
COMPSCI 777 S2 C 2004
Computer Games Technology

—A* Aesthetic Optimizations—

Hans W. Guesgen
Computer Science Department



COMPSCI 777 S2 C 2004 Computer Games Technology

Motivation

• Computing a path for a character in a game is more than just searching
for the shortest path.

• It also involves creating an aesthetically pleasing path and resulting
execution.

• Three ways of improving a path:

– Make it straighter.
– Make it smoother.
– Make it more direct.

Hans W. Guesgen 1



COMPSCI 777 S2 C 2004 Computer Games Technology

Straight Paths

• A* paths often look like being constructed by a drunk.

• They do not look natural in many situation.

• They undermine the believability of the game’s AI.

• Two ways to fix the problem:

– Promote straight paths within the A* algorithm.
– Straighten the path afterwards.

Hans W. Guesgen 2



COMPSCI 777 S2 C 2004 Computer Games Technology

Promoting Straight Paths within A*

• Promoting straighter paths involves careful cost weighting.

• Different paths often have the same costs:

Typical A* path Straightened A* path

Hans W. Guesgen 3



COMPSCI 777 S2 C 2004 Computer Games Technology

Promoting Straight Paths within A* (cont’d)

• A* is unable to differentiate between paths with identical costs.

• As a result, the choice of path is arbitrary.

• Factor in extra costs for not choosing a straight step.

• A reasonable penalty cost is half the normal cost of the step.

• In a regular grid, any penalty at all for non-straight choices does the
trick.

• Penalizing non-straight paths may result in the search taking significantly
more time.

Hans W. Guesgen 4



COMPSCI 777 S2 C 2004 Computer Games Technology

Smooth Paths

• A* paths usually have sharp turns.

• Characters may look like moving robots.

• Making a path straight does not solve this problem.

• Applying rotational dampening to the turns masks them.

• However, the character “swings wide” as a result.

• A better way is to compute a Catmull-Rom spline.

Hans W. Guesgen 5



COMPSCI 777 S2 C 2004 Computer Games Technology

Catmull-Rom Splines

• Unlike Bézier curves, Catmull-Rom splines keeps the control points.

• The Catmull-Rom formula requires four input points.

• It returns a smooth curve between the second and third points:

Hans W. Guesgen 6



COMPSCI 777 S2 C 2004 Computer Games Technology

Code for the Catmull-Rom Formula

• The formula takes four points and a value u between 0 and 1 as input;
it returns a new point:

output point = point 1 * (-0.5f*u*u*u + u*u - 0.5f*u) +
point 2 * (1.5f*u*u*u -2.5f*u*u + 1.0f) +
point 3 * (-1.5f*u*u*u + 2.0f*u*u + 0.5f*u) +
point 4 * (0.5f*u*u*u - 0.5f*u*u) +

• When u is 0, it gives you point 2.

• When u is 1, it gives you point 3.

Hans W. Guesgen 7



COMPSCI 777 S2 C 2004 Computer Games Technology

Applying the Catmull-Rom Formula

• To get the points between the first and second input points, give the
function the first point twice, then the second and third.

• To get the points between the third and fourth, give the function the
second and third, and double up on the fourth.

Original A* path Smoothed A* path

Hans W. Guesgen 8


