## THE UNIVERSITY OF AUCKLAND

## FIRST SEMESTER, 2010

Campus: City
$\qquad$

## COMPUTER SCIENCE

## COMPSCI 773: Early Applied Vision

(Time allowed: TWO hours)

NOTE: Attempt all questions!
Write the answers in the boxes below the questions.

Marks for each question are shown just before each answer box.
This is an open book exam. Candidates may bring calculators, notes, reference books, or other written material into the examination room.

| Section: | A | $\mathbf{B}$ | $\mathbf{C}$ | Total |  |
| :--- | :---: | :---: | :---: | :---: | :--- |
| Possible marks: | 30 | 36 | 33 | 100 |  |
| Awarded marks: |  |  |  |  |  |
|  |  |  |  |  |  |

Student ID: $\qquad$

## Section A: Homogeneous coordinates, affine transform and scaling

Let's define a function P which transforms a 2D point M (Cartesian coordinates: $(x, y)$ ) into the point $\tilde{M}$ after performing first, a scaling S (2D scaling factor $s_{x}$ and $s_{y}$ ), then a 2D translation T (Cartesian coordinates $\left(t_{x}, t_{y}\right)$, and a rotation R (angle $\theta$ ).

1. Using homogeneous coordinates notation, write the matrices $S, T$ and $R$.
$\square$
2. Using homogeneous coordinates notation, write the matrix P which transforms $M$ into $\tilde{M}$. [4 marks]
$\square$
3. Using homogeneous coordinates notation, write the matrix which transforms $\tilde{M}$ back into $M$ (e.g. the inverse of the transformation in Question 1).
[4 marks]

Student ID: $\qquad$
4. Find $M$ given $M(2,1), \theta=45$ degrees, $T(1,1)$ and scalings $s_{x}=1.5$ and $s_{y}=2.0 . \quad$ [2 marks]

5. Find $M$ given $M^{\prime}(2,3), \theta=60$ degrees, $T(1,2)$ and scalings $s_{x}=0.5$ and $s_{y}=0.5$. [2 marks]

6. Still using homogeneous coordinates notation, extend the previous notations to cater for 3D Cartesian coordinates
7. Transform the following points from homogeneous to Cartesian coordinates or vice versa as indicated below:
[5 marks]

Student ID:
Pr
8. Assuming the distortion free pinhole camera model (focal length f ) for a single camera, compute the 2D coordinates of point $m$, projection in the image I of 3D point $\mathrm{M}((X, Y, Z))$.


Student ID:
9. Assuming first order radial distortion pinhole camera model (focal length $f$, distortion parameter $\kappa_{1}$ ) for a single camera, compute the 2D coordinates of point $m$, projection in the image I of 3D point $\mathrm{M}((X, Y, Z))$.
[2 marks]

10. The coordinates of the image centre are given as $(500,500)^{T}$ in pixels. What is the first order distortion parameter value (supposed positive) if distorted and undistorted coordinates differ by 0.01 mm (millimetre) at a radial distance from the image centre, equivalent to 500 pixels? The squared pixel width is 5 microns (micrometres).
[5 marks]
$\square$
11. Using the first order radial distortion parameter calculated in Question 10, compute the undistorted metric coordinates for a point with pixel coordinates $(1000,1000)^{T}$.
[3 marks]

Student ID:


Student ID: $\qquad$

## Section B: Fundamentals of early applied vision mathematics

## Section B:. 1 Elementary mathematics

make sure to throughly detailed your answers to the following set of questions. A straight result answer is not enough.
12. Let the 3 by 3 matrix $A$ and 3 by 1 vector $X$ defined as:

$$
A=\left(\begin{array}{ll}
2 & 1 \\
2 & 3
\end{array}\right), \text { and } X=\binom{1}{2}
$$

13. Compute the eigenvalues $\left(\lambda_{1}, \lambda_{2}\right)$ of the matrix A .
[4 marks]
Hint: The eigenvalues of a matrix B are the zeros of the $\lambda$-second order polynomial form defined by the determinant of the matrix $B-\lambda I_{2}$, where $I_{2}$ is the $2 \times 2$ identity matrix.
$\square$
14. Find the eigenvectors $e_{1}, e_{2}$ associated to the eigenvalues $\lambda_{1}, \lambda_{2}$.

Hint: By definition, an eigenvector $b_{i}$, of the matrix $B$, associated to an eigenvalue $\lambda_{i}$ verifies: $B b_{i}=\lambda b_{i}$.
[4 marks]

Student ID:


Student ID: $\qquad$
15. Compute the determinant of matrix $A$
$\square$
16. Compute $A^{-1}$ the inverse of matrix A
$\square$
17. Compute $Y$ defined as $Y=A X$ :
[2 marks]

18. Compute $Z$ defined as $Z=A^{-1} X$ :
[2 marks]

Student ID: $\qquad$
$\square$
Section B:. 2 Advanced mathematics
19.
[5 marks]

Student ID:
$\square$

Student ID: $\qquad$
20. Find the direction (described by the vector e) which maximises the distance between the projected mean values of the classes of the database A while keeping the within class variances low. In other terms, do the LDA !

Student ID:
21. Draw the database set and the directions of projections computed via PCA and LDA. [2 marks]
$\qquad$
22. Compare the distances obtained in question with their values when the database points are projected along the direction obtained via LDA analysis. Comments?
[3 marks]

Student ID:
$\square$

Student ID: $\qquad$
23. Compute for class 1 and 2 the mean and standard deviation before and after projection on the main PCA and LDA axis. What do you think (a few lines for each answer) of the following three assertions:
(a) PCA maximises the variance of the overall dataset
(b) LDA maximises the between-class variance while minimizing the within-class variance
(c) LDA works better than PCA
[3 marks]
$\square$

## Section C: Epipolar Geometry and Matching of Stereo Images

24. How are two cameras placed one with respect to another if epipoles in both the images coincide with the principle points (traces of optical axes)?

25. How are two cameras placed one with respect to another if epipoles in both images seat infinitely far along the $Y$-axis of the world co-ordinate frame and have the same $x$-xoordinate? [5 marks]


Student ID: $\qquad$
26. Given a camera with the projection matrix $\left[\begin{array}{cccc}1 & 0 & 0 & -1 \\ 0 & -0.5 & 0 & -1 \\ 0 & 0 & 2 & -1\end{array}\right]$, determine the optical centre of this camera?
[4 marks]

27. Let a given stereo pair have the epipoles with the Cartesian co-ordinates $\mathbf{e}_{1}=\left(x_{e, 1}=2, y_{e, 1}=1\right)$ and $\mathbf{e}_{2}=\left(x_{e, 2}=1, y_{e, 2}\right)=3$ in the left and right images of a stereo pair, respectively, and let

$$
\mathbf{F}=\left[\begin{array}{ccc}
3 & 2 & -8 \\
2 & 3 & -7 \\
-9 & -11 & 29
\end{array}\right]
$$

be the fundamental matrix for this stereo pair. Give the equation for the epipolar line in the left image that corresponds to the point $\left(x_{2}=0, y_{2}=0\right)$ in the right image and the equation for the epipolar line in the right image that corresponds to the point $(0,0)$ in the left image.
[5 marks]

28. What relationship does exist between the fundamental matrix $\mathbf{F}$ of a pair of cameras and the corresponding points $\mathbf{x}_{1}$ and $\mathbf{x}_{2}$ in the images captured by the cameras? Does this relationship hold for the epipoles in Question 27?
[3 marks]

29. Describe, in brief, main reasons why stereo matching that searches for corresponding areas in a stereo pair of images is an ill-posed, in the math sense, problem.
[3 marks]

Student ID: $\qquad$

30. Describe which differences between the corresponding image signals are taken into account in the SSD (Sum of Squared Differences) based stereo matching and the correlation based matching. Your answer should include math models of signals and noise leading to these matching scores. [6 marks]
$\square$
31. 3D stereo reconstruction of human heads / faces typically uses stereo pairs captured with cameras having a vertically oriented baseline. Explain why such pairs are more appropriate than the pairs with the conventional horizontal baseline.
$\square$

Student ID:

## Overflow page

