A. Student - 1234567 - astu001

CBR Project Report

COMSCI 767 - INTELLIGENT AGENTS Assignment 1
A. Student

1234567 - astu001

A. Student - 1234567 - astu001

Table of Contents

(0127298 o Lo T=Tot 1 =T Yo T o R 1
TaDLE Of CONEEINES w.ouveeeeeeecrect et ese e es bbb s s bbb s 2
INETOAUCTION coerteeeetce sttt a st s s s s s bR s R R bbb 3
[. CBRlogic behind the appliCation ... ssessesssssssssssesaseenns 4
L1 HOLIAQY TYPC.coversrssirsmsrisssissesssessssssssissssssssssssmssassssssssssssssssasssssssssssssssssssssssssssssssssamsssssssssesssssanssansssssesnsss 5
] o ol 6
L3 NUMDET Of POTSON .c.correveeerireerisesrisssisseesssesissssissssassssssssessssesassssssssssssssssssessssssassssassssisssessssssssesasssssssses 6
D o 1Ry 20 s [[0 1 7
DA D1 4 1 [0 B O OO 7
F TN Y-o LYo) DO 7
L7 ACCOMMOUALION oooeeoeveeeritreresriesisseesssesissssissssasssessssesass s sssassssssssssss s st sasessisssesssssssssssansssanssses 8
L8 AQADUALION PIrOCESS .vvrevsrssirssessssssssissesssessssssmsssssssssssssssssssassssssssssssssssassssssssssssssssassssssssssssssssassssnsssssessnsss 8
L FOALUIE WOIGNLS .co..veoreeeeerieerisesre s esseesassesissesissssasssessssessssesassssasssssssssssssesassssassssassssasssssssssssssssansssesssses 8
II. Design and implementation of the apPlication ... 10
1.1 SOL DALADASE co.eoverveseessersrssrssrssssssssssssssssssssisssssssssssssssssssssssssssassassssssasssassasssassasssassasssassanssssens 10
IL1.1 ER DIAGIAIM coureirrsrirscrsirsirnseesscnssesssssssassesssesssssassssssesssesssssassssssesssesssssssssssessssssssssssssssesssesssssassses 10
I11.2 TADIE DESINILION .courreersreeereerierireertsssesssesissesissssasssessssesassssasssssssssssssesassssasssssssssssssesassssassssasssessn 10
I1.1.3 Procedures ANA FUNCUIONS........c.coocerreeosreronserisseresssesssesissesissssssssessssessssssasssssssssssssessssssassssssssesas 12
1.2 Design and Implementation Of APPLICALIONcueeeeeeerereersrerseerseirsesrissserssserssesessssesssesns 13
IL2.1 CBRSELUD cooeeoeeeeereetreseseesesssesis s sssssesassesas s sessss s s sssss st sasssssssssansssansssesssessn 13
L O)) . V O O OO 14
T O B i 4) 1) 1 o B O OO 14
DO Y 1 1o L O OO 15
1.3 USEE MOTUGL oot eerisss i esassesas s ess s s s esss st s sesasesanes 15
ACKNOWIEAGEIMENTES ...couvcteeeseeeeseesreeeeetseesees s s s s s s s s sn s 19
REEEIEIICES ...ovurieeenereee et ees et es e es s s e SRR SRR R R R s R s R 19
2N 0 1<) 4 o B ST 20

A. Student - 1234567 - astu001

Introduction

This report is written to describe and further explain the logic behind the CBR
project application that developed by the student. The application reflects on the
Case Base Reasoning also known as CBR that is frequently discussed in COMSCI
767 class. Main reason of developing this application for me as a student is to
gain understanding of why is CBR method used, what is CBR in software
development, and how to apply it.

What is CBR? The most popular definition mentioned by Riesbeck and Schank is:
“A case-based reasoner solves problems by using or adapting solutions to old
problems.” In other word, as described by the lecturer Dr Ian Watson, CBR is
considered as one of problem solving methodology that does not use any smart
specific technology but simply use old solution to similar problems that is stored
in the system and apply that to solve the new one. There are four major activities
that define a CBR: Retrieve old case that is similar to the new problem, Reuse the
solution to that old case, Revise the solution to match the new problem, if
required, and lastly Retain the new solution after it has been validated.

The application is built based upon the travel case base data, which has been
previously provided and what it does is recommend user by returning a set of
travel/ journey (from the given data) that similarly match the variables that user
selected as restriction. The CBR logic behind the application is using k-NN or k-
Nearest Neighbour algorithm. This algorithm is the most popular technology
used in CBR because in theory it is relatively easy to understand. The core
principle behind k-NN is comparing the similarity between the target problem
and the source case. In order to that, we need to come up and justify the local
similarity point for every variable that define the problem and compare them
with what is in the case base data. Moreover, calculating the sum of all local
similarity from each variables may not seems sufficient to distinguish global
similarity because in real life one aspect of problem is more important that the
others. For example, in terms of buying any product, price is obviously more
important than other aspects such as colour or country where the product is
made from. That is the reason why we also need to come up with weighting
factor for each variable and take that into account when calculating the overall
similarity point.

This report explains more in detail about the CBR logic (local and global
similarity point calculation) in relation to the travel recommender application in
chapter 1 and the overall design and implementation of the application in
chapter 2. Lastly a brief user manual is provided in chapter 3.

A. Student - 1234567 - astu001

I CBR logic behind the application

By looking at the sample data provided from the travel case-base excel file
below, we can see that there are 11 variables those can be used to calculate
similarity point starting from case name, journey code, and all the way down to
hotel name.

985

objects

case Journey985
JourneyCode: 985
HolidayType: Wandering,
Price: 1672
NumberOfPersons: 3

Region: Thuringia,
Transportation: Car,
Duration: 7

Season: December,
Accommodation: ThreeStars,
Hotel: Berghotel Friedrichroda, Thuringia.

The data provided are not all useful and the first goal here is to extract variables
those are comparable or at least meaningful and to exclude the ones that are
unnecessary or vague. Variables such as case and JourneyCode are obviously
redundant and only used perhaps as an index so we can confidently exclude
those out.

Other data such as Region and Hotel may be arguably useful to be included as
variables but the problem here is we do not have more information or at least a
justification that we can use as a comparison base. For example, we do not know
whether BlackForest region match with Harz or we also do not know if
Sporthotel in Erz Gebirge supposedly better than Aparthotel in Harz since the
two of them are rated as three stars accommodation.

Given the above situation, for the purpose of this application, we are going to use
only these variables for calculation: holiday type, price, number of persons,
transportation, duration, season and accommodation

A. Student - 1234567 - astu001

1.1 Holiday Type
There are 9 holiday types found in travel case-base file:

e Active
* Bathing
¢ C(City

¢ Education
* Language
* Recreation
e Skiing

* Wandering

In order to calculate the local similarity, I classified holiday types into 3
categories: active, education, and recreation. Active contains skiing; education
contains language; and recreation contains bathing, city, and wandering.

Using the above categories, I made up the local similarity metrics using
taxonomy or also called hierarchical tree. If input holiday type equals to
journey’s type then it will result in perfect score of 1. Moreover, if input holiday
type and journey type falls under one category, it will return default score of 0.5
(value depends on parameter in database called ‘TYPE_IN_ONE_CATEGORY’)

In addition, I also appoint holiday type as the most important variable and it is
used as a base to restrict the travel case base when it comes to the calculation.
For example, if user inputs education as holiday type, the logic will search
through and perform computation to entries which type is either education or
language. The rest of travel case will be ignored.

The above assumption comes from experience and observation: before people
going for travel, they always have something in mind what they are going to do,
what they want to achieve and purpose of their travel. Due to that observation,
holiday type then must always contain an input value from the user unlike the
rest of the variables.

Holiday Type
Education Active Recreation
Language Skiing Bathing Wandering City

A. Student - 1234567 - astu001

1.2 Price

Price is rather a complex variable because it has relation to some other variables
such as number of person and duration. A 3 days travel for 2 people at $500 is
considered more expensive that a week holiday for a family at $1000. However,
this issue will further be discussed at the adaptation process on chapter 1.8

Talk about price as an individual variable, there is always an assumption that
less is better! Given that assumption, it does not mean that less price is ALWAYS
better, there is also another assumption that must be taken into account: price
never lies, for example most people will question the authenticity of a holiday ad
that says a week holiday for two for the price of $50 and that is because it is too
cheap.

Due to that reason, the logic to calculate local similarity point of price is
constructed using the following rules:

e If journey price is within the range of 75% (value depends on parameter
in database called ‘MINIMUM_PERFECT_PRICE_RANGE’) to 100% of input
price, then the return score will be 1

e If journey price is within the range of 0 to 75% of input price, the result
will be generated using formula: difference(input price - journey price) /
(price range from 0 to 75% of input price)

e If journey price is within the range of 100% to 150% (value depends on
parameter in database called ‘MAXIMUM_PRICE_RANGE") of input price,
the result will be generated using formula: difference(journey price -
input price) / (price range from 100% to 150% of input price)

* Else, if journey price is outside the 150% range of unit price, it will
returns 0

1.3 Number of Person

Working out the local similarity point by comparing two numeric values is the
easiest. For the simplicity of the application, we can safely use the formula below
to get the result:

Similarity point = *range - difference between journey and input / *range

*range = default at 20 (value depends on parameter in database called
‘PERSONS_MAX’)

However, the equation above is not bullet proof. There might be a situation
where the distance between journey and input is greater than the range. At this
point it will return negative value which is a bias and outside the Euclidean
distance.

A. Student - 1234567 - astu001

.4 Transportation
There are 4 means of transportation recorded in the data file:

e (Car

* (Coach
* Plane
* Train

Local similarity point for this variable must be pre-defined and stored in a
decision table. The values are constructed based on assumption and they are
considered as asymmetric which means the role of input and output is
important, e.g. Sim(car as input, train as output) may not be equal to Sim(train as
input, car as output)

Below is the decision table constructed for transportation: (all the values depend
on parameters in database, e.g. TRANSPORT_CAR_TRAIN’ defines the similarity
point value of car as input and train as output)

1.5 Duration
Similar to number of persons, we can use the formula below to get the local
similarity point of the duration:

Similarity point = *range - difference between journey and input / *range

*range = default at 30 (value depends on parameter in database called
‘DURATION_MAX")

1.6 Season
The values are range from January to December. In order to easily calculate the
local similarity values,we need to do the following:

1. Map the month of the year to numeric value, e.g. January to 1, May to 5

2. Properly calculate the difference between input season and journey case
season, e.g. the gap between 3 (March) and 11 (November) should be 4
instead of 8.

Once numeric difference has been establish, we can safely use the common
formula to calculate similarity point from two numbers:

Similarity point = *range - difference between journey and input / *range

*range = default at 12 (value depends on parameter in database called
‘SEASON_RANGE’)

A. Student - 1234567 - astu001

1.7 Accommodation

Accommodation values are ranged from holiday flat to five star accommodations.
Given that values, we may assume that higher rated accommodation is always
better. So in order to calculate local similarity point of accommodation, following
rules are applied:

1. Map the rating to numeric value: holiday flat = 1; one star = 2, two star = 3
and so on.

2. If journey rating is greater than or equal to input then returns perfect
score of 1

3. Else get the return value by using formula: range - difference / range

1.8 Adaptation process

The adaptation process calculates similarity point from the combination of
multiple variables. In this application, the adaptation logic is trigger when user
inputs values for either the combination of price and duration, price and number
of persons, or both price, duration, and number of persons.

The logic is described as follows:

1. Ifinput duration contains value, set local similarity point of duration to 1

2. Update the journey price by formula: input duration / journey duration *
journey price

3. If input number of persons contains value, set local similarity point of
number of persons to 1

4. Update the journey price by formula: input num of persons / journey num
of persons * journey price

5. Calculate the final journey price by adding surcharge price of $100 (value
depends on parameter in database called ‘EXTRA_PRICE_COST’)

6. Get the local similarity point of updated price by applying rules described
in chapter 1.2

7. Sum local similarity points from price, duration, and number of persons.

1.9 Feature Weights

Weighting factor for each variables are constructed based on common sense
assumption and result of observation through system test running the
application. It is also based on other factors that are mentioned on the previous
chapters such as the importance of holiday type and adaptation process where
price is clearly more important than duration or number of persons.

Below is the weighting factors for each variable:

Holiday type WEIGHT_TYPE 5
Price WEIGHT_PRICE 3
Number of persons WEIGHT_PERSONS 1

.Student - 1234567 - astu001

Transportation WEIGHT_TRANSPORT 2
Duration WEIGHT_DURATION 1
Season WEIGHT_SEASON 2
Accommodation WEIGHT_ACCOMODATION | 1

A. Student - 1234567 - astu001

Il. Design and implementation of the application

The overall application is developed under ASP .Net 2.0 using C# and MS SQL
Server 2005 as the database. Most of the logic especially the k-NN algorithm is
written in SQL using procedures and functions. More details about the database
structure and methods will be described in chapter II.1. The application side is
only used to handle user inputs and display the result as a set of travel
recommendations. Application design and implementation will be described in
chapter II.2. Finally a brief user manual on how to install and operate the
application is described in chapter 1.3

1.1 SQL Database

I1.1.1 ER Diagram

tblJourneyType thIR esult
tblAccomodation PK e id
PK | rating
type_name type
description category price
A numPersons
region
transportation
duration
season
) accomodation
thlJourney hotel
PK |journey_id score
FK2 |type_id
price
numPersons
region thIParameter
transportation .
duration PK | param_id
season
) name
FK1 Lat;nlg value
ote comment

11.1.2 Table Definition

tbljJourney

Stores all journey data that has been processed from external file

10

A. Student - 1234567 - astu001

List of attributes:

* journey_id: int (PK)

* type_id: int (FK references tblJourneyType.type_id
* price: decimal(8,2)

* numPersons: int

* region: nvarchar(50)

* transportation: nvarchar(50)

* duration: int

* season: int

* rating: int (FK references tblAccomodation.rating)
* hotel: nvarchar(255)

Sample entry: 2, 8, 3066.00, 3, ‘Egypt’, ‘Plane’, 14, 4, 3, ‘Hotel White House’

tblJourneyType
Stores journey types with their categories
List of attributes:

* type_id: int (PK)
* type_name: nvarchar(50)
* category: int

See appendix for entries stored in tblJourneyType

tblAccomodation
Stores rating and its description
List of attributes:

* rating: int (PK)
* description: nvarchar(50)

See appendix for entries stored in tblAccomodation

tblParameter

Stores all parameters used to perform the calculation, purpose of having this
table is giving an ability to user to modify the value more easily.

List of attributes:

* param_id: int (PK)

* name: nvarchar(50)

* value: nvarchar(255)

* comment: nvarchar(255)

11

A. Student - 1234567 - astu001

See appendix for list of available parameters stored in tblParameter.

tblResult

Stores travel result and global similarity point after computation has finished.
May also be considered as a View and very similar to tblJourney. Data from this
table is sent back to main application for display purpose.

List of attributes:

* type: nvarchar(50)

* price: decimal(8,2)

* numPersons: int

* region: nvarchar(50)

* transportation: nvarchar(50)
* duration: int

* season: int

* accommodation: nvarchar(50)
* hotel: nvarchar(50)

* score: decimal(5,2)

Sample entry: ‘Bathing’, 2498.00, 2, ‘Egypt’, ‘Plane’, 14, 4 “TwoStars’, ‘Hotel White
House’, 7.05

11.1.3 Procedures and Functions

sp_tblResult_GenerateResult

This is the main procedure that gets called and takes input variables such as
holiday type, price, and season from the application.

It populates data to tblResult, calls fn_CalculateOverallScore function, and return
the result set back to main application.

fn_CalculateOverallScore

This function is called by sp_tblResult_GenerateResult. General purpose of this
function is to sum up local similarity point that are calculated by other sub-
functions, weight them, and return the overall similarity point for each case.

fn_CalculateType

Called by fn_CalculateOverallScore to compute local similarity point between
input and case holiday type. Main logic of this function is described previously on
chapter 1.1

12

A. Student - 1234567 - astu001

fn_CalculatePrice

Called by fn_CalculateOverallScore to compute local similarity point between
input and case price. Main logic of this function is described previously on
chapter 1.2

fn_CalculateNumOfPersons

Called by fn_CalculateOverallScore to compute local similarity point between
input and case number of persons. Main logic of this function is described
previously on chapter 1.3

fn_CalculateTransportation

Called by fn_CalculateOverallScore to compute local similarity point between
input and case transportation. Main logic of this function is described previously
on chapter .4

fn_CalculateDuration

Called by fn_CalculateOverallScore to compute local similarity point between
input and case duration. Main logic of this function is described previously on
chapter 1.5

fn_CalculateSeason

Called by fn_CalculateOverallScore to compute local similarity point between
input and case accommodation. Main logic of this function is described
previously on chapter 1.6

fn_CalculateAccomodation

Called by fn_CalculateOverallScore to compute local similarity point between
input and case accommodation. Main logic of this function is described
previously on chapter 1.7

fn_CalculatePriceDurationPersons

Called by fn_CalculateOverallScore when user input the combination of price and
duration, price and num of persons, or both price, duration, and num of persons
as part of the adaptation process. The logic of this function is described in
chapter 1.8

1.2 Design and Implementation of application
The main application contains four separate projects as described below:

1.2.1 CBRSetup
Setup project provided as a template by Visual Studio 2005. It generates an
installation file for the main application.

13

A. Student - 1234567 - astu001

1.2.2 DAL

Also called the Data Access Layer, this project creates connection to the database.
Static method GenerateResult DataSet() in tblResult class is used by the
application to call sp_tblResult_GenerateResult procedure in SQL.

Moreover, as a note, DAL project is automatically generated using a 3rd party
application called Crest Development Toolkit that was developed by my
development team where I used to work for Crest Technologies Ltd.

1.2.3 FrontEnd
This project is the GUI layer. There are 2 WinForms used in this application

* Main Form: handle user inputs and perform validation to those inputs

=~

(o Travel CBR =)o

Travel Parameters:

Holiday Type: | TypesOptions |E

Price [$):

Duration:

MNum of Persons:

Season: ’SeasonOptions ‘:]
Transportation: ’TransportUptions ‘q
Accomodation: lAccomodationOptions ‘ll

[Recommend Me!][Clear All]

14

A. Student - 1234567 - astu001

Result Form: display recommended journeys returned by the database

o Travel Result mEx]
Type Price g:rsons Region Transportation | Duration| Season Accomodation | Hotel Score
Skiing $459 3 Allgaeu Car 8 December HolidayFlat H.Flat &lpina 10.66
Skiing $424 4| Allgaeu Car 7 | January HolidayFlat H.Flat &lpina 10.32
Skiing $449 2| Bavaria Car 7 | January HolidayFlat H.Flat Wildgatter 10.32
Skiing $530 4| Allgaeu Car 7 December HolidayFlat H.Flat Nadenberg 103
Skiing $324 3| Harz Car 7 | December HolidayFlat H.Flat Teichtal 10.24
Skiing $499 B Harz Car 7 | February HolidayFlat H.Flat Teichtal 10
Skiing $464 3| BlackForest Car 7 | February HolidayFlat H.Flat Schwiezer Hof 10
Skiing $389 4| Thuringia Car 7 | February HolidayFlat H.Flat Schmeheim 10
Skiing $483 4 | Thuringia Car 7 | February HolidayFlat H.Flat Ruppertus 10
Skiing $478 2| Poland Car 7 | February TwoStars Hotel Karolinka 10

- aran Al - . ~ =l TR) e . A i
< m >

1.2.4 Shared
This project acts as the logic layer that connects the DAL and FrontEnd. It
contains three classes as described below:

* Enums
Static class that represents enumeration, e.g. January = 1, OneStar
accommodation = 2
* Journey
This class represents journey object and its properties.
* Model
Static class with one public method GenerateResult() that takes input
variables passed in by the FrontEnd and calls
DAL.GenerateResult_DataSet(). A dataset returned is processed as a list of
journey objects and passed back to FrontEnd to be displayed on result
form
1.3 User Manual
Installation

1. Double click on CBRSetup.msi file

15

A. Student - 1234567 - astu001

ﬁ' CBRSetup

Welcome to the CBRSetup Setup Wizard

The installer will guide you through the steps required to install CERS etup on your computer.

WARNING: This computer program is protected by copyright law and interational treaties.
Unauthorized duplication or distribution of this program, or any portion of it, may result in severe civil
or criminal penalties, and will be prosecuted to the mazimum extent possible under the law.

Follow the installation steps

The application will wusually be

installed

Files\Denny Riadi\CBRSetup\FrontEnd.exe’

Open MS SQL Server 2005/ 2008 and create new database

any other name as shown below

under:

‘C:\Program

called CBR or

4= Microsoft SQL Server Management Studio

M=%

File Edit Vew Tools Window Community Help

i 2l New Query | [Ty | B3 iy £y | 3

[(| I

Object Explarer > 2 X s v X
Connect~ | & = 9 2
—— | 33 I I 3 3
= [§ DENNY (SQL Server 9.0.1406 - |
= [Databases L]
[System Databases CBR
[Database Snapshots DENNY\Databases\CER 8 Item(s)
U mMs
| | Performalink Name
@ [J test [Database Diagrams
- :‘:’ u ZQYA A Tables
\f\ g Security . E3 views
[Server Objects
i - [Synonyms
[Replication - -
i [Programmability
[Management .)
[Motification Services £ Service Broker
[5QL Server Agent {Agent xf E Storage
| Security

Ready

Restore the CBR database with the provided backup file ‘CBR.bak’

16

A. Student - 1234567 - astu001

6. Once application and database have successfully setup, open the
application’s configuration file located on ‘C:\Program Files\Denny
Riadi\CBRSetup\FrontEnd.exe.config’ using any text editor or Visual
Studio

7. Look at the following lines in the config file and change the Data Source
parameter to match your server name and Initial Catalog to match your
database name created in step 4

<add key="DataAccessLayerDSN" value="Integrated
Security=SSPI;Persist Security Info=True;Data
Source=DENNY; Initial Catalog=CBR;" />

<add key="ExceptionTrackerDSN" value="Integrated

Security=SSPI;Persist Security Info=True;Data
Source=DENNY; Initial Catalog=CBR;" />

8. Save the updated config file.

9. Run the executable file and main form will appear on your screen.

Running the application

1. The application has straightforward process. First of all, user needs to fill
the input parameters. Example is shown below:

¥

a- Travel CBR =) O
Travel Parameters:
Holiday Type: kWandering X|
Price ($):
Duration: |5

Num of Persons:

Season: | February :|
Transportation: kTransportDptions i|
Accomodation: :DneStal Z|
[Recommend Me!][Clear &ll]

2. User clicks on ‘Recommend Me!" button and it will bring up the result
form

17

A. Student - 1234567 - astu001

3. Alternatively, user can click on ‘Clear All’ button to reset the parameters.

4. In Result form, user can click on one of the column header to sort the list
based on the column.

M

Type ‘ Price ‘ E:rlzons Region ‘ Transportation Duration‘ Season ‘ Accomodation ‘ Hotel ‘ Score ‘:-
Recreation $484 2 | Harz Car 7 | August HolidayFlat H.Flat Harz. 5
Recreation $1728 2 Bavaria Train 14 | July HolidayFlat H.Flat Upper Bavaria. 5 =
Recreation $918 2 | ErzGebirge Car 7 May ThreeStars Sporthotel 5

' fia 145 . HoldyyFlat HFlatUp a 5 L
Recreation $398 2| NorthSea Car 7 |June OneStar Pension Murra 5
Recreation $478 2 Harz Car 7 May TwoStars Hotel Brockenscheideck |5
Recreation $1888 2|Harz Car 7 |June FiveStars Hotel Maritim 5
Recreation $3228 2 NorthSea Car 14 | May TwoStars Hotel Silbermoeve 5
Recreation $2188 2| ErzGebirge Car 14 | September FouwStars Hotel Panorama 5
Recreation $1868 2 Harz Car 14 | September ThreeStars Hotel Waldfrieden 5
— pop . — T — v = [v]
< fm 1[2]

18

A. Student - 1234567 - astu001

Acknowledgements

The application is partly built using 34 party software called Crest Development
Toolkit. Credit and thank you goes to Crest Technologies Ltd for developing the
tool.

References

Aamodt, A, Plaza, E. Case-based reasoning: foundational issues methodological
variations, and system approaches. Al Communications 7 (1994) 39-59

Riesbeck, C.K, Schank, R. Inside Case-based Reasoning. Erlbaum. Northvale, NJ.
1989.

Watson, 1. Applying Case-based Reasoning: Techniques for Enterprise Systems.
Morgan Kaufmann, CA, USA. 1997

Watson, [. Case-based reasoning is a methodology not a technology. Knowledge-
Based Systems 12 (1999) 303-308

19

A. Student - 1234567 - astu001

Appendix
tblAccomodation
[Rating [Descripion |
1 HolidayFlat
2 OneStar
3 TwoStars
4 ThreeStars
5 FourStars
6 FiveStars
tblJourneyType
[ID [TypeName [Category |
1 Education 1
2 City 2
3 Skiing 3
4 Recreation 2
5 Wandering 2
6 Language 1
7 Active 3
8 Bathing 2
tblParameter

1 WEIGHT_TYPE 5 Weight of holiday type

2 WEIGHT_PRICE 3 Weight of price

3 WEIGHT _DURATION 1 Weight of duration

4 WEIGHT_PERSONS 1 Weight of number of
persons

5 WEIGHT_SEASON 2 Weight of season

6 WEIGHT_TRANSPORT 2 Weight of transportation

7 WEIGHT_ACCOMODATION 1 Weight of accomodation

8 SEASON_RANGE 12 Season range from Jan to
Dec

9 DURATION_MAX 30 Duration range

10 | PERSONS_MAX 20 Number of persons range

11 | TRANSPORT _TRAIN_PLANE 0.33 train as input, plane as
output

12 | TRANSPORT _TRAIN_CAR 0.33 train as input, car as output

13 | TRANSPORT _TRAIN_COACH 0.66 train as input, coach as
output

14 | TRANSPORT _PLANE _TRAIN 0 plane as input, train as
output

15 | TRANSPORT PLANE_CAR 0 plane as input, car as output

16 | TRANSPORT PLANE _COACH 0 plane as input, coach as

20

A. Student - 1234567 - astu001

output

17 | TRANSPORT _CAR_TRAIN 0.66 car as input, train as output

18 | TRANSPORT_CAR_PLANE 0.33 car as input, plane as output

19 | TRANSPORT_CAR_COACH 0.66 car as input, coach as
output

20 | TRANSPORT_COACH_TRAIN 0.66 coach as input, train as
output

21 | TRANSPORT_COACH_PLANE 0.33 coach as input, plane as
output

22 | TRANSPORT_COACH_CAR 0.33 coach as input, car as
output

23 | MINIMUM_PERFECT_PRICE_RANGE | 0.75 minimum percentage price
range to get perfect score

24 | EXTRA_PRICE_COST 100.00 | surcharge cost, part of
adaptation process

25 | MAXIMUM_PRICE_RANGE 1.5 max price range, value
above this range will return
0

26 | TYPE_IN ONE_CATEGORY 0.5 local similarity point when
input and journey holiday
type is in same category

27 | RESULT_SET 20 number of recommendation

returned

21

