IN
D

E
X

LO
G

IC
O

P
(v

1.
0:

LO
G

IC
O

P
)

B
Is

E
na

bl
ed

Fa
ls

e
In

de
x

lo
gi

c
op

en
ab

le
d

4.
1.

10
co

lo
r-

bu
ffe

r/
en

ab
le

C
O

LO
R

LO
G

IC
O

P
B

Is
E

na
bl

ed
Fa

ls
e

C
ol

or
lo

gi
c

op
en

ab
le

d
4.

1.
10

co
lo

r-
bu

ffe
r/

en
ab

le
LO

G
IC

O
P

M
O

D
E

Z
1
6

G
et

In
te

ge
rv

C
O

P
Y

Lo
gi

c
op

fu
nc

tio
n

4.
1.

10
co

lo
r-

bu
ffe

r

Table 6.20. Pixel Operations (cont.)
Version 2.0 - September 7, 2004



6.2. STATE TABLES 282

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

D
R

A
W

B
U

F
F

E
Ri

1
+
×

Z
1
0
∗

G
et

In
te

ge
rv

se
e4

.2
.1

D
ra

w
bu

ffe
r

se
le

ct
ed

fo
r

ou
tp

ut
co

lo
ri

4.
2.

1
co

lo
r-

bu
ffe

r

IN
D

E
X

W
R

IT
E

M
A

S
K

Z
+

G
et

In
te

ge
rv

1’
s

C
ol

or
in

de
x

w
rit

em
as

k
4.

2.
2

co
lo

r-
bu

ffe
r

C
O

LO
R

W
R

IT
E

M
A

S
K

4
×

B
G

et
B

oo
le

an
v

T
ru

e
C

ol
or

w
rit

e
en

ab
le

s;
R

,G
,B

,o
r

A
4.

2.
2

co
lo

r-
bu

ffe
r

D
E

P
T

H
W

R
IT

E
M

A
S

K
B

G
et

B
oo

le
an

v
T

ru
e

D
ep

th
bu

ffe
r

en
ab

le
d

fo
r

w
rit

in
g

4.
2.

2
de

pt
h-

bu
ffe

r
S

T
E

N
C

IL
W

R
IT

E
M

A
S

K
Z

+
G

et
In

te
ge

rv
1’

s
F

ro
nt

st
en

ci
lb

uf
fe

r
w

rit
em

as
k

4.
2.

2
st

en
ci

l-b
uf

fe
r

S
T

E
N

C
IL

B
A

C
K

W
R

IT
E

M
A

S
K

Z
+

G
et

In
te

ge
rv

1’
s

B
ac

k
st

en
ci

lb
uf

fe
r

w
rit

em
as

k
4.

2.
2

st
en

ci
l-b

uf
fe

r
C

O
LO

R
C

LE
A

R
VA

LU
E

C
G

et
F

lo
at

v
0,

0,
0,

0
C

ol
or

bu
ffe

r
cl

ea
r

va
lu

e
(R

G
B

A
m

od
e)

4.
2.

3
co

lo
r-

bu
ffe

r

IN
D

E
X

C
LE

A
R

VA
LU

E
C

I
G

et
F

lo
at

v
0

C
ol

or
bu

ffe
r

cl
ea

r
va

lu
e

(c
ol

or
in

de
x

m
od

e)
4.

2.
3

co
lo

r-
bu

ffe
r

D
E

P
T

H
C

LE
A

R
VA

LU
E

R
+

G
et

In
te

ge
rv

1
D

ep
th

bu
ffe

r
cl

ea
r

va
lu

e
4.

2.
3

de
pt

h-
bu

ffe
r

S
T

E
N

C
IL

C
LE

A
R

VA
LU

E
Z

+
G

et
In

te
ge

rv
0

S
te

nc
il

cl
ea

r
va

lu
e

4.
2.

3
st

en
ci

l-b
uf

fe
r

A
C

C
U

M
C

LE
A

R
VA

LU
E

4
×

R
+

G
et

F
lo

at
v

0
A

cc
um

ul
at

io
n

bu
ffe

r
cl

ea
r

va
lu

e
4.

2.
3

ac
cu

m
-b

uf
fe

r

Table 6.21. Framebuffer Control

Version 2.0 - September 7, 2004



6.2. STATE TABLES 283

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

U
N

P
A

C
K

S
W

A
P

B
Y

T
E

S
B

G
et

B
oo

le
an

v
Fa

ls
e

Va
lu

e
of

U
N

P
A

C
KS

W
A

PB
Y

T
E

S
3.

6.
1

pi
xe

l-s
to

re
U

N
P

A
C

K
LS

B
F

IR
S

T
B

G
et

B
oo

le
an

v
Fa

ls
e

Va
lu

e
of

U
N

P
A

C
KL

S
B

F
IR

S
T

3.
6.

1
pi

xe
l-s

to
re

U
N

P
A

C
K

IM
A

G
E

H
E

IG
H

T
Z

+
G

et
In

te
ge

rv
0

Va
lu

e
of

U
N

P
A

C
K I

M
A

G
E

H
E

IG
H

T
3.

6.
1

pi
xe

l-s
to

re

U
N

P
A

C
K

S
K

IP
IM

A
G

E
S

Z
+

G
et

In
te

ge
rv

0
Va

lu
e

of
U

N
P

A
C

KS
K

IP
IM

A
G

E
S

3.
6.

1
pi

xe
l-s

to
re

U
N

P
A

C
K

R
O

W
LE

N
G

T
H

Z
+

G
et

In
te

ge
rv

0
Va

lu
e

of
U

N
P

A
C

KR
O

W
L

E
N

G
T

H
3.

6.
1

pi
xe

l-s
to

re
U

N
P

A
C

K
S

K
IP

R
O

W
S

Z
+

G
et

In
te

ge
rv

0
Va

lu
e

of
U

N
P

A
C

KS
K

IP
R

O
W

S
3.

6.
1

pi
xe

l-s
to

re
U

N
P

A
C

K
S

K
IP

P
IX

E
LS

Z
+

G
et

In
te

ge
rv

0
Va

lu
e

of
U

N
P

A
C

KS
K

IP
P

IX
E

L
S

3.
6.

1
pi

xe
l-s

to
re

U
N

P
A

C
K

A
LI

G
N

M
E

N
T

Z
+

G
et

In
te

ge
rv

4
Va

lu
e

of
U

N
P

A
C

KA
L

IG
N

M
E

N
T

3.
6.

1
pi

xe
l-s

to
re

P
A

C
K

S
W

A
P

B
Y

T
E

S
B

G
et

B
oo

le
an

v
Fa

ls
e

Va
lu

e
of

P
A

C
K

S
W

A
PB

Y
T

E
S

4.
3.

2
pi

xe
l-s

to
re

P
A

C
K

LS
B

F
IR

S
T

B
G

et
B

oo
le

an
v

Fa
ls

e
Va

lu
e

of
P

A
C

K
L

S
B

F
IR

S
T

4.
3.

2
pi

xe
l-s

to
re

P
A

C
K

IM
A

G
E

H
E

IG
H

T
Z

+
G

et
In

te
ge

rv
0

Va
lu

e
of

P
A

C
K

IM
A

G
E

H
E

IG
H

T
4.

3.
2

pi
xe

l-s
to

re
P

A
C

K
S

K
IP

IM
A

G
E

S
Z

+
G

et
In

te
ge

rv
0

Va
lu

e
of

P
A

C
K

S
K

IP
IM

A
G

E
S

4.
3.

2
pi

xe
l-s

to
re

P
A

C
K

R
O

W
LE

N
G

T
H

Z
+

G
et

In
te

ge
rv

0
Va

lu
e

of
P

A
C

K
R

O
W

L
E

N
G

T
H

4.
3.

2
pi

xe
l-s

to
re

P
A

C
K

S
K

IP
R

O
W

S
Z

+
G

et
In

te
ge

rv
0

Va
lu

e
of

P
A

C
K

S
K

IP
R

O
W

S
4.

3.
2

pi
xe

l-s
to

re
P

A
C

K
S

K
IP

P
IX

E
LS

Z
+

G
et

In
te

ge
rv

0
Va

lu
e

of
P

A
C

K
S

K
IP

P
IX

E
L

S
4.

3.
2

pi
xe

l-s
to

re
P

A
C

K
A

LI
G

N
M

E
N

T
Z

+
G

et
In

te
ge

rv
4

Va
lu

e
of

P
A

C
K

A
L

IG
N

M
E

N
T

4.
3.

2
pi

xe
l-s

to
re

M
A

P
C

O
LO

R
B

G
et

B
oo

le
an

v
Fa

ls
e

T
ru

e
if

co
lo

rs
ar

e
m

ap
pe

d
3.

6.
3

pi
xe

l
M

A
P

S
T

E
N

C
IL

B
G

et
B

oo
le

an
v

Fa
ls

e
T

ru
e

if
st

en
ci

lv
al

ue
s

ar
e

m
ap

pe
d

3.
6.

3
pi

xe
l

IN
D

E
X

S
H

IF
T

Z
G

et
In

te
ge

rv
0

Va
lu

e
of

IN
D

E
X

S
H

IF
T

3.
6.

3
pi

xe
l

IN
D

E
X

O
F

F
S

E
T

Z
G

et
In

te
ge

rv
0

Va
lu

e
of

IN
D

E
X

O
F

F
S

E
T

3.
6.

3
pi

xe
l

x
S

C
A

LE
R

G
et

F
lo

at
v

1
Va

lu
e

of
x

S
C

A
L

E;
x

is
R

E
D,

G
R

E
E

N,
B

L
U

E,
A

L
P

H
A,

or
D

E
P

T
H

3.
6.

3
pi

xe
l

x
B

IA
S

R
G

et
F

lo
at

v
0

Va
lu

e
of

x
B

IA
S

3.
6.

3
pi

xe
l

Table 6.22. Pixels

Version 2.0 - September 7, 2004



6.2. STATE TABLES 284

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

C
O

LO
R

TA
B

LE
B

Is
E

na
bl

ed
Fa

ls
e

T
ru

e
if

co
lo

r
ta

bl
e

lo
ok

up
is

do
ne

3.
6.

3
pi

xe
l/e

na
bl

e

P
O

S
T

C
O

N
V

O
LU

T
IO

N
C

O
LO

R
TA

B
LE

B
Is

E
na

bl
ed

Fa
ls

e
T

ru
e

if
po

st
co

nv
ol

ut
io

n
co

lo
r

ta
bl

e
lo

ok
up

is
do

ne

3.
6.

3
pi

xe
l/e

na
bl

e

P
O

S
T

C
O

LO
R

M
AT

R
IX

C
O

LO
R

TA
B

LE
B

Is
E

na
bl

ed
Fa

ls
e

T
ru

e
if

po
st

co
lo

r
m

at
rix

co
lo

r
ta

bl
e

lo
ok

up
is

do
ne

3.
6.

3
pi

xe
l/e

na
bl

e

C
O

LO
R

TA
B

LE
I

G
et

C
ol

or
Ta

bl
e

e
m

p
ty

C
ol

or
ta

bl
e

3.
6.

3
–

P
O

S
T

C
O

N
V

O
LU

T
IO

N
C

O
LO

R
TA

B
LE

I
G

et
C

ol
or

Ta
bl

e
e

m
p

ty
P

os
tc

on
vo

lu
tio

n
co

lo
r

ta
bl

e
3.

6.
3

–

P
O

S
T

C
O

LO
R

M
AT

R
IX

C
O

LO
R

TA
B

LE
I

G
et

C
ol

or
Ta

bl
e

e
m

p
ty

P
os

tc
ol

or
m

at
rix

co
lo

r
ta

bl
e

3.
6.

3
–

C
O

LO
R

TA
B

LE
F

O
R

M
AT

2
×

3
×

Z
4
2

G
et

C
ol

or
Ta

bl
e-

P
ar

am
et

er
iv

R
G

B
A

C
ol

or
ta

bl
es

’i
nt

er
na

l
im

ag
e

fo
rm

at
3.

6.
3

–

C
O

LO
R

TA
B

LE
W

ID
T

H
2
×

3
×

Z
+

G
et

C
ol

or
Ta

bl
e-

P
ar

am
et

er
iv

0
C

ol
or

ta
bl

es
’s

pe
ci

fie
d

w
id

th
3.

6.
3

–

C
O

LO
R

TA
B

LE
x

S
IZ

E
6
×

2
×

3
×

Z
+

G
et

C
ol

or
Ta

bl
e-

P
ar

am
et

er
iv

0
C

ol
or

ta
bl

e
co

m
po

ne
nt

re
so

lu
tio

n;
x

is
R

E
D,

G
R

E
E

N,
B

L
U

E,
A

L
P

H
A,

L
U

M
IN

A
N

C
E,

or
IN

T
E

N
S

IT
Y

3.
6.

3
–

C
O

LO
R

TA
B

LE
S

C
A

LE
3
×

R
4

G
et

C
ol

or
Ta

bl
e-

P
ar

am
et

er
fv

1,
1,

1,
1

S
ca

le
fa

ct
or

s
ap

pl
ie

d
to

co
lo

r
ta

bl
e

en
tr

ie
s

3.
6.

3
pi

xe
l

C
O

LO
R

TA
B

LE
B

IA
S

3
×

R
4

G
et

C
ol

or
Ta

bl
e-

P
ar

am
et

er
fv

0,
0,

0,
0

B
ia

s
fa

ct
or

s
ap

pl
ie

d
to

co
lo

r
ta

bl
e

en
tr

ie
s

3.
6.

3
pi

xe
l

Table 6.23. Pixels (cont.)

Version 2.0 - September 7, 2004



6.2. STATE TABLES 285

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

C
O

N
V

O
LU

T
IO

N
1D

B
Is

E
na

bl
ed

Fa
ls

e
T

ru
e

if
1D

co
nv

ol
ut

io
n

is
do

ne
3.

6.
3

pi
xe

l/e
na

bl
e

C
O

N
V

O
LU

T
IO

N
2D

B
Is

E
na

bl
ed

Fa
ls

e
T

ru
e

if
2D

co
nv

ol
ut

io
n

is
do

ne
3.

6.
3

pi
xe

l/e
na

bl
e

S
E

P
A

R
A

B
LE

2D
B

Is
E

na
bl

ed
Fa

ls
e

T
ru

e
if

se
pa

ra
bl

e
2D

co
nv

ol
ut

io
n

is
do

ne
3.

6.
3

pi
xe

l/e
na

bl
e

C
O

N
V

O
LU

T
IO

N
x

D
2
×

I
G

et
C

on
vo

lu
tio

n-
F

ilt
er

e
m

p
ty

C
on

vo
lu

tio
n

fil
te

rs
;x

is
1

or
2

3.
6.

3
–

S
E

P
A

R
A

B
LE

2D
2
×

I
G

et
S

ep
ar

ab
le

-
F

il-
te

r
e

m
p

ty
S

ep
ar

ab
le

co
nv

ol
ut

io
n

fil
te

r
3.

6.
3

–

C
O

N
V

O
LU

T
IO

N
B

O
R

D
E

R
C

O
LO

R
3
×

C
G

et
C

on
vo

lu
tio

n-
P

ar
am

et
er

fv
0,

0,
0,

0
C

on
vo

lu
tio

n
bo

rd
er

co
lo

r
3.

6.
5

pi
xe

l

C
O

N
V

O
LU

T
IO

N
B

O
R

D
E

R
M

O
D

E
3
×

Z
4

G
et

C
on

vo
lu

tio
n-

P
ar

am
et

er
iv

R
E

D
U

C
E

C
on

vo
lu

tio
n

bo
rd

er
m

od
e

3.
6.

5
pi

xe
l

C
O

N
V

O
LU

T
IO

N
F

IL
T

E
R

S
C

A
LE

3
×

R
4

G
et

C
on

vo
lu

tio
n-

P
ar

am
et

er
fv

1,
1,

1,
1

S
ca

le
fa

ct
or

s
ap

pl
ie

d
to

co
nv

ol
ut

io
n

fil
te

r
en

tr
ie

s
3.

6.
3

pi
xe

l

C
O

N
V

O
LU

T
IO

N
F

IL
T

E
R

B
IA

S
3
×

R
4

G
et

C
on

vo
lu

tio
n-

P
ar

am
et

er
fv

0,
0,

0,
0

B
ia

s
fa

ct
or

s
ap

pl
ie

d
to

co
nv

ol
ut

io
n

fil
te

r
en

tr
ie

s
3.

6.
3

pi
xe

l

C
O

N
V

O
LU

T
IO

N
F

O
R

M
AT

3
×

Z
4
2

G
et

C
on

vo
lu

tio
n-

P
ar

am
et

er
iv

R
G

B
A

C
on

vo
lu

tio
n

fil
te

r
in

te
rn

al
fo

rm
at

3.
6.

5
–

C
O

N
V

O
LU

T
IO

N
W

ID
T

H
3
×

Z
+

G
et

C
on

vo
lu

tio
n-

P
ar

am
et

er
iv

0
C

on
vo

lu
tio

n
fil

te
r

w
id

th
3.

6.
5

–

C
O

N
V

O
LU

T
IO

N
H

E
IG

H
T

2
×

Z
+

G
et

C
on

vo
lu

tio
n-

P
ar

am
et

er
iv

0
C

on
vo

lu
tio

n
fil

te
r

he
ig

ht
3.

6.
5

–

Table 6.24. Pixels (cont.)

Version 2.0 - September 7, 2004



6.2. STATE TABLES 286

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

P
O

S
T

C
O

N
V

O
LU

T
IO

N
x

S
C

A
LE

R
G

et
F

lo
at

v
1

C
om

po
ne

nt
sc

al
e

fa
ct

or
s

af
te

r
co

nv
ol

ut
io

n;
x

is
R

E
D,

G
R

E
E

N,
B

L
U

E,
or

A
L

P
H

A

3.
6.

3
pi

xe
l

P
O

S
T

C
O

N
V

O
LU

T
IO

N
x

B
IA

S
R

G
et

F
lo

at
v

0
C

om
po

ne
nt

bi
as

fa
ct

or
s

af
te

r
co

nv
ol

ut
io

n
3.

6.
3

pi
xe

l

P
O

S
T

C
O

LO
R

M
AT

R
IX

x
S

C
A

LE
R

G
et

F
lo

at
v

1
C

om
po

ne
nt

sc
al

e
fa

ct
or

s
af

te
r

co
lo

r
m

at
rix

3.
6.

3
pi

xe
l

P
O

S
T

C
O

LO
R

M
AT

R
IX

x
B

IA
S

R
G

et
F

lo
at

v
0

C
om

po
ne

nt
bi

as
fa

ct
or

s
af

te
r

co
lo

r
m

at
rix

3.
6.

3
pi

xe
l

H
IS

T
O

G
R

A
M

B
Is

E
na

bl
ed

F
al

se
T

ru
e

if
hi

st
og

ra
m

m
in

g
is

en
ab

le
d

3.
6.

3
pi

xe
l/e

na
bl

e

H
IS

T
O

G
R

A
M

I
G

et
H

is
to

gr
am

e
m

p
ty

H
is

to
gr

am
ta

bl
e

3.
6.

3
–

H
IS

T
O

G
R

A
M

W
ID

T
H

2
×

Z
+

G
et

H
is

to
gr

am
-

P
ar

am
et

er
iv

0
H

is
to

gr
am

ta
bl

e
w

id
th

3.
6.

3
–

H
IS

T
O

G
R

A
M

F
O

R
M

AT
2
×

Z
4
2

G
et

H
is

to
gr

am
-

P
ar

am
et

er
iv

R
G

B
A

H
is

to
gr

am
ta

bl
e

in
te

rn
al

fo
rm

at
3.

6.
3

–

H
IS

T
O

G
R

A
M

x
S

IZ
E

5
×

2
×

Z
+

G
et

H
is

to
gr

am
-

P
ar

am
et

er
iv

0
H

is
to

gr
am

ta
bl

e
co

m
po

ne
nt

re
so

lu
tio

n;x
is

R
E

D,
G

R
E

E
N,

B
L

U
E,

A
L

P
H

A,
or

L
U

M
IN

A
N

C
E

3.
6.

3
–

H
IS

T
O

G
R

A
M

S
IN

K
B

G
et

H
is

to
gr

am
-

P
ar

am
et

er
iv

F
al

se
T

ru
e

if
hi

st
og

ra
m

m
in

g
co

ns
um

es
pi

xe
lg

ro
up

s
3.

6.
3

–

Table 6.25. Pixels (cont.)

Version 2.0 - September 7, 2004



6.2. STATE TABLES 287

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

M
IN

M
A

X
B

Is
E

na
bl

ed
F

al
se

T
ru

e
if

m
in

m
ax

is
en

ab
le

d
3.

6.
3

pi
xe

l/e
na

bl
e

M
IN

M
A

X
R

n
G

et
M

in
m

ax
(M

,M
,M

,M
),

(m
,m

,m
,m

)
M

in
m

ax
ta

bl
e

3.
6.

3
–

M
IN

M
A

X
F

O
R

M
AT

Z
4
2

G
et

M
in

m
ax

-
P

ar
am

et
er

iv
R

G
B

A
M

in
m

ax
ta

bl
e

in
te

rn
al

fo
rm

at
3.

6.
3

–

M
IN

M
A

X
S

IN
K

B
G

et
M

in
m

ax
-

P
ar

am
et

er
iv

F
al

se
T

ru
e

if
m

in
m

ax
co

ns
um

es
pi

xe
lg

ro
up

s
3.

6.
3

–

Z
O

O
M

X
R

G
et

F
lo

at
v

1.
0

x
zo

om
fa

ct
or

3.
6.

4
pi

xe
l

Z
O

O
M

Y
R

G
et

F
lo

at
v

1.
0

y
zo

om
fa

ct
or

3.
6.

4
pi

xe
l

x
8
×

32
∗
×

R
G

et
P

ix
el

M
ap

0’
s

R
G

B
A

P
ix

el
M

ap
tr

an
sl

at
io

n
ta

bl
es

;x
is

a
m

ap
na

m
e

fr
om

ta
bl

e3.
3

3.
6.

3
–

x
2
×

32
∗
×

Z
G

et
P

ix
el

M
ap

0’
s

In
de

x
P

ix
el

M
ap

tr
an

sl
at

io
n

ta
bl

es
;x

is
a

m
ap

na
m

e
fr

om
ta

bl
e3.

3

3.
6.

3
–

x
S

IZ
E

Z
+

G
et

In
te

ge
rv

1
S

iz
e

of
ta

bl
ex

3.
6.

3
–

R
E

A
D

B
U

F
F

E
R

Z
3

G
et

In
te

ge
rv

se
e4

.3
.2

R
ea

d
so

ur
ce

bu
ffe

r
4.

3.
2

pi
xe

l

Table 6.26. Pixels (cont.)

Version 2.0 - September 7, 2004



6.2. STATE TABLES 288

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

O
R

D
E

R
9
×

Z
8
∗

G
et

M
ap

iv
1

1d
m

ap
or

de
r

5.
1

–
O

R
D

E
R

9
×

2
×

Z
8
∗

G
et

M
ap

iv
1,

1
2d

m
ap

or
de

rs
5.

1
–

C
O

E
F

F
9
×

8
∗
×

R
n

G
et

M
ap

fv
se

e5
.1

1d
co

nt
ro

lp
oi

nt
s

5.
1

–
C

O
E

F
F

9
×

8
∗
×

8
∗
×

R
n

G
et

M
ap

fv
se

e5
.1

2d
co

nt
ro

lp
oi

nt
s

5.
1

–
D

O
M

A
IN

9
×

2
×

R
G

et
M

ap
fv

se
e5

.1
1d

do
m

ai
n

en
dp

oi
nt

s
5.

1
–

D
O

M
A

IN
9
×

4
×

R
G

et
M

ap
fv

se
e5

.1
2d

do
m

ai
n

en
dp

oi
nt

s
5.

1
–

M
A

P
1

x
9
×

B
Is

E
na

bl
ed

Fa
ls

e
1d

m
ap

en
ab

le
s:x

is
m

ap
ty

pe
5.

1
ev

al
/e

na
bl

e
M

A
P

2
x

9
×

B
Is

E
na

bl
ed

Fa
ls

e
2d

m
ap

en
ab

le
s:x

is
m

ap
ty

pe
5.

1
ev

al
/e

na
bl

e
M

A
P

1
G

R
ID

D
O

M
A

IN
2
×

R
G

et
F

lo
at

v
0,

1
1d

gr
id

en
dp

oi
nt

s
5.

1
ev

al
M

A
P

2
G

R
ID

D
O

M
A

IN
4
×

R
G

et
F

lo
at

v
0,

1;
0,

1
2d

gr
id

en
dp

oi
nt

s
5.

1
ev

al
M

A
P

1
G

R
ID

S
E

G
M

E
N

T
S

Z
+

G
et

F
lo

at
v

1
1d

gr
id

di
vi

si
on

s
5.

1
ev

al
M

A
P

2
G

R
ID

S
E

G
M

E
N

T
S

2
×

Z
+

G
et

F
lo

at
v

1,
1

2d
gr

id
di

vi
si

on
s

5.
1

ev
al

A
U

T
O

N
O

R
M

A
L

B
Is

E
na

bl
ed

Fa
ls

e
T

ru
e

if
au

to
m

at
ic

no
rm

al
ge

ne
ra

tio
n

en
ab

le
d

5.
1

ev
al

/e
na

bl
e

Table 6.27. Evaluators (GetMap takes a map name)

Version 2.0 - September 7, 2004



6.2. STATE TABLES 289

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

S
H

A
D

E
R

T
Y

P
E

Z
2

G
et

S
ha

de
riv

-
Ty

pe
of

sh
ad

er
(v

er
te

x
or

fr
ag

m
en

t)
2.

15
.1

–
D

E
LE

T
E

S
TA

T
U

S
B

G
et

S
ha

de
riv

Fa
ls

e
S

ha
de

r
fla

gg
ed

fo
r

de
le

tio
n

2.
15

.1
–

C
O

M
P

IL
E

S
TA

T
U

S
B

G
et

S
ha

de
riv

Fa
ls

e
La

st
co

m
pi

le
su

cc
ee

de
d

2.
15

.1
–

-
0

+
×
c
h
a
r

G
et

S
ha

de
rI

nf
oL

og
em

pt
y

st
rin

g
In

fo
lo

g
fo

r
sh

ad
er

ob
je

ct
s

6.
1.

14
–

IN
F

O
LO

G
LE

N
G

T
H

Z
+

G
et

S
ha

de
riv

0
Le

ng
th

of
in

fo
lo

g
6.

1.
14

–
-

0
+
×
c
h
a
r

G
et

S
ha

de
rS

ou
rc

e
em

pt
y

st
rin

g
S

ou
rc

e
co

de
fo

r
a

sh
ad

er
2.

15
.1

–
S

H
A

D
E

R
S

O
U

R
C

E
LE

N
G

T
H

Z
+

G
et

S
ha

de
riv

0
Le

ng
th

of
so

ur
ce

co
de

6.
1.

14
–

Table 6.28. Shader Object State

Version 2.0 - September 7, 2004



6.2. STATE TABLES 290

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

C
U

R
R

E
N

T
P

R
O

G
R

A
M

Z
+

G
et

In
te

ge
rv

0
N

am
e

of
cu

rr
en

tp
ro

gr
am

ob
je

ct
2.

15
.2

–
D

E
LE

T
E

S
TA

T
U

S
B

G
et

P
ro

gr
am

iv
Fa

ls
e

P
ro

gr
am

ob
je

ct
de

le
te

d
2.

15
.2

–
LI

N
K

S
TA

T
U

S
B

G
et

P
ro

gr
am

iv
Fa

ls
e

La
st

lin
k

at
te

m
pt

su
cc

ee
de

d
2.

15
.2

–
VA

LI
D

AT
E

S
TA

T
U

S
B

G
et

P
ro

gr
am

iv
Fa

ls
e

La
st

va
lid

at
e

at
te

m
pt

su
cc

ee
de

d
2.

15
.2

–
AT

TA
C

H
E

D
S

H
A

D
E

R
S

Z
+

G
et

P
ro

gr
am

iv
0

N
um

be
r

of
at

ta
ch

ed
sh

ad
er

ob
je

ct
s

6.
1.

14
–

-
0

+
×

H
G

et
A

tta
ch

ed
S

ha
de

rs
em

pt
y

S
ha

de
r

ob
je

ct
s

at
ta

ch
ed

6.
1.

14
–

-
0

+
×
c
h
a
r

G
et

P
ro

gr
am

In
fo

Lo
g

em
pt

y
In

fo
lo

g
fo

r
pr

og
ra

m
ob

je
ct

6.
1.

14
–

IN
F

O
LO

G
LE

N
G

T
H

Z
+

G
et

P
ro

gr
am

iv
0

Le
ng

th
of

in
fo

lo
g

2.
15

.3
–

A
C

T
IV

E
U

N
IF

O
R

M
S

Z
+

G
et

P
ro

gr
am

iv
0

N
um

be
r

of
ac

tiv
e

un
ifo

rm
s

2.
15

.3
–

-
0

+
×

Z
G

et
U

ni
fo

rm
Lo

ca
tio

n
–

Lo
ca

tio
n

of
ac

tiv
e

un
ifo

rm
s

6.
1.

14
–

-
0

+
×

Z
+

G
et

A
ct

iv
eU

ni
fo

rm
–

S
iz

e
of

ac
tiv

e
un

ifo
rm

2.
15

.3
–

-
0

+
×

Z
+

G
et

A
ct

iv
eU

ni
fo

rm
–

Ty
pe

of
ac

tiv
e

un
ifo

rm
2.

15
.3

–
-

0
+
×
c
h
a
r

G
et

A
ct

iv
eU

ni
fo

rm
em

pt
y

N
am

e
of

ac
tiv

e
un

ifo
rm

2.
15

.3
–

A
C

T
IV

E
U

N
IF

O
R

M
M

A
X

LE
N

G
T

H
Z

+
G

et
P

ro
gr

am
iv

0
M

ax
im

um
ac

tiv
e

un
ifo

rm
na

m
e

le
ng

th
6.

1.
14

–

51
2

+
×

R
G

et
U

ni
fo

rm
0

U
ni

fo
rm

va
lu

e
2.

15
.3

–
A

C
T

IV
E

AT
T

R
IB

U
T

E
S

Z
+

G
et

P
ro

gr
am

iv
0

N
um

be
r

of
ac

tiv
e

at
tr

ib
ut

es
2.

15
.3

–
-

0
+
×

Z
G

et
A

ttr
ib

Lo
ca

tio
n

–
Lo

ca
tio

n
of

ac
tiv

e
ge

ne
ric

at
tr

ib
ut

e
2.

15
.3

–
-

0
+
×

Z
+

G
et

A
ct

iv
eA

ttr
ib

–
S

iz
e

of
ac

tiv
e

at
tr

ib
ut

e
2.

15
.3

–
-

0
+
×

Z
+

G
et

A
ct

iv
eA

ttr
ib

–
Ty

pe
of

ac
tiv

e
at

tr
ib

ut
e

2.
15

.3
–

-
0

+
×
c
h
a
r

G
et

A
ct

iv
eA

ttr
ib

em
pt

y
N

am
e

of
ac

tiv
e

at
tr

ib
ut

e
2.

15
.3

–
A

C
T

IV
E

AT
T

R
IB

U
T

E
S

M
A

X
LE

N
G

T
H

Z
+

G
et

P
ro

gr
am

iv
0

M
ax

im
um

ac
tiv

e
at

tr
ib

ut
e

na
m

e
le

ng
th

6.
1.

14
–

Table 6.29. Program Object State

Version 2.0 - September 7, 2004



6.2. STATE TABLES 291

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

V
E

R
T

E
X

P
R

O
G

R
A

M
T

W
O

S
ID

E
B

Is
E

na
bl

ed
Fa

ls
e

Tw
o-

si
de

d
co

lo
r

m
od

e
2.

14
.1

en
ab

le
C

U
R

R
E

N
T

V
E

R
T

E
X

AT
T

R
IB

16
+
×

R
4

G
et

Ve
rt

ex
A

ttr
ib

ut
e

0,
0,

0,
1

G
en

er
ic

ve
rt

ex
at

tr
ib

ut
e

2.
7

cu
rr

en
t

V
E

R
T

E
X

P
R

O
G

R
A

M
P

O
IN

T
S

IZ
E

B
Is

E
na

bl
ed

Fa
ls

e
P

oi
nt

si
ze

m
od

e
3.

3
en

ab
le

Table 6.30. Vertex Shader State

Version 2.0 - September 7, 2004



6.2. STATE TABLES 292

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

P
E

R
S

P
E

C
T

IV
EC

O
R

R
E

C
T

IO
N

H
IN

T
Z

3
G

et
In

te
ge

rv
D

O
N

T
C

A
R

E
P

er
sp

ec
tiv

e
co

rr
ec

tio
n

hi
nt

5.
6

hi
nt

P
O

IN
T

S
M

O
O

T
H

H
IN

T
Z

3
G

et
In

te
ge

rv
D

O
N

T
C

A
R

E
P

oi
nt

sm
oo

th
hi

nt
5.

6
hi

nt
LI

N
E

S
M

O
O

T
H

H
IN

T
Z

3
G

et
In

te
ge

rv
D

O
N

T
C

A
R

E
Li

ne
sm

oo
th

hi
nt

5.
6

hi
nt

P
O

LY
G

O
N

S
M

O
O

T
H

H
IN

T
Z

3
G

et
In

te
ge

rv
D

O
N

T
C

A
R

E
P

ol
yg

on
sm

oo
th

hi
nt

5.
6

hi
nt

F
O

G
H

IN
T

Z
3

G
et

In
te

ge
rv

D
O

N
T
C

A
R

E
F

og
hi

nt
5.

6
hi

nt
G

E
N

E
R

AT
E

M
IP

M
A

P
H

IN
T

Z
3

G
et

In
te

ge
rv

D
O

N
T
C

A
R

E
M

ip
m

ap
ge

ne
ra

tio
n

hi
nt

5.
6

hi
nt

T
E

X
T

U
R

E
C

O
M

P
R

E
S

S
IO

N
H

IN
T

Z
3

G
et

In
te

ge
rv

D
O

N
T
C

A
R

E
Te

xt
ur

e
co

m
pr

es
si

on
qu

al
ity

hi
nt

5.
6

hi
nt

F
R

A
G

M
E

N
T

S
H

A
D

E
R

D
E

R
IV

AT
IV

E
H

IN
T

Z
3

G
et

In
te

ge
rv

D
O

N
T
C

A
R

E
F

ra
gm

en
ts

ha
de

r
de

riv
at

iv
e

ac
cu

ra
cy

hi
nt

5.
6

hi
nt

Table 6.31. Hints

Version 2.0 - September 7, 2004



6.2. STATE TABLES 293

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

M
in

im
um

Va
lu

e
D

es
cr

ip
tio

n
S

ec
.

A
ttr

ib
ut

e
M

A
X

LI
G

H
T

S
Z

+
G

et
In

te
ge

rv
8

M
ax

im
um

nu
m

be
r

of
lig

ht
s

2.
14

.1
–

M
A

X
C

LI
P

P
LA

N
E

S
Z

+
G

et
In

te
ge

rv
6

M
ax

im
um

nu
m

be
r

of
us

er
cl

ip
pi

ng
pl

an
es

2.
12

–

M
A

X
C

O
LO

R
M

AT
R

IX
S

TA
C

K
D

E
P

T
H

Z
+

G
et

In
te

ge
rv

2
M

ax
im

um
co

lo
r

m
at

rix
st

ac
k

de
pt

h
3.

6.
3

–
M

A
X

M
O

D
E

LV
IE

W
S

TA
C

K
D

E
P

T
H

Z
+

G
et

In
te

ge
rv

32
M

ax
im

um
m

od
el

-v
ie

w
st

ac
k

de
pt

h
2.

11
.2

–
M

A
X

P
R

O
JE

C
T

IO
N

S
TA

C
K

D
E

P
T

H
Z

+
G

et
In

te
ge

rv
2

M
ax

im
um

pr
oj

ec
tio

n
m

at
rix

st
ac

k
de

pt
h

2.
11

.2
–

M
A

X
T

E
X

T
U

R
E

S
TA

C
K

D
E

P
T

H
Z

+
G

et
In

te
ge

rv
2

M
ax

im
um

nu
m

be
r

de
pt

h
of

te
xt

ur
e

m
at

rix
st

ac
k

2.
11

.2
–

S
U

B
P

IX
E

L
B

IT
S

Z
+

G
et

In
te

ge
rv

4
N

um
be

r
of

bi
ts

of
su

bp
ix

el
pr

ec
is

io
n

in
sc

re
en
x

w
an

d
y w

3
–

M
A

X
3D

T
E

X
T

U
R

E
S

IZ
E

Z
+

G
et

In
te

ge
rv

16
M

ax
im

um
3D

te
xt

ur
e

im
ag

e
di

m
en

si
on

3.
8.

1
–

M
A

X
T

E
X

T
U

R
E

S
IZ

E
Z

+
G

et
In

te
ge

rv
64

M
ax

im
um

2D
/1

D
te

xt
ur

e
im

ag
e

di
m

en
si

on
3.

8.
1

–

M
A

X
T

E
X

T
U

R
E

LO
D

B
IA

S
R

+
G

et
F

lo
at

v
2.

0
M

ax
im

um
ab

so
lu

te
te

xt
ur

e
le

ve
lo

f
de

ta
il

bi
as

3.
8.

8
–

M
A

X
C

U
B

E
M

A
P

T
E

X
T

U
R

E
S

IZ
E

Z
+

G
et

In
te

ge
rv

16
M

ax
im

um
cu

be
m

ap
te

xt
ur

e
im

ag
e

di
m

en
si

on
3.

8.
1

–

M
A

X
P

IX
E

L
M

A
P

TA
B

LE
Z

+
G

et
In

te
ge

rv
32

M
ax

im
um

si
ze

of
aP

ix
el

M
ap

tr
an

sl
at

io
n

ta
bl

e
3.

6.
3

–

M
A

X
N

A
M

E
S

TA
C

K
D

E
P

T
H

Z
+

G
et

In
te

ge
rv

64
M

ax
im

um
se

le
ct

io
n

na
m

e
st

ac
k

de
pt

h
5.

2
–

M
A

X
LI

S
T

N
E

S
T

IN
G

Z
+

G
et

In
te

ge
rv

64
M

ax
im

um
di

sp
la

y
lis

tc
al

ln
es

tin
g

5.
4

–
M

A
X

E
VA

L
O

R
D

E
R

Z
+

G
et

In
te

ge
rv

8
M

ax
im

um
ev

al
ua

to
r

po
ly

no
m

ia
l

or
de

r
5.

1
–

M
A

X
V

IE
W

P
O

R
T

D
IM

S
2
×

Z
+

G
et

In
te

ge
rv

se
e2

.1
1.

1
M

ax
im

um
vi

ew
po

rt
di

m
en

si
on

s
2.

11
.1

–

Table 6.32. Implementation Dependent Values

Version 2.0 - September 7, 2004



6.2. STATE TABLES 294

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

M
in

im
um

Va
lu

e
D

es
cr

ip
tio

n
S

ec
.

A
ttr

ib
ut

e
M

A
X

AT
T

R
IB

S
TA

C
K

D
E

P
T

H
Z

+
G

et
In

te
ge

rv
16

M
ax

im
um

de
pt

h
of

th
e

se
rv

er
at

tr
ib

ut
e

st
ac

k
6

–

M
A

X
C

LI
E

N
T

AT
T

R
IB

S
TA

C
K

D
E

P
T

H
Z

+
G

et
In

te
ge

rv
16

M
ax

im
um

de
pt

h
of

th
e

cl
ie

nt
at

tr
ib

ut
e

st
ac

k
6

–

–
3
×

Z
+

-
32

M
ax

im
um

si
ze

of
a

co
lo

r
ta

bl
e

3.
6.

3
–

–
Z

+
-

32
M

ax
im

um
si

ze
of

th
e

hi
st

og
ra

m
ta

bl
e

3.
6.

3
–

A
U

X
B

U
F

F
E

R
S

Z
+

G
et

In
te

ge
rv

0
N

um
be

r
of

au
xi

lia
ry

bu
ffe

rs
4.

2.
1

–

R
G

B
A

M
O

D
E

B
G

et
B

oo
le

an
v

–
T

ru
e

if
co

lo
r

bu
ffe

rs
st

or
e

rg
ba

2.
7

–

IN
D

E
X

M
O

D
E

B
G

et
B

oo
le

an
v

–
T

ru
e

if
co

lo
r

bu
ffe

rs
st

or
e

in
de

xe
s

2.
7

–

D
O

U
B

LE
B

U
F

F
E

R
B

G
et

B
oo

le
an

v
–

T
ru

e
if

fr
on

t&
ba

ck
bu

ffe
rs

ex
is

t
4.

2.
1

–

S
T

E
R

E
O

B
G

et
B

oo
le

an
v

–
T

ru
e

if
le

ft
&

rig
ht

bu
ffe

rs
ex

is
t

6
–

A
LI

A
S

E
D

P
O

IN
T

S
IZ

E
R

A
N

G
E

2
×

R
+

G
et

F
lo

at
v

1,
1

R
an

ge
(lo

to
hi

)
of

al
ia

se
d

po
in

ts
iz

es
3.

3
–

S
M

O
O

T
H

P
O

IN
T

S
IZ

E
R

A
N

G
E

(v
1.

1:
P

O
IN

T
S

IZ
E

R
A

N
G

E
)

2
×

R
+

G
et

F
lo

at
v

1,
1

R
an

ge
(lo

to
hi

)
of

an
tia

lia
se

d
po

in
ts

iz
es

3.
3

–

S
M

O
O

T
H

P
O

IN
T

S
IZ

E
G

R
A

N
U

LA
R

IT
Y

(v
1.

1:
P

O
IN

T
S

IZ
E

G
R

A
N

U
LA

R
IT

Y
)

R
+

G
et

F
lo

at
v

–
A

nt
ia

lia
se

d
po

in
ts

iz
e

gr
an

ul
ar

ity
3.

3
–

A
LI

A
S

E
D

LI
N

E
W

ID
T

H
R

A
N

G
E

2
×

R
+

G
et

F
lo

at
v

1,
1

R
an

ge
(lo

to
hi

)
of

al
ia

se
d

lin
e

w
id

th
s

3.
4

–

S
M

O
O

T
H

LI
N

E
W

ID
T

H
R

A
N

G
E

(v
1.

1:
LI

N
E

W
ID

T
H

R
A

N
G

E
)

2
×

R
+

G
et

F
lo

at
v

1,
1

R
an

ge
(lo

to
hi

)
of

an
tia

lia
se

d
lin

e
w

id
th

s
3.

4
–

S
M

O
O

T
H

LI
N

E
W

ID
T

H
G

R
A

N
U

LA
R

IT
Y

(v
1.

1:
LI

N
E

W
ID

T
H

G
R

A
N

U
LA

R
IT

Y
)

R
+

G
et

F
lo

at
v

–
A

nt
ia

lia
se

d
lin

e
w

id
th

gr
an

ul
ar

ity
3.

4
–

Table 6.33. Implementation Dependent Values (cont.)

Version 2.0 - September 7, 2004



6.2. STATE TABLES 295

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

M
in

im
um

Va
lu

e
D

es
cr

ip
tio

n
S

ec
.

A
ttr

ib
ut

e
M

A
X

C
O

N
V

O
LU

T
IO

N
W

ID
T

H
3
×

Z
+

G
et

C
on

vo
lu

tio
n-

P
ar

am
et

er
iv

3
M

ax
im

um
w

id
th

of
co

nv
ol

ut
io

n
fil

te
r

4.
3

–

M
A

X
C

O
N

V
O

LU
T

IO
N

H
E

IG
H

T
2
×

Z
+

G
et

C
on

vo
lu

tio
n-

P
ar

am
et

er
iv

3
M

ax
im

um
he

ig
ht

of
co

nv
ol

ut
io

n
fil

te
r

4.
3

–

M
A

X
E

LE
M

E
N

T
S

IN
D

IC
E

S
Z

+
G

et
In

te
ge

rv
–

R
ec

om
m

en
de

d
m

ax
im

um
nu

m
be

r
of

D
ra

w
R

an
ge

E
le

-
m

en
ts

in
di

ce
s

2.
8

–

M
A

X
E

LE
M

E
N

T
S

V
E

R
T

IC
E

S
Z

+
G

et
In

te
ge

rv
–

R
ec

om
m

en
de

d
m

ax
im

um
nu

m
be

r
of

D
ra

w
R

an
ge

E
le

-
m

en
ts

ve
rt

ic
es

2.
8

–

M
A

X
T

E
X

T
U

R
E

U
N

IT
S

Z
+

G
et

In
te

ge
rv

2
N

um
be

r
of

te
xt

ur
e

un
its

(n
ot

to
ex

ce
ed

32
)

2.
6

–

S
A

M
P

LE
B

U
F

F
E

R
S

Z
+

G
et

In
te

ge
rv

0
N

um
be

r
of

m
ul

tis
am

pl
e

bu
ffe

rs
3.

2.
1

–

S
A

M
P

LE
S

Z
+

G
et

In
te

ge
rv

0
C

ov
er

ag
e

m
as

k
si

ze
3.

2.
1

–
C

O
M

P
R

E
S

S
E

DT
E

X
T

U
R

E
F

O
R

M
AT

S
0
×

Z
G

et
In

te
ge

rv
-

E
nu

m
er

at
ed

co
m

pr
es

se
d

te
xt

ur
e

fo
rm

at
s

3.
8.

3
–

N
U

M
C

O
M

P
R

E
S

S
E

DT
E

X
T

U
R

E
F

O
R

M
AT

S
Z

G
et

In
te

ge
rv

0
N

um
be

r
of

en
um

er
at

ed
co

m
pr

es
se

d
te

xt
ur

e
fo

rm
at

s

3.
8.

3
–

Q
U

E
R

Y
C

O
U

N
T

E
R

B
IT

S
Z

+
G

et
Q

ue
ry

iv
se

e6
.1

.1
2

O
cc

lu
si

on
qu

er
y

co
un

te
r

bi
ts

6.
1.

12
–

Table 6.34. Implementation Dependent Values (cont.)

Version 2.0 - September 7, 2004



6.2. STATE TABLES 296

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

M
in

im
um

Va
lu

e
D

es
cr

ip
tio

n
S

ec
.

A
ttr

ib
ut

e
E

X
T

E
N

S
IO

N
S

S
G

et
S

tr
in

g
–

S
up

po
rt

ed
ex

te
ns

io
ns

6.
1.

11
–

R
E

N
D

E
R

E
R

S
G

et
S

tr
in

g
–

R
en

de
re

r
st

rin
g

6.
1.

11
–

S
H

A
D

IN
G

LA
N

G
U

A
G

E
V

E
R

S
IO

N
S

G
et

S
tr

in
g

–
S

ha
di

ng
La

ng
ua

ge
ve

rs
io

n
su

pp
or

te
d

6.
1.

11
–

V
E

N
D

O
R

S
G

et
S

tr
in

g
–

Ve
nd

or
st

rin
g

6.
1.

11
–

V
E

R
S

IO
N

S
G

et
S

tr
in

g
–

O
pe

nG
L

ve
rs

io
n

su
pp

or
te

d
6.

1.
11

–

M
A

X
V

E
R

T
E

X
AT

T
R

IB
S

Z
+

G
et

In
te

ge
rv

16
N

um
be

r
of

ac
tiv

e
ve

rt
ex

at
tr

ib
ut

es
2.

7
–

M
A

X
V

E
R

T
E

X
U

N
IF

O
R

M
C

O
M

P
O

N
E

N
T

S
Z

+
G

et
In

te
ge

rv
51

2
N

um
be

r
of

w
or

ds
fo

r
ve

rt
ex

sh
ad

er
un

ifo
rm

va
ria

bl
es

2.
15

.3
–

M
A

X
VA

R
Y

IN
G

F
LO

AT
S

Z
+

G
et

In
te

ge
rv

32
N

um
be

r
of

flo
at

s
fo

r
va

ry
in

g
va

ria
bl

es
2.

15
.3

–

M
A

X
C

O
M

B
IN

E
D

T
E

X
T

U
R

E
IM

A
G

E
U

N
IT

S
Z

+
G

et
In

te
ge

rv
2

To
ta

ln
um

be
r

of
te

xt
ur

e
un

its
ac

ce
ss

ib
le

by
th

e
G

L

2.
15

.4
–

M
A

X
V

E
R

T
E

X
T

E
X

T
U

R
E

IM
A

G
E

U
N

IT
S

+
G

et
In

te
ge

rv
0

N
um

be
r

of
te

xt
ur

e
im

ag
e

un
its

ac
ce

ss
ib

le
by

a
ve

rt
ex

sh
ad

er

2.
15

.4
–

M
A

X
T

E
X

T
U

R
E

IM
A

G
E

U
N

IT
S

Z
+

G
et

In
te

ge
rv

2
N

um
be

r
of

te
xt

ur
e

im
ag

e
un

its
ac

ce
ss

ib
le

by
fr

ag
m

en
tp

ro
ce

ss
in

g

2.
15

.4
–

M
A

X
T

E
X

T
U

R
E

C
O

O
R

D
S

Z
+

G
et

In
te

ge
rv

2
N

um
be

r
of

te
xt

ur
e

co
or

di
na

te
se

ts
2.

7
–

M
A

X
F

R
A

G
M

E
N

T
U

N
IF

O
R

M
C

O
M

P
O

N
E

N
T

S
Z

+
G

et
In

te
ge

rv
64

N
um

be
r

of
w

or
ds

fo
r

fr
ag

.
sh

ad
er

un
ifo

rm
va

ria
bl

es

3.
11

.1
–

M
A

X
T

E
X

T
U

R
E

IM
A

G
E

U
N

IT
S

Z
+

G
et

In
te

ge
rv

2
N

um
be

r
of

se
pa

ra
te

te
xt

ur
e

im
ag

e
un

its
3.

11
.2

–

M
A

X
T

E
X

T
U

R
E

C
O

O
R

D
S

Z
+

G
et

In
te

ge
rv

2
N

um
be

r
of

te
xt

ur
e

co
or

di
na

te
se

ts
2.

7
–

M
A

X
D

R
A

W
B

U
F

F
E

R
S

Z
+

G
et

In
te

ge
rv

1+
M

ax
im

um
nu

m
be

r
of

ac
tiv

e
dr

aw
bu

ffe
rs

4.
2.

1
–

Table 6.35. Implementation Dependent Values (cont.)

Version 2.0 - September 7, 2004



6.2. STATE TABLES 297

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

x
B

IT
S

Z
+

G
et

In
te

ge
rv

-
N

um
be

r
of

bi
ts

in
x

co
lo

r
bu

ffe
r

co
m

po
ne

nt
;x

is
on

e
of

R
E

D,
G

R
E

E
N,

B
L

U
E,

A
L

P
H

A,
or

IN
D

E
X

4
–

D
E

P
T

H
B

IT
S

Z
+

G
et

In
te

ge
rv

-
N

um
be

r
of

de
pt

h
bu

ffe
r

pl
an

es
4

–
S

T
E

N
C

IL
B

IT
S

Z
+

G
et

In
te

ge
rv

-
N

um
be

r
of

st
en

ci
lp

la
ne

s
4

–
A

C
C

U
M

x
B

IT
S

Z
+

G
et

In
te

ge
rv

-
N

um
be

r
of

bi
ts

in
x

ac
cu

m
ul

at
io

n
bu

ffe
r

co
m

po
ne

nt
(x
is

R
E

D,
G

R
E

E
N,

B
L

U
E,

or
A

L
P

H
A

4
–

Table 6.36. Implementation Dependent Pixel Depths

Version 2.0 - September 7, 2004



6.2. STATE TABLES 298

G
et

va
lu

e
Ty

pe
G

et
C

m
nd

In
iti

al
Va

lu
e

D
es

cr
ip

tio
n

S
ec

.
A

ttr
ib

ut
e

LI
S

T
B

A
S

E
Z

+
G

et
In

te
ge

rv
0

S
et

tin
g

of
Li

st
B

as
e

5.
4

lis
t

LI
S

T
IN

D
E

X
Z

+
G

et
In

te
ge

rv
0

N
um

be
r

of
di

sp
la

y
lis

tu
nd

er
co

ns
tr

uc
tio

n;
0

if
no

ne
5.

4
–

LI
S

T
M

O
D

E
Z

+
G

et
In

te
ge

rv
0

M
od

e
of

di
sp

la
y

lis
tu

nd
er

co
ns

tr
uc

tio
n;

un
de

fin
ed

if
no

ne
5.

4
–

–
16
∗
×

A
–

em
pt

y
S

er
ve

r
at

tr
ib

ut
e

st
ac

k
6

–
AT

T
R

IB
S

TA
C

K
D

E
P

T
H

Z
+

G
et

In
te

ge
rv

0
S

er
ve

r
at

tr
ib

ut
e

st
ac

k
po

in
te

r
6

–
–

16
∗
×

A
–

em
pt

y
C

lie
nt

at
tr

ib
ut

e
st

ac
k

6
–

C
LI

E
N

T
AT

T
R

IB
S

TA
C

K
D

E
P

T
H

Z
+

G
et

In
te

ge
rv

0
C

lie
nt

at
tr

ib
ut

e
st

ac
k

po
in

te
r

6
–

N
A

M
E

S
TA

C
K

D
E

P
T

H
Z

+
G

et
In

te
ge

rv
0

N
am

e
st

ac
k

de
pt

h
5.

2
–

R
E

N
D

E
R

M
O

D
E

Z
3

G
et

In
te

ge
rv

R
E

N
D

E
R

R
en

de
rM

od
e

se
tti

ng
5.

2
–

S
E

LE
C

T
IO

N
B

U
F

F
E

R
P

O
IN

T
E

R
Y

G
et

P
oi

nt
er

v
0

S
el

ec
tio

n
bu

ffe
r

po
in

te
r

5.
2

se
le

ct
S

E
LE

C
T

IO
N

B
U

F
F

E
R

S
IZ

E
Z

+
G

et
In

te
ge

rv
0

S
el

ec
tio

n
bu

ffe
r

si
ze

5.
2

se
le

ct
F

E
E

D
B

A
C

K
B

U
F

F
E

R
P

O
IN

T
E

R
Y

G
et

P
oi

nt
er

v
0

F
ee

db
ac

k
bu

ffe
r

po
in

te
r

5.
3

fe
ed

ba
ck

F
E

E
D

B
A

C
K

B
U

F
F

E
R

S
IZ

E
Z

+
G

et
In

te
ge

rv
0

F
ee

db
ac

k
bu

ffe
r

si
ze

5.
3

fe
ed

ba
ck

F
E

E
D

B
A

C
K

B
U

F
F

E
R

T
Y

P
E

Z
5

G
et

In
te

ge
rv

2
D

F
ee

db
ac

k
ty

pe
5.

3
fe

ed
ba

ck
–

n
×

Z
8

G
et

E
rr

or
0

C
ur

re
nt

er
ro

r
co

de
(s

)
2.

5
–

–
n
×

B
–

Fa
ls

e
T

ru
e

if
th

er
e

is
a

co
rr

es
po

nd
in

g
er

ro
r

2.
5

–

B
–

Fa
ls

e
O

cc
lu

si
on

qu
er

y
ac

tiv
e

4.
1.

7
–

C
U

R
R

E
N

T
Q

U
E

R
Y

Z
+

G
et

Q
ue

ry
iv

0
A

ct
iv

e
oc

cl
us

io
n

qu
er

y
ID

4.
1.

7
–

Z
+

–
0

O
cc

lu
si

on
sa

m
pl

es
-p

as
se

d
co

un
t

4.
1.

7
–

Table 6.37. Miscellaneous

Version 2.0 - September 7, 2004



Appendix A

Invariance

The OpenGL specification is not pixel exact. It therefore does not guarantee an ex-
act match between images produced by different GL implementations. However,
the specification does specify exact matches, in some cases, for images produced
by the same implementation. The purpose of this appendix is to identify and pro-
vide justification for those cases that require exact matches.

A.1 Repeatability

The obvious and most fundamental case is repeated issuance of a series of GL com-
mands. For any given GL and framebuffer statevector, and for any GL command,
the resulting GL and framebuffer state must be identical whenever the command is
executed on that initial GL and framebuffer state.

One purpose of repeatability is avoidance of visual artifacts when a double-
buffered scene is redrawn. If rendering is not repeatable, swapping between two
buffers rendered with the same command sequence may result in visible changes
in the image. Such false motion is distracting to the viewer. Another reason for
repeatability is testability.

Repeatability, while important, is a weak requirement. Given only repeata-
bility as a requirement, two scenes rendered with one (small) polygon changed
in position might differ at every pixel. Such a difference, while within the law
of repeatability, is certainly not within its spirit. Additional invariance rules are
desirable to ensure useful operation.

299



A.2. MULTI-PASS ALGORITHMS 300

A.2 Multi-pass Algorithms

Invariance is necessary for a whole set of useful multi-pass algorithms. Such al-
gorithms render multiple times, each time with a different GL mode vector, to
eventually produce a result in the framebuffer. Examples of these algorithms in-
clude:

• “Erasing” a primitive from the framebuffer by redrawing it, either in a dif-
ferent color or using the XOR logical operation.

• Using stencil operations to compute capping planes.

On the other hand, invariance rules can greatly increase the complexity of high-
performance implementations of the GL. Even the weak repeatability requirement
significantly constrains a parallel implementation of the GL. Because GL imple-
mentations are required to implement ALL GL capabilities, not just a convenient
subset, those that utilize hardware acceleration are expected to alternate between
hardware and software modules based on the current GL mode vector. A strong
invariance requirement forces the behavior of the hardware and software modules
to be identical, something that may be very difficult to achieve (for example, if the
hardware does floating-point operations with different precision than the software).

What is desired is a compromise that results in many compliant, high-
performance implementations, and in many software vendors choosing to port to
OpenGL.

A.3 Invariance Rules

For a given instantiation of an OpenGL rendering context:

Rule 1 For any given GL and framebuffer state vector, and for any given GL com-
mand, the resulting GL and framebuffer state must be identical each time the com-
mand is executed on that initial GL and framebuffer state.

Rule 2 Changes to the following state values have no side effects (the use of any
other state value is not affected by the change):

Required:

• Framebuffer contents (all bitplanes)

• The color buffers enabled for writing

• The values of matrices other than the top-of-stack matrices

Version 2.0 - September 7, 2004



A.3. INVARIANCE RULES 301

• Scissor parameters (other than enable)

• Writemasks (color, index, depth, stencil)

• Clear values (color, index, depth, stencil, accumulation)

◦ Current values (color, index, normal, texture coords, edgeflag)

◦ Current raster color, index and texture coordinates.

◦ Material properties (ambient, diffuse, specular, emission, shininess)

Strongly suggested:

• Matrix mode

• Matrix stack depths

• Alpha test parameters (other than enable)

• Stencil parameters (other than enable)

• Depth test parameters (other than enable)

• Blend parameters (other than enable)

• Logical operation parameters (other than enable)

• Pixel storage and transfer state

• Evaluator state (except as it affects the vertex data generated by the
evaluators)

• Polygon offset parameters (other than enables, and except as they affect
the depth values of fragments)

Corollary 1 Fragment generation is invariant with respect to the state values
marked with• in Rule 2.

Corollary 2 The window coordinates (x, y, and z) of generated fragments are also
invariant with respect to

Required:

• Current values (color, color index, normal, texture coords, edgeflag)

• Current raster color, color index, and texture coordinates

• Material properties (ambient, diffuse, specular, emission, shininess)

Rule 3 The arithmetic of each per-fragment operation is invariant except with re-
spect to parameters that directly control it (the parameters that control the alpha
test, for instance, are the alpha test enable, the alpha test function, and the alpha
test reference value).

Version 2.0 - September 7, 2004



A.4. WHAT ALL THIS MEANS 302

Corollary 3 Images rendered into different color buffers sharing the same frame-
buffer, either simultaneously or separately using the same command sequence, are
pixel identical.

Rule 4 The same vertex or fragment shader will produce the same result when
run multiple times with the same input. The wording ’the same shader’ means a
program object that is populated with the same source strings, which are compiled
and then linked, possibly multiple times, and which program object is then executed
using the same GL state vector.

Rule 5 All fragment shaders that either conditionally or unconditionally assign
gl FragCoord.z to gl FragDepth are depth-invariant with respect to each
other, for those fragments where the assignment togl FragDepth actually is
done.

A.4 What All This Means

Hardware accelerated GL implementations are expected to default to software op-
eration when some GL state vectors are encountered. Even the weak repeatability
requirement means, for example, that OpenGL implementations cannot apply hys-
teresis to this swap, but must instead guarantee that a given mode vector implies
that a subsequent commandalwaysis executed in either the hardware or the soft-
ware machine.

The stronger invariance rules constrain when the switch from hardware to soft-
ware rendering can occur, given that the software and hardware renderers are not
pixel identical. For example, the switch can be made when blending is enabled or
disabled, but it should not be made when a change is made to the blending param-
eters.

Because floating point values may be represented using different formats in dif-
ferent renderers (hardware and software), many OpenGL state values may change
subtly when renderers are swapped. This is the type of state value change that Rule
1 seeks to avoid.

Version 2.0 - September 7, 2004



Appendix B

Corollaries

The following observations are derived from the body and the other appendixes of
the specification. Absence of an observation from this list in no way impugns its
veracity.

1. The CURRENTRASTERTEXTURECOORDSmust be maintained correctly at
all times, including periods while texture mapping is not enabled, and when
the GL is in color index mode.

2. When requested, texture coordinates returned in feedback mode are always
valid, including periods while texture mapping is not enabled, and when the
GL is in color index mode.

3. The error semantics of upward compatible OpenGL revisions may change.
Otherwise, only additions can be made to upward compatible revisions.

4. GL query commands are not required to satisfy the semantics of theFlush
or theFinish commands. All that is required is that the queried state be con-
sistent with complete execution of all previously executed GL commands.

5. Application specified point size and line width must be returned as specified
when queried. Implementation dependent clamping affects the values only
while they are in use.

6. Bitmaps and pixel transfers do not cause selection hits.

7. The mask specified as the third argument toStencilFuncaffects the operands
of the stencil comparison function, but has no direct effect on the update of
the stencil buffer. The mask specified byStencilMask has no effect on the
stencil comparison function; it limits the effect of the update of the stencil
buffer.

303



304

8. Polygon shading is completed before the polygon mode is interpreted. If the
shade model isFLAT, all of the points or lines generated by a single polygon
will have the same color.

9. A display list is just a group of commands and arguments, so errors generated
by commands in a display list must be generated when the list is executed.
If the list is created inCOMPILEmode, errors should not be generated while
the list is being created.

10. RasterPosdoes not change the current raster index from its default value
in an RGBA mode GL context. Likewise,RasterPosdoes not change the
current raster color from its default value in a color index GL context. Both
the current raster index and the current raster color can be queried, however,
regardless of the color mode of the GL context.

11. A material property that is attached to the current color viaColorMaterial
always takes the value of the current color. Attempts to change that material
property viaMaterial calls have no effect.

12. Material and ColorMaterial can be used to modify the RGBA material
properties, even in a color index context. Likewise,Material can be used to
modify the color index material properties, even in an RGBA context.

13. There is no atomicity requirement for OpenGL rendering commands, even
at the fragment level.

14. Because rasterization of non-antialiased polygons is point sampled, poly-
gons that have no area generate no fragments when they are rasterized in
FILL mode, and the fragments generated by the rasterization of “narrow”
polygons may not form a continuous array.

15. OpenGL does not force left- or right-handedness on any of its coordinates
systems. Consider, however, the following conditions: (1) the object coordi-
nate system is right-handed; (2) the only commands used to manipulate the
model-view matrix areScale(with positive scaling values only),Rotate, and
Translate; (3) exactly one of eitherFrustum or Ortho is used to set the pro-
jection matrix; (4) the near value is less than the far value forDepthRange.
If these conditions are all satisfied, then the eye coordinate system is right-
handed and the clip, normalized device, and window coordinate systems are
left-handed.

16. ColorMaterial has no effect on color index lighting.

Version 2.0 - September 7, 2004



305

17. (No pixel dropouts or duplicates.) Let two polygons share an identical edge
(that is, there exist vertices A and B of an edge of one polygon, and vertices
C and D of an edge of the other polygon, and the coordinates of vertex A
(resp. B) are identical to those of vertex C (resp. D), and the state of the the
coordinate transfomations is identical when A, B, C, and D are specified).
Then, when the fragments produced by rasterization of both polygons are
taken together, each fragment intersecting the interior of the shared edge is
produced exactly once.

18. OpenGL state continues to be modified inFEEDBACKmode and inSELECT

mode. The contents of the framebuffer are not modified.

19. The current raster position, the user defined clip planes, the spot directions
and the light positions forLIGHTi, and the eye planes for texgen are trans-
formed when they are specified. They are not transformed during aPopAt-
trib , or when copying a context.

20. Dithering algorithms may be different for different components. In particu-
lar, alpha may be dithered differently from red, green, or blue, and an imple-
mentation may choose to not dither alpha at all.

21. For any GL and framebuffer state, and for any group of GL commands and
arguments, the resulting GL and framebuffer state is identical whether the
GL commands and arguments are executed normally or from a display list.

Version 2.0 - September 7, 2004



Appendix C

Version 1.1

OpenGL version 1.1 is the first revision since the original version 1.0 was released
on 1 July 1992. Version 1.1 is upward compatible with version 1.0, meaning that
any program that runs with a 1.0 GL implementation will also run unchanged with
a 1.1 GL implementation. Several additions were made to the GL, especially to
the texture mapping capabilities, but also to the geometry and fragment operations.
Following are brief descriptions of each addition.

C.1 Vertex Array

Arrays of vertex data may be transferred to the GL with many fewer commands
than were previously necessary. Six arrays are defined, one each storing vertex
positions, normal coordinates, colors, color indices, texture coordinates, and edge
flags. The arrays may be specified and enabled independently, or one of the pre-
defined configurations may be selected with a single command.

The primary goal was to decrease the number of subroutine calls required
to transfer non-display listed geometry data to the GL. A secondary goal was to
improve the efficiency of the transfer; especially to allow direct memory access
(DMA) hardware to be used to effect the transfer. The additions match those of
theEXT vertex array extension, except that static array data are not supported
(because they complicated the interface, and were not being used), and the pre-
defined configurations are added (both to reduce subroutine count even further,
and to allow for efficient transfer of array data).

306



C.2. POLYGON OFFSET 307

C.2 Polygon Offset

Depth values of fragments generated by the rasterization of a polygon may be
shifted toward or away from the origin, as an affine function of the window coor-
dinate depth slope of the polygon. Shifted depth values allow coplanar geometry,
especially facet outlines, to be rendered without depth buffer artifacts. They may
also be used by future shadow generation algorithms.

The additions match those of theEXT polygon offset extension, with two
exceptions. First, the offset is enabled separately forPOINT, LINE , andFILL ras-
terization modes, all sharing a single affine function definition. (Shifting the depth
values of the outline fragments, instead of the fill fragments, allows the contents of
the depth buffer to be maintained correctly.) Second, the offset bias is specified in
units of depth buffer resolution, rather than in the [0,1] depth range.

C.3 Logical Operation

Fragments generated by RGBA rendering may be merged into the framebuffer us-
ing a logical operation, just as color index fragments are in GL version 1.0. Blend-
ing is disabled during such operation because it is rarely desired, because many sys-
tems could not support it, and to match the semantics of theEXT blend logic op

extension, on which this addition is loosely based.

C.4 Texture Image Formats

Stored texture arrays have a format, known as theinternal format, rather than a
simple count of components. The internal format is represented as a single enumer-
ated value, indicating both the organization of the image data (LUMINANCE, RGB,
etc.) and the number of bits of storage for each image component. Clients can use
the internal format specification to suggest the desired storage precision of texture
images. Newbase formats, ALPHAandINTENSITY , provide new texture environ-
ment operations. These additions match those of a subset of theEXT texture

extension.

C.5 Texture Replace Environment

A common use of texture mapping is to replace the color values of generated
fragments with texture color data. This could be specified only indirectly in GL
version 1.0, which required that client specified “white” geometry be modulated

Version 2.0 - September 7, 2004



C.6. TEXTURE PROXIES 308

by a texture. GL version 1.1 allows such replacement to be specified explicitly,
possibly improving performance. These additions match those of a subset of the
EXT texture extension.

C.6 Texture Proxies

Texture proxies allow a GL implementation to advertise different maximum tex-
ture image sizes as a function of some other texture parameters, especially of the
internal image format. Clients may use the proxy query mechanism to tailor their
use of texture resources at run time. The proxy interface is designed to allow such
queries without adding new routines to the GL interface. These additions match
those of a subset of theEXT texture extension, except that implementations re-
turn allocation information consistent with support for complete mipmap arrays.

C.7 Copy Texture and Subtexture

Texture array data can be specified from framebuffer memory, as well as from
client memory, and rectangular subregions of texture arrays can be redefined either
from client or framebuffer memory. These additions match those defined by the
EXT copy texture andEXT subtexture extensions.

C.8 Texture Objects

A set of texture arrays and their related texture state can be treated as a single ob-
ject. Such treatment allows for greater implementation efficiency when multiple
arrays are used. In conjunction with the subtexture capability, it also allows clients
to make gradual changes to existing texture arrays, rather than completely redefin-
ing them. These additions match those of theEXT texture object extension,
with slight additions to the texture residency semantics.

C.9 Other Changes

1. Color indices may now be specified as unsigned bytes.

2. Texture coordinatess, t, andr are divided byq during the rasterization of
points, pixel rectangles, and bitmaps. This division was documented only
for lines and polygons in the 1.0 version.

Version 2.0 - September 7, 2004



C.10. ACKNOWLEDGEMENTS 309

3. The line rasterization algorithm was changed so that vertical lines on pixel
borders rasterize correctly.

4. Separate pixel transfer discussions in chapter3 and chapter4 were combined
into a single discussion in chapter3.

5. Texture alpha values are returned as 1.0 if there is no alpha channel in the
texture array. This behavior was unspecified in the 1.0 version, and was
incorrectly documented in the reference manual.

6. Fog start and end values may now be negative.

7. Evaluated color values direct the evaluation of the lighting equation ifCol-
orMaterial is enabled.

C.10 Acknowledgements

OpenGL 1.1 is the result of the contributions of many people, representing a cross
section of the computer industry. Following is a partial list of the contributors,
including the company that they represented at the time of their contribution:

Kurt Akeley, Silicon Graphics
Bill Armstrong, Evans & Sutherland
Andy Bigos, 3Dlabs
Pat Brown, IBM
Jim Cobb, Evans & Sutherland
Dick Coulter, Digital Equipment
Bruce D’Amora, GE Medical Systems
John Dennis, Digital Equipment
Fred Fisher, Accel Graphics
Chris Frazier, Silicon Graphics
Todd Frazier, Evans & Sutherland
Tim Freese, NCD
Ken Garnett, NCD
Mike Heck, Template Graphics Software
Dave Higgins, IBM
Phil Huxley, 3Dlabs
Dale Kirkland, Intergraph
Hock San Lee, Microsoft
Kevin LeFebvre, Hewlett Packard
Jim Miller, IBM
Tim Misner, SunSoft

Version 2.0 - September 7, 2004



C.10. ACKNOWLEDGEMENTS 310

Jeremy Morris, 3Dlabs
Israel Pinkas, Intel
Bimal Poddar, IBM
Lyle Ramshaw, Digital Equipment
Randi Rost, Hewlett Packard
John Schimpf, Silicon Graphics
Mark Segal, Silicon Graphics
Igor Sinyak, Intel
Jeff Stevenson, Hewlett Packard
Bill Sweeney, SunSoft
Kelvin Thompson, Portable Graphics
Neil Trevett, 3Dlabs
Linas Vepstas, IBM
Andy Vesper, Digital Equipment
Henri Warren, Megatek
Paula Womack, Silicon Graphics
Mason Woo, Silicon Graphics
Steve Wright, Microsoft

Version 2.0 - September 7, 2004



Appendix D

Version 1.2

OpenGL version 1.2, released on March 16, 1998, is the second revision since the
original version 1.0. Version 1.2 is upward compatible with version 1.1, meaning
that any program that runs with a 1.1 GL implementation will also run unchanged
with a 1.2 GL implementation.

Several additions were made to the GL, especially to texture mapping capa-
bilities and the pixel processing pipeline. Following are brief descriptions of each
addition.

D.1 Three-Dimensional Texturing

Three-dimensional textures can be defined and used. In-memory formats for three-
dimensional images, and pixel storage modes to support them, are also defined.
The additions match those of theEXT texture3D extension.

One important application of three-dimensional textures is rendering volumes
of image data.

D.2 BGRA Pixel Formats

BGRAextends the list of host-memory color formats. Specifically, it provides a
component order matching file and framebuffer formats common on Windows plat-
forms. The additions match those of theEXT bgra extension.

311



D.3. PACKED PIXEL FORMATS 312

D.3 Packed Pixel Formats

Packed pixels in host memory are represented entirely by one unsigned byte, one
unsigned short, or one unsigned integer. The fields with the packed pixel are not
proper machine types, but the pixel as a whole is. Thus the pixel storage modes
and their unpacking counterparts all work correctly with packed pixels.

The additions match those of theEXT packed pixels extension, with the
further addition of reversed component order packed formats.

D.4 Normal Rescaling

Normals may be rescaled by a constant factor derived from the modelview matrix.
Rescaling can operate faster than renormalization in many cases, while resulting in
the same unit normals.

The additions are based on theEXT rescale normal extension.

D.5 Separate Specular Color

Lighting calculations are modified to produce a primary color consisting of emis-
sive, ambient and diffuse terms of the usual GL lighting equation, and a secondary
color consisting of the specular term. Only the primary color is modified by the
texture environment; the secondary color is added to the result of texturing to pro-
duce a single post-texturing color. This allows highlights whose color is based on
the light source creating them, rather than surface properties.

The additions match those of theEXT separate specular color exten-
sion.

D.6 Texture Coordinate Edge Clamping

GL normally clamps such that the texture coordinates are limited to exactly the
range[0, 1]. When a texture coordinate is clamped using this algorithm, the texture
sampling filter straddles the edge of the texture image, taking half its sample values
from within the texture image, and the other half from the texture border. It is
sometimes desirable to clamp a texture without requiring a border, and without
using the constant border color.

A new texture clamping algorithm,CLAMPTO EDGE, clamps texture coordi-
nates at all mipmap levels such that the texture filter never samples a border texel.
The color returned when clamping is derived only from texels at the edge of the
texture image.

Version 2.0 - September 7, 2004



D.7. TEXTURE LEVEL OF DETAIL CONTROL 313

The additions match those of theSGIS texture edge clamp extension.

D.7 Texture Level of Detail Control

Two constraints related to the texture level of detail parameterλ are added. One
constraint clampsλ to a specified floating point range. The other limits the se-
lection of mipmap image arrays to a subset of the arrays that would otherwise be
considered.

Together these constraints allow a large texture to be loaded and used initially
at low resolution, and to have its resolution raised gradually as more resolution is
desired or available. Image array specification is necessarily integral, rather than
continuous. By providing separate, continuous clamping of theλ parameter, it is
possible to avoid ”popping” artifacts when higher resolution images are provided.

The additions match those of theSGIS texture lod extension.

D.8 Vertex Array Draw Element Range

A new form ofDrawElements that provides explicit information on the range of
vertices referred to by the index set is added. Implementations can take advantage
of this additional information to process vertex data without having to scan the
index data to determine which vertices are referenced.

The additions match those of theEXT draw range elements extension.

D.9 Imaging Subset

The remaining new features are primarily intended for advanced image processing
applications, and may not be present in all GL implementations. The are collec-
tively referred to as theimaging subset.

D.9.1 Color Tables

A new RGBA-format color lookup mechanism is defined in the pixel transfer pro-
cess, providing additional lookup capabilities beyond the existing lookup. The key
difference is that the new lookup tables are treated as one-dimensional images with
internal formats, like texture images and convolution filter images. Thus the new
tables can operate on a subset of the components of passing pixel groups. For ex-
ample, a table with internal formatALPHAmodifies only the A component of each
pixel group, leaving the R, G, and B components unmodified.

Version 2.0 - September 7, 2004



D.9. IMAGING SUBSET 314

Three independent lookups may be performed: prior to convolution; after con-
volution and prior to color matrix transformation; after color matrix transformation
and prior to gathering pipeline statistics.

Methods to initialize the color lookup tables from the framebuffer, in addition
to the standard memory source mechanisms, are provided.

Portions of a color lookup table may be redefined without reinitializing the
entire table. The affected portions may be specified either from host memory or
from the framebuffer.

The additions match those of the EXT color table and
EXT color subtable extensions.

D.9.2 Convolution

One- or two-dimensional convolution operations are executed following the first
color table lookup in the pixel transfer process. The convolution kernels are them-
selves treated as one- and two-dimensional images, which can be loaded from ap-
plication memory or from the framebuffer.

The convolution framework is designed to accommodate three-dimensional
convolution, but that API is left for a future extension.

The additions match those of the EXT convolution and
HP convolution border modes extensions.

D.9.3 Color Matrix

A 4x4 matrix transformation and associated matrix stack are added to the pixel
transfer path. The matrix operates on RGBA pixel groups, using the equation

C ′ = MC,

where

C =


R
G
B
A


and M is the 4 × 4 matrix on the top of the color matrix stack. After the

matrix multiplication, each resulting color component is scaled and biased by a
programmed amount. Color matrix multiplication follows convolution.

The color matrix can be used to reassign and duplicate color components. It
can also be used to implement simple color space conversions.

The additions match those of theSGI color matrix extension.

Version 2.0 - September 7, 2004



D.10. ACKNOWLEDGEMENTS 315

D.9.4 Pixel Pipeline Statistics

Pixel operations that count occurences of specific color component values (his-
togram) and that track the minimum and maximum color component values (min-
max) are performed at the end of the pixel transfer pipeline. An optional mode
allows pixel data to be discarded after the histogram and/or minmax operations are
completed. Otherwise the pixel data continues on to the next operation unaffected.

The additions match those of theEXT histogram extension.

D.9.5 Constant Blend Color

A constant color that can be used to define blend weighting factors may be defined.
A typical usage is blending two RGB images. Without the constant blend factor,
one image must have an alpha channel with each pixel set to the desired blend
factor.

The additions match those of theEXT blend color extension.

D.9.6 New Blending Equations

Blending equations other than the normal weighted sum of source and destination
components may be used.

Two of the new equations produce the minimum (or maximum) color com-
ponents of the source and destination colors. Taking the maximum is useful for
applications such as maximum projection in medical imaging.

The other two equations are similar to the default blending equation, but pro-
duce the difference of its left and right hand sides, rather than the sum. Image
differences are useful in many image processing applications.

The additions match those of theEXT blend minmax and
EXT blend subtract extensions.

D.10 Acknowledgements

OpenGL 1.2 is the result of the contributions of many people, representing a cross
section of the computer industry. Following is a partial list of the contributors,
including the company that they represented at the time of their contribution:

Kurt Akeley, Silicon Graphics
Bill Armstrong, Evans & Sutherland
Otto Berkes, Microsoft
Pierre-Luc Bisaillon, Matrox Graphics
Drew Bliss, Microsoft

Version 2.0 - September 7, 2004



D.10. ACKNOWLEDGEMENTS 316

David Blythe, Silicon Graphics
Jon Brewster, Hewlett Packard
Dan Brokenshire, IBM
Pat Brown, IBM
Newton Cheung, S3
Bill Clifford, Digital
Jim Cobb, Parametric Technology
Bruce D’Amora, IBM
Kevin Dallas, Microsoft
Mahesh Dandapani, Rendition
Daniel Daum, AccelGraphics
Suzy Deffeyes, IBM
Peter Doyle, Intel
Jay Duluk, Raycer
Craig Dunwoody, Silicon Graphics
Dave Erb, IBM
Fred Fisher, AccelGraphics / Dynamic Pictures
Celeste Fowler, Silicon Graphics
Allen Gallotta, ATI
Ken Garnett, NCD
Michael Gold, Nvidia / Silicon Graphics
Craig Groeschel, Metro Link
Jan Hardenbergh, Mitsubishi Electric
Mike Heck, Template Graphics Software
Dick Hessel, Raycer Graphics
Paul Ho, Silicon Graphics
Shawn Hopwood, Silicon Graphics
Jim Hurley, Intel
Phil Huxley, 3Dlabs
Dick Jay, Template Graphics Software
Paul Jensen, 3Dfx
Brett Johnson, Hewlett Packard
Michael Jones, Silicon Graphics
Tim Kelley, Real3D
Jon Khazam, Intel
Louis Khouw, Sun
Dale Kirkland, Intergraph
Chris Kitrick, Raycer
Don Kuo, S3
Herb Kuta, Quantum 3D

Version 2.0 - September 7, 2004



D.10. ACKNOWLEDGEMENTS 317

Phil Lacroute, Silicon Graphics
Prakash Ladia, S3
Jon Leech, Silicon Graphics
Kevin Lefebvre, Hewlett Packard
David Ligon, Raycer Graphics
Kent Lin, S3
Dan McCabe, S3
Jack Middleton, Sun
Tim Misner, Intel
Bill Mitchell, National Institute of Standards
Jeremy Morris, 3Dlabs
Gene Munce, Intel
William Newhall, Real3D
Matthew Papakipos, Nvidia / Raycer
Garry Paxinos, Metro Link
Hanspeter Pfister, Mitsubishi Electric
Richard Pimentel, Parametric Technology
Bimal Poddar, IBM / Intel
Rob Putney, IBM
Mike Quinlan, Real3D
Nate Robins, University of Utah
Detlef Roettger, Elsa
Randi Rost, Hewlett Packard
Kevin Rushforth, Sun
Richard S. Wright, Real3D
Hock San Lee, Microsoft
John Schimpf, Silicon Graphics
Stefan Seeboth, ELSA
Mark Segal, Silicon Graphics
Bob Seitsinger, S3
Min-Zhi Shao, S3
Colin Sharp, Rendition
Igor Sinyak, Intel
Bill Sweeney, Sun
William Sweeney, Sun
Nathan Tuck, Raycer
Doug Twillenger, Sun
John Tynefeld, 3dfx
Kartik Venkataraman, Intel
Andy Vesper, Digital Equipment

Version 2.0 - September 7, 2004



D.10. ACKNOWLEDGEMENTS 318

Henri Warren, Digital Equipment / Megatek
Paula Womack, Silicon Graphics
Steve Wright, Microsoft
David Yu, Silicon Graphics
Randy Zhao, S3

Version 2.0 - September 7, 2004



Appendix E

Version 1.2.1

OpenGL version 1.2.1, released on October 14, 1998, introduced ARB extensions
(see AppendixJ). The only ARB extension defined in this version is multitexture,
allowing application of multiple textures to a fragment in one rendering pass. Mul-
titexture is based on theSGIS multitexture extension, simplified by removing
the ability to route texture coordinate sets to arbitrary texture units.

A new corollary discussing display list and immediate mode invariance was
added to AppendixB on April 1, 1999.

319



Appendix F

Version 1.3

OpenGL version 1.3, released on August 14, 2001, is the third revision since the
original version 1.0. Version 1.3 is upward compatible with earlier versions, mean-
ing that any program that runs with a 1.2, 1.1, or 1.0 GL implementation will also
run unchanged with a 1.3 GL implementation.

Several additions were made to the GL, especially texture mapping capabilities
previously defined by ARB extensions. Following are brief descriptions of each
addition.

F.1 Compressed Textures

Compressing texture images can reduce texture memory utilization and improve
performance when rendering textured primitives. The GL provides a framework
upon which extensions providing specific compressed image formats can be built,
and a set of generic compressed internal formats that allow applications to specify
that texture images should be stored in compressed form without needing to code
for specific compression formats (specific compressed formats, such as S3TC or
FXT1, are supported by extensions).

Texture compression was promoted from the
GL ARBtexture compression extension.

F.2 Cube Map Textures

Cube map textures provide a new texture generation scheme for looking up textures
from a set of six two-dimensional images representing the faces of a cube. The
(str) texture coordinates are treated as a direction vector emanating from the center
of a cube. At texture generation time, the interpolated per-fragment(str) selects

320



F.3. MULTISAMPLE 321

one cube face two-dimensional image based on the largest magnitude coordinate
(the major axis). A new(st) is calculated by dividing the two other coordinates
(the minor axes values) by the major axis value, and the new(st) is used to lookup
into the selected two-dimensional texture image face of the cube map.

Two new texture coordinate generation modes are provided for use in con-
junction with cube map texturing. TheREFLECTIONMAPmode generates tex-
ture coordinates(str) matching the vertex’s eye-space reflection vector, useful for
environment mapping without the singularity inherent inSPHEREMAPmapping.
TheNORMALMAPmode generates texture coordinates matching the vertex’s trans-
formed eye-space normal, useful for texture-based diffuse lighting models.

Cube mapping was promoted from theGL ARBtexture cube mapextension.

F.3 Multisample

Multisampling provides a antialiasing mechanism which samples all primitives
multiple times at each pixel. The color sample values are resolved to a single, dis-
playable color each time a pixel is updated, so antialiasing appears to be automatic
at the application level. Because each sample includes depth and stencil infor-
mation, the depth and stencil functions perform equivalently to the single-sample
mode.

When multisampling is supported, an additional buffer, called the multisample
buffer, is added to the framebuffer. Pixel sample values, including color, depth, and
stencil values, are stored in this buffer.

Multisampling is usually an expensive operation, so it is usually not supported
on all contexts. Applications must obtain a multisample-capable context using the
new interfaces provided by GLX 1.4 or by theWGLARBmultisample extension.

Multisampling was promoted from theGL ARBmultisample extension; The
definition of the extension was changed slightly to support both multisampling and
supersampling implementations.

F.4 Multitexture

Multitexture adds support for multiple texture units. The capabilities of the mul-
tiple texture units are identical, except that evaluation and feedback are supported
only for texture unit 0. Each texture unit has its own state vector which includes
texture vertex array specification, texture image and filtering parameters, and tex-
ture environment application.

The texture environments of the texture units are applied in a pipelined fashion
whereby the output of one texture environment is used as the input fragment color

Version 2.0 - September 7, 2004



F.5. TEXTURE ADD ENVIRONMENT MODE 322

for the next texture environment. Changes to texture client state and texture server
state are each routed through one of two selectors which control which instance of
texture state is affected.

Multitexture was promoted from theGL ARBmultitexture extension.

F.5 Texture Add Environment Mode

The TEXTUREENVMODEtexture environment functionADD provides a texture
function to add incoming fragment and texture source colors.

Texture add mode was promoted from theGL ARBtexture env add exten-
sion.

F.6 Texture Combine Environment Mode

TheTEXTUREENVMODEtexture environment functionCOMBINEprovides a wide
range of programmable combiner functions using the incoming fragment color,
texture source color, texture constant color, and the result of the previous texture
environment stage as possible parameters.

Combiner operations include passthrough, multiplication, addition and biased
addition, subtraction, and linear interpolation of specified parameters. Different
combiner operations may be selected for RGB and A components, and the final
result may be scaled by 1, 2, or 4.

Texture combine was promoted from theGL ARBtexture env combine ex-
tension.

F.7 Texture Dot3 Environment Mode

The TEXTUREENVMODE COMBINEoperations also provide three-component dot
products of specified parameters, with the resulting scalar value replicated into the
RGB or RGBA components of the output color. The dot product is performed
using pseudo-signed arithmetic to enable per-pixel lighting computations.

Texture DOT3 mode was promoted from theGL ARBtexture env dot3 ex-
tension.

F.8 Texture Border Clamp

The texture wrap parameterCLAMPTO BORDERmode clamps texture coordinates
at all mipmap levels such that when the texture filter straddles an edge of the texture

Version 2.0 - September 7, 2004



F.9. TRANSPOSE MATRIX 323

image, the color returned is derived only from border texels. This behavior mirrors
the behavior of the texture edge clamp mode introduced by OpenGL 1.2.

Texture border clamp was promoted from the
GL ARBtexture border clamp extension.

F.9 Transpose Matrix

New functions and tokens are added allowing application matrices stored in row
major order rather than column major order to be transferred to the implementa-
tion. This allows an application to use standard C-language 2-dimensional arrays
and have the array indices match the expected matrix row and column indexes.
These arrays are referred to as transpose matrices since they are the transpose of
the standard matrices passed to OpenGL.

Transpose matrix adds an interface for transfering data to and from the OpenGL
pipeline. It does not change any OpenGL processing or imply any changes in state
representation.

Transpose matrix was promoted from theGL ARBtranspose matrix exten-
sion.

F.10 Acknowledgements

OpenGL 1.3 is the result of the contributions of many people. Following is a partial
list of the contributors, including the company that they represented at the time of
their contribution:

Adrian Muntianu, ATI
Al Reyes, 3dfx
Alain Bouchard, Matrox
Alan Commike, SGI
Alan Heirich, Compaq
Alex Herrera, SP3D
Allen Akin, VA Linux
Allen Gallotta, ATI
Alligator Descartes, Arcane
Andy Vesper, MERL
Andy Wolf, Diamond Multimedia
Axel Schildan, S3
Barthold Lichtenbelt, 3Dlabs
Benj Lipchak, Compaq
Bill Armstrong, Evans & Sutherland

Version 2.0 - September 7, 2004



F.10. ACKNOWLEDGEMENTS 324

Bill Clifford, Intel
Bill Mannel, SGI
Bimal Poddar, Intel
Bob Beretta, Apple
Brent Insko, NVIDIA
Brian Goldiez, UCF
Brian Greenstone, Apple
Brian Paul, VA Linux
Brian Sharp, GLSetup
Bruce D’Amora, IBM
Bruce Stockwell, Compaq
Chris Brady, Alt.software
Chris Frazier, Raycer
Chris Hall, 3dlabs
Chris Hecker, GLSetup
Chris Lane, Intel
Chris Thornborrow, PixelFusion
Christopher Fraser, IMG
Chuck Smith, Intelligraphics
Craig Dunwoody, SGI
Dairsie Latimer, PixelFusion
Dale Kirkland, 3Dlabs / Intergraph
Dan Brokenshire, IBM
Dan Ginsburg, ATI
Dan McCabe, S3
Dave Aronson, Microsoft
Dave Gosselin, ATI
Dave Shreiner, SGI
Dave Zenz, Dell
David Aronson, Microsoft
David Blythe, SGI
David Kirk, NVIDIA
David Story, SGI
David Yu, SGI
Deanna Hohn, 3dfx
Dick Coulter, Silicon Magic
Don Mullis, 3dfx
Eamon O Dea, PixelFusion
Edward (Chip) Hill, Pixelfusion
Eiji Obata, NEC

Version 2.0 - September 7, 2004



F.10. ACKNOWLEDGEMENTS 325

Elio Del Giudice, Matrox
Eric Young, S3
Evan Hart, ATI
Fred Fisher, 3dLabs
Garry Paxinos, Metro Link
Gary Tarolli, 3dfx
George Kyriazis, NVIDIA
Graham Connor, IMG
Herb Kuta, Quantum3D
Howard Miller, Apple
Igor Sinyak, Intel
Jack Middleton, Sun
James Bowman, 3dfx
Jan C. Hardenbergh, MERL
Jason Mitchell, ATI
Jeff Weyman, ATI
Jeffrey Newquist, 3dfx
Jens Owen, Precision Insight
Jeremy Morris, 3Dlabs
Jim Bushnell, Pyramid Peak
John Dennis, Sharp Eye
John Metcalfe, IMG
John Stauffer, Apple
John Tynan, PixelFusion
John W. Polick, NEC
Jon Khazam, Intel
Jon Leech, SGI
Jon Paul Schelter, Matrox
Karl Hilleslad, NVIDIA
Kelvin Thompson
Ken Cameron, Pixelfusion
Ken Dyke, Apple
Ken Nicholson, SGI
Kent Lin, Intel
Kevin Lefebvre, HP
Kevin Martin, VA Linux
Kurt Akeley, SGI
Les Silvern, NEC
Mahesh Dandipani, Rendition
Mark Kilgard, NVIDIA

Version 2.0 - September 7, 2004



F.10. ACKNOWLEDGEMENTS 326

Martin Amon, 3dfx
Martina Sourada, ATI
Matt Lavoie, Pixelfusion
Matt Russo, Matrox
Matthew Papakipos, NVIDIA
Michael Gold, NVIDIA
Miriam Geller, SGI
Morgan Von Essen, Metro Link
Naruki Aruga, PFU
Nathan Tuck, Raycer Graphics
Neil Trevett, 3Dlabs
Newton Cheung, S3
Nick Triantos, NVIDIA
Patrick Brown, Intel
Paul Jensen, 3dfx
Paul Keller, NVIDIA
Paul Martz, HP
Paula Womack, 3dfx
Peter Doenges, Evans & Sutherland
Peter Graffagnino, Apple
Phil Huxley, 3Dlabs
Ralf Biermann, Elsa AG
Randi Rost, 3Dlabs
Renee Rashid, Micron
Rich Johnson, HP
Richard Pimentel, PTC
Richard Schlein, Apple
Rick Hammerstone, ATI
Rik Faith, VA Linux
Rob Glidden, Sun
Rob Wheeler, 3dfx
Shari Petersen, Rendition
Shawn Hopwood, SGI
Steve Glickman, Silicon Magic
Steve McGuigan, SGI
Steve Wright, Microsoft
Stuart Anderson, Metro Link
T. C. Zhao, MERL
Teri Morrison, HP
Thomas Fox, IBM

Version 2.0 - September 7, 2004



F.10. ACKNOWLEDGEMENTS 327

Tim Kelley, Real 3D
Tom Frisinger, ATI
Victor Vedovato, Micron
Vikram Simha, MERL
Yanjun Zhang, Sun
Zahid Hussain, TI

Version 2.0 - September 7, 2004



Appendix G

Version 1.4

OpenGL version 1.4, released on July 24, 2002, is the fourth revision since the
original version 1.0. Version 1.4 is upward compatible with earlier versions, mean-
ing that any program that runs with a 1.3, 1.2, 1.1, or 1.0 GL implementation will
also run unchanged with a 1.4 GL implementation.

In addition to numerous additions to the classical fixed-function GL pipeline
in OpenGL 1.4, the OpenGL ARB also approved theARBvertex program ex-
tension, which supports programmable vertex processing. Following are brief
descriptions of each addition to OpenGL 1.4; see ChapterJ for a description of
ARBvertex program .

G.1 Automatic Mipmap Generation

Setting the texture parameterGENERATEMIPMAPto TRUEintroduces a side effect
to any modification of thelevelbase of a mipmap array, wherein all higher levels of
the mipmap pyramid are recomputed automatically by successive filtering of the
base level array.

Automatic mipmap generation was promoted from the
SGIS generate mipmap extension.

G.2 Blend Squaring

Blend squaring extends the set of supported source and destination blend functions
to permit squaring RGB and alpha values during blending. FunctionsSRCCOLOR

andONEMINUSSRCCOLORare added to the allowed source blending functions,
andDST COLORandONEMINUSDST COLORare added to the allowed destination
blending functions.

328



G.3. CHANGES TO THE IMAGING SUBSET 329

Blend squaring was promoted from theGL NV blend square extension.

G.3 Changes to the Imaging Subset

The subset of blending features described byBlendEquation, BlendColor,
and theBlendFunc modesCONSTANTCOLOR, ONEMINUSCONSTANTCOLOR,
CONSTANTALPHA, andONEMINUSCONSTANTALPHAare now supported. These
feature were available only in the optional imaging subset in versions 1.2 and 1.3
of the GL.

G.4 Depth Textures and Shadows

Depth textures define a new texture internal format,DEPTH, normally used to repre-
sent depth values. Applications include image-based shadow casting, displacement
mapping, and image-based rendering.

Image-based shadowing is enabled with a new texture application mode de-
fined by the parameterTEXTURECOMPAREMODE. This mode enables comparing
texturer coordinates to depth texture values to generate a boolean result.

Depth textures and shadows were promoted from theGL ARBdepth texture

andGL ARBshadow extensions.

G.5 Fog Coordinate

A new associated vertex and fragment datum, thefog coordinatemay be used
in computing fog for a fragment, instead of using eye distance to the frag-
ment, by specifying the coordinate with theFogCoord commands and setting the
FOGCOORDINATESOURCEfog parameter. Fog coordinates are particularly useful
in computing more complex fog models.

Fog coordinate was promoted from theGL EXT fog coord extension.

G.6 Multiple Draw Arrays

Multiple primitives may be drawn in a single call using theMultiDrawArrays and
MultiDrawElements commants.

Multiple draw arrays was promoted from theGL EXT multi draw arrays

extension.

Version 2.0 - September 7, 2004



G.7. POINT PARAMETERS 330

G.7 Point Parameters

Point parameters defined by thePointParameter commands support additional
geometric characteristics of points, allowing the size of a point to be affected by
linear or quadratic distance attenuation, and increasing control of the mapping from
point size to raster point area and point transparency. This effect may be used for
distance attenuation in rendering particles or light points.

Point parameters was promoted from theGL ARBpoint parameters exten-
sion.

G.8 Secondary Color

The secondary color may be varied even when lighting is disabled by specifying it
as a vertex parameter with theSecondaryColorcommands.

Secondary color was promoted from theGL EXT secondary color exten-
sion.

G.9 Separate Blend Functions

Blending capability is extended withBlendFuncSeparateto allow independent
setting of the RGB and alpha blend functions for blend operations that require
source and destination blend factors.

Separate blend functions was promoted from the
GL EXT blend func separate extension.

G.10 Stencil Wrap

New stencil operationsINCR WRAPandDECRWRAPallow the stencil value to wrap
around the range of stencil values instead of saturating to the minimum or maxi-
mum values on decrement or increment. Stencil wrapping is needed for algorithms
that use the stencil buffer for per-fragment inside-outside primitive computations.

Stencil wrap was promoted from theGL EXT stencil wrap extension.

G.11 Texture Crossbar Environment Mode

Texture crossbar extends the texture combine environment modeCOMBINEby al-
lowing use of the texture color from different texture units as sources to the texture
combine function.

Version 2.0 - September 7, 2004



G.12. TEXTURE LOD BIAS 331

Texture environment crossbar was promoted from the
ARBtexture env crossbar extension.

G.12 Texture LOD Bias

The texture filter control parameterTEXTURELODBIAS may be set to bias the
computedλ parameter used in texturing for mipmap level of detail selection, pro-
viding a means to blur or sharpen textures. LOD bias may be used for depth of field
and other special visual effects, as well as for some types of image processing.

Texture LOD bias was based on theEXT texture lod bias extension, with
the addition of a second per-texture object bias term.

G.13 Texture Mirrored Repeat

Texture mirrored repeat extends the set of texture wrap modes with the mode
MIRROREDREPEAT. This effectively defines a texture map twice as large as the
original texture image in which the additional half, for each mirrored texture co-
ordinate, is a mirror image of the original texture. Mirrored repeat can be used
seamless tiling of a surface.

Texture mirrored repeat was promoted from the
ARBtexture mirrored repeat extension.

G.14 Window Raster Position

The raster position may be set directly to specified window coordinates with the
WindowPoscommands, bypassing the transformation applied toRasterPos. Win-
dow raster position is particularly useful for imaging and other 2D operations.

Window raster position was promoted from theGL ARBwindow pos exten-
sion.

G.15 Acknowledgements

OpenGL 1.4 is the result of the contributions of many people. Following is a partial
list of the contributors, including the company that they represented at the time
of their contribution. The editor especially thanks Bob Beretta and Pat Brown
for their sustained efforts in leading theARBvertex program working group,
without which this critical extension could not have been defined and approved in
conjunction with OpenGL 1.4.

Version 2.0 - September 7, 2004



G.15. ACKNOWLEDGEMENTS 332

Kurt Akeley, NVIDIA
Allen Akin
Bill Armstrong, Evans & Sutherland
Ben Ashbaugh, Intel
Chris Bentley, ATI
Bob Beretta, Apple
Daniel Brokenshire, IBM
Pat Brown, NVIDIA
Bill Clifford, Intel
Graham Connor, Videologic
Matt Craighead, NVIDIA
Suzy Deffeyes, IBM
Jean-Luc Dery, Discreet
Kenneth Dyke, Apple
Cass Everitt, NVIDIA
Allen Gallotta, ATI
Lee Gross, IBM
Evan Hart, ATI
Chris Hecker, Definition 6
Alan Heirich, Compaq / HP
Gareth Hughes, VA Linux
Michael I Gold, NVIDIA
Rich Johnson, HP
Mark Kilgard, NVIDIA
Dale Kirkland, 3Dlabs
David Kirk, NVIDIA
Christian Laforte, Alias—Wavefront
Luc Leblanc, Discreet
Jon Leech, SGI
Bill Licea-Kane, ATI
Barthold Lichtenbelt, 3Dlabs
Jack Middleton, Sun
Howard Miller, Apple
Jeremy Morris, 3Dlabs
Jon Paul Schelter, Matrox
Brian Paul, VA Linux / Tungsten Graphics
Bimal Poddar, Intel
Thomas Roell, Xi Graphics
Randi Rost, 3Dlabs
Jeremy Sandmel, ATI

Version 2.0 - September 7, 2004



G.15. ACKNOWLEDGEMENTS 333

John Stauffer, Apple
Nick Triantos, NVIDIA
Daniel Vogel, Epic Games
Mason Woo, World Wide Woo
Dave Zenz, Dell

Version 2.0 - September 7, 2004



Appendix H

Version 1.5

OpenGL version 1.5, released on July 29, 2003, is the fifth revision since the orig-
inal version 1.0. Version 1.5 is upward compatible with earlier versions, meaning
that any program that runs with a 1.4, 1.3, 1.2, 1.1, or 1.0 GL implementation will
also run unchanged with a 1.5 GL implementation.

In addition to additions to the classical fixed-function GL pipeline in OpenGL
1.5, the OpenGL ARB also approved a related set of ARB extensions includ-
ing the OpenGL Shading Language specification and theARBshader objects ,
ARBvertex shader , and ARBfragment shader extensions through which
high-level shading language programs can be loaded and used in place of the fixed-
function pipeline.

Following are brief descriptions of each addition to OpenGL 1.5. The low-level
and high-level shading languages are important adjuncts to the OpenGL core. They
are described in more detail in appendixJ, and their corresponding ARB extension
specifications are available online as described in that appendix.

H.1 Buffer Objects

Buffer objects allow various types of data (especially vertex array data) to be
cached in high-performance graphics memory on the server, thereby increasing
the rate of data transfers to the GL.

Buffer objects were promoted from theARBvertex buffer object exten-
sion.

334



H.2. OCCLUSION QUERIES 335

H.2 Occlusion Queries

An occlusion query is a mechanism whereby an application can query the number
of pixels (or, more precisely, samples) drawn by a primitive or group of primitives.
The primary purpose of occlusion queries is to determine the visibility of an object.

Occlusion query was promoted from theARBocclusion query extension.

H.3 Shadow Functions

Texture comparison functions are generalized to support all eight binary functions
rather than justLEQUALandGEQUAL.

Texture comparison functions were promoted from theEXT shadow funcs

extension.

H.4 Changed Tokens

To achieve consistency with the syntax guidelines for OpenGL function and token
names, new token names are introduced to be used in place of old, inconsistent
names. However, the old token names continue to be supported, for backwards
compatibility with code written for previous versions of OpenGL. The new names,
and the old names they replace, are shown in tableH.1.

H.5 Acknowledgements

OpenGL 1.5 is the result of the contributions of many people. The editor especially
thanks the following individuals for their sustained efforts in leading ARB working
groups essential to the success of OpenGL 1.5 and of ARB extensions approved in
conjunction with OpenGL 1.5:

Matt Craighead led the working group which cre-
ated theARBvertex buffer object extension and OpenGL 1.5 core feature.
Kurt Akeley wrote the initial specification for the group.

Daniel Ginsburg and Matt Craighead led the working group which created the
ARBocclusion query extension and OpenGL 1.5 core feature.

Benjamin Lipchak led the fragment program working group which created
theARBfragment program extension, completing the low-level programmable
shading interface.

Bill Licea-Kane led the GL2 working group which created the high-
level programmable shading interface, including theARBfragment shader ,

Version 2.0 - September 7, 2004



H.5. ACKNOWLEDGEMENTS 336

New Token Name Old Token Name

FOGCOORDSRC FOGCOORDINATESOURCE

FOGCOORD FOGCOORDINATE

CURRENTFOGCOORD CURRENTFOGCOORDINATE

FOGCOORDARRAYTYPE FOGCOORDINATEARRAYTYPE

FOGCOORDARRAYSTRIDE FOGCOORDINATEARRAYSTRIDE

FOGCOORDARRAYPOINTER FOGCOORDINATEARRAYPOINTER

FOGCOORDARRAY FOGCOORDINATEARRAY

FOGCOORDARRAYBUFFERBINDING FOGCOORDINATEARRAYBUFFERBINDING

SRC0RGB SOURCE0RGB

SRC1RGB SOURCE1RGB

SRC2RGB SOURCE2RGB

SRC0ALPHA SOURCE0ALPHA

SRC1ALPHA SOURCE1ALPHA

SRC2ALPHA SOURCE2ALPHA

Table H.1: New token names and the old names they replace.

ARBshader objects , and ARBvertex shader extensions and the OpenGL
Shading Language.

John Kessenich was the principal editor of the OpenGL Shading Language
specification for the GL2 working group, starting from the initial glslang proposal
written by John, Dave Baldwin, and Randi Rost.

A partial list of other contributors, including the company that they represented
at the time of their contribution, follows:

Kurt Akeley, NVIDIA
Allen Akin
Chad Anson, Dell Computer
Bill Armstrong, Evans & Sutherland
Ben Ashbaugh, Intel
Dave Baldwin, 3Dlabs
Chris Bentley, ATI
Bob Beretta, Apple
David Blythe
Alain Bouchard, Matrox
Daniel Brokenshire, IBM
Pat Brown, NVIDIA
John Carmack, Id Software

Version 2.0 - September 7, 2004



H.5. ACKNOWLEDGEMENTS 337

Paul Carmichael, NVIDIA
Bob Carwell, IBM
Paul Clarke, IBM
Bill Clifford, Intel
Roger Cloud, SGI
Graham Connor, Power VR
Matt Craighead, NVIDIA
Doug Crisman, SGI
Matt Cruikshank, Vital Images
Deron Dann Johnson, Sun
Suzy Deffeyes, IBM
Steve Demlow, Vital Images
Joe Deng, SiS
Jean-Luc Dery, Discreet
Kenneth Dyke, Apple
Brian Emberling, Sun
Cass Everitt, NVIDIA
Brandon Fliflet, Intel
Allen Gallotta, ATI
Daniel Ginsburg, ATI
Steve Glanville, NVIDIA
Peter Graffagnino, Apple
Lee Gross, IBM
Rick Hammerstone, ATI
Evan Hart, ATI
Chris Hecker, Definition 6
Alan Heirich, HP
Gareth Hughes, NVIDIA
Michael I Gold, NVIDIA
John Jarvis, Alt.software
Rich Johnson, HP
John Kessenich, 3Dlabs
Mark Kilgard, NVIDIA
Dale Kirkland, 3Dlabs
Raymond Klassen, Intel
Jason Knipe, Bioware
Jayant Kolhe, NVIDIA
Steve Koren, 3Dlabs
Bob Kuehne, SGI
Christian Laforte, Alias

Version 2.0 - September 7, 2004



H.5. ACKNOWLEDGEMENTS 338

Luc Leblanc, Discreet
Jon Leech, SGI
Kevin Lefebvre, HP
Bill Licea-Kane, ATI
Barthold Lichtenbelt, 3Dlabs
Kent Lin, Intel
Benjamin Lipchak, ATI
Rob Mace, ATI
Bill Mark, NVIDIA
Michael McCool, U. Waterloo
Jack Middleton, Sun
Howard Miller, Apple
Teri Morrison, HP / 3Dlabs
Marc Olano, SGI / U. Maryland
Jean-Francois Panisset, Discreet
Jon Paul Schelter, Matrox
Brian Paul, Tungsten Graphics
Scott Peterson, HP
Bimal Poddar, Intel
Thomas Roell, Xi Graphics
Phil Rogers, ATI
Ian Romanick, IBM
John Rosasco, Apple
Randi Rost, 3Dlabs
Matt Russo, Matrox
Jeremy Sandmel, ATI
Paul Sargent, 3Dlabs
Folker Schamel, Spinor GMBH
Michael Schulman, Sun
John Scott, Raven Software
Avinash Seetharamaiah, Intel
John Spitzer, NVIDIA
Vlad Stamate, Power VR
Michelle Stamnes, Intel
John Stauffer, Apple
Eskil Steenberg, Obsession
Bruce Stockwell, HP
Christopher Tan, IBM
Ray Tice, Avid
Pierre P. Tremblay, Discreet

Version 2.0 - September 7, 2004



H.5. ACKNOWLEDGEMENTS 339

Neil Trevett, 3Dlabs
Nick Triantos, NVIDIA
Douglas Twilleager, Sun
Shawn Underwood, SGI
Steve Urquhart, Intelligraphics
Victor Vedovato, ATI
Daniel Vogel, Epic Games
Mik Wells, Softimage
Helene Workman, Apple
Dave Zenz, Dell
Karel Zuiderveld, Vital Images

Version 2.0 - September 7, 2004



Appendix I

Version 2.0

OpenGL version 2.0, released on September 7, 2004, is the sixth revision since the
original version 1.0. Despite incrementing the major version number (to indicate
support for high-level programmable shaders), version 2.0 is upward compatible
with earlier versions, meaning that any program that runs with a 1.5, 1.4, 1.3, 1.2,
1.1, or 1.0 GL implementation will also run unchanged with a 2.0 GL implemen-
tation.

Following are brief descriptions of each addition to OpenGL 2.0.

I.1 Programmable Shading

The OpenGL Shading Language, and the related APIs to create, manage, and use
programmable shaders written in the Shading Language, were promoted to core
features in OpenGL 2.0. The complete list of features related to programmable
shading includes:

I.1.1 Shader Objects

Shader objects provides mechanisms necessary to manage shader and program ob-
jects. Shader objects were promoted from theARBshader objects extension.

I.1.2 Shader Programs

Vertex and fragment shader programs may be written in the high-level OpenGL
Shading Language, replacing fixed-functionality vertex and fragment process-
ing respectively. Vertex and fragment shader programs were promoted from the
ARBvertex shader andARBfragment shader extensions.

340



I.2. MULTIPLE RENDER TARGETS 341

I.1.3 OpenGL Shading Language

The OpenGL Shading Language is a high-level, C-like language used to program
the vertex and fragment pipelines. The Shading Language Specification defines
the language proper, while OpenGL API features control how vertex and fragment
programs interact with the fixed-function OpenGL pipeline and how applications
manage those programs.

OpenGL 2.0 implementations must support at least revision 1.10
of the OpenGL Shading Language. Implementations may query the
SHADINGLANGUAGEVERSION string to determine the exact version of the
language supported. The OpenGL Shading Language was promoted from the
ARBshading language 100 extension (the shading language itself is specified
in a companion document; due to the way it’s written, that document did not
need to be changed as a consequence of promoting programmable shading to the
OpenGL core).

I.1.4 Changes To Shader APIs

Small changes to the APIs for managing shader and program objects were made
in the process of promoting the shader extensions to the OpenGL 2.0 core. These
changes do not affect the functionality of the shader APIs, but include use of the
existinguint core GL type rather than the newhandleARB type introduced by
the extensions, and changes in some function names, for example mapping the ex-
tension functionCreateShaderObjectARBinto the core functionCreateShader.

I.2 Multiple Render Targets

Programmable shaders may write different colors to multiple output color
buffers in a single pass. Multiple render targets was promoted from the
ARBdraw buffers extension.

I.3 Non-Power-Of-Two Textures

The restriction of textures to power-of-two dimensions has been relaxed for
all texture targets, so that non-power-of-two textures may be specified with-
out generating errors. Non-power-of-two textures was promoted from the
ARBtexture non power of two extension.

Version 2.0 - September 7, 2004



I.4. POINT SPRITES 342

I.4 Point Sprites

Point sprites replace point texture coordinates with texture coordinates interpolated
across the point. This allows drawing points as customized textures, useful for
particle systems.

Point sprites were promoted from theARBpoint sprite extension, with the
further addition of thePOINT SPRITE COORDORIGIN parameter controlling the
direction in which thet texture coordinate increases.

I.5 Separate Stencil

Separate stencil functionality may be defined for the front and back faces of primi-
tives, improving performance of shadow volume and Constructive Solid Geometry
rendering algorithms.

Separate stencil was based on the the API of theATI separate stencil

extension, with additional state defined by the similarEXT stencil two side

extension.

I.6 Other Changes

Several minor revisions and corrections to the OpenGL 1.5 specification were
made:

• In section2.7, SecondaryColor3was changed to set A to 1.0 (previously
0.0), so the initial GL state can be restored.

• In section2.13, transformation was added to the list of steps not performed
by WindowPos.

• Section3.8.1was clarified to mandate that selection of texture internal for-
mat must allocate a non-zero number of bits for all components named by
the internal format, and zero bits for all other components.

• Tables3.22and3.23were generalized to multiple textures by replacingCf

with Cp.

• In section6.1.9, GetHistogram was clarified to note that the Final Conver-
sion pixel storage mode is not applied when storing histogram counts.

• TheFOGCOORDARRAYBUFFERBINDING enumerant alias was added to ta-
bleH.1.

Version 2.0 - September 7, 2004



I.7. ACKNOWLEDGEMENTS 343

I.7 Acknowledgements

OpenGL 2.0 is the result of the contributions of many people. The editor especially
thanks the ongoing work of the ARB GL2 working group, lead by Bill Licea-
Kane and with specifications edited by John Kessenich and Barthold Lichtenbelt,
in performing work necessary to promote the OpenGL Shading Language to a core
OpenGL feature.

A partial list of other contributors, including the company that they represented
at the time of their contribution, follows:

Kurt Akeley, NVIDIA
Allen Akin
Dave Baldwin, 3Dlabs
Bob Beretta, Apple
Pat Brown, NVIDIA
Matt Craighead, NVIDIA
Suzy Deffeyes, IBM
Ken Dyke, Apple
Cass Everitt, NVIDIA
Steve Glanville, NVIDIA
Michael I. Gold, NVIDIA
Evan Hart, ATI
Phil Huxley, 3Dlabs
Deron Dann Johnson, Sun
John Kessenich, 3Dlabs
Mark Kilgard, NVIDIA
Dale Kirkland, 3Dlabs
Steve Koren, 3Dlabs
Jon Leech, SGI
Bill Licea-Kane, ATI
Barthold Lichtenbelt, 3Dlabs
Kent Lin, Intel
Benjamin Lipchak, ATI
Rob Mace, ATI
Michael McCool, U. Waterloo
Jack Middleton, Sun
Jeremy Morris, 3Dlabs
Teri Morrison, 3Dlabs
Marc Olano, SGI / U. Maryland
Glenn Ortner, ATI
Brian Paul, Tungsten Graphics

Version 2.0 - September 7, 2004



I.7. ACKNOWLEDGEMENTS 344

Bimal Poddar, Intel
Phil Rogers, ATI
Ian Romanick, IBM
Randi Rost, 3Dlabs
Jeremy Sandmel, ATI
Folker Schamel, Spinor GMBH
Geoff Stahl, Apple
Eskil Steenberg, Obsession
Neil Trevett, 3Dlabs
Mik Wells, Softimage
Esen Yilmaz, Intel
Dave Zenz, Dell

Version 2.0 - September 7, 2004



Appendix J

ARB Extensions

OpenGL extensions that have been approved by the OpenGL Architectural Review
Board (ARB) are described in this chapter. These extensions are not required to be
supported by a conformant OpenGL implementation, but are expected to be widely
available; they define functionality that is likely to move into the required feature
set in a future revision of the specification.

In order not to compromise the readability of the core specification, ARB ex-
tensions are not integrated into the core language; instead, they are made available
online in theOpenGL Extension Registry(as are a much larger number of vendor-
specific extensions, as well as extensions to GLX and WGL). Extensions are doc-
umented as changes to the Specification. The Registry is available on the World
Wide Web at URL

http://oss.sgi.com/projects/ogl-sample/registry/

Brief descriptions of ARB extensions are provided below.

J.1 Naming Conventions

To distinguish ARB extensions from core OpenGL features and from vendor-
specific extensions, the following naming conventions are used:

• A uniquename stringof the form"GL ARBname" is associated with each
extension. If the extension is supported by an implementation, this string
will be present in theEXTENSIONSstring described in section6.1.11.

• All functions defined by the extension will have names of the formFunc-
tionARB

345

http://oss.sgi.com/projects/ogl-sample/registry/


J.2. PROMOTING EXTENSIONS TO CORE FEATURES 346

• All enumerants defined by the extension will have names of the form
NAMEARB.

J.2 Promoting Extensions to Core Features

ARB extensions can bepromotedto required core features in later revisions of
OpenGL. When this occurs, the extension specifications are merged into the core
specification. Functions and enumerants that are part of such promoted extensions
will have theARB affix removed.

GL implementations of such later revisions should continue to export the name
strings of promoted extensions in theEXTENSIONSstring, and continue to support
theARB-affixed versions of functions and enumerants as a transition aid.

For descriptions of extensions promoted to core features in OpenGL 1.3 and
beyond, see appendicesF, G, H, andI respectively.

J.3 Multitexture

The name string for multitexture isGL ARBmultitexture . It was promoted to a
core feature in OpenGL 1.3.

J.4 Transpose Matrix

The name string for transpose matrix isGL ARBtranspose matrix . It was pro-
moted to a core feature in OpenGL 1.3.

J.5 Multisample

The name string for multisample isGL ARBmultisample . It was promoted to a
core feature in OpenGL 1.3.

J.6 Texture Add Environment Mode

The name string for texture add mode isGL ARBtexture env add . It was pro-
moted to a core feature in OpenGL 1.3.

Version 2.0 - September 7, 2004



J.7. CUBE MAP TEXTURES 347

J.7 Cube Map Textures

The name string for cube mapping isGL ARBtexture cube map. It was pro-
moted to a core feature in OpenGL 1.3.

J.8 Compressed Textures

The name string for compressed textures isGL ARBtexture compression . It
was promoted to a core feature in OpenGL 1.3.

J.9 Texture Border Clamp

The name string for texture border clamp isGL ARBtexture border clamp . It
was promoted to a core feature in OpenGL 1.3.

J.10 Point Parameters

The name string for point parameters isGL ARBpoint parameters . It was pro-
moted to a core features in OpenGL 1.4.

J.11 Vertex Blend

Vertex blending replaces the single modelview transformation with multiple vertex
units. Each unit has its own transform matrix and an associated current weight.
Vertices are transformed by all the enabled units, scaled by their respective weights,
and summed to create the eye-space vertex. Normals are similarly transformed by
the inverse transpose of the modelview matrices.

The name string for vertex blend isGL ARBvertex blend .

J.12 Matrix Palette

Matrix palette extends vertex blending to include a palette of modelview matrices.
Each vertex may be transformed by a different set of matrices chosen from the
palette.

The name string for matrix palette isGL ARBmatrix palette .

Version 2.0 - September 7, 2004



J.13. TEXTURE COMBINE ENVIRONMENT MODE 348

J.13 Texture Combine Environment Mode

The name string for texture combine mode isGL ARBtexture env combine . It
was promoted to a core feature in OpenGL 1.3.

J.14 Texture Crossbar Environment Mode

The name string for texture crossbar isGL ARBtexture env crossbar . It was
promoted to a core features in OpenGL 1.4.

J.15 Texture Dot3 Environment Mode

The name string for DOT3 isGL ARBtexture env dot3 . It was promoted to a
core feature in OpenGL 1.3.

J.16 Texture Mirrored Repeat

The name string for texture mirrored repeat is
GL ARBtexture mirrored repeat . It was promoted to a core feature in
OpenGL 1.4.

J.17 Depth Texture

The name string for depth texture isGL ARBdepth texture . It was promoted to
a core feature in OpenGL 1.4.

J.18 Shadow

The name string for shadow isGL ARBshadow . It was promoted to a core feature
in OpenGL 1.4.

J.19 Shadow Ambient

Shadow ambient extends the basic image-based shadow functionality by allowing
a texture value specified by theTEXTURECOMPAREFAIL VALUEARBtexture pa-
rameter to be returned when the texture comparison fails. This may be used for
ambient lighting of shadowed fragments and other advanced lighting effects.

The name string for shadow ambient isGL ARBshadow ambient .

Version 2.0 - September 7, 2004



J.20. WINDOW RASTER POSITION 349

J.20 Window Raster Position

The name string for window raster position isGL ARBwindow pos . It was pro-
moted to a core feature in OpenGL 1.4.

J.21 Low-Level Vertex Programming

Application-definedvertex programsmay be specified in a new low-level program-
ming language, replacing the standard fixed-function vertex transformation, light-
ing, and texture coordinate generation pipeline. Vertex programs enable many new
effects and are an important first step towards future graphics pipelines that will be
fully programmable in an unrestricted, high-level shading language.

The name string for low-level vertex programming isARBvertex program .

J.22 Low-Level Fragment Programming

Application-definedfragment programsmay be specified in the same low-level
language asARBvertex program , replacing the standard fixed-function vertex
texturing, fog, and color sum operations.

The name string for low-level fragment programming is
ARBfragment program .

J.23 Buffer Objects

The name string for buffer objects isARBvertex buffer object . It was pro-
moted to a core feature in OpenGL 1.5.

J.24 Occlusion Queries

The name string for occlusion queries isARBocclusion query . It was promoted
to a core feature in OpenGL 1.5.

J.25 Shader Objects

The name string for shader objects isARBshader objects . It was promoted to
a core feature in OpenGL 2.0.

Version 2.0 - September 7, 2004



J.26. HIGH-LEVEL VERTEX PROGRAMMING 350

J.26 High-Level Vertex Programming

The name string for high-level vertex programming isARBvertex shader . It
was promoted to a core feature in OpenGL 2.0.

J.27 High-Level Fragment Programming

The name string for high-level fragment programming isARBfragment shader .
It was promoted to a core feature in OpenGL 2.0.

J.28 OpenGL Shading Language

The name string for the OpenGL Shading Language is
ARBshading language 100 . The presence of this extension string indi-
cates that programs written in version 1 of the Shading Language are accepted by
OpenGL.

It was promoted to a core feature in OpenGL 2.0.

J.29 Non-Power-Of-Two Textures

The name string for non-power-of-two tex-
tures isARBtexture non power of two . It was promoted to a core feature
in OpenGL 2.0.

J.30 Point Sprites

The name string for point sprites isARBpoint sprite . It was promoted to a
core feature in OpenGL 2.0.

J.31 Fragment Program Shadow

Fragment program shadow extends low-level fragment programs defined with
ARBfragment program to add shadow 1D, 2D, and 3D texture targets, and re-
move the interaction the interaction withARBshadow .

The name string for fragment program shadow is
ARBfragment program shadow .

Version 2.0 - September 7, 2004



J.32. MULTIPLE RENDER TARGETS 351

J.32 Multiple Render Targets

The name string for multiple render targets isARBdraw buffers . It was pro-
moted to a core feature in OpenGL 2.0.

J.33 Rectangular Textures

Rectangular textures define a new texture targetTEXTURERECTANGLEARB that
supports 2D textures without requiring power-of-two dimensions. Rectangular
textures are useful for storing video images that do not have power-of-two sized
(POTS). Resampling artifacts are avoided and less texture memory may be re-
quired. They are are also useful for shadow maps and window-space texturing.
These textures are accessed by dimension-dependent (aka non-normalized) texture
coordinates.

Rectangular textures are a restricted version of non-power-of-two textures. The
differences are that rectangular textures are supported only for 2D; they require a
new texture target; and the new target uses non-normalizes texture coordinates

The name string for texture rectangles isARBtexture rectangle .

Version 2.0 - September 7, 2004



Index

x BIAS, 116, 283
x SCALE,116, 283
2D, 237, 238, 298
2 BYTES,240
3D, 237, 238
3D COLOR,237, 238
3D COLOR TEXTURE,237, 238
3 BYTES,240
4D COLOR TEXTURE,237, 238
4 BYTES,240

1, 151, 159, 160, 178, 249, 276
2, 151, 159, 160, 249, 276
3, 151, 159, 160, 249, 276
4, 151, 159, 160, 249

ACCUM, 218
Accum,217, 218
ACCUM BUFFERBIT, 216, 261
ACTIVE ATTRIBUTE MAX LENGTH,

77, 257
ACTIVE ATTRIBUTES,76, 257
ACTIVE TEXTURE, 21, 46, 47, 54,

182, 229, 245, 246
ACTIVE UNIFORM MAX LENGTH,

80, 257
ACTIVE UNIFORMS,80, 257
ActiveTexture,46, 47, 83, 189
ADD, 183, 185, 186, 218, 322
ADD SIGNED,186
ALL ATTRIB BITS, 260, 261
ALPHA, 116, 129, 140, 141, 153–155,

167, 168, 183–185, 188, 209,
222, 223, 249, 283, 284, 286,
297, 307, 313

ALPHA12, 154

ALPHA16, 154
ALPHA4, 154
ALPHA8, 154
ALPHA BIAS, 138
ALPHA SCALE,138, 183
ALPHA TEST,201
AlphaFunc,201
ALWAYS, 167, 188, 201–204, 280
AMBIENT, 65, 66
AMBIENT AND DIFFUSE,65, 66, 68
AND, 211
AND INVERTED, 211
AND REVERSE,211
Antialiasing,108
ARB draw buffers,341, 351
ARB fragmentprogram,335, 349, 350
ARB fragmentprogramshadow,350
ARB fragmentshader,334, 335, 340,

350
ARB occlusionquery,335, 349
ARB point sprite,342, 350
ARB shaderobjects,334, 336, 340, 349
ARB shadinglanguage100,341, 350
ARB shadow,350
ARB textureenv crossbar,331
ARB texturemirrored repeat,331
ARB texturenon powerof two, 341,

350
ARB texturerectangle,351
ARB vertexbuffer object, 334, 335,

349
ARB vertexprogram,328, 331, 349
ARB vertexshader,334, 336, 340, 350
AreTexturesResident,181, 241
ARRAY BUFFER,33–39, 256
ARRAY BUFFERBINDING, 38

352



INDEX 353

ArrayElement,19, 27–29, 38, 239
ATI separatestencil,342
ATTACHED SHADERS,257, 258
AttachShader,74, 241
AUTO NORMAL, 84, 230
AUX i, 213
AUXm, 213, 214
AUXn, 221
AUX0, 213, 214, 221

BACK, 64, 66, 67, 108, 109, 111, 202,
213–215, 221, 246, 274

BACK LEFT, 213, 214, 221
BACK RIGHT, 213, 214, 221
Begin,12, 15–20, 28, 29, 40, 64, 66, 70,

86, 101, 105, 108, 111, 231,
232, 237

BeginQuery,204, 205
BGR,129, 222, 223
BGRA, 129, 131, 135, 222, 311
BindAttribLocation,77, 78, 241
BindBuffer,33, 39, 241
BindTexture,47, 83, 180, 181
BITMAP, 110, 118, 121, 126, 128, 135,

148, 223, 250
Bitmap,148
BITMAP TOKEN, 238
BLEND, 183, 185, 206, 210
BlendColor,208, 329
BlendEquation,206, 329
BlendEquationSeparate,206
BlendFunc,208, 329
BlendFuncSeparate,208, 330
BLUE, 116, 129, 222, 223, 283, 284,

286, 297
BLUE BIAS, 138
BLUE SCALE,138
BOOL, 81
BOOL VEC2,81
BOOL VEC3,81
BOOL VEC4,81
BUFFERACCESS,34, 36, 37
BUFFERMAP POINTER, 34, 36, 37,

256
BUFFERMAPPED,34, 36, 37

BUFFERSIZE,34, 36
BUFFERUSAGE,34, 36, 37
BufferData,35, 39, 241
BufferSubData,36, 37, 39, 241
bvec2,82
BYTE, 24, 128, 223, 224, 240

C3F V3F, 31, 32
C4F N3F V3F, 31, 32
C4UB V2F, 31, 32
C4UB V3F, 31, 32
CallList, 19, 239, 240
CallLists,19, 239, 240
CCW,63, 274
CLAMP, 167, 169
CLAMP TO BORDER,167, 170, 322
CLAMP TO EDGE,167, 169, 170, 312
CLEAR, 211
Clear,216, 217
ClearAccum,217
ClearColor,216
ClearDepth,217
ClearIndex,216
ClearStencil,217
CLIENT ACTIVE TEXTURE,26, 245,

246
CLIENT ALL ATTRIB BITS, 260, 261
CLIENT PIXEL STOREBIT, 261
CLIENT VERTEX ARRAY BIT, 261
ClientActiveTexture,20, 26, 241
CLIP PLANEi, 52, 53
CLIP PLANE0,53
ClipPlane,52
COEFF,248
COLOR,42, 47, 48, 119, 123, 124, 159,

226
Color,19, 21, 22, 57, 66, 71, 76
Color3,21
Color4,21
Color[size][type]v,27
COLOR ARRAY, 26, 31
COLOR ARRAY POINTER,253
COLOR BUFFERBIT, 216, 217, 261
COLOR INDEX, 110, 118, 121, 126,

129, 139, 148, 222, 226, 248,

Version 2.0 - September 7, 2004



INDEX 354

250
COLOR INDEXES,65, 69
COLOR LOGIC OP,210
COLOR MATERIAL, 66, 68
COLOR MATRIX, 250
COLOR MATRIX STACK DEPTH,

250
COLOR SUM, 191
COLOR TABLE, 118, 120, 139
COLOR TABLE ALPHA SIZE,251
COLOR TABLE BIAS, 118, 119, 251
COLOR TABLE BLUE SIZE,251
COLOR TABLE FORMAT, 251
COLOR TABLE GREENSIZE,251
COLOR TABLE INTENSITY SIZE,

251
COLOR TABLE LUMINANCE SIZE,

251
COLOR TABLE RED SIZE,251
COLOR TABLE SCALE,118, 119, 251
COLOR TABLE WIDTH, 251
ColorMask,215, 216
ColorMaterial,66–68, 230, 304, 309
ColorPointer,19, 24, 25, 31, 241
ColorSubTable,115, 119, 120
ColorTable, 115, 117, 119, 120, 144,

145, 241
ColorTableParameter,118
ColorTableParameterfv,118
Colorub,71
Colorui,71
Colorus,71
COMBINE, 183, 186, 190, 322, 330
COMBINE ALPHA, 183, 186, 187
COMBINE RGB,183, 186, 187
COMPARER TO TEXTURE, 167,

188
COMPILE,239, 304
COMPILE AND EXECUTE,239, 240
COMPILE STATUS,73, 257
CompileShader,73, 241
COMPRESSEDALPHA, 155
COMPRESSEDINTENSITY, 155
COMPRESSEDLUMINANCE, 155

COMPRESSEDLUMINANCE ALPHA,
155

COMPRESSEDRGB,155
COMPRESSEDRGBA, 155
COMPRESSEDTEXTURE FORMATS,

151
CompressedTexImage,165
CompressedTexImage1D,163–165
CompressedTexImage2D,163–165
CompressedTexImage3D,163–165
CompressedTexSubImage1D,164–166
CompressedTexSubImage2D,165, 166
CompressedTexSubImage3D,165, 166
CONSTANT,185, 187, 279
CONSTANT ALPHA, 209, 329
CONSTANT ATTENUATION, 65
CONSTANT BORDER,142, 143
CONSTANT COLOR,209, 329
CONVOLUTION 1D, 122, 123, 140,

157, 251
CONVOLUTION 2D, 121–123, 140,

156, 251
CONVOLUTION BORDERCOLOR,

142, 251
CONVOLUTION BORDERMODE,

142, 251
CONVOLUTION FILTER BIAS, 121–

123, 251
CONVOLUTION FILTER SCALE,

121–124, 251
CONVOLUTION FORMAT, 251
CONVOLUTION HEIGHT, 251
CONVOLUTION WIDTH, 251
ConvolutionFilter1D,115, 122–124
ConvolutionFilter2D,115, 121–124
ConvolutionParameter,122, 142
ConvolutionParameterfv,121, 122, 142
ConvolutionParameteriv,123, 142
COORDREPLACE,96, 100
COPY,211, 281
COPY INVERTED, 211
COPY PIXEL TOKEN, 238
CopyColorSubTable,119, 120
CopyColorTable,119, 120
CopyConvolutionFilter1D,123

Version 2.0 - September 7, 2004



INDEX 355

CopyConvolutionFilter2D,123
CopyPixels,114, 116, 119, 123, 140,

159, 219, 223, 225, 226, 236
CopyTexImage1D,140, 159–161, 175
CopyTexImage2D,140, 159–161, 175
CopyTexImage3D,161
CopyTexSubImage1D,140, 160–163
CopyTexSubImage2D,140, 160–163
CopyTexSubImage3D,140, 160, 161,

163
CreateProgram,73, 241
CreateShader,72, 241, 341
CreateShaderObjectARB,341
CULL FACE,109
CullFace,108, 109, 113
CURRENTBIT, 261
CURRENTFOG COORD,336
CURRENTFOG COORDINATE,336
CURRENTQUERY,254
CURRENTRASTERTEXTURE COORDS,

54, 303
CURRENTTEXTURE COORDS,21
CURRENTVERTEX ATTRIB, 259
CW, 63

DECAL, 183, 184
DECR,203
DECR WRAP,203, 330
DELETE STATUS,73, 257
DeleteBuffers,34, 241
DeleteLists,241
DeleteProgram,75, 241
DeleteQueries,205, 241
DeleteShader,73, 241
DeleteTextures,181, 241
DEPTH, 118, 121, 125, 126, 159, 226,

283, 329
DEPTH BIAS, 116, 138
DEPTH BUFFERBIT, 216, 217, 261
DEPTH COMPONENT, 86, 118, 121,

126, 129, 151, 153, 154, 188,
195, 219, 222, 226, 248

DEPTH COMPONENT16,154
DEPTH COMPONENT24,154
DEPTH COMPONENT32,154

DEPTH SCALE,116, 138
DEPTH TEST,203
DEPTH TEXTURE MODE, 167, 179,

188
DepthFunc,204
DepthMask,215, 216, 219
DepthRange,42, 55, 245, 304
DepthTest,219
DetachShader,74, 241
dFdx,243
dFdy,243
DIFFUSE,65, 66
Disable,46–48, 51, 53, 59, 63, 66, 94–

96, 102, 105, 108, 110, 112,
144–146, 189, 191, 200–203,
206, 210, 229, 230

DisableClientState,19, 26, 31, 33, 241
DisableVertexAttribArray,26, 241, 259
DITHER, 210
DOMAIN, 248
DONT CARE,243, 292
DOT3 RGB,186
DOT3 RGBA, 186
DOUBLE, 24, 27
DRAW PIXEL TOKEN, 238
DrawArrays,28, 29, 38, 239
DrawBuffer,211–214, 216, 217
DrawBuffers,212–214
DrawElements,29, 30, 38, 39, 239, 313
DrawPixels, 110, 113–116, 118, 121,

126–131, 135, 137, 140, 147,
148, 150, 151, 219, 223, 226,
236

DrawRangeElements,30, 38, 39, 239,
295

DST ALPHA, 209
DST COLOR,209, 328
DYNAMIC COPY,34, 35
DYNAMIC DRAW, 34, 35
DYNAMIC READ, 34, 35

EDGE FLAG ARRAY, 26, 31
EDGE FLAG ARRAY POINTER,253
EdgeFlag,19
EdgeFlagPointer,19, 24, 25, 241

Version 2.0 - September 7, 2004



INDEX 356

EdgeFlagv,19, 27
ELEMENT ARRAY BUFFER,39, 256
EMISSION,65, 66
Enable,46–48, 51, 53, 59, 63, 66, 94–96,

102, 105, 108, 110, 112, 144–
146, 189, 191, 200–203, 206,
210, 229, 230, 244

ENABLE BIT, 261
EnableClientState,19, 26, 31, 33, 241
EnableVertexAttribArray,26, 241, 259
End, 12, 15–20, 28, 29, 40, 64, 66, 68,

70, 101, 108, 111, 231, 232,
237

EndList,239
EndQuery,204, 205
EQUAL, 167, 188, 202–204
EQUIV, 211
EVAL BIT, 261
EvalCoord,19, 229, 230
EvalCoord1,230–232
EvalCoord1d,231
EvalCoord1f,231
EvalCoord2,230, 232, 233
EvalMesh1,231
EvalMesh2,231, 232
EvalPoint,19
EvalPoint1,232
EvalPoint2,232
EXP,192, 193, 271
EXP2,192
EXT bgra,311
EXT blendcolor,315
EXT blend logic op,307
EXT blendminmax,315
EXT blendsubtract,315
EXT color subtable,314
EXT color table,314
EXT convolution,314
EXT copy texture,308
EXT draw rangeelements,313
EXT histogram,315
EXT packedpixels,312
EXT polygonoffset,307
EXT rescalenormal,312
EXT separatespecularcolor,312

EXT shadowfuncs,335
EXT stencil two side,342
EXT subtexture,308
EXT texture,307, 308
EXT texture3D,311
EXT texturelod bias,331
EXT textureobject,308
EXT vertexarray,306
EXTENSIONS,116, 254, 345, 346
EYE LINEAR, 50, 51, 247, 279
EYE PLANE, 50

FALSE, 19, 34, 36–38, 61–63, 73–75,
81, 87, 88, 96, 114–116, 124,
126, 135, 138, 146, 147, 167,
178, 181, 196, 201, 205, 219,
221, 245, 249, 252–255, 257,
277

FASTEST,243
FEEDBACK,234–236, 305
FEEDBACK BUFFERPOINTER,253
FeedbackBuffer,235, 236, 241
FILL, 111–113, 231, 274, 304, 307
Finish,241, 242, 303
FLAT, 69, 304
FLOAT, 24, 27, 31–33, 77, 80, 128, 223,

224, 240, 267, 268
float,76
FLOAT MAT2, 77, 81
FLOAT MAT3, 77, 81
FLOAT MAT4, 77, 81
FLOAT VEC2,77, 81
FLOAT VEC3,77, 81
FLOAT VEC4,77, 81
Flush,241, 242, 303
FOG,191
Fog,192, 193
FOG BIT, 261
FOG COLOR,192
FOG COORD,192, 336
FOG COORDARRAY, 26, 31, 336
FOG COORDARRAY BUFFERBINDING,

336, 342
FOG COORDARRAY POINTER,

253, 336

Version 2.0 - September 7, 2004



INDEX 357

FOG COORDARRAY STRIDE,336
FOG COORDARRAY TYPE,336
FOG COORDSRC, 55, 57, 192, 193,

336
FOG COORDINATE,191, 336
FOG COORDINATE ARRAY, 336
FOG COORDINATE ARRAY BUFFERBINDING,

336
FOG COORDINATE ARRAY POINTER,

336
FOG COORDINATE ARRAY STRIDE,

336
FOG COORDINATE ARRAY TYPE,

336
FOG COORDINATE SOURCE, 329,

336
FOG DENSITY, 192
FOG END, 192
FOG HINT, 243
FOG INDEX, 193
FOG MODE, 192, 193
FOG START,192
FogCoord,19, 21, 329
FogCoord[type]v,27
FogCoordPointer,19, 24, 25, 241
FRAGMENT DEPTH,192, 193, 271
FRAGMENT SHADER,193, 257
FRAGMENT SHADER DERIVATIVE HINT,

243
FRONT, 64, 66, 108, 109, 111, 202,

213–215, 221, 246
FRONT AND BACK, 64, 66–68, 108,

111, 202, 213–215
FRONT LEFT, 213, 214, 221
FRONT RIGHT, 213, 214, 221
FrontFace,63, 108, 196
Frustum,44, 45, 304
ftransform,86
FUNC ADD, 206–208, 281
FUNC REVERSESUBTRACT, 206,

207
FUNC SUBTRACT,206, 207
fwidth, 243

GenBuffers,34, 241

GENERATEMIPMAP, 167, 168, 176,
179, 328

GENERATEMIPMAP HINT, 243
GenLists,240, 241
GenQueries,205, 241
GenTextures,181, 241, 249
GEQUAL, 167, 188, 202–204, 335
Get,21, 42, 54, 241, 244, 245
GetActiveAttrib,76, 77
GetActiveUniform,80–82
GetAttachedShaders,258
GetAttribLocation,77, 78
GetBooleanv,201, 244, 245, 264
GetBufferParameter,246
GetBufferParameteriv,246
GetBufferPointerv,256
GetBufferSubData,256
GetClipPlane,246
GetColorTable,121, 221, 250
GetColorTableParameter,250
GetCompressedTexImage, 164–166,

243, 247, 249
GetConvolutionFilter,221, 251
GetConvolutionParameter,251
GetConvolutionParameteriv,121, 122
GetDoublev,244, 245, 264
GetError,11
GetFloatv,201, 244, 245, 250, 264
GetHistogram,125, 221, 252, 342
GetHistogramParameter,252
GetIntegerv,30, 94, 214, 244, 245, 250,

264
GetLight,246
GetMap,246, 248
GetMaterial,246
GetMinmax,221, 252
GetMinmaxParameter,253
GetPixelMap,246, 248
GetPointerv,253
GetPolygonStipple,221, 250
GetProgramInfoLog,74, 258
GetProgramiv,74, 76, 77, 80, 87, 257,

258
GetQueryiv,254
GetQueryObject[u]iv,255

Version 2.0 - September 7, 2004



INDEX 358

GetQueryObjectiv,255
GetQueryObjectuiv,255
GetSeparableFilter,221, 251
GetShaderInfoLog,73, 258
GetShaderiv,73, 256, 258, 259
GetShaderSource,258
GetString,253, 254
GetTexEnv,246
GetTexGen,246, 247
GetTexImage,180, 221, 248–253
GetTexLevelParameter,246, 247
GetTexParameter,246, 247
GetTexParameterfv,180, 181
GetTexParameteriv,180, 181
GetUniform*,260
GetUniformfv,259
GetUniformiv,260
GetUniformLocation,79, 80, 83
GetVertexAttribdv,259
GetVertexAttribfv,259
GetVertexAttribiv,259
GetVertexAttribPointerv,259
GL ARB depthtexture,329, 348
GL ARB matrix palette,347
GL ARB multisample,321, 346
GL ARB multitexture,322, 346
GL ARB point parameters,330, 347
GL ARB shadow,329, 348
GL ARB shadowambient,348
GL ARB textureborderclamp, 323,

347
GL ARB texturecompression,320, 347
GL ARB texturecubemap,321, 347
GL ARB textureenv add,322, 346
GL ARB textureenv combine, 322,

348
GL ARB textureenv crossbar,348
GL ARB textureenv dot3,322, 348
GL ARB texturemirrored repeat,348
GL ARB transposematrix,323, 346
GL ARB vertexblend,347
GL ARB window pos,331, 349
gl BackColor,63
gl BackSecondaryColor,63
gl ClipVertex,52

gl Color,196
GL EXT blend func separate,330
GL EXT fog coord,329
GL EXT multi draw arrays,329
GL EXT secondarycolor,330
GL EXT stencilwrap,330
gl FogFragCoord,54
gl FragColor,196, 214
gl FragCoord,195
gl FragCoord.z,302
gl FragData,196, 214
gl FragData[n],196
gl FragDepth,196, 302
gl FrontColor,63
gl FrontFacing,196
gl FrontSecondaryColor,63
GL NV blendsquare,329
gl PointSize,95
gl Position,84
gl SecondaryColor,196
GREATER,167, 188, 202–204
GREEN,116, 129, 222, 223, 283, 284,

286, 297
GREENBIAS, 138
GREENSCALE,138

Hint, 242
HINT BIT, 261
HISTOGRAM,124, 125, 146, 252
Histogram,124, 125, 146, 241
HISTOGRAM ALPHA SIZE,252
HISTOGRAM BLUE SIZE,252
HISTOGRAM FORMAT, 252
HISTOGRAM GREENSIZE,252
HISTOGRAM LUMINANCE SIZE,

252
HISTOGRAM RED SIZE,252
HISTOGRAM SINK, 252
HISTOGRAM WIDTH, 252
HP convolutionbordermodes,314

INCR, 203
INCR WRAP,203, 330
INDEX, 297
Index,19, 22

Version 2.0 - September 7, 2004



INDEX 359

Index[type]v,27
INDEX ARRAY, 26, 31
INDEX ARRAY POINTER,253
INDEX LOGIC OP,210
INDEX OFFSET,116, 138, 283
INDEX SHIFT,116, 138, 283
IndexMask,215
IndexPointer,20, 24, 25, 241
INFO LOG LENGTH, 257, 258
InitNames,233
INT, 24, 81, 128, 223, 224, 240
INT VEC2,81
INT VEC3,81
INT VEC4,81
INTENSITY, 125, 126, 140, 141, 153–

155, 167, 168, 184, 185, 188,
249, 284, 307

INTENSITY12,154
INTENSITY16,154
INTENSITY4, 154
INTENSITY8, 154
InterleavedArrays,20, 31, 32, 241
INTERPOLATE,186
INVALID ENUM, 12, 27, 47, 51, 64,

115, 121, 125, 126, 159, 163,
165, 180, 248

INVALID OPERATION,12, 19, 36–38,
46, 47, 72, 74, 75, 77–79, 82,
83, 86, 87, 115, 126, 130, 151,
159, 163–166, 180, 205, 213,
214, 218, 219, 221, 222, 229,
234, 236, 239, 246, 247, 249,
255, 256, 259, 260

INVALID VALUE, 12, 22, 24, 26, 28–
30, 36, 42, 45, 46, 64, 72, 76,
78, 80, 95, 96, 102, 114, 116–
118, 120–122, 125, 151, 153,
155–157, 159–162, 164, 165,
175, 181, 192, 200, 214, 216,
228, 229, 231, 239, 247–249,
256, 259

INVERT, 203, 211
Is, 241
IsBuffer,255
IsEnabled,200, 244, 264

IsList, 241
IsProgram,257
IsQuery,254
IsShader,256
IsTexture,249

KEEP,203, 280

LEFT, 213, 214, 221
LEQUAL, 167, 179, 188, 201, 203, 204,

277, 335
LESS,167, 188, 201, 203, 204, 280
Light, 64, 65
LIGHTi, 64, 66, 305
LIGHT0, 64
LIGHT MODEL AMBIENT, 65
LIGHT MODEL COLOR CONTROL,

65
LIGHT MODEL LOCAL VIEWER,

65
LIGHT MODEL TWO SIDE,65
LIGHTING, 59
LIGHTING BIT, 261
LightModel,64, 65
LINE, 111–113, 231, 232, 274, 307
LINE BIT, 261
LINE LOOP,16
LINE RESETTOKEN, 238
LINE SMOOTH,102, 107
LINE SMOOTH HINT, 243
LINE STIPPLE,105
LINE STRIP,15, 231
LINE TOKEN, 238
LINEAR, 167, 173, 175–177, 179, 192
LINEAR ATTENUATION, 65
LINEAR MIPMAP LINEAR, 167, 175,

176
LINEAR MIPMAP NEAREST, 167,

175
LINES, 16, 105
LineStipple,104
LineWidth,102
LINK STATUS,74, 257
LinkProgram,74–76, 78, 80, 83, 241
LIST BIT, 261

Version 2.0 - September 7, 2004



INDEX 360

ListBase,240, 242
LOAD, 218
LoadIdentity,44
LoadMatrix,43, 44
LoadMatrix[fd], 43
LoadName,233, 234
LoadTransposeMatrix,43
LoadTransposeMatrix[fd],43
LOGIC OP,206, 207, 210
LogicOp,207, 210, 211
LOWER LEFT, 96, 100
LUMINANCE, 129, 136, 140, 141, 151,

153–155, 167, 168, 179, 184,
185, 188, 222, 223, 249, 277,
284, 286, 307

LUMINANCE12, 154
LUMINANCE12 ALPHA12, 154
LUMINANCE12 ALPHA4, 154
LUMINANCE16, 154
LUMINANCE16 ALPHA16, 154
LUMINANCE4, 154
LUMINANCE4 ALPHA4, 154
LUMINANCE6 ALPHA2, 154
LUMINANCE8, 154
LUMINANCE8 ALPHA8, 154
LUMINANCE ALPHA, 129, 136, 140,

141, 151, 153–155, 184, 185,
222, 223, 249

Map1,227–229, 245
MAP1 COLOR 4, 228
MAP1 INDEX, 228
MAP1 NORMAL, 228
MAP1 TEXTURE COORD1, 228, 230
MAP1 TEXTURE COORD2, 228, 230
MAP1 TEXTURE COORD3, 228
MAP1 TEXTURE COORD4, 228
MAP1 VERTEX 3, 228
MAP1 VERTEX 4, 228
Map2,228, 229, 245
MAP2 VERTEX 3, 230
MAP2 VERTEX 4, 230
MAP COLOR,116, 138, 139
MAP STENCIL,116, 139
MAP VERTEX 3, 230

MAP VERTEX 4, 230
Map{12}, 229
MapBuffer,36, 37, 39, 241
MapGrid1,231
MapGrid2,231
mat2,76
mat3,76
mat4,76
Material,19, 64, 65, 69, 304
MATRIX MODE, 46
MatrixMode,42
MAX, 206, 207
MAX 3D TEXTURE SIZE,155
MAX ATTRIB STACK DEPTH,260
MAX CLIENT ATTRIB STACK DEPTH,

260
MAX COLOR MATRIX STACK DEPTH,

250
MAX COMBINED TEXTURE IMAGE UNITS,

47, 85, 246
MAX CONVOLUTION HEIGHT, 121,

251
MAX CONVOLUTION WIDTH, 121,

122, 251
MAX CUBE MAP TEXTURE SIZE,

156
MAX DRAW BUFFERS,214
MAX ELEMENTS INDICES,30
MAX ELEMENTS VERTICES,30
MAX EVAL ORDER,228, 229
MAX FRAGMENT UNIFORM COMPONENTS,

193
MAX PIXEL MAP TABLE, 117, 138
MAX TEXTURE COORDS, 21, 23,

33, 46, 47, 246
MAX TEXTURE IMAGE UNITS, 85,

195
MAX TEXTURE LOD BIAS, 171
MAX TEXTURE SIZE,156
MAX TEXTURE UNITS, 13, 47, 190,

262
MAX VARYING FLOATS,83, 84
MAX VERTEX ATTRIBS, 22–24, 26,

33, 76, 78, 259
MAX VERTEX TEXTURE IMAGE UNITS,

Version 2.0 - September 7, 2004



INDEX 361

85
MAX VERTEX UNIFORM COMPONENTS,

79
MAX VIEWPORT DIMS, 255
MIN, 206, 207
MINMAX, 126, 146, 253
Minmax,125, 147
MINMAX FORMAT, 253
MINMAX SINK, 253
MIRRORED REPEAT,167, 170, 331
MODELVIEW, 42, 47, 48
MODELVIEW MATRIX, 245
MODULATE, 183–186, 279
MULT, 218
MultiDrawArrays,29, 38, 329
MultiDrawElements,30, 38, 39, 329
MULTISAMPLE, 94, 101, 107, 113,

147, 149, 200, 211, 212
MULTISAMPLE BIT, 261
MultiTexCoord,19–21, 27
MultiTexCoord[size][type]v,27
MultMatrix, 43, 44
MultMatrix[fd], 44
MultTransposeMatrix,43
MultTransposeMatrix[fd],44

N3F V3F, 31, 32
NAND, 211
NEAREST,167, 172, 175, 176, 189
NEARESTMIPMAP LINEAR, 167,

175–177, 179
NEARESTMIPMAP NEAREST, 167,

175, 177, 189
NEVER,167, 188, 201, 203, 204
NewList,239, 240
NICEST,243
NO ERROR,11
NONE,86, 167, 179, 188, 195, 211, 213,

214, 217, 277
NOOP,211
NOR,211
Normal,19, 21, 76
Normal3,8, 21
Normal3[type]v,27
Normal3d,8

Normal3dv,8
Normal3f,8
Normal3fv,8
NORMAL ARRAY, 26, 31, 33
NORMAL ARRAY BUFFERBINDING,

38
NORMAL ARRAY POINTER,253
NORMAL MAP, 50, 51, 321
NORMALIZE, 48
NormalPointer,20, 24, 25, 31, 38, 241
NOTEQUAL, 167, 188, 202–204
NULL, 33, 34, 36, 37, 72, 77, 80, 256,

258, 263
NUM COMPRESSEDTEXTURE FORMATS,

151

OBJECTLINEAR, 50, 51, 247
OBJECTPLANE, 50
ONE,208, 209, 281
ONE MINUS CONSTANT ALPHA,

209, 329
ONE MINUS CONSTANT COLOR,

209, 329
ONE MINUS DST ALPHA, 209
ONE MINUS DST COLOR,209, 328
ONE MINUS SRCALPHA, 187, 209
ONE MINUS SRCCOLOR, 187, 209,

328
OPERANDn ALPHA, 183, 187, 190
OPERANDn RGB,183, 187, 190
OR,211
OR INVERTED, 211
OR REVERSE,211
ORDER,248
Ortho,44, 45, 304
OUT OF MEMORY, 11, 12, 36, 239

PACK ALIGNMENT, 221, 283
PACK IMAGE HEIGHT, 221, 248, 283
PACK LSB FIRST,221, 283
PACK ROW LENGTH, 221, 283
PACK SKIP IMAGES, 221, 248, 283
PACK SKIP PIXELS,221, 283
PACK SKIP ROWS,221, 283
PACK SWAP BYTES,221, 283

Version 2.0 - September 7, 2004



INDEX 362

PASSTHROUGH TOKEN, 238
PassThrough,237
PERSPECTIVECORRECTIONHINT,

243
PIXEL MAP A TO A, 117, 138
PIXEL MAP B TO B, 117, 138
PIXEL MAP G TO G, 117, 138
PIXEL MAP I TO A, 117, 139
PIXEL MAP I TO B, 117, 139
PIXEL MAP I TO G, 117, 139
PIXEL MAP I TO I, 117, 139
PIXEL MAP I TO R, 117, 139
PIXEL MAP R TO R, 117, 138
PIXEL MAP S TO S,117, 139
PIXEL MODE BIT, 261
PixelMap,114, 116, 117, 226
PixelStore,20, 114–116, 221, 226, 241
PixelTransfer,114, 116, 144, 226
PixelZoom,137, 147
POINT,111–113, 231, 232, 274, 307
POINT BIT, 261
POINT DISTANCE ATTENUATION,

96
POINT FADE THRESHOLDSIZE,96
POINT SIZE MAX, 96
POINT SIZE MIN, 96
POINT SMOOTH,96, 101
POINT SMOOTH HINT, 243
POINT SPRITE,96, 101, 182, 183
POINT SPRITECOORDORIGIN, 96,

100, 342
POINT TOKEN, 238
PointParameter,96, 330
PointParameter*,96
POINTS,15, 231
PointSize,95
POLYGON,16, 19
POLYGON BIT, 261
POLYGON OFFSETFILL, 112
POLYGON OFFSETLINE, 112
POLYGON OFFSETPOINT,112
POLYGON SMOOTH,108, 113
POLYGON SMOOTH HINT, 243
POLYGON STIPPLE,110
POLYGON STIPPLEBIT, 261

POLYGON TOKEN, 238
PolygonMode,107, 111, 113, 234, 236
PolygonOffset,112
PolygonStipple,110, 115
PopAttrib,260, 262, 305
PopClientAttrib,19, 241, 260, 262
PopMatrix,47
PopName,233
POSITION,65, 246
POSTCOLOR MATRIX x BIAS, 116
POSTCOLOR MATRIX x SCALE,

116
POSTCOLOR MATRIX ALPHA BIAS,

145
POSTCOLOR MATRIX ALPHA SCALE,

145
POSTCOLOR MATRIX BLUE BIAS,

145
POSTCOLOR MATRIX BLUE SCALE,

145
POSTCOLOR MATRIX COLOR TABLE,

118, 145
POSTCOLOR MATRIX GREENBIAS,

145
POSTCOLOR MATRIX GREENSCALE,

145
POSTCOLOR MATRIX RED BIAS,

145
POSTCOLOR MATRIX RED SCALE,

145
POSTCONVOLUTION x BIAS, 116
POSTCONVOLUTION x SCALE,

116
POSTCONVOLUTION ALPHA BIAS,

144
POSTCONVOLUTION ALPHA SCALE,

144
POSTCONVOLUTION BLUE BIAS,

144
POSTCONVOLUTION BLUE SCALE,

144
POSTCONVOLUTION COLOR TABLE,

118, 144, 145
POSTCONVOLUTION GREENBIAS,

144

Version 2.0 - September 7, 2004



INDEX 363

POSTCONVOLUTION GREENSCALE,
144

POSTCONVOLUTION RED BIAS,
144

POSTCONVOLUTION RED SCALE,
144

PREVIOUS,185, 187, 279
PRIMARY COLOR,187
PrioritizeTextures,182
PROJECTION,42, 47, 48
PROXY COLOR TABLE, 118, 120,

242
PROXY HISTOGRAM, 124, 125, 242,

252
PROXY POSTCOLOR MATRIX COLOR TABLE,

118, 242
PROXY POSTCONVOLUTION COLOR TABLE,

118, 242
PROXY TEXTURE 1D, 151, 157, 179,

180, 242, 247
PROXY TEXTURE 2D, 151, 156, 179,

180, 241, 247
PROXY TEXTURE 3D, 150, 179, 180,

241, 247
PROXY TEXTURE CUBE MAP, 156,

179, 180, 242, 247
PushAttrib,260, 262
PushClientAttrib,19, 241, 260, 262
PushMatrix,47
PushName,233

Q, 50, 51, 247
QUAD STRIP,18
QUADRATIC ATTENUATION, 65
QUADS,18, 19
QUERY COUNTERBITS, 254
QUERY RESULT,255
QUERY RESULT AVAILABLE, 255

R, 50, 51, 247
R3 G3 B2, 154
RasterPos,54, 86, 234, 304, 331
RasterPos2,54
RasterPos3,54
RasterPos4,54

READ ONLY, 34, 36, 37
READ WRITE, 34, 36
ReadBuffer,221, 226
ReadPixels,114, 116, 128, 129, 131,

140, 219–223, 226, 241, 248,
250

Rect,39, 40, 108
RED,116, 129, 222, 223, 283, 284, 286,

297
RED BIAS, 138
RED SCALE,138
REDUCE,142, 144, 285
REFLECTIONMAP, 50, 51, 321
RENDER,234, 235, 298
RENDERER,254
RenderMode,234–236, 241
REPEAT,167, 169, 173, 174, 179, 277
REPLACE,183, 184, 186, 203
REPLICATE BORDER,142, 143
RESCALENORMAL, 48
ResetHistogram,252
ResetMinmax,253
RETURN,218
RGB,129, 131, 135, 140, 141, 151, 153–

155, 183–185, 209, 222, 223,
249, 307

RGB10,154
RGB10A2, 154
RGB12,154
RGB16,154
RGB4,154
RGB5,154
RGB5 A1, 154
RGB8,154
RGB SCALE,183
RGBA, 119, 120, 123–126, 129, 131,

135, 140, 141, 151, 153–155,
184, 185, 222, 226, 249, 284–
287

RGBA12,154
RGBA16,154
RGBA2,154
RGBA4,154
RGBA8,154
RIGHT, 213, 214, 221

Version 2.0 - September 7, 2004



INDEX 364

Rotate,44, 304

S,50, 51, 247
SAMPLE ALPHA TO COVERAGE,

200
SAMPLE ALPHA TO ONE,200, 201
SAMPLE BUFFERS,94, 101, 107, 113,

147, 149, 200, 205, 211, 212,
216, 221

SAMPLE COVERAGE,200, 201
SAMPLE COVERAGEINVERT, 200,

201
SAMPLE COVERAGEVALUE, 200,

201
SampleCoverage,201
sampler1D,86, 195
sampler1DShadow,86, 195
sampler2D,83, 86, 195
sampler2DShadow,86, 195
SAMPLER 1D, 81
SAMPLER 1D SHADOW,81
SAMPLER 2D, 81
SAMPLER 2D SHADOW,81
SAMPLER 3D, 81
SAMPLER CUBE,81
SAMPLES,94, 205
SAMPLESPASSED,204
Scale,44, 45, 304
Scissor,200
SCISSORBIT, 261
SCISSORTEST,200
SECONDARYCOLOR ARRAY, 26,

31
SECONDARYCOLOR ARRAY POINTER,

253
SecondaryColor,19, 22, 330
SecondaryColor3,21, 342
SecondaryColor3[type]v,27
SecondaryColorPointer,20, 24, 25, 241
SELECT,234, 235, 305
SelectBuffer,234, 235, 241
SELECTIONBUFFERPOINTER,253
SEPARABLE2D, 122, 123, 140, 156,

251
SeparableFilter2D,115, 122

SEPARATESPECULARCOLOR,62
SET,211
SGI color matrix,314
SGISgeneratemipmap,328
SGISmultitexture,319
SGIS textureedgeclamp,313
SGIS texturelod, 313
ShadeModel,69
SHADER SOURCELENGTH, 257,

259
SHADER TYPE,88, 257
ShaderSource,72, 73, 241, 259
SHADING LANGUAGE VERSION,

254, 341
SHININESS,65
SHORT,24, 128, 223, 224, 240
SINGLE COLOR,60, 61, 272
SMOOTH,69, 271
SOURCE0ALPHA, 336
SOURCE0RGB,336
SOURCE1ALPHA, 336
SOURCE1RGB,336
SOURCE2ALPHA, 336
SOURCE2RGB,336
SPECULAR,65, 66
SPHEREMAP, 50, 51, 321
SPOTCUTOFF,65
SPOTDIRECTION,65, 246
SPOTEXPONENT,65
SRC0ALPHA, 336
SRC0RGB,336
SRC1ALPHA, 336
SRC1RGB,336
SRC2ALPHA, 336
SRC2RGB,336
SRCALPHA, 185, 187, 209, 279
SRCALPHA SATURATE,209
SRCCOLOR,185, 187, 209, 279, 328
SRCn ALPHA, 183, 187, 190
SRCn RGB,183, 187, 190
STACK OVERFLOW,12, 47, 234, 260
STACK UNDERFLOW, 12, 47, 234,

260
STATIC COPY,34, 35
STATIC DRAW, 34, 35

Version 2.0 - September 7, 2004



INDEX 365

STATIC READ, 34, 35
STENCIL,226
STENCIL BUFFERBIT, 216, 217, 261
STENCIL INDEX, 118, 121, 126, 129,

137, 150, 219, 221, 222, 226,
248

STENCIL TEST,202
StencilFunc,202, 203, 303
StencilFuncSeparate,202, 203
StencilMask,215, 216, 219, 303
StencilMaskSeparate,215, 216, 219
StencilOp,202, 203
StencilOpSeparate,202, 203
STREAM COPY,34, 35
STREAM DRAW, 34, 35
STREAM READ, 34, 35
SUBTRACT,186

T, 50, 247
T2F C3F V3F, 31, 32
T2F C4F N3F V3F, 31, 32
T2F C4UB V3F, 31, 32
T2F N3F V3F, 31, 32
T2F V3F, 31, 32
T4F C4F N3F V4F, 31, 32
T4F V4F, 31, 32
TABLE TOO LARGE, 12, 118, 125
TexCoord,19–21
TexCoord1,20
TexCoord2,20
TexCoord3,20
TexCoord4,20
TexCoordPointer,20, 24–26, 31, 241
TexEnv,46, 47, 182, 189
TexEnv*,96
TexGen,46, 50, 51, 246
TexImage,47, 161
TexImage1D,115, 140, 142, 152, 157–

161, 163, 175, 179, 241
TexImage2D,115, 140, 142, 152, 156–

159, 161, 163, 175, 179, 241
TexImage3D,115, 150, 152, 153, 156,

158, 161, 163, 175, 179, 241,
248

TexParameter,47, 166

TexParameter[if],171, 175
TexParameterf,182
TexParameterfv,182
TexParameteri,182
TexParameteriv,182
TexSubImage,161
TexSubImage1D,115, 140, 160–163,

165
TexSubImage2D,115, 140, 160–163,

165
TexSubImage3D,115, 160, 161, 163,

165
TEXTURE,42, 46–48, 185, 187, 279
TEXTUREi, 21, 47
TEXTURE0, 21, 27, 33, 47, 48, 229,

236, 262, 267, 279
TEXTURE1,262
TEXTURE xD, 276
TEXTURE 1D,151, 157, 159, 160, 166,

180, 181, 189, 247, 248
TEXTURE 2D, 47, 83, 151, 156, 159,

160, 166, 180, 181, 189, 247,
248

TEXTURE 3D,150, 160, 166, 179–181,
189, 247, 248

TEXTURE ALPHA SIZE,247
TEXTURE BASE LEVEL, 155, 167,

168, 175, 179
TEXTURE BIT, 261, 262
TEXTURE BLUE SIZE,247
TEXTURE BORDER,164, 166, 247
TEXTURE BORDERCOLOR, 166,

167, 174, 178, 179
TEXTURE COMPAREFAIL VALUE ARB,

348
TEXTURE COMPAREFUNC, 167,

179, 185, 188
TEXTURE COMPAREMODE, 86,

167, 179, 185, 188, 195, 329
TEXTURE COMPONENTS,248
TEXTURE COMPRESSEDIMAGE SIZE,

164, 166, 247, 249
TEXTURE COMPRESSIONHINT,

243
TEXTURE COORDARRAY, 26, 31

Version 2.0 - September 7, 2004



INDEX 366

TEXTURE COORDARRAY POINTER,
253

TEXTURE CUBE MAP, 157, 166, 180,
181, 189, 247, 276

TEXTURE CUBE MAP *, 156
TEXTURE CUBE MAP NEGATIVE X,

156, 159, 160, 168, 247, 248
TEXTURE CUBE MAP NEGATIVE Y,

156, 159, 160, 168, 247, 248
TEXTURE CUBE MAP NEGATIVE Z,

156, 159, 160, 168, 247, 248
TEXTURE CUBE MAP POSITIVE X,

156, 157, 159, 160, 168, 247,
248

TEXTURE CUBE MAP POSITIVE Y,
156, 159, 160, 168, 247, 248

TEXTURE CUBE MAP POSITIVE Z,
156, 159, 160, 168, 247, 248

TEXTURE DEPTH,164–166, 247
TEXTURE DEPTH SIZE,247
TEXTURE ENV, 182, 183, 246
TEXTURE ENV COLOR,183
TEXTURE ENV MODE, 183, 190, 322
TEXTURE FILTER CONTROL, 182,

183, 246
TEXTURE GEN MODE, 50, 51
TEXTURE GEN Q, 51
TEXTURE GEN R, 51
TEXTURE GEN S,51
TEXTURE GEN T, 51
TEXTURE GREENSIZE,247
TEXTURE HEIGHT, 164–166, 247
TEXTURE INTENSITY SIZE,247
TEXTURE INTERNAL FORMAT,

164, 166, 248
TEXTURE LOD BIAS, 167, 171, 183,

331
TEXTURE LUMINANCE SIZE,247
TEXTURE MAG FILTER, 167, 176,

179, 189
TEXTURE MAX LEVEL, 167, 168,

175, 179
TEXTURE MAX LOD, 167, 168, 171,

179
TEXTURE MIN FILTER, 167,

172, 173, 175, 176, 178, 179,
189

TEXTURE MIN LOD, 166, 167, 171,
179

TEXTURE PRIORITY, 166, 167, 179,
182

TEXTURE RECTANGLE ARB, 351
TEXTURE RED SIZE,247
TEXTURE RESIDENT,179, 181, 247
TEXTURE WIDTH, 164–166, 247
TEXTURE WRAP R, 167, 169, 173,

174
TEXTURE WRAP S,167, 169, 173
TEXTURE WRAP T, 167, 169, 173
TEXTUREn, 187, 190
TRANSFORMBIT, 261
Translate,44, 304
TRANSPOSECOLOR MATRIX, 245,

250
TRANSPOSEMODELVIEW MATRIX,

245
TRANSPOSEPROJECTIONMATRIX,

245
TRANSPOSETEXTURE MATRIX,

245
TRIANGLE FAN, 17
TRIANGLE STRIP,16, 17
TRIANGLES,17, 19
TRUE,19, 26, 34, 37, 53, 61–63, 73, 74,

82, 87, 96, 100, 114–116, 124,
126, 167, 168, 176, 181, 196,
201, 204, 215, 221, 241, 245,
249, 252–257, 328

Uniform, 81
Uniform*, 79, 82, 83
Uniform*f{v}, 81
Uniform*i{v}, 81
Uniform1i{v}, 81, 83
Uniform1iv, 82
Uniform2f{v}, 82
Uniform2i{v}, 82
Uniform4f{v}, 82
Uniform4i{v}, 82
UniformMatrix, 81

Version 2.0 - September 7, 2004



INDEX 367

UniformMatrix3fv, 82
UniformMatrix{234}fv, 81
UnmapBuffer,37–39, 241
UNPACK ALIGNMENT, 115, 130,

150, 283
UNPACK IMAGE HEIGHT, 115, 150,

283
UNPACK LSB FIRST,115, 135, 283
UNPACK ROW LENGTH, 115, 129,

130, 150, 283
UNPACK SKIP IMAGES, 115, 151,

156, 283
UNPACK SKIP PIXELS, 115, 130,

135, 283
UNPACK SKIP ROWS,115, 130, 135,

283
UNPACK SWAP BYTES, 115, 129,

130, 283
UNSIGNED BYTE, 24, 29, 32, 128,

132, 223, 224, 240
UNSIGNED BYTE 2 3 3 REV, 128,

130–132, 224
UNSIGNED BYTE 3 3 2, 128, 130–

132, 224
UNSIGNED INT, 24, 29, 128, 134, 223,

224, 240
UNSIGNED INT 10 10 10 2,128, 130,

131, 134, 224
UNSIGNED INT 2 10 10 10 REV,

128, 130, 131, 134, 224
UNSIGNED INT 8 8 8 8, 128, 130,

131, 134, 224
UNSIGNED INT 8 8 8 8 REV, 128,

130, 131, 134, 224
UNSIGNED SHORT,24, 29, 128, 133,

223, 224, 240
UNSIGNED SHORT1 5 5 5 REV,

128, 130, 131, 133, 224
UNSIGNED SHORT4 4 4 4, 128,

130, 131, 133, 224
UNSIGNED SHORT4 4 4 4 REV,

128, 130, 131, 133, 224
UNSIGNED SHORT5 5 5 1, 128,

130, 131, 133, 224
UNSIGNED SHORT5 6 5, 128, 130,

131, 133, 224
UNSIGNED SHORT5 6 5 REV, 128,

130, 131, 133, 224
UPPERLEFT, 96, 100
UseProgram,75, 84

V2F, 31, 32
V3F, 31, 32
VALIDATE STATUS,87, 257
ValidateProgram,87, 241, 257
vec2,76
vec3,76
vec4,76, 82
VENDOR,254
VERSION,254
Vertex,7, 19, 20, 54, 76, 230
Vertex2,20, 23, 40
Vertex2sv,7
Vertex3,20, 23
Vertex3f,7
Vertex4,20, 23
Vertex[size][type]v,28
VERTEX ARRAY, 26, 33
VERTEX ARRAY POINTER,253
VERTEX ATTRIB ARRAY ENABLED,

259
VERTEX ATTRIB ARRAY NORMALIZED,

259
VERTEX ATTRIB ARRAY POINTER,

259
VERTEX ATTRIB ARRAY SIZE,259
VERTEX ATTRIB ARRAY STRIDE,

259
VERTEX ATTRIB ARRAY TYPE,

259
VERTEX PROGRAMPOINT SIZE,

95
VERTEX PROGRAMTWO SIDE,63
VERTEX SHADER,72, 257
VertexAttrib,19, 22
VertexAttrib*, 22, 23, 76
VertexAttrib1*, 22
VertexAttrib2*, 22
VertexAttrib3*, 22
VertexAttrib4,22

Version 2.0 - September 7, 2004



INDEX 368

VertexAttrib4*, 22
VertexAttrib4N,22
VertexAttrib4Nub,22
VertexAttrib[size][type]v,27
VertexAttrib[size]N[type]v,27
VertexAttribPointer,20, 24, 25, 241, 259
VertexPointer,20, 24, 25, 33, 241
Viewport,42
VIEWPORT BIT, 261

WGL ARB multisample,321
WindowPos,55, 234, 331, 342
WindowPos2,55
WindowPos3,55
WRITE ONLY, 34, 36, 37

XOR, 211

ZERO,203, 208, 209, 281

Version 2.0 - September 7, 2004


	Introduction
	Formatting of Optional Features
	What is the OpenGL Graphics System?
	Programmer's View of OpenGL
	Implementor's View of OpenGL
	Our View
	Companion Documents

	OpenGL Operation
	OpenGL Fundamentals
	Floating-Point Computation

	GL State
	GL Command Syntax
	Basic GL Operation
	GL Errors
	Begin/End Paradigm
	Begin and End
	Polygon Edges
	GL Commands within Begin/End

	Vertex Specification
	Vertex Arrays
	Buffer Objects
	Vertex Arrays in Buffer Objects
	Array Indices in Buffer Objects

	Rectangles
	Coordinate Transformations
	Controlling the Viewport
	Matrices
	Normal Transformation
	Generating Texture Coordinates

	Clipping
	Current Raster Position
	Colors and Coloring
	Lighting
	Lighting Parameter Specification
	ColorMaterial
	Lighting State
	Color Index Lighting
	Clamping or Masking
	Flatshading
	Color and Associated Data Clipping
	Final Color Processing

	Vertex Shaders
	Shader Objects
	Program Objects
	Shader Variables
	Shader Execution
	Required State


	Rasterization
	Invariance
	Antialiasing
	Multisampling

	Points
	Basic Point Rasterization
	Point Rasterization State
	Point Multisample Rasterization

	Line Segments
	Basic Line Segment Rasterization
	Other Line Segment Features
	Line Rasterization State
	Line Multisample Rasterization

	Polygons
	Basic Polygon Rasterization
	Stippling
	Antialiasing
	Options Controlling Polygon Rasterization
	Depth Offset
	Polygon Multisample Rasterization
	Polygon Rasterization State

	Pixel Rectangles
	Pixel Storage Modes
	The Imaging Subset
	Pixel Transfer Modes
	Rasterization of Pixel Rectangles
	Pixel Transfer Operations
	Pixel Rectangle Multisample Rasterization

	Bitmaps
	Texturing
	Texture Image Specification
	Alternate Texture Image Specification Commands
	Compressed Texture Images
	Texture Parameters
	Depth Component Textures
	Cube Map Texture Selection
	Texture Wrap Modes
	Texture Minification
	Texture Magnification
	Texture Completeness
	Texture State and Proxy State
	Texture Objects
	Texture Environments and Texture Functions
	Texture Comparison Modes
	Texture Application

	Color Sum
	Fog
	Fragment Shaders
	Shader Variables
	Shader Execution

	Antialiasing Application
	Multisample Point Fade

	Per-Fragment Operations and the Framebuffer
	Per-Fragment Operations
	Pixel Ownership Test
	Scissor Test
	Multisample Fragment Operations
	Alpha Test
	Stencil Test
	Depth Buffer Test
	Occlusion Queries
	Blending
	Dithering
	Logical Operation
	Additional Multisample Fragment Operations

	Whole Framebuffer Operations
	Selecting a Buffer for Writing
	Fine Control of Buffer Updates
	Clearing the Buffers
	The Accumulation Buffer

	Drawing, Reading, and Copying Pixels
	Writing to the Stencil Buffer
	Reading Pixels
	Copying Pixels
	Pixel Draw/Read State


	Special Functions
	Evaluators
	Selection
	Feedback
	Display Lists
	Flush and Finish
	Hints

	State and State Requests
	Querying GL State
	Simple Queries
	Data Conversions
	Enumerated Queries
	Texture Queries
	Stipple Query
	Color Matrix Query
	Color Table Query
	Convolution Query
	Histogram Query
	Minmax Query
	Pointer and String Queries
	Occlusion Queries
	Buffer Object Queries
	Shader and Program Queries
	Saving and Restoring State

	State Tables

	Invariance
	Repeatability
	Multi-pass Algorithms
	Invariance Rules
	What All This Means

	Corollaries
	Version 1.1
	Vertex Array
	Polygon Offset
	Logical Operation
	Texture Image Formats
	Texture Replace Environment
	Texture Proxies
	Copy Texture and Subtexture
	Texture Objects
	Other Changes
	Acknowledgements

	Version 1.2
	Three-Dimensional Texturing
	BGRA Pixel Formats
	Packed Pixel Formats
	Normal Rescaling
	Separate Specular Color
	Texture Coordinate Edge Clamping
	Texture Level of Detail Control
	Vertex Array Draw Element Range
	Imaging Subset
	Color Tables
	Convolution
	Color Matrix
	Pixel Pipeline Statistics
	Constant Blend Color
	New Blending Equations

	Acknowledgements

	Version 1.2.1
	Version 1.3
	Compressed Textures
	Cube Map Textures
	Multisample
	Multitexture
	Texture Add Environment Mode
	Texture Combine Environment Mode
	Texture Dot3 Environment Mode
	Texture Border Clamp
	Transpose Matrix
	Acknowledgements

	Version 1.4
	Automatic Mipmap Generation
	Blend Squaring
	Changes to the Imaging Subset
	Depth Textures and Shadows
	Fog Coordinate
	Multiple Draw Arrays
	Point Parameters
	Secondary Color
	Separate Blend Functions
	Stencil Wrap
	Texture Crossbar Environment Mode
	Texture LOD Bias
	Texture Mirrored Repeat
	Window Raster Position
	Acknowledgements

	Version 1.5
	Buffer Objects
	Occlusion Queries
	Shadow Functions
	Changed Tokens
	Acknowledgements

	Version 2.0
	Programmable Shading
	Shader Objects
	Shader Programs
	OpenGL Shading Language
	Changes To Shader APIs

	Multiple Render Targets
	Non-Power-Of-Two Textures
	Point Sprites
	Separate Stencil
	Other Changes
	Acknowledgements

	ARB Extensions
	Naming Conventions
	Promoting Extensions to Core Features
	Multitexture
	Transpose Matrix
	Multisample
	Texture Add Environment Mode
	Cube Map Textures
	Compressed Textures
	Texture Border Clamp
	Point Parameters
	Vertex Blend
	Matrix Palette
	Texture Combine Environment Mode
	Texture Crossbar Environment Mode
	Texture Dot3 Environment Mode
	Texture Mirrored Repeat
	Depth Texture
	Shadow
	Shadow Ambient
	Window Raster Position
	Low-Level Vertex Programming
	Low-Level Fragment Programming
	Buffer Objects
	Occlusion Queries
	Shader Objects
	High-Level Vertex Programming
	High-Level Fragment Programming
	OpenGL Shading Language
	Non-Power-Of-Two Textures
	Point Sprites
	Fragment Program Shadow
	Multiple Render Targets
	Rectangular Textures

	Index

