
1

Billboards

Replace a mesh with
a pre-computed
picture of the mesh
Fast to render: a
single textured
polygon versus many
Sometimes called
“imposters”

What to use it for?

Scenery
Trees, grass, spectators

Mesh simplification
Replace far-away objects with billboards

Non-polygonal objects
Fire, smoke, clouds, particles

Billboard basics

A billboard is a
textured rectangle
Texture is static
Draw billboard where
mesh would have
been drawn

Billboard basics

Need to remove
texture background
Two ways:

Masking
Alpha blending

2

Billboards using Masking

Each texel (texture element) has alpha value 0
or 1
Only draw texels with alpha value 1
void glAlphaFunc(GLenum func, GLclampf ref);

func: when to render the texel
GL_NEVER, GL_LESS, GL_EQUAL, GL_LEQUAL, GL_GREATER,
GL_NOTEQUAL, GL_GEQUAL, GL_ALWAYS

ref: value to compare texel alpha with

glAlphaFunc(GL_GREATER, 0.5f);
glEnable(GL_ALPHA_TEST);

Billboards using Masking (cont.)

Advantages:
Fast to render
Always works, independent of drawing order

Disadvantages:
Hard edges
Making mask from real image difficult

Billboards using Blending
Each texel has an alpha value in the range from 0 to 1
Alpha value is used to blend each texel with the background
void glBlendFunc(GLenum sfactor, GLenum dfactor);

sfactor: source (incoming pixel) blending factor,
lots of different modes, check OpenGL docs

dfactor: destination (existing pixel) blending factor,
lots of different modes, check OpenGL docs

Generally, RGBA = RGBA_s * sfactor + RGBA_d * dfactor
where the factors indicate constants, or one or more elements of RGBA_s or RGBA_d

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
// (R,G,B,A) = (R_s,G_s,B_s,A_s) * A_s + (R_d,G_d,B_d,A_d) * (1-A_s)
glEnable(GL_BLEND);

Must turn off depth buffer culling (unless always drawing back to
front): glDisable(GL_DEPTH_TEST);

Billboards using Blending (cont.)
Advantages:

Smooth blending with background
Partially transparent objects possible

Disadvantages:
Takes longer to render
Rendering must be done in depth sorted order (front-to-back or back-to-front)

Initial: RGBA12 = 0
Blend source 1: RGBA’12 = RGBAS1 * AS1 + RGBA12 * (1-AS1) = RGBAS1 * AS1
Blend source 2: RGBA’’12 = RGBAS2 * AS2 + RGBA’12 * (1-AS2) = RGBAS2 * AS2 + RGBAS1 * AS1 * (1-AS2)

= RGBAS2 * AS2 + RGBAS1 * AS1 - RGBAS1 * AS1 * AS2
Reverse:

Initial: RGBA_21 = 0
Blend source 2: RGBA’21 = RGBAS2 * AS2 + RGBA21 * (1-AS2) = RGBA_S2 * AS2
Blend source 1: RGBA’’21 = RGBAS1 * AS1 + RGBA’21 * (1-AS1) = RGBAS1 * AS1 + RGBAS2 * AS2 * (1-AS1)

= RGBAS1 * AS1 + RGBAS2 * AS2 - RGBAS2 * AS2 * AS1
!= RGBA’’12

Blending is generally render order dependent
Some blending method are order independent, e.g. additive blending:

glBlendFunc(GL_ONE, GL_ONE);
// ((0) * 1 + RGBA_1 * 1) * 1 + RGBA_2 * 1 = ((0) * 1 + RGBA_2 * 1) * 1 + RGBA_1 * 1

glBlendFunc(GL_SRC_ALPHA, GL_ONE);
// ((0) * 1 + RGBA_1 * A_1) * 1 + RGBA_2 * A_2 = ((0) * 1 + RGBA_2 * A_2) * 1 + RGBA_1 * A_1

3

Multiple billboards

One billboard makes a very flat tree from
some angles
Use two in a cross configuration

One tree makes a forest

Drawing one billboard is cheap
Can draw many billboards using the same
texture
Add variation by randomly:

scaling the billboards
rotating around the symmetry axis
changing overall shading for each billboard

One tree makes a forest (cont.)
// Draw each tree
for(vector<Tree>::const_iterator ti = forest.begin(); ti != forest.end(); ti++)
{

glPushMatrix();

// Place the tree
glTranslatef(ti->x, 0, ti->z);
// Scale the tree
glScalef(ti->widthscale, ti->heightscale, ti->widthscale);
// With the GL_MODULATE texture mode the texture colours
// are multiplied by the glColor values. This is an easy
// way to make a texture lighter or darker, or even give
// it a tint.
glColor3f(ti->lightness, ti->lightness, ti->lightness);
glRotatef(ti->rot, 0,1,0);

glBegin(GL_QUADS);
glTexCoord2f(0, 1); glVertex3f(-1, 0, 0);
glTexCoord2f(0, 0); glVertex3f(-1, 2, 0);
glTexCoord2f(1, 0); glVertex3f(1, 2, 0);
glTexCoord2f(1, 1); glVertex3f(1, 0, 0);

glEnd();

glPopMatrix();
}

Aligning billboards

Billboard polygons obvious when viewing nearly
edge-on
Possible solution: lock billboard rotation axes to
camera rotation

Billboard always facing camera
Need only one billboard per object
Works best for symmetric objects in a crowded scene
(trees in forest, people in a stadium)
Often only lock heading, not pitch/bank

4

Align with projection plane

Set billboard rotation such that it faces the
camera’s projection plane

Align with projection plane

Rotations around locked axes are zero
relative to camera rotation
Two ways of implementing:

1. Set billboard rotation of locked axes equal to
camera rotation

2. Render billboards in camera coordinates
without rotation

Set to camera rotation

Generally know camera rotations around each
axis from game state
Set rotation around each locked axis equal to
the matching camera rotation
Easy to implement
Can lock 1, 2, or 3 rotation axes
Extra cost of setting rotation for each billboard

Render in camera coords

Set modelview matrix to identity
Compute position of billboard in camera
coordinate system
Render billboard at position without any rotation
No need to set rotation for each billboard
Locks all rotation axes
Need to compute camera-relative positions

5

Align with projection plane

Billboard rotation remains steady with
linear movement
“Popping” while rotating as billboard
ordering changes

Align with camera position

Billboard rotated so that normal points at
camera position

Align with camera position

Compute vector from billboard to camera
Heading/pitch of vector gives rotation for locked
heading/pitch
Can use trigonometry

Easy when locking only heading, ok with pitch
Inverse trig functions are expensive

Use vector algebra for general answer
Construct coord system for billboard using camera to
centre of billboard vector, and an “up” vector
Put in matrix and multiply with modelview matrix

Align with camera position
C = PosBB – PosCam
Up = (0,1,0)

XBB = (Up x C) / |Up x C|

YBB = (C x XBB) / |C x XBB|

ZBB = C / |C| 1000

0ZzYzXz

0ZyYyXy

0ZxYxXx

MBB =

glMultMatrix(MBB);

Keeps billboard pointing upwards
Note that this will fail when C is colinear with Up

Camera looking straight down at billboard, so don’t render
Can orient the billboard any way you like by choosing an appropriate
“up” vector (e.g. point it in the same direction as camera up)

6

Align with camera position

Eliminates almost all popping
Only nearly co-planar billboards may pop

Billboards steady with camera rotation
Billboards rotate with linear movement

Do not use wide field of view
Side-effect: avoids camera going through
billboard

Finishing touches: shadows
Simple shadows on flat ground

Render rectangle on ground using mask of tree as texture
Mask is the tree texture

RGB set to 0
Alpha set to 0 for texels of the tree, and 1 for texels of the background
Possibly have Alpha go smoothly from 0 to 1 around the edges of the tree
for softer shadows

Shadow rectangle blended with terrain using
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

As shadows always appear on top of terrain, turn off depth testing, else
may get “Z-fighting” as the shadow rectangles and terrain are co-planar

Z-fighting happens when polygons are co-planar and tiny floating point
errors makes the depth testing pass or fail randomly for different pixels
glDisable(GL_DEPTH_TEST)

Shadows rendered before trees are rendered

Finishing touches: skybox
Draw sky as an inward-facing cube
Texture each side with a view of a sky
Texture only correct for the point of view from which it was generated
Keep the skybox centred on the camera

The sky is very (infinitely) far away
Camera never gets closer to the sky
Sky texture always appears correct

Skybox drawn before anything else
Turn off depth buffer writing glDepthMask(GL_FALSE)
Draw unit-sized cube around camera

Sky looks the same no matter what size the cube is
Use fog to hide the limited size of the terrain and make a more natural
transition to sky

Skybox not affected by fog, as it is actually drawn very near the camera
Alternatively, turn off fog for the skybox, or else skybox will by nothing but fog

Note that OpenGL1.3 has a special cube-mapping texture mode for
texturing a skybox using one texture, instead of needing one for each side

Billboard Clouds

“Billboard Clouds for Extreme Model
Simplification” – Décoret et al., SIGGRAPH 2003

Use 10-100 billboards to approximate a
mesh
Need to find set of planes which best fit a
mesh

Offline error minimisation process ~1 minute

7

Billboard Clouds

Create texture for each billboard by
projecting matching polygons

Texture size can be chosen based on
billboard size

Render all billboards
Billboards rotate and move with object

Use fewer billboards for far-away views,
more for nearby views

Billboard Clouds

SpeedTree http://www.idvinc.com/speedtree

Commercial library for rendering trees, grass,
plants fast
Complex scenes rendered quickly by using
billboards:

Tree far away rendered as single billboard
Nearby tree rendered using polygon trunk and
branches, with billboards for each bunch of leaves
Visually smooth transition between the two

