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Terrain rendering
Terrain is an approximation of the surface shape of an outdoor 
environment
Usually consider the world as being flat, not curved
Terrain defined as a heightfield

Stores the height at numerous sample points over a 2D plane
Height at any spot found by interpolating between nearby sample points

Challenge is to render a detailed terrain fast
For example, have a heightfield with 1 sample point per square metre, 
want to have terrain 10km by 10km = 100 million sample points. Can we 
keep them all in memory? If we render 1 polygon per sample point, that 
means 100 million polygons to render per frame!
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Terrain rendering (cont.)

A basic terrain:
Terrain is a regular grid
Store a height at every 
grid point
Create polygons by 
connecting the grid points 
of a grid square

Two triangles or one 
quad per square
Possibly use four 
triangles, or alternate 
diagonal direction to 
remove direction bias
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Terrain rendering (cont.)

Render a basic terrain by going through all 
grid squares and rendering its polygons

float height[size][size];

glBegin(GL_TRIANGLES);
for(z = 0; z < size-1; z++)

for(x = 0; x < size-1; x++)
{

glVertex3f(x, height[z][x], z);
glVertex3f(x+1, height[z][x+1], z);
glVertex3f(x+1, height[z+1][x+1], z+1);

glVertex3f(x, height[z][x], z);
glVertex3f(x+1, height[z+1][x+1], z+1);
glVertex3f(x, height[z+1][x], z+1);

}
glEnd();
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Terrain rendering (cont.)

Each vertex can be shared with 4, 6, or even 8 polygons
Re-use the vertices, e.g. triangle strips:

Could also use vertex arrays, but beware of maximum number of 
vertices
Terrain is usually static, so can also put in a display list for
further optimisation

for(z = 0; z < size-1; z++)
{

glBegin(GL_TRIANGLE_STRIP);
for(x = 0; x < size-1; x++)
{

glVertex3f(x, height[z][x], z);
glVertex3f(x, height[z+1][x], z+1);

}
glEnd();

}
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Terrain rendering (cont.)
How to create the heights?

From real-world data, e.g. DEM (Digital Elevation Model) files
Modeled by hand in 3D
Modeled by hand by painting a 2D image

Each pixel corresponds with a grid point
Greyscale value of pixel indicates height
8 bits barely enough, may need to use more bits (use colour instead 
of greyscale, use format with more than 8 bits per channel such as 
PNG)

Generate procedurally (algorithmically)
Psuedo-random, Perlin noise
Sum sine functions with randomized phase and amplitude
Bezier patches (curved surfaces) with random displacements
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Terrain rendering (cont.)
Perlin Noise: the basic idea:

Sum a bunch of random number sequences
Each sequence has half the amplitude and double the frequency of
the previous sequence
Amplitude is the range of random numbers in sequence
Frequency can be chosen by sampling the random number 
sequence at some interval and interpolating
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Terrain rendering (cont.)
Terrain generation by subdivision (midpoint displacement):

Start off by assigning random heights to the vertices of a square. 
Then:
1. Set midpoint of each square edge by averaging heights at edge vertices
2. Set midpoint of each square by averaging heights of square vertices, plus 

some random value
3. Create 4 sub-squares
4. Recurse for each sub-square
Set amplitude of random value based on the size of the square
Lots of variations possible on the algorithm, e.g. randomise edge 
midpoint heights (but note that edges are shared), include a 
smoothing pass, randomise the position of the square midpoint, 
change to a breadth-first subdivision instead of depth-first
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Terrain rendering (cont.)
To render large terrains, need to be able to do visibility culling, mesh 
simplification, and level of detail control

Visibility culling: for example, 60 degree FOV means typically only 1/6th of the 
terrain is visible, rest can be culled
Simplification: many polygons that form a large flat area could be replaced with a 
few polygons which approximate the terrain close enough
Level of detail (LOD): Far-away polygons look much smaller than nearby 
polygons. At some distance polygons may be smaller than a few pixels. 
Replacing many small polygons by fewer larger polygons should cause little 
visual change

Simplification is a pre-process, independent of camera position and 
orientation
Visibility depends on camera position and orientation
LOD depends on camera position and orientation, and usually the shape of 
the terrain. It is a dynamic version of simplification
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Terrain rendering (cont.)
For the moment, assume we make the 
polygons dynamically instead of using 
a vertex array or display list
Visibility culling done by only 
processing squares which intersect the 
view frustum

Computational shortcuts using the fact 
that the terrain is a regular grid

LOD: if a grid square becomes too 
small when projected, consider 2x2 
grid squares as a single square when 
creating polygons
Simplification: if merging 2x2 grid 
squares gives a result similar enough 
to unmerged grid squares, merge the 
squares
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Terrain rendering (cont.)
Looks like spatial subdivision!

Keep the terrain as a quadtree
To render terrain:
RenderTerrain(node)

If node intersects view frustum
If node is a leaf

Render the node
If projected size of node < size threshold

Render the node
Else if render difference between node and child-nodes < error threshold

Render the node
Else

For all child nodes
RenderTerrain(child node)

Problem: T-junctions cause cracks
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Terrain rendering (cont.)
An alternative to quad trees: binary triangle trees

Start with two triangles
Split each triangle into two
T-junctions can be avoided

If we decide to split a triangle, also split the triangle on the other side of the 
hypotenuse
May need to split other triangle multiple times
Easier but more triangles: ensure never more than one LOD difference 
between neighbouring triangles
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Terrain rendering (cont.)

Triangle bintree node
Need to keep track of 
neighbours in case they 
need to be split to avoid 
cracks

struct TriTreeNode
{

TriTreeNode* leftchild;
TriTreeNode* rightchild;
TriTreeNode* baseneighbour;
TriTreeNode* leftneighbour;
TriTreeNode* rightneighbour;

};

leftchild rightchild

baseneighbour

left
neighbour

right
neighbour
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Terrain rendering (cont.)
ROAM

“ROAMing Terrain: Real-time Optimally Adapting Meshes”, Duchaineau et 
al. (1997)
Represents terrain as two triangle bintrees, one for each half of the terrain

Neighbour pointers can point into other tree
Left/right neighbours at same level or level+1 as triangle
Base neighbour at same level or level-1 as triangle
If base neighbour at same level as triangle, call the pair a “diamond”

Increase detail level by “splitting” diamonds, reduce by “merging” 
diamonds
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Terrain rendering (cont.)
Any triangle bintree can be changed into any other triangulation by a sequence of 
splits and merges
Splitting introduces a new vertex

Get the height of the new vertex from a heightmap, or procedurally
Can introduce vertex gradually by animating its height from midpoint to new height over a 
number of frames

Merging removes a vertex
Can animate like with splitting, only in reverse (animate from vertex height to edge midpoint, 
then remove vertex by merging)

To split a triangle with a base neighbour at a lower detail level, must first split the 
base neighbour to same level

… which in turn may require splitting of further base neighbours
Such splits are called “forced splits”
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Terrain rendering (cont.)

When to split or merge?
Compute error values (“error metric”)
Split to reduce error until maximum allowable error is reached

Ensures that terrain is rendered with desired accuracy
Merge to increase error until maximum allowable error is 
reached

Ensures that the smallest number of polygons is used to render the 
terrain with desired accuracy

Errors for child triangles must be no larger than parent triangle
Errors define a priority for each triangle
Keep two priority queues: a split queue and a merge queue
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Terrain rendering (cont.)

Split queue
Start off with the coarsest triangulation, then 
start splitting the triangles with largest error

For all triangles in base triangulation
Insert triangle in split queue

While triangulation is not good enough
Take highest priority triangle from split queue
Split triangle with forcing if needed
Remove triangles that were (force-)split from queue
Add newly created triangles to queue
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Terrain rendering (cont.)
Merge queue

Instead of starting from scratch and using the splitting algorithm 
every frame, re-use the triangulation from previous frame and 
modify it
Split queue algorithm can still be used to do extra splits
The merge queue is used to merge diamonds which no longer 
should be split
Merge queue contains mergeable diamonds
Priority of diamond is given by maximum error of its two triangles
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Terrain rendering (cont.)
ROAM algorithm with split and merge queues:

If first frame
Let T be the base triangulation
Clear split and merge queues Qs Qm
Compute priorities for triangles and diamonds in T
Insert triangles in Qs
Insert diamonds in Qm

Else
Let T be the current triangulation
Update priorities for elements in Qs, Qm

While T is not optimal
If T is too large or accurate

Take lowest priority diamond (t, tb) from Qm
Merge (t, tb)
Remove all merged children from Qs
Add merged parents t, tb to Qs
Remove (t, tb) from Qm
Add all newly-mergeable diamonds to Qm

Else
Take highest priority triangle t from Qs
Force-split t
Remove t and other split triangles from Qs
Add any new triangles in T to Qs
Remove diamonds whose children were split from Qm
Add all newly-mergeable diamonds to Qm
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Terrain rendering (cont.)

Many implementations of ROAM only use the 
split queue (split-only ROAM)

Always starts at the base triangulation
Extra time needed for all that splitting per frame is 
regained by avoiding the more complex merge queue 
handling

Can terminate the “while” loop at any time
Have a time budget for doing LOD
When out of time, stop doing ROAM
Terrain is always valid
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Terrain rendering (cont.)
Error metrics

Many metrics possible
Some are more expensive, but give better results
Different error metrics are good for dealing with different cases
Combine several error metrics
Effects are often not exactly predictable. Try and tweak
Can have error metrics for entire terrain, each triangle, or each vertex

ROAM’s error metric:
Uses a “wedgie” around a triangle

A thick triangle which bounds the wedgies of the child triangles
Wedgie has zero thickness for leaves, i.e. equal to leaf triangle
Wedgies are pre-computed
Error for triangle at a given LOD is the maximum projected thickness of the 
wedgie at that level
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Terrain rendering (cont.)
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Terrain rendering (cont.)
Modify priority for important triangles, or triangles 
along important lines of sight, to subdivide them in 
preference to others (e.g. ridgelines, mountain tops)
Error for entire visible terrain is the maximum 
pointwise distortion

For each point of the terrain at max LOD level
Project its actual position onto the screen
Project its position as given by triangulation onto screen
Compute distance between the two projections

Terrain error is the maximum distance found
Slow, so in practice an upper bound is used by taking the 
maximum triangle error as found using the wedgies
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Terrain rendering (cont.)
ROAM breaks down at high LOD (Jonathan Blow, GDC 2000)

ROAM error metrics computes a 1D value from 3D data
Hence aliasing is inevitable

Different situations give same error, even if they should be different
ROAM doesn’t distinguish between wedges coming closer and wedges
moving away
Nearby wedges are approximately the same size as the distance moved by 
the viewer in a frame step
So nearby wedges are constantly being re-evaluated
But most wedges are nearby!

Solution: use a sphere instead of a wedge for a triangle
Sphere defines region where the camera has to be in order for the triangle to 
be split. When camera moves into sphere, split. When camera moves out of 
sphere, merge
Spheres are stored in a tree, like a bounding sphere hierarchy.
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Terrain rendering (cont.)
Methods such as ROAM are “continuous” level of detail

LOD changes across the terrain anywhere
Good: LOD at any point is (near) optimal, giving the smallest 
number of polygons needed to render the terrain within a given error 
bounds
Bad: terrain mesh changes every frame, so need to send it to gfx
card every frame
Ideal when cost of spending CPU time to minimise the number of 
polygons and sending them to the gfx card every frame is 
outweighed by the reduction in rendering time
True at the time that ROAM was created, but is it still true today?
Answer: No!

Gfx cards like geometry in constant unchanging chunks which are re-
used over numerous frames
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Terrain rendering (cont.)

Chunked level of detail
LOD the same over a large block of the terrain
LOD of a block changes only occasionally
Blocks are pre-defined
So geometry of each block for each LOD can be pre-computed 
and optimised as vertex arrays or display lists
Gfx card keeps blocks that are currently in use, have recently 
been used, or are likely to soon be used
Only need to upload blocks which have newly come into view, or 
blocks whose LOD has changed, which are not stored on the gfx
card already (very similar to caching algorithms)
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Terrain rendering (cont.)
Larsen & Christensen: “Real-time Terrain Rendering using 
Smooth Hardware Optimized Level of Detail” (2003)

Divide a regular grid into tiles
Number of vertices in a tile given by level of detail
The world size of a tile is the same for all levels of detail

Tiles are geometrically independent from each other
Tiles duplicate one row/column of vertices with neighbour tiles
Put tiles into the leaves of a quadtree for fast culling
Tiles are triangulated using alternating diagonals
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Terrain rendering (cont.)
Each LOD of each tile can be 
pre-computed and turned into 
a display list or vertex array
Terrain is rendered by 
choosing the LOD for each 
tile, then calling the display list 
for that tile at that LOD
LOD chosen based on an 
screen-space error metric
Problems to solve:

Cracks between tiles with 
different LOD
Smooth transition when a tile 
changes LOD
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Terrain rendering (cont.)
Error metric

Uses method of de Boer, “Fast Terrain Rendering Using 
Geometrical MipMapping” (2000)
Largest change in projected height at vertices of tile as a result of 
changing detail level
Changes up to about 4 pixels are acceptable; reduce level of detail 
until the change becomes more than that
Use an approximation instead of exact for speed

Assume camera is always viewing horizontally
Can pre-compute max change in height
Tends to use too high LOD when looking down, but CPU time saved 
may be more than extra render time needed

Also pre-computes a minimum distance camera has to be from tile 
for a particular LOD to be used
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Terrain rendering (cont.)

Avoiding cracks
Make neighbouring tiles with different LOD join up
Modify the geometry of the tile with the lower LOD

Need to keep pointers to neighbour tiles in quadtree
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Terrain rendering (cont.)
Smooth transition between LOD for a tile

Uses a morphing method
To change to a higher LOD, interpolate new vertices from midpoint to 
new height
But vertices at tile boundary are duplicated in neighbours

Boundary vertices of the neighbours may need to be changed as well so that 
the tiles still join without cracks

Morphing is done by a vertex program on the graphics card, so tile does 
not need to be updated by the CPU
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Terrain rendering (cont.)
Losasso & Hoppe “Geometry Clipmaps: Terrain Rendering Using Nested Regular 
Grids” (2004)

Concentrate on distance-dependent LOD only
Have one tile per LOD
Tiles have the same number of vertices (n*n)
Tile at lower level of detail is twice the world size
Tiles are stacked on top of each other centred on the viewer
Control the number of triangles to render by changing how much of each tile to render
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Terrain rendering (cont.)
Tiles are 2D arrays, accessed with wrap-around (toroidal, “donut”)

Do not need to shift all the data in a tile when viewer moves
Define several square regions for each level:

Clip region: world extent of n*n grid
Active region: world extent of n*n grid we wish to render (may be offset from clip region), 
centred on the viewer
Render region: hollowed frame between active region of level and active region of next 
level

When the viewer moves, shift clip region to match desired active region
If there is not enough time to update the clip region, let the clip region fall behind 
the active region

Gap between clip and active region filled by previous LOD tile
Adjust render region of previous level to fill to the cropped active region
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Terrain rendering (cont.)
Number of vertices in a tile chosen so that average projected 
size of triangles is some number of pixels (about 3)

n is fixed
If viewer is looking down from high up, don’t render the highest LOD 
tiles

Shifting the clip regions
As toroidal access is used, do not need to shift all the heights in the 
tile. Instead, only an L-shaped region needs to be updated
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Terrain rendering (cont.)
The render region is rendered 
using triangle strips

Transition between render 
regions of tiles by morphing 
over a transition region inside 
the active region

May still get single pixel errors 
at boundaries due to 
numerical errors

Fill by stitching the vertices of 
the render regions together 
with zero-area triangles
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Terrain rendering (cont.)

Terrain heightmap data is compressed
Create a pyramid of heightmaps by scaling by 50%
Can predict next LOD heightmap by interpolating previous 
heightmap
Difference between predicted and actual gives a residual 
map
Compress residual map with a lossy image compression 
method
Only decompress blocks which are needed

For fine detail, use procedural algorithms (e.g. noise) 
to fake detail
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Terrain rendering (cont.)

Texturing the terrain
Terrain texturing is used to give the appearance of 
detail at smaller scale than can be conveniently 
rendered with polygons
For example, use polygons down to a scale of 1 
metre, then use texture to paint details at 1cm scale
The problem: terrain is too large to cover with unique 
textures, but the repeating nature of a tileable texture 
looks obvious when looking over a large area of the 
terrain
An answer: detail textures
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Terrain rendering (cont.)
Use different textures at various levels of detail
Blend them together by varying amounts to break up 
repetitiveness
At low level of detail, texture shows large-scale details 
(land, water, wooded areas, snow)

Typically not tileable, but stretched over the entire terrain or part 
of the terrain

At high level of detail, textures represent a patch of 
grass, pebbles, water ripples, small square of sand

Typically tileable, covering one or a few grid squares (e.g. 1x1 
metre grid square, 256x256 texture, want about 1cm detail, 
means texture can be stretched over 2x2 or 3x3 grid squares)
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Terrain rendering (cont.)
Multitexturing

Can apply more than one texture to a polygon at the same time
How many depends on the gfx card

Given by the number of texture units
Typically 2, 4, 8, 16

Each texture unit can have its own texture loaded with its own 
parameters
Can specify separate texture coordinates at a vertex for each texture 
unit
Texture units form a pipeline, where the result from one texture unit can 
be fed into the next texture unit where it is combined in some way
Introduced in OpenGL1.3, so probably need to get the functions as 
extensions
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Terrain rendering (cont.)
OpenGL2.0 spec. pp182-187, 190
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Terrain rendering (cont.)
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Terrain rendering (cont.)
// Work on texture unit 2. Units are counted from 0
glActiveTexture(GL_TEXTURE2);

// Enable the use of the current texture unit
glEnable(GL_TEXTURE_2D);

// Use texture combining for the current texture unit
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
// Bind some texture to the current texture unit
glBindTexture(GL_TEXUTRE_2D, texture);

// Set the combine method for RGB colours
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_INTERPOLATE);
// GL_INTERPOLATE mixes two sources together based on a third source
// result = source 0 * source 2 + source 1 * (1 – source 2)

// Set source 0 to RGB of texture in unit 0
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_TEXTURE0);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR);

// Set source 1 to RGB result of previous unit
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_PREVIOUS);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR);

// Set source 2 to alpha of texture in current unit
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE2_RGB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND2_RGB, GL_SRC_ALPHA);
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Terrain rendering (cont.)
For example:

A texture giving the large scale overall colouring and shading of the entire terrain
4 tileable greyscale detail textures for small scale
A texture map defined over the entire terrain whose 4 channels specify how much of each 
detail texture to mix together at any point

Detail textures can be combined into one RGBA texture, one detail texture in each 
channel
Assign the mixing values to the vertex colours (“primary” in multitexturing) instead of 
using a texture
Use a constant to balance the strength between the detail texturing and the colour
texture
Can now stuff it all into two texture units:
1. Detail texture.  (R,G,B,A,)_1 = (R,G,B,A)_detail . (R,G,B,A)_mix

RGB1 = DOT3(TEXTURE:SRC_COLOUR, PRIMARY_COLOR:SRC_COLOUR)
ALPHA1 = TEXTURE:SRC_ALPHA * PRIMARY_COLOR:SRC_ALPHA

2. Colour texture. (R,G,B,A)_2 = (1-(R,G,B,A)_1) * c + (R,G,B,A)_colour * (1-c)
RGB2 = INTERPOLATE(PREVIOUS:ONE_MINUSSRC_COLOUR, TEXTURE;SRC_COLOR,             

CONSTANT:SRC_COLOR)
ALPHA2 = PREVIOUS:SRC_ALPHA * CONSTANT:SRC_ALPHA

Render with glBlendFunc(GL_ONE_MINUS_SRC_ALPHA, GL_ZERO) to blend in 
detail texture in alpha channel with the other three detail textures
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Terrain rendering (cont.)
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Terrain rendering (cont.)

Texture coordinates
Texture coordinates at a vertex of the terrain are the 
(x,z) coordinates of the vertex scaled and translated
Several ways of assigning texture coordinates
1. Compute for each vertex based on its (x,z) coordinates, and 

assign with glMultiTexCoord() which is like 
glTexCoord() except that you also specify the texture unit 
to set coords for

2. Let OpenGL generate the texture coordinates automatically 
from the vertex coordinates

3. Set texture coordinates for all vertices, then use the texture 
matrix to apply scaling and translation to the texture 
coordinates for each texture unit
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Terrain rendering (cont.)
const float scale0 = 1.0f / (size-1);

const float scale1 = 0.5f;

glBegin(...);

...

glMultiTexCoord2f(0, x*scale0, z*scale0);

glMultiTexCoord2f(1, x*scale1 + 0.25f, z*scale1 - 0.75f);

glVertex3f(x,y,z);

...

glEnd();
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Terrain rendering (cont.)
float plane0[2][4] = { { 1.0f / (size-1), 0, 0, 0 },

{ 0, 1.0f / (size-1), 0, 0 } };
float plane1[2][4] = { { 0.5f, 0, 0,  0.25f },

{ 0, 0.5f, 0, -0.75f } };

glActiveTexture(GL_TEXTURE0);
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGenf(GL_S, GL_OBJECT_PLANE, plane0[0]);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGenf(GL_T, GL_OBJECT_PLANE, plane0[1]);
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);

glActiveTexture(GL_TEXTURE1);
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGenf(GL_S, GL_OBJECT_PLANE, plane1[0]);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGenf(GL_T, GL_OBJECT_PLANE, plane1[1]);
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);

glBegin(...);
...
glVertex3f(x,y,z);
...
glEnd();
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Terrain rendering (cont.)
glMatrixMode(GL_TEXTURE);
glActiveTexture(GL_TEXTURE0);
glLoadIdentity();
glScalef(1.0f/(size-1), 1.0f/(size-1), 0);

glActiveTexture(GL_TEXTURE1);
glLoadIdentity();
glTranslatef(0.25, -0.75, 0);
glScalef(0.5f, 0.5f, 0);

glMatrixMode(GL_MODELVIEW);

glBegin(...);
...
glMultiTexCoord2f(0, x,z); glMultiTexCoord2f(1, x,z);
glVertex3f(x,y,z);
...
glEnd();
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Terrain rendering (cont.)

What if the terrain is too large to fit a 
texture over it?

For example, have gigabytes of satellite 
photos for the entire country at 10 metre
resolution

Use the same sort of LOD algorithms used 
for the heightfields, but then for the texture 
data


