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SfM, V-SLAM and VO

 Structure from Motion, Visual Simultaneous Localisation and
Mapping, and Visual Odometry are closely related topics

V-SLAM extends VO by adding place VO focuses on the motion recovery of a
recognition to achieve global consistency. The 3-D
reconstruction of the environment, or mapping, is

also required.

SfM uses

unordered 1mages
taken from arbitrary
cameras at different
viewpoints to recover the
structure of the scene. The
computation of structure also mvolves
the estimation of camera parameters and viewing positions.

(calibrated) moving camera. Global consistency
and dense structure reconstruction are generally
not the concerns.




Structure from Motion

photogrammetry

el https://photosynth.net/ (closing..)
 VisualSFM  http://ccwu.me/vsfm/install.html
* Bundler https://www.cs.cornell.edu/~snavely/bundler/
* OpenMVG  http://openmvg.readthedocs.io/



https://photosynth.net/
http://ccwu.me/vsfm/install.html
https://www.cs.cornell.edu/%7Esnavely/bundler/
http://openmvg.readthedocs.io/

V-SLAM

robotics / machine vision
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Visual Odometry
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A computer algorithm for
reconstructing
a scene from two projections

“t c. Lon.lllet-muilll
Laboratory of Experimental Psychology, University of Sussex,
Brighton BN1 920G, UK

A simple algorithm for computing the three-dimensional struc-
ture of a scene from a correlated pair of perspective projections
is described here, when the spatial relationship between the two
projections is unknown. This problem is relevant not only to
photographic surveying' but also to binocular vision’, where the
non-visual information available to the observer about the
orientation and focal length of each eye is much less accurate
than the optical information supplied by the retinal images
themselves. The problem also arises in monocular perception of
motion’, where the two projections represent views which are
separated in time as well as space. As Marr and Poggio® have
noted, the fusing of two images to produce a three-dimensional
percept involves two distinct processes: the establishment of a
1:1 correspondence between image points in the two views—
the ‘correspondence problem’—and the use of the associated

e 24 8 S.a 0l dha B Al wlelhla alamsante in

RR=1=RR, detR=1 (5)

and it is convenient to adopt the length of the vector T as the unit
of distance: '
TA=Ti+Ti+T)=1 (6)
I begin by establishing a general relationship between the two
sets of image coordinates—a relationship which expresses the

condition that corresponding rays through the two centres of
projection must intersect in space. We define a new matrix Q by

Q=RS (7
where S is the skew-symmetric matrix
[ 0 T, -T
§=|-T, 0 T, (8)
T, -T, 0
Equation (8) may be written as
Su = e0eT, 9)

where £... =0 unless (A, », ) is a permutation of (1,2, 3), in
which case e,,. = £1 depending on whether this permutation is
even or odd. It follows from equations (4)-(9) that

x:.Qu-xl- - Rn- (x. —Tulnp&e.lw'r-xp
= (xl -Tl )‘AnTvxr (‘0)

but because the quantity ,,., is antisymmetric in every pair of its
subscripts, the right-hand side vanishes identically:

X.Q.X,=0 (11)
Dividine eauation (11) by XiX, we arrive at the desired rela-
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) Adaptive teature tracking with kalman filter for ego-motion estimation Huang, 1.-H., Chuang, C.-C., Chang, 2016 Froceedings - 2016 IEEE Znd
2 Y-H., Chen, C.-Y. International Conference on Multimedia
Big Data, BigMM 2016

larticlelinkere o]  View at Publisher

() Multi-frame feature integration for multi-camera visual odometry Chien, H-J, Geng, H , Chen, C.-Y 2016 Lecture Notes in Computer Science

3 Klette. R (induding subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in
Bioinformatics)

lanticlelinkere .o  View at Publisher

(O Visual odometry in dynamic environments with geometric multi-layer optimisation Geng. H , Chien, H-J. Nicolescu, R, 2016 Lecture Notes in Computer Science

4 Klette, R (induding subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in
Bioinformatics)

9992 LNAI, pp. 183-190

iarﬂc‘e"nk.f. ..] View at Publisher g SN L

(O Multi-run: An approach for filling in missing information of 3D roadside reconstruction Geng. H.. Chien, H.-J.. Klette, R 2016 Lecture Notes in Computer Science

5 (induding subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in
Bioinformatics)
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Monocular + LIDAR

Configurations — B RGB-DCamera

Monocular Vision
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What a SLAM system looks Like..

New Frame .
ith 3D struct . .
(with 3D structure) Feature Extraction & Tracking
(to establish image correspondences)

* Visual Odometry
(Localisation / Tracking)

Ego-motion Estimation
(to recover camera motion)

Key-frame Selection

¥

Loop Detection Mapping

¥

Map Update / Bundle Adjustment




ORB-SLAM 1 & 2

Raul Mur-Artal et. al., Universidad Zaragoza, Spain, 2015-16
190 citations

* Very fast feature detection and extraction
(ORB = FAST + Oriented BRIEF)

Rectified Stereo

| | Extract Stereo
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. [ Extract TRACKING
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Tracking

* To continuously solve the system’s ego-motion
from each two consequent frames

* The motion is modelled by a 3D Euclidean
transform

* ...which can be represented by a rotation matrix
and a translation vector (i.e. 6-dof)

* The current position of system is determined
by concatenating a series of transforms

* Known as dead reckoning in terms of
navigation
* “dead” derived from deduced, or ded




How can a rigid transform be derived from
two images?

* Use motion-invariant properties! A

=

_u_

v
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A
(x,y,2)

stationary 3D point




Two branches

* Indirect Methods (feature-based)

* Transform image pixels to a carefully
crafted feature space

* Matching is performed in the feature
space, before ego-motion estimation

* Usually sparse key points are picked

 Faster and dominating VO/SLAM for
decades

 Direct Methods (feature-free)

Use pixel intensities directly

Matching simultaneously happens
when solving ego-motion

Could be dense, semi-dense or
sparse

Slow but becoming popular due to
advances in parallel computing



Problem formulation

* A feature-based method finds the motion that minimises geodesic distances of
the corresponding pixels

Note: the correspondence g; — p; is known

Dgeo RO = ) lIp; — n(Rg; + VI
1<i<n
feature’s 3D coordinates in frame k

camera motion . . . .
corresponding pixel coordinates in frame k + 1

* While a direct method finds the motion that minimises photometric differences

without knowing pixel correspondences
2
Ppnore RO = Y [[10) — 1'(n(Rg; + 1)
1<isn T T\

pixel's 3D coordinates in frame k

camera motion _ _ _
pixel coordinates in frame k




Indirect method

Image Space Feature Space

Frame t

Framet + 1




Indirect method

Image Space Feature Space

Frame t

Framet + 1




Indirect method

Image Space Feature Space

Frame t

Framet + 1




Census transform

An example of feature space

* Encodes local intensity pattern
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Feature matching

* Given 2 sets of features F, F' and v a feature space transform
function

> for each y € F we find a ¥’ € F’ such that ||[v(xy) —v(x¥')||? is
minimised
* for some feature spaces the distance function is replaced by SAD or Hamming

* to remove an ambiguous matching we also find the second best
match y:.c € F' and calculate the differential ratio

o B ”V(X)—V(X,)“
8()(,)( » Xsec V) o ||V()() — V(Xéec)”

» which will then be used to accept/reject matching y — x’
(note € becomes very close to 1.0 in ambiguous case)




LIBVISO 1 & 2 (C++ Library for Visual Odometry)

Andreas Geiger et. al., MPI for Intelligent Systems in Tiibingen, Germany, 2010-11.
648 citations

* Enhanced matching by cyclic check

U u
Vl_' “““ | 'éﬁ'EﬁFFEHEiHiEﬁEE ul_"'Fi‘ﬁﬁi:“&’ﬁ‘ﬁéﬁi'iﬁiéiﬁé}
g Z @ : ; : ® |
camera E 4 rectified images camera !
Output: : intrinsic calibration : |
transformation § extrinsic calibration
(R|t) € R3*4

current

i protous
pff:f!, =R

"Plefi
u

camera
: extrinsic
calibration

--------

https://www.youtube.com/watch?v=DPLh6MoxPAk



https://www.youtube.com/watch?v=DPLh6MoxPAk

Drawbacks

Why using image features can be BAD

* Image geometry and topology are not preserved in the feature space

* Direct matching on feature vectors may violate intrinsic constraints
(e.g. Epipolar condition, ordering constraint)

* Need model-based outlier rejection schemes to ensure validity

* RANSAC, M-SAC, LMedS, etc. n features
* Non-deterministic

* |terative and time consuming

* Convergence yet not guaranteed

n features

* Moreover.. d-dimension space

* Exact k-NN search in a high dimensional feature space is very expensive
(the time complexity is O(n*d) given n d-vector features in each set)




Direct method

Frame t

Framet + 1

Image Space

Feature Spe,

Note: This is NOT a general point tracking /
optical flow problem. The scene structure
and ego-motion need to be taken into
account through the tracking process.



Featureless approach

* Make a full use of image intensities
* No feature space involved (thus no need to do feature transforms)

* Perform image warping & alignment to solve for camera motion

* No need to know image correspondences
* Such correspondences are a by-product of the motion estimation process

* Need to know scene structure beforehand

* Feature-based methods are able to estimate camera pose (up to a scale)
directly from 2D-to-2D image correspondences, without any knowledge

regarding scene structure



The Triality

in the featureless case 3D Scene
Structure
given this
Camera
Motion

Image

/ Correspondences
find these




Demo

Final translational error:
5.89 cm (4.8%)
after 103 iterations

https://www.youtube.com/watch?v=6QNDsV{Wqgb4




Summary by steps

* Indirect Methods

Transform image pixels to a
feature space

Perform matching in feature space,
with model-based outlier rejection
Try an initial (R, t) and find each
feature’s projection in the next
frame

Compare the projected position
with the matched feature

Iteratively adjust (R, t) to lower
such geometric distance (i.e. ®4,,)

* Direct Methods

1.

Try an initial (R, t) to and find each
pixel’s projection in the next frame,
given depth prior

Compare the intensity of the
projected pixel in the next frame
with one in the current frame

Iteratively adjust (R, t) to lower
such photometric difference

(i.e. cI)photo)




Monocular vision

where the 3D reconstruction of scene structure is based on temporal
stereo triangulation, which needs the ego-motion, which needs the 3D
reconstruction of scene structure..

@




Feature-based
3D Scene

Structure

Two-view triangulation
(a.k.a. temporal stereo)

Camera
Motion

start from here

/

Image
Correspondences

Motion from essential
matrix decomposition




F re-
eature-based D Seene

Structure

Two-view triangulation
(a.k.a. temporal stereo)

Camera

Motion Propagate depth data

to the next frame

Solve motion using a

Image
general PnP solver 9

Correspondences




Featureless

Randomised
depth data

Camera

- Motion estimation b
Motion /

direct image alignment

age
Correspondences




Featureless
3D Scene

Structure refinement Structure

by triangulation and
depth filtering (fusion)

Camera
Motion

Image
Correspondences




Featureless
€a 3D Scene

Structure

Camera

Motion Do direct image

alignment using the
refined structure

age
Correspondences




Featureless
3D Scene

Structure refinement Structure

by triangulation and
depth filtering (fusion)

Camera
Motion

Image
Correspondences




Large Scale Dense SLAM (LSD-SLAM)

Jakob Engel el. al., Technische Universitat Miinchen (TUM), 2014-16
361 citations

* Semi-dense method
* Use only edge pixels

* Take into account depth
alignment errors

(a) camera images [
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b) estimated inverse depth maps D
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%

This plays a crucial role https://www.youtube.com/watch?v=GnuQzP3gty4&t=9s



https://www.youtube.com/watch?v=GnuQzP3gty4&t=9s

Drawbacks of the direct methods

* Dense matching is slow

* as we compute and apply a homography (8-dof) for each feature’s patch
* lazy implementations often skip this

* Intensity alighment does not work for non-Lambertian and/or
occluded surfaces
* Convergence not guaranteed

* the image alignment process can diverge

* especially in monocular case where scene structure initialisation is fully
randomised

° open issues remained




Method Setting { Code Translation Rotation Runtime Environment

J. Zhang and 5. Singh: Visual-lidar Odometry and Mapping: Lo drift. Robust. and Fast. |EEE International Conference on Robotics and Automation(ICRA) 2015.

0.0022 [deg/m] 2 cores @ 2.5 Ghz (C/C++)

0.0031 [deg/m] 1 core @ =3.5 Ghz (C/C++)

0.0027 [deg/m] 2 cores @ 2.0 Ghz (C/C++)

0.0022 [deg/m] L 2 cores @ 2.5 Ghz (C/C++)

1 core @ 2.5 Ghz (C/C++)

1 core @ 2.5 Ghz (C/C++)

: : 2 cores @ 2.0 Ghz (C/C++)
M. Buczho and % Willert: How to Distinguish Inliers from Outliers in Visual Odometry for High-speed Autormotive Applications. |EEE Intelligent Vehicles Symposium (%) 2016.
11 cvidxv-sc [ © 1.09% | 0.0029 [deg/m] | 0.145s GPU @ 3.5 Ghz (C/C++)

F13 ORB-SLAMZ ! code | 1,15 % {0 0.0027 [deg/m] ¢ 1 cores @ =3.5 Ghz (C/C++)

0.0030 [deg/m] L 2 care @ 2.5 Ghz (C/C++)

; 0.0035 [deg/m] 1 care @ 3.0 Ghz (C/C++)
J. Deigmmoeller and J. Eggert: Stereo Visual Odometry without Temporal Filtering. German Conferance on Pattern Recognition (GCPR) 2016.
16 S-PTAM [ | code ! 1.19% | 0.0025 [deg/m] | 0.03s 4 cores @ 3.0 Ghz (C/C++)
T. Pire, T. Fischer, J. Civera, P. Crist\'[o}foris and J. Jacobo-Berlles: Stereo parallel tracking and mapping for robot localization. IROS 2015.
17 S-1SD-SLAM | code | 1.20%  © 0.0033 [deg/m] | 0.07s 1 core @ 3.5 Ghz (C/C+<)
J. Engel, J. 5tV"uckler and D. Cremers: Large-5cale Direct SLAM with Stereo Cameras. Int. ~Conf. ~on Intelligent Fobot Systems (IRO5) 2015.
18 VoBa [ei © 1.22% ¢ 0.0029 [deg/m] | 0.1s 1 core @ 2.0 Ghz (C/C++)

1. Tardif, M. George, M. Laverns, A. Kelly and A. Stentz: A new approach to vision-aided inertial navigation. 2010 IEEESRS) International Conference on Intelligent Robots and Systems,
Taipsi, Taiwan 2010.

19 SLUP . 125% 0.0041 [deg/m] | 0.17s 4 cores @ 3.3 Ghz (C/C++)

0.0038 [deg/m] 1 core @ 3.5 Ghz (C/C++)




Visual-inertial approaches

* Incorporate inertial measurement into the ego-motion estimation
stage

* Need covariance matrix modelling for data fusion
* The matrix controls our “belief” in the quality of data from different sources




DL approaches..

* DeepVO: A Deep Learning approach for Monocular Visual Odometry,
Mohanty et. al, Nov. 2016.
 Caffe used; the network design is heavily influenced by AlexNet
» Adopted a simplified 3-dof planar motion model (Ax, Az, A@)
* Input: RGB + a binary FAST image

Conv Layer 2

Conv Layer 1 Num output: 4096 Fully Connected
Num output: 4096 Kemel size'6 Num output: 8192
Kernel size:6 stride:1

stride:1

Fully Con
Num output: 256

Labels

N
" Loss

Fully Connected
Num output: 3

nected



Results

50-50 Training and testing

Completely unknown scene
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DL approaches

* Optical Flow and Deep Lea

to Visual Odometry, Peter | |

* Based on Caffee

* Use optical flow as the inpu, ™/

&
Conv7-64, Conv5-128, Convs-256, Conv3-256, Conv3-512,
Stride 2 Stride 2 Stride 2 Stride 1 Stride 2

Ve e

200
i 108 -




Summary

* The paradigm is shifting
* from sparse pixels to dense
* from stereo vision to monocular
* from ground into the sky
* from high-end devices to pervasive
* from individual approach to hybrid

* Few real-time implementations available
* |CCV (December, 2015) features a Future of Real-Time SLAM Workshop

* Few attempts on DL approaches
* far from acceptable accuracy (<2%)



http://wp.doc.ic.ac.uk/thefutureofslam/programme/

Videos and content

* Courtesy of Johnny Chien
e https://www.youtube.com/watch?v=6QNDsVfWqb4
e https://www.youtube.com/watch?v=q3fleO34cKE



https://www.youtube.com/watch?v=6QNDsVfWqb4
https://www.youtube.com/watch?v=q3fIeO34cKE
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