
1

20

Space Subdivision

Divides space into smaller regions
May be hierarchical
Can be used in 2D or 3D
Only load/process/render relevant regions
Several catagories:

Structural
Partitions
Bounding volumes

21

Structural subdivision

World organised according to the natural
structure and sub-structure of items in the
scene

CITY

BUILDING BUILDING BUILDING

FLOOR FLOOR

ROOM ROOM ROOM

BUILDING

22

Structural subdivision (cont.)
class City
{ // A city is a bunch of buildings

vector<Building> buildings;
};
class Building
{ // A building has some floors

vector<Floor> floors;
City* city;
BBox boundingbox;

};
class Floor
{ // A floor has a number of rooms

vector<Room> rooms;
Building* building;
int floor_number;

};
class Room
{ // A room has some stuff in it, and access to other rooms

Floor* floor;
vector<Room*> adjacent_rooms;
...

};

23

Partition planes

Space is subdivided by placing on or more partition
planes
A partition plane divides space into three:

1. Region in front of the plane
2. Region behind the plane
3. Region on the plane
Some subdivision schemes use only two regions:

1. Region in front of the plane
2. Region behind the plane

Region on the plane is considered to be either in front or
behind (but be consistent!)

2

24

Partition planes

Partition planes can
define a depth order

Everything on the
other side of a partition
plane from the camera
is further away than
everything on the
same side of the
partition plane as the
camera

1

2
3

4

Anything in {1,2} appears in front of anything in {3,4}

Anything in {1,4} appears in front of anything in {2,3}

Depth order: 1 (nearest), 2&4 (any order), 3 (furthest)

1 is always in front of {2,3,4}
{2, 4} is always in front of 3
Nothing in 2 occludes anything in 4, and vice versa

25

Regular grid

Place axis-aligned partition planes at
regular intervals
Forms a regular grid over world
Each grid square is a small block of
the world
Each block contains info about what
is in the block
Ideal for map-based worlds
Easily implemented as a 2D array
Usually the grid is square

26

Regular grid (cont.)

// A block contains whatever

class Block

{

list<Monster> monsters;

list<Model> objects;

...

};

// The world is a regular 2D array of blocks

Block world[WORLD_BLOCKS][WORLD_BLOCKS];

27

Regular grid (cont.)
class Player

{

float world_x, world_y; // World position of player

int block_x, block_y; // Block coordinates

};

Player::Move(float dx, float dy)

{

world_x += dx;

block_x = (int)floor(world_x);

world_y += dy;

block_y = (int)floor(world_y);

}

3

28

Regular grid (cont.)
const int subbits = 8;

class Player
{

unsigned int world_x, world_y; // World coordinates

unsigned int block_x, block_y; // Block coordinates
unsigned int sub_x, sub_y; // Sub-block coordinates

};

Player::Move(int dx, int dy)
{

world_x += dx;

block_x = world_x >> subbits; // Remove lower 8 bits
sub_x = world_x & ((1 << subits) – 1); // Mask out upper bits

... // Ditto for y
}

29

Regular grid (cont.)

Only process blocks near
the player:

Geometry upload
Monster AI

Far-away blocks can be
removed
Incremental loading as
player moves
Limit memory usage

30

Regular grid (cont.)
Render(Player& player, int range)

{

int bx = player.block_x;

int by = player.block_y;

for(int y = by-range; y <= by+range; y++)

{

for(int x = bx-range; x <= bx+range; x++)

{

if(IsInWorld(x, y))

{

Block& block = FetchBlock(x, y);

block.Render();

}

}

}

} 31

Regular grid (cont.)
Block& FetchBlock(int x, int y)
{

if(!BlockIsInCache(x, y))
{

if(CacheIsFull())
RemoveLeastUsedBlockFromCache();

Block block = ReadBlockFromDisk(x, y);
AddBlockToCache(block);

}

return BlockFromCache(x, y);
}

4

32

Quadtrees

Regular grid in a hierarchy
Divides world into four blocks using two
axis-aligned partition planes
Divides each block into four sub-blocks
… and so on
Each block is linked to its for sub-blocks

Forms a tree with four children per node

33

Quadtrees (cont.)

Level 0

Level 1

Level 2

…

34

Quadtrees (cont.)

class Block

{

Block* parent;

Block* children[4];

BBox boundingbox;

...

};

// The world is the top-level block

Block world;

35

Quadtrees (cont.)

Number of blocks at a level:
n(level) = 4level

Total number of blocks for all levels:
N(level) = 40 + 41 + 42 + … + 4level

= (4(level+1) – 1) / 3
So overhead for using hierarchy instead of
regular grid is:

N(level) / n(level) < 4/3
No more than 33% extra blocks

5

36

Quadtrees (cont.)

Storing a quadtree without pointers
Can store as a single array
Enumerate the blocks as follows:

0
1 2

4 3

5 6

8 7

9 10

12 11

17 18

20 19

13 14

16 15

level 0 level 1 level 2

. . .

37

Quadtrees (cont.)

Block index of first block in level:
start(level) = N(level) – n(level)

= (4level - 1) / 3
Block index of child block c={0,1,2,3} of block b:

child(b, c) = start(level+1) + (b – start(level))*4 + c
= (4(level+1) - 1) / 3 + 4 b - 4 (4level - 1) / 3 + c
= 4 b + (4(level+1) - 1) / 3 - (4(level+1) - 4) / 3 + c
= 4 b + 1 + c

Block index of parent of block b:
parent(b) = (b – 1) / 4 (integer division)
Block b is child (b – 1) % 4 of parent

38

Quadtrees (cont.)

Level number of block b:
Not fast but simple way

level(b) = floor((3 (b + 1))1/4)
The “at least we’re avoiding floats” way:

Need to find largest power of 4 <= 3 (b + 1)

b’ = 3 (b + 1)
if(b’ & (3 << 30)) level(b) = 15

else if(b’ & (3 << 28)) level(b) = 14
else if(b’ & (3 << 26)) level(b) = 13
. . .
else if(b’ & (3 << 4)) level(b) = 2
else if(b’ & (3 << 2)) level(b) = 1
else level(b) = 0
// b’ is never 0

39

Quadtrees (cont.)
Subdivision does not
always need to be done
in the middle

Split according to some
criteria, e.g. same number
of objects in each quadrant

Subdivision does not
always need to be done
to the same level

E.g. stop when number of
objects in quadrant less
than threshold

6

40

Quadtrees (cont.)
class Block
{

Pos bbox[2]; // Bounding box (x0,y0)->(x1,y1) of block
Block* parent;
Block* children[4];

};

Block* MakeBlock(float x0, float y0, float x1, float y1, Block *parent)
{

Block* block = new Block();
block->bbox[0].x = x0; block->bbox[0].y = y0;
block->bbox[1].x = x1; block->bbox[1].y = y1;
block->parent = parent;

Pos split;
if(NeedToSubdivide(block, split)) // Determine if block needs to be subdivided
{ // and if so, where to split

block->children[0] = MakeBlock(x0, y0, split.x, split.y, block);
block->children[1] = MakeBlock(split.x, y0, x1, split.y, block);
block->children[2] = MakeBlock(split.x, split.y, x1, y1, block);
block->children[3] = MakeBlock(x0, split.y, split.x, y1, block);

}

return block;
}

41

Quadtrees (cont.)
// Find the block that a given point is in
Block* FindBlock(Block* block, Pos p)
{

for(int c = 0; c < 4; c++)
{

if(block->children[c])
if(IsInBBox(p, block->children[c]->bbox))

return FindBlock(block->children[c], p);
}

return block;
}

bool IsInBBox(Pos p, Pos bbox[2])
{

return (bbox[0].x <= p.x) && (p.x < bbox[1].x) &&
(bbox[0].y <= p.y) && (p.y < bbox[1].y);

}

42

Octrees
Like quadtrees, extended to 3D
Subdivides a volume
Divides a cube into 8 sub-cubes using three
axis-aligned partition planes

43

kD-Trees

A hierarchical binary 2D
subdivision
Splits world by alternating
between axis-aligned
partition planes

E.g. first split along Y axis,
then X axis, then Y axis,
etc.

Obvious extension to 3D

7

44

kD-Trees (cont.)
class Block
{

Pos bbox[2]; // Bounding box (x0,y0)->(x1,y1) of block
Block* parent;
Block* children[2];

};

Block* MakeBlock(float x0, float y0, float x1, float y1, Block *parent, int direction)
{

Block* block = new Block();
block->bbox[0].x = x0; block->bbox[0].y = y0;
block->bbox[1].x = x1; block->bbox[1].y = y1;
block->parent = parent;

Pos split;
if(NeedToSubdivide(block, direction, split))
{

if(direction == X_AXIS)
{

block->children[0] = MakeBlock(x0, y0, x1, split.y, block, Y_AXIS);
block->children[1] = MakeBlock(x0, split.y, x1, y1, block, Y_AXIS);

}
else if(direction == Y_AXIS)
{

block->children[0] = MakeBlock(x0, y0, split.x, y1, block, X_AXIS);
block->children[1] = MakeBlock(split.x, y0, x1, y1, block, X_AXIS);

}
}
return block;

}

45

kD-Trees (cont.)

Making a random maze
with kD-trees

Place wall horizontally or
vertically
Make door in wall
Repeat for sub-blocks

Only place wall if it begins
and ends at a wall
Guarantees that there is
exactly one path from any
room to any other room

46

BSP trees

Binary Space Partition
Hierarchical, like quadtrees and kD-trees
Splits a volume into two sub-volumes by plane
Split each sub-volume into two
… and so on
Generalisation of kD-trees, as the plane can be
arbitrary, not just axis-aligned

47

BSP trees (cont.)

BSP tree used primarily to organise polygons
Partition plane for a tree node chosen to be the plane
of a polygon
Add polygons on the plane to the node
Add polygons in front of the plane to one child
Add polygons behind the plane to the other child
Split polygons which fall across the plane

Partition plane does not need to be co-incident
with a polygon plane

8

48

BSP trees (cont.)
struct BSPnode
{

Plane plane; // The partition plane
list polygons; // Polygons on the plane
BSPnode *front, *back; // Links to the two children

};

void BuildTree(BSPnode *node, list polygons)
{

Polygon *poly = polygons.GetPolygon(); // Take poly from list
node->plane = plane->GetPlane(); // Get the plane of poly
node->polygons.AddPolygon(poly); // Add poly to node

list backpolys, frontpolys;

49

BSP trees (cont.)
while(poly = polygons.GetPolygon()) // Go through remaining polys
{

int type = ClassifyPoly(poly, plane);
if(type == COINCIDENT) // Poly on plane

node->polgons.AddPolygon(poly);
else if(type == BEHIND) // Poly behind plane

backpolys.AddPolygon(poly);
else if(type == INFRONT) // Poly in front of plane

frontpolys.AddPolygon(poly);
else if(type == SPANNING) // Poly across plane
{

Polygon *frontpiece, *backpiece;
SplitPolygon(poly, plane, frontpiece, backpiece);
backpolys.AddPolygon(backpiece);
frontpolys.AddPolygon(frontpiece);

}
}

50

BSP trees (cont.)
if(!frontpolys.Empty())
{

node->front = new BSPnode();
BuildTree(node->front, frontpolys);

}
if(!backpolys.Empty())
{

node->back = new BSPnode();
BuildTree(node->back, backpolys);

}
}

51

BSP trees (cont.)

Splitting a polygon by a plane
Convex polygons: easy

Always creates 2 convex polys

Concave polygons: hard
Can create any number of concave polys
Avoid using concave polygons

9

52

BSP trees (cont.)
void SplitPolygon(Polygon *poly, Plane plane, Polygon *&front, Polygon *& back)
{

int numv = poly->NumVertices()
Point p1, p2;
float side1, side2;

front = new Polygon(); back = new Polygon();
p1 = poly->Vertex(numv-1);
side1 = ClassifyPoint(point1, plane);
for(int v = 0; v < numv; v++)
{

p2 = poly->Vertex(v);
side2 = ClassifyPoint(p2, plane);
if(side2 > 0)
{ // Point p2 in front of plane

if(side1 < 0)
{ // Edge crossed from back to front of plane

Point intersect = EdgePlaneIntersect(p1, p2, plane);
front->AddPoint(intersect);
back->AddPoint(intersect);

}
front->AddPoint(p2);

}

53

BSP trees (cont.)
else if(side2 < 0)
{ // Point p2 is behind plane

if(side1 > 0)
{ // Edge crossed from front to back of plane

Point intersect = EdgePlaneIntersect(p1, p2, plane);
front->AddPoint(intersect);
back->AddPoint(intersect);

}
back->AddPoint(p2);

}

else
{ // Point p2 is on plane

front->AddPoint(p2);
back->AddPoint(p2);

}
p1 = p2;
side1 = side2;

}
}

54

BSP trees (cont.)

Front Back
0

3

2

1

f

f

b

b

1

2

3

4

1

2

3

4

55

BSP trees (cont.)

The good thing about BSP trees:
Depth ordering without ambiguity

Any polygon in the tree is either strictly in front of or behind
any other polygon with respect to a partition plane (or co-
planar)

10

56

BSP trees (cont.)

The bad thing about BSP trees:
Creates a polygon soup, which makes
efficient rendering difficult
Tree can be unbalanced

Find best polygon to place plane on, e.g. near
centroid of all polygons, or with equal number of
polygons in both children

57

Bounding volumes
Instead of partitioning by a plane, divide space by a
volume
Use a mathematically simple shape to define a boundary

Bounding boxes
Bounding spheres

Subdivide by dividing the bounded volume by multiple
smaller bounding volumes
Typically used to subdivide objects, but can also be used
to subdivide a world
Optimal bounding volumes typically determined by pre-
processing

58

Bounding volumes (cont.)

Bounding boxes
Have a big box around everything
Subdivide into smaller boxes
The union of children does not need to be the
same volume as the parent
Boxes may be axis-aligned (AABB), or rotated
to give a tighter fit

59

Bounding volumes (cont.)

11

60

Bounding volumes (cont.)
class AABB // Axis-aligned bounding box
{

bool isleaf; // true if this is a leaf, false otherwise
Pos box[2]; // Bounding box in world coordinates

AABB* parent;
};

class AABBNode : public AABB // A non-leaf node in the AABB tree
{

list<AABB*> children;
};

class AABBLeaf : public AABB // A leaf node in the AABB tree
{

vector<Polygons> polygons;
};

61

Bounding volumes (cont.)
class BoundingBox

{

bool isleaf;

Pos centre; // Centre of box, in parent’s coordinates

float size[3]; // Size of box

Matrix rot; // Rotation around centre, in parent coords

BoundingBox* parent;

};

62

Bounding volumes (cont.)

Spheres
Easy to compute if point is
in a sphere

|p – centre| < radius
Often used for fast collision
detection

Sphere defines boundary
of some structure
Sub-spheres define
boundaries of sub-
structures

63

Bounding volumes (cont.)

12

64

Bounding volumes (cont.)
class BoundingSphere
{

bool isleaf; // true if this is a leaf, false otherwise
Pos centre;
float radius;

BoundingSphere* parent;
};

class BoundingSphereNode : public BoundingSphere
{

list<BoundingSphere*> children;
};

class BoundingSphereLeaf : public BoundingSphere
{

vector<Polygons> polygons;
};

65

Space Subdivision (cont.)

Various space subdivisions can be mixed
together

E.g., quadtree down to some minimum area
size, then a regular grid in the leaf nodes

Fast processing over large areas (hierarchical)
Fast rendering over small areas (display list, vertex
array)

