State-space Approach

• In tracking a moving object by remote measurements, we are interested in monitoring how position and velocity of the object change in time.

• The state-space approach to tracking, navigation, and many other application problems is based on describing a time-varying process by a vector of quantities.

• These quantities are collectively called the state of the process.

• The evolution of the process over time is represented as a trajectory in the space of states, i.e., a successive transition from one state to another.
State-space Modelling

• **State**: a vector of measurements for an object describing its behaviour in time

 – *Example*: \([p, v, a]\) - the position, velocity, and acceleration of a moving 1D "object" in time:

 \[v(t + \Delta t) = v(t) + a(t)\Delta t;\quad p(t + \Delta t) = p(t) + \frac{v(t+\Delta t)+v(t)}{2}\Delta t = p(t) + v(t)\Delta t + \frac{a(t)}{2}\Delta t\]

• **State space**: the space of all possible states

• **Trajectory** of an object in the state space: the evolution of the object’s state in time

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>(a(t))</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(v(t))</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>(p(t))</td>
<td>0</td>
<td>2.5</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
</tbody>
</table>
1D point trajectory in the 3D state space

- for $k = 0$: $a_{k+1} = a_k; \ v_{k+1} = v_k + a_k; \ p_{k+1} = p_k + v_k + \frac{a_k}{2}$

- for $k = 1, 2, \ldots$: $a_{k+1} = 0; \ v_{k+1} = v_k + a_k; \ p_{k+1} = p_k + v_k + \frac{a_k}{2}$
State-space Trajectory: Vector Description

State of the process: an $n \times 1$ vector x_k of quantities describing the process at time k, e.g.

$$x_k = \begin{bmatrix} x_{1,k} \\ x_{2,k} \\ x_{3,k} \end{bmatrix} \equiv \begin{bmatrix} p_k \\ v_k \\ a_k \end{bmatrix}; \quad k = 0, 1, 2, \ldots$$

Observation, or output: an $m \times 1$ vector y_k; $m \leq n$, being a vector or scalar function of the state vector at time k: $y_k = C_k(x_k)$

Process evolution: a vector function of the state vector at time k: $x_{k+1} = A_k(x_k)$
Estimating States: General Case

- **Problem**: Estimate states x_k from observations y_k; $k = 0, 1, 2, \ldots$

- **Basic Assumptions**:

 - Vector functions $A_k(x_k)$ describing the evolution of states are known for each k but with uncertainty u_k:
 \[
 x_{k+1} = A_k(x_k) + u_k
 \]

 - How the observation depends on the state vector is known also with measurement noise v:
 \[
 y_k = C_k(x_k) + v_k
 \]

 - Only statistical properties of the random vectors u_k and v_k are known
Estimating States: Linear Case

- Linear functions $A_k(\ldots)$ and $C_k(\ldots)$:
 - The $n \times n$ state evolution matrices A_k
 - The $m \times n$ output matrices C_k

- Matrix-vector evolution of the system:
 \[
 x_{k+1} = A_k x_k + u_k \\
 y_k = C_k x_k + v_k; \quad k = 0, 1, 2, \ldots
 \]

- The matrices A_k and C_k can be considered as linear approximations of the non-linear vector functions $A_k(\ldots)$ and $C_k(\ldots)$
Linear Case: an Example

State matrices: \(A_0 = \begin{bmatrix} 1 & 1 & 1/2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \); \(A_k = \begin{bmatrix} 1 & 1 & 1/2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \); \(k = 1, 2, \ldots \), and the output matrix \(C_k = [1 \ 0 \ 0] \)

\[\begin{array}{|c|c|c|}
\hline
k & 0 & 1 \\
\hline
x_{1,k} / u_{1,k} & 0.0 / 0.1 & 2.6 / -0.1 \\
x_{2,k} / u_{2,k} & 0.0 / -0.1 & 4.9 / 0.1 \\
x_{3,k} / u_{3,k} & 5.0 / 0.2 & 5.2 / -0.2 \\
y_k / v_k & 0.3 / 0.3 & 2.3 / -0.3 \\
\hline
\end{array}\]

\[\begin{array}{|c|c|c|}
\hline
2 & 3 & 4 \\
\hline
10.0 / 0.1 & 20.1 / -0.1 & 29.8 / 0.1 \\
10.2 / -0.1 & 9.9 / 0.1 & 9.8 / 0.0 \\
-0.2 / -0.2 & -0.2 / 0.0 & 0.0 / -0.2 \\
9.7 / -0.3 & 20.1 / 0.0 & 29.7 / -0.1 \\
\hline
\end{array}\]

Goal: Given the matrices \(A_k, C_k \), statistics of \(u_k, v_k \), and observations \(y_k \) for \(k = 0, 1, \ldots \), estimate the hidden state vectors \(x_k, k = 0, 1, \ldots \).
Evolution of a Periodic Signal – 1

- Scalar noisy observations y_k of a periodic signal represented with a finite Fourier series plus a noise term:

$$y_k = c_1 e^{j2\pi f_1 k} + c_2 e^{j2\pi f_2 k} + \ldots + c_n e^{j2\pi f_n k}$$

where the coefficients c_i are complex numbers

- For this periodic function, each frequency is the state component:

$$x_k = \begin{bmatrix} e^{j2\pi f_1 k} \\ e^{j2\pi f_2 k} \\ \vdots \\ e^{j2\pi f_n k} \end{bmatrix}$$

$$x_{i,k+1} = e^{j2\pi f_i (k+1)}$$

$$= e^{j2\pi f_i} e^{j2\pi f_i k} = e^{j2\pi f_i x_{i,k}}$$

Evolution of a state component
Evolution of a Periodic Signal – 2

• The state evolution: \(x_{k+1} = A_k x_k \) where \(A_k \) is the diagonal \(n \times n \) matrix:

\[
A_k \equiv A = \begin{bmatrix}
 e^{j2\pi f_1} & 0 & \cdots & 0 \\
 0 & e^{j2\pi f_2} & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & e^{j2\pi f_n}
\end{bmatrix}
\]

• The observation \(y_k = C_k x_k + v_k \) where \(C_k \) is the \(1 \times n \) vector-row:

\[
C_k \equiv C = [c_1 \ c_2 \ \cdots \ c_n]
\]

• In this example, there is no uncertainty in the state evolution: \(u_k = 0 \)
Estimation of States from Observations

Let \hat{x}_k denote the state estimated from all the known at time k observations $y_t; t = 0, 1, \ldots, k$:

$$\hat{x}_k \equiv \hat{x}_k(y_0, \ldots, y_k)$$

At time k, the estimator has to minimise the average squared error

$$e_k = \sum_{i=1}^{n} |x_{i,k} - \tilde{x}_{i,k}|^2 \equiv \sum_{i=1}^{n} |x_{i,k} - \tilde{x}_k(y_0, \ldots, y_k)|^2$$

under the simplifying assumptions:

- the state uncertainty u_k is totally uncorrelated with the measurement noise v_k and

- each pair of vectors (u_k, u_l) or (v_k, v_l) are totally uncorrelated for $k \neq l$
Basic Notation – 1

- An n-dimensional (or $n \times 1$) column vector x of states has generally complex-valued components x_1, \ldots, x_n.

- The conjugate, or Hermite transpose of x, denoted x^H, is the $1 \times n$ row vector of complex-conjugate components $[x_1^* \ldots x_n^*]$. If $x = a + jb$, then $x^* = a - jb$ where a and b are the real and imaginary components of the complex x.

- The inner product between two complex vectors x and y of the same dimension is defined as $x^H y = \sum_{i=1}^{n} x_i^* y_i$.
 - Two vectors are perpendicular if $x^H y = 0$.
 - The vector length is computed as $\| x \| = \sqrt{x^H x}$.
Basic Notation – 2

- **Conjugate transposition** H of an $m \times n$ matrix A with complex elements $a_{\alpha,\beta}$ is the $n \times m$ matrix A^H such that $a^H(\beta, \alpha) = a^*(\alpha, \beta)$

 $1 \leq \alpha \leq m$ – rows and $1 \leq \beta \leq n$ – columns in A

- **Law of composition** for H: $(AB)^H = B^H A^H$

 for matrices A and B

- **Outer product** xy^H of an $n \times 1$ vector x and an $m \times 1$ vector y is the $n \times m$ matrix of pairwise vector component products:

 $$
 \begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
 \end{bmatrix}
 \begin{bmatrix}
 y_1^* \\
 y_2^* \\
 \vdots \\
 y_m^*
 \end{bmatrix}
 =
 \begin{bmatrix}
 x_1 y_1^* & x_1 y_2^* & \cdots & x_1 y_m^* \\
 x_2 y_1^* & x_2 y_2^* & \cdots & x_2 y_m^* \\
 \vdots & \vdots & \ddots & \vdots \\
 x_n y_1^* & x_n y_2^* & \cdots & x_n y_m^*
 \end{bmatrix}
 $$
• **Average** or expected value of a continuous random variable: \(\mathbb{E}\{x\} = \int_{-\infty}^{\infty} xp(x) \, dx \)

 - \(p(x) \): a probability density function (p.d.f.) of \(x \)
 - \(\mathbb{E}\{\ldots\} \) denotes the mathematical expectation
 - Expected vector \(\mathbb{E}\{x\} \) of random variables: the vector of expected elements \(\mathbb{E}\{x_i\}; \; i = 1, \ldots, n \)
 - Expected vector sum: \(\mathbb{E}\{x + y\} = \mathbb{E}\{x\} + \mathbb{E}\{y\} \)
 - Expected matrix \(A \): the matrix of expected elements \(\mathbb{E}\{A(\alpha, \beta)\} \)

• **Correlation** between two random variables \(x \) and \(y \): \(\mathbb{E}\{xy^*\} = \int_{-\infty}^{\infty} xy^*p(x, y) \, dx \)

 - \(p(x, y) \) is a joint p.d.f. of \(x \) and \(y \)
Probability Concepts – 2

- **Correlation matrix** of two vectors x and y of random variables is the expected outer product matrix xy^H

- Entries of the correlation matrix are expected pairwise products of the scalar vector entries $E\{x_\alpha y^*_\beta\}$

- The correlation matrix of the error $x_k - \hat{x}_k$ is the matrix $E\{(x_k - \hat{x}_k)(x_k - \hat{x}_k)^H\}$

- Pair of vectors x and y are **uncorrelated** if $E\{xy^H\} = 0$ where 0 – the matrix of appropriate dimensions with zero entries
State / Observation Statistics
Known by Assumption:

the $n \times n$ correlation matrix U_k for uncertainty u_k and the $m \times m$ correlation matrix V_k for measurement noise v_k for all $k, l = 0, \ldots, K$:

$$
\mathbb{E}\{u_k u_l^T\} = \begin{cases} U_k & \text{if } k = l \\
0 & \text{otherwise} \end{cases} \\
\mathbb{E}\{v_k v_l^T\} = \begin{cases} V_k & \text{if } k = l \\
0 & \text{otherwise} \end{cases}; \quad \mathbb{E}\{u_k v_l^T\} = 0
$$

Components of the latter expected matrices are expected pairwise products of vector components such as $\mathbb{E}\{u_k,\alpha u_l,\beta\}; \alpha, \beta = 1, \ldots, n$, $\mathbb{E}\{v_k,\alpha v_l,\beta\}; \alpha, \beta = 1, \ldots, m$, or $\mathbb{E}\{u_k,\alpha v_l,\beta\}; \alpha = 1, \ldots, n; \beta = 1, \ldots, m$

Both the uncertainty and measurement noise are centred: $\mathbb{E}\{u_k\} = \mathbb{E}\{v_k\} = 0; \ k = 0, 1, \ldots, K$
Rudolf Kalman’s Approach

The search for a linear estimator:

\[\hat{x}_k = \sum_{t=0}^{k} G_t y_t \]

where \(G_k; k = 0, 1, \ldots, K \), are \(n \times m \) gain matrices to be determined.

The desired gain matrices have to minimise the mean error \(\mathbb{E}\{\| x_k - \hat{x}_k \|^2 \} \).

Initial estimate \(\hat{x}_0 \) and correlation matrix \(P_0 \) of estimation error are assumed to be known.

The Kalman’s observation was that this linear estimate should **evolve recursively** just as the system’s states are evolving themselves (!!)

This brilliant observation became a cornerstone of the most popular at present approach to linear filtering called **Kalman filtering**.
Constructing a Kalman Filter – 1

Suppose an optimal linear estimate \hat{x}_{k-1} based on observations $y_0, y_1, \ldots, y_{k-1}$ is already constructed.

Then $\hat{x}_i^k \overset{\text{def}}{=} A_{k-1} \hat{x}_{k-1}$ is the best guess of \hat{x}_k before making the observation y_k at time k.

It is the natural evolution of the estimated state vector \hat{x}_{k-1} by the linear system dynamics in Slide 6.

The superscript “i” indicates this is an intermediate estimate before constructing \hat{x}_k.

$y_i^k = C_k \hat{x}_i^k$ is the best prediction of y_k before the actual measurement.

Kalman’s proposal: the optimal solution for \hat{x}_k should be a linear combination of \hat{x}_i^k and the difference between y_k and y_i^k:

$$\hat{x}_k = \hat{x}_i^k + G_k (y_k - C_k \hat{x}_i^k)$$
Constructing a Kalman Filter – 2

If \(y_k = y^i_k \), then \(\hat{x}_k = \hat{x}^i_k = A_{k-1} \hat{x}_{k-1} \), i.e. the estimate evolves purely by what is known about the process.

Optimal gain matrix \(G_k \) has to minimise the mean error \(\mathbb{E}\{\|x_k - \hat{x}_k\|^2\} \) in Slide 16:

\[
\mathbb{E}\left\{\| (x_k - \hat{x}^i_k) - G_k (y_k - C_k \hat{x}^i_k) \|^2 \right\}
\]

Solution: by taking and setting to zero the derivative w.r.t. to the matrix entries.

Theorem 1: Let \(a \) and \(b \) be random vectors. Then the matrix \(G \) minimising \(\mathbb{E}\{\| a - Gb \|^2 \} \) is as follows:

\[
G = \mathbb{E}\left\{ab^H\right\} \left(\mathbb{E}\left\{bb^H\right\} \right)^{-1}
\]

providing the correlation matrix \(\mathbb{E}\{bb^H\} \) is invertible.
Proof of Theorem 1 – (a)

Derivative of a scalar function f w.r.t. an $n \times m$ matrix Q is defined as

$$\frac{\partial f}{\partial Q} = \begin{bmatrix} \frac{\partial f}{\partial Q_{1,1}} & \frac{\partial f}{\partial Q_{2,1}} & \cdots & \frac{\partial f}{\partial Q_{n,1}} \\ \frac{\partial f}{\partial Q_{1,2}} & \frac{\partial f}{\partial Q_{2,2}} & \cdots & \frac{\partial f}{\partial Q_{n,2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial Q_{1,m}} & \frac{\partial f}{\partial Q_{2,m}} & \cdots & \frac{\partial f}{\partial Q_{n,m}} \end{bmatrix}$$

For a function $f = t^H Q s$ where t and s are arbitrary $n \times 1$ and $m \times 1$ vectors, respectively, the derivative is

$$\frac{\partial}{\partial Q} (t^H Q s) = st^H$$

The right hand side matrix is of the dimension $m \times n$

Each its (β, α)-entry $t_\alpha^* s_\beta$ is precisely what is obtained by differentiating the scalar function f w.r.t. the (α, β)-entry $Q_{\alpha,\beta}$ of Q
Proof of Theorem 1 – (b)

Expanding $\mathbb{E}\{\| a - Gb \|^2 \}$ gives

\[
\begin{align*}
\mathbb{E} \left\{ (a - Gb)^H (a - Gb) \right\} & = \mathbb{E} \left\{ (a^H - b^H G^H) (a - Gb) \right\} \\
& = \mathbb{E} \{ a^H a - b^H G^H a - a^H Gb + b^H G^H Gb \} \\
& = \mathbb{E} \{ a^H a \} - \mathbb{E} \{ b^H G^H a \} - \mathbb{E} \{ a^H Gb \} + \mathbb{E} \{ b^H G^H Gb \}
\end{align*}
\]

Differentiating this with respect to the matrix G may seen difficult because both G and G^H are appearing.

It can be proven that the elements of G can be treated as independent from the elements of G^H although they are not of course

Setting the derivative of the above expression w.r.t. G^H equal to zero produces the equation

\[-\mathbb{E} \{ ab^H \} + G \mathbb{E} \{ bb^H \} = 0\]

It gives the solution $G = \mathbb{E} \{ ab^H \} \left(\mathbb{E} \{ bb^H \} \right)^{-1}$
Constructing a Kalman Filter – 3

To optimise the gain matrix \(G_k \), \(a = x_k - \hat{x}_k^i \) and \(b = y_k - C_k \hat{x}_k^i \), so that

\[
E \left\{ ab^H \right\} = E \left\{ (x_k - \hat{x}_k^i) (y_k - C_k \hat{x}_k^i)^H \right\} \\
= E \left\{ (x_k - \hat{x}_k^i) (C_k x_k + v_k - C_k \hat{x}_k^i)^H \right\} \\
= E \left\{ (x_k - \hat{x}_k^i) (x_k - \hat{x}_k^i)^H C_k^H \right\} \\
+ E \left\{ (x_k - \hat{x}_k^i) v_k^H \right\}
\]

The last expectation on the right is zero as the intermediate estimate \(\hat{x}_k^i \) depends only on \(y_0, y_1, \ldots, y_{k-1} \) including only the noise terms \(v_i \) and uncertainties \(u_i \) for \(i < k \) that are uncorrelated with the “new” noise \(v_k \).

Thus, \(E \left\{ ab^H \right\} = E \left\{ (x_k - \hat{x}_k^i) (x_k - \hat{x}_k^i)^H C_k^H \right\} = E \left\{ (x_k - \hat{x}_k^i) (x_k - \hat{x}_k^i)^H \right\} C_k^H \equiv P_k^i C_k^H \)

where \(P_k^i = E \left\{ (x_k - \hat{x}_k^i) (x_k - \hat{x}_k^i)^H \right\} \) denotes the correlation matrix for the “intermediate” error \(x_k - \hat{x}_k^i \).
Constructing a Kalman Filter – 4

Similar considerations result in a following simple form for

\[
\mathbb{E} \{ \mathbf{b}\mathbf{b}^H \} = \mathbb{E} \left\{ \left(\mathbf{y}_k - \mathbf{C}_k \hat{\mathbf{x}}_k^i \right) \left(\mathbf{y}_k - \mathbf{C}_k \hat{\mathbf{x}}_k^i \right)^H \right\} \\
= \mathbb{E} \left\{ \left(\mathbf{C}_k \mathbf{x}_k + \mathbf{v}_k - \mathbf{C}_k \hat{\mathbf{x}}_k^i \right) \left(\mathbf{C}_k \mathbf{x}_k + \mathbf{v}_k - \mathbf{C}_k \hat{\mathbf{x}}_k^i \right)^H \right\} \\
= \mathbb{E} \left\{ \left(\mathbf{C}_k \left(\mathbf{x}_k - \hat{\mathbf{x}}_k^i \right) + \mathbf{v}_k \right) \left(\left(\mathbf{x}_k - \hat{\mathbf{x}}_k^i \right)^H \mathbf{C}_k^H + \mathbf{v}_k^H \right) \right\} \\
= \mathbf{C}_k \mathbf{P}_k^i \mathbf{C}_k^H + \mathbf{V}_k
\]

where \(\mathbf{V}_k = \mathbb{E} \left\{ \mathbf{v}_k \mathbf{v}_k^H \right\} \) is the measurement noise correlation matrix.

By Theorem 1, the optimal gain matrix is

\[
\mathbf{G}_k = \mathbf{P}_k^i \mathbf{C}_k^H \left(\mathbf{C}_k \mathbf{P}_k^i \mathbf{C}_k^H + \mathbf{V}_k \right)^{-1}
\]

assuming that the inverse on the right hand side exists.

The correlation matrix \(\mathbf{P}_k^i \) is also computed recursively starting from the matrix \(\mathbf{P}_0 \) known by assumption.
Constructing a Kalman Filter – 5

Since \(x_k = A_{k-1} x_{k-1} + u_{k-1} \) and \(\hat{x}^i_k = A_{k-1} \hat{x}_{k-1} \),

\[
P^i_k = \mathbb{E} \left\{ (x_k - \hat{x}^i_k) (x_k - \hat{x}^i_k)^H \right\} = \mathbb{E} \left\{ (A_{k-1} x_{k-1} + u_{k-1} - \hat{x}^i_k) (A_{k-1} x_{k-1} + u_{k-1} - \hat{x}^i_k)^H \right\} = \mathbb{E} \left\{ (A_{k-1} (x_{k-1} - \hat{x}_{k-1}) + u_{k-1}) (A_{k-1} (x_{k-1} - \hat{x}_{k-1}) + u_{k-1})^H \right\}
\]

After some rearrangement and elimination of zero-valued expectations:

\[
P^i_k = A_{k-1} P_{k-1} A_{k-1}^H + U_{k-1}
\]

where \(P_{k-1} = \mathbb{E} \left\{ (x_{k-1} - \hat{x}_{k-1}) (x_{k-1} - \hat{x}_{k-1})^H \right\} \) denotes the correlation matrix of estimation errors and \(U_{k-1} \) is the correlation matrix of uncertainties at time \(k - 1 \). Substituting the formula for \(\hat{x}_k \) to the definition of \(P_k \) and with some amount of algebra, one obtains that

\[
P_k = P^i_k - G_k C_k P^i_k
\]
How the Kalman Filter Works

Known values: \(y_i, V_i, \) and \(U_i, A_i, \) and \(C_i \) for \(0 \leq i \leq k \) at each time \(k \)

- **Initialisation** \(k = 0 \): Choose or guess suitable \(\hat{x}_0 \) and \(P_0 \)

- **Iteration** \(k = 1, 2, \ldots \): Given \(\hat{x}_{k-1} \) and \(P_{k-1} \), compute:

 1. \(P_i^k = A_{k-1}P_{k-1}A_{k-1}^H + U_{k-1} \)

 2. \(G_k = P_i^kC_k^H \left(C_kP_i^kC_k^H + V_k \right)^{-1} \)

 3. \(\hat{x}_i^k = A_{k-1}\hat{x}_{k-1} \)

 4. \(\hat{x}_k = \hat{x}_i^k + G_k \left(y_k - C_k\hat{x}_i^k \right) \)

 5. \(P_k = P_i^k - G_kC_kP_i^k \)
Example: 1D Process

Fixed state $x_{k+1} = x_k$

Noisy measurements $y_k = x_k + v_k$

$\mathbb{E}\{v_k\} = 0; \mathbb{E}\{v_k^2\} = \sigma^2$ for all k

$\mathbb{E}\{x_0\} = \hat{x}_0 = 0; \mathbb{E}\{x_0^2\} = P_0 > 0$

$\Rightarrow A_k = C_k = 1; U_k = 0$, and $V_k = \sigma^2$ for all k

In this case, $\hat{x}_k^i = \hat{x}_{k-1}^i$, $P_k^i = P_{k-1}$ for all k so that the intermediate steps are unnecessary (the state is not changing):

\[
G_k = \frac{P_{k-1}}{P_{k-1} + \sigma^2}
\]

\[
P_k = P_{k-1} - \frac{P_{k-1}^2}{P_{k-1} + \sigma^2} = \frac{P_{k-1}\sigma^2}{P_{k-1} + \sigma^2}
\]

\[
\hat{x}_k = \hat{x}_{k-1} + \frac{P_{k-1}}{P_{k-1} + \sigma^2} (y_k - \hat{x}_{k-1})
\]

Case 1: $\sigma = 0$ (no measurement noise) $\rightarrow \hat{x}_k = y_k$

Case 2: $\sigma > 0$; $P_0 = 0$ (so all $x_k = 0$) $\rightarrow G_k = 0; P_k = 0$, and $\hat{x}_k = 0$ for all k

Case 3: $\sigma > 0$; $P_0 > 0 \rightarrow P_k < P_{k-1}$ (decreasing error variance), and since $P_0 > 0$, in the limit $\lim_{k \to \infty} P_k = 0$