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Descriptive Knowledge in Science

We can divide descriptive knowledge in the sciences into three
broad categories:

• Taxonomic knowledge, which defines classes of entities and
organizes them in a hierarchy;

• Qualitative laws, which state generalizations about classes or
about relations among them; and

• Quantitative laws, which specify numeric equations that relate
attributes/variables of these classes.

Numeric laws always occur in a qualitative context, which in turn
depends on a taxonomy, even if not stated explicitly.

Different processes underlie discovery of these knowledge types.



Qualitative Descriptive Laws

A scientific law states some regularity that occurs among
instances of categories and/or attributes.

A qualitative law takes the form of some symbolic relation or
rule, such as:

• Some planets follow retrograde trajectories.
• Zooplantkon feed on phytoplankton.
• Acids react with alkalis to form salts.
• Chemicals with certain features produce cancer.
• American families include two parents and their children.

These qualitative laws describe recurring relationships, but they
do not explain them.



Qualitative Laws About Stars



Finding Qualitative Laws

Statement of the task:

• Given: Qualitative data about objects or events that occur in
the world.

• Find: General relations that hold among thee classes of items
that predict future behavior.

Historical examples:

• Qualitative motions of stars through the night and year

• Recurring reactions between chemicals and chemical groups

• Predator/grazing relations among animals and plants

• Regularities in observed tracks of elementary particles



The RL System

One system of this sort – Lee et al.’s RL (1998) – adapts rule
induction to find qualitative relations.

Each rule states that, if certain conditions hold for an entity or
situation, then the class variable has a certain value.

As input, RL takes a classified training data and details about:

• a hierarchy over
attributes’ values

• constraints among
properties in rules

• min. rule accuracy

• max. rule properties



Applications of RL

As an example, consider the discovery of law-like relations that
link symptoms to disease.

The data are patient findings and the target is a set of rules that,
together, predict ailments (e.g., lower respiratory syndrome).

Each such rule has a numeric
measure of support in the data.

RL has been applied to:

• classifying respiratory
syndromes

• identifying carcinogens
• predicting when crystals

will form



The Glauber System

Glauber (Langley et al., 1987) rediscovers qualitative regularities
from the history of chemistry; it takes as input:

• Qualitative features of substances, such as their taste;

• Chemical reactions in which the substances participate.

As output, the system produces two linked forms of knowledge:

• Classes of substances that have similar properties

• Qualitative laws that summarize relations among classes

Thus, Glauber integrates, in a primitive way, taxonomy formation
and law discovery.



Glauber on Acids, Aklalis, and Salts

Initial state:
      (reacts in {HCl NaOH} out {NaCL})
      (reacts in {HCl KOH} out {KCl})
      (reacts in {HNO3 NaOH} out {NaNO3})
      (reacts in {HNO3 KOH} out {KNO3}) …
      (has object {HCl} taste {sour})
      (has object {NaOH} taste {bitter})
      (has object {NaCl} taste {salty}) …
Final state:
      salt: {NaCl, KCl, …}  acid: {HCl, HNO3 , …}  …
      ∀ salt (has object {salt} taste {salty})
      ∀ acid (has object {acid} taste {sour})
      ∀ alkali (has object {alkali} taste {bitter})
      ∀ acid ∀ alkali ∃ salt (reacts in {acid alkali} out {salt})



Additional Work on Qualitative Discovery

Other systems for discovering qualitative laws include:

• AM (Lenat, 1977) in number theory
• Meta-Dendral (Buchanan & Mitchell, 1978) in org. chemistry
• IDS (Nordhausen & Langley, 1993) in physics
• PROGOL (Muggleton et al., 1996, 1998) in biochemistry
• HR (Colton, 1997) in various branches of mathematics

Much of this work has aimed at novel discoveries rather than at
reconstruction of historical ones.

There has been substantial work on qualitative discovery in the
field of molecular biology.



Quantitative Descriptive Laws

A quantitative law takes the form of some numeric relationship,
typically stated as an equation.

Quantitative scientific laws fall into two broad categories:

Any quantitative law always occurs within the context of some
qualitative law, even if the former is not stated explicitly.

• Algebraic equations, such as Coulomb’s law (F = kQ1Q2/D
2)

and the ideal gas law (PV = aNT + bN); and

• Differential equations that describe dynamic behavior, such
as population growth over time (dP/dt = kP).



What is a Causal Relation?

We can define causality in abstract but unambiguous terms; we
will say that variable X causally influences variable Y if:

• a change in X’s value results in a change to Y’s value

• provided that other variables are held constant

Note that this definition of causality does not mention:

• that X is the only causal influence on Y

• the directionality of this influence

• the functional form of the causal relation

Many quantitative scientific laws describe causal relationships,
but not all have this character.



Discovering Algebraic Laws

Statement of the task:

• Given: Quantitative measurements about objects or events
in the world.

• Find: Numeric relations that hold among variables that
describe these items and that predict future behavior.

Historical examples:

• Kepler’s three laws of planetary motion

• Archimedes’ principle of displacement in water

• Black’s law relating specific heat, mass, and temperature

• Proust’s and Gay-Lussac’s laws of definite proportions



Regression Equations

Perhaps the most basic type of numeric law involves regression
equations, which include:

• univariate linear equations (e.g., D = a × I + b)
• complex univariate equations (e.g., D = a × I 2 + b × I + c)
• multivariate linear equations (D = a × I1 + b × I2 + … j × IN + k)

These are all designed to model static situations; we will delay
discussion of dynamic situations until later.

Not all regression equations have a causal interpretation, even
though it is tempting to interpret them this way.



Visualizing Regression Equations

We can easily visualize the relationship D = a × I + b specified
in a univariate linear model.

In this graph, a is the slope of the line and b is the intercept;
either parameter may be positive or negative.



Fitting Linear Equations to Data

There exist well-established methods for determining the best
parameters in a linear equation for a given data set.

However, even multivariate linear equations are very restrictive
in the kinds of laws they can specify.
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•
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The standard procedure involves 
minimizing the squared error 
between the observed and the 
predicted dependent values.



Inducing Regression Trees

One extension to linear regression involves adapting methods for
decision-tree induction.

For instance, a regression tree has the structure of a decision tree
but stores multivariate linear equations at terminal nodes.

These comprise a set of set of complementary numeric laws that
hold under different conditions.

Quinlan’s (2001) Cubist system embeds linear regression within
decision-tree induction to construct such laws.

z = 3x + 2y

z = 4x + 5y

z = 2x + 7y

A regression tree partitions the instance
space into mutually exclusive regions, 
with a different linear equation used to
predict the dependent variable in each. 



Complex Multivariate Models

However, even regression trees are quite different from many
quantitative relations in the sciences.

These laws often have more complicated multivariate forms:

• The ideal gas law  /  V = (aNT + bN) / P

• Coulomb’s law / F = kQ1Q2/D
2

• Black’s law  /  Tf  = (c1m1T1 + c2m2T2 ) / (c1m1 + c2m2 )

• Snell’s law of refraction / sin r  =  c2 / (c2 sin i )

Many of these were discovered through systematic experiments
that varied one attribute at a time.



The Bacon System

Bacon (Langley, 1981) rediscovers quantitative laws of this type
from the history of physics; it takes as input:

• A set of dependent and independent variables
• Measurements from a set of controlled ‘experiments’
• Heuristics to guide its search for candidate laws

The system finds simple laws that relate one dependent variable
to one independent variable.

Bacon’s heuristics are stated as symbolic rules that specify the
conditions for defining new terms.

For instance, if X decreases with Y, then define a term Z = X/Y.



Bacon on Kepler’s Third Law

D

A
B
C

d/pp

16.69

1.77
3.57
7.16

1.48

3.20
2.43
1.96

d2/p

36.46

18.15
21.04
27.40

d3/p2

53.89

58.15
51.06
53.61

moon d

24.67

5.67
8.67

14.00

Bacon carries out heuristic search, through a space of numeric
terms, looking for constants and linear relations.

This example shows the system’s progression from primitive
variables (distance and period of Jupiter’s moons) to a complex
term that has a nearly constant value.



Rediscovery of the Ideal Gas Law

Bacon rediscovers the ideal gas law, PV =  aNT + bN, in three
stages, each at a different level of description.

PV =  c1 PV =  c2 PV =  c3 PV =  c4 PV =  c5 PV =  c6 PV =  c7 PV =  c8 PV =  c9

c/N = d1 c/N = d2 c/N = d3

d = aT + b

Parameters for laws at one level become dependent variables in
laws at the next level, enabling discovery of complex relations.



Some Laws Discovered by Bacon

Basic numeric relations:

• Ideal gas law PV =  aNT + bN
• Kepler’s third law D3 = [(A – k) / t]2 = j
• Coulomb’s law FD2 / Q1Q2 = c
• Ohm’s law TD2 /  (LI – rI) = r

Relations with intrinsic properties:

• Snell’s law of refraction sin I / sin R  = n1 / n2

• Archimedes’ law C  = V  +  i
• Momentum conservation m1V1 =  m2V2

• Black’s specific heat law c1m1T1 + c2m2T2 = (c1m1+ c2m2 ) Tf



The RF6 Algorithm

1. Creates a multilayer neural network that links predictive with
predicted variables using additive and product units.

2. Invokes the BPQ algorithm to search through the weight space
defined by this network.

3. Transforms the resulting network into a polynomial equation
of the form  y = Σ ci Π x j

d ij  .

They have shown this approach can discover an impressive class
of numeric equations from noisy data.

Their results counter the common assumption that neural network
methods produce uninterpretable structures.

Saito and Nakano (2000) describe RF6, a  discovery system that:



Discovering Dynamic Laws

Statement of the task:

• Given: Quantitative measurements about objects or events as
they change over time.

• Find: Numeric equations that describe the variables’ dynamic
behavior and that predict future trajectories.

Examples of dynamic laws include:

• Population change

• Predator-prey ecosystems

• Power generation and use

• Biochemical kinetics



Difference Equations

The simplest form of dynamic quantitative model involves a
single difference equation or recurrence equation.

This takes a form similar to an algebraic equation, but specifies
some attribute’s change as the dependent variable.

For example, consider the simple difference equation:

                    x(t +1) – x(t) = a ,

which describes a system with a single variable, x, whose value
increases by the constant value a on each time step.

Difference equations assume that time passes in fixed step sizes,
which makes them easy to interpret.



Visualizing Difference Equations

We can visualize the relationship x(t +1) – x(t) = a by plotting
how the variable x changes over time.

In this graph, a is the slope of the line and b is the intercept,
which is determined by the initial value of x.
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Ordinary Differential Equations

A closely related form of dynamic quantitative model involves an
ordinary differential equation.

This takes a form similar to a difference equation, but specifies
an attribute’s derivative as the dependent variable.

The analog of the earlier difference equation would be:

                          dx/dt = a ,

which describes a system with a single variable, x, whose value
increases at the constant rate a.

Differential equations assume continuous time, which can lead to
different results in regions that involve high rates of change.



Solving Difference/Differential Equations

To use a difference/differential equation for prediction, we must
solve for the dependent variable as a function of time.

Some equations can be solved analytically using mathematical
techniques, but many require simulation.

• Because they assume discrete time, simulation of difference     
   equations is straightforward.

• Because they assume continuous time (and space), simulation  
   of differential equations is more challenging.

The field of numerical analysis emphasizes the latter, selecting
step size and minimizing round-off error.

We will assume that such techniques are given and focus on their
use in simulating dynamic systems.



The LAGRAMGE System

LAGRAMGE is a discovery program that finds quantitative laws
that  describe dynamical systems; it takes as input:

• time series observations for a set of variables

• an indication of which variables are dependent

• a context-free grammar that specifies acceptable equations

The system uses depth-limited search to induce one algebraic or
differential equation for each dependent variable.

Estimating parameters involves simulating candidate structures.

Todorovski and Dzeroski (1997) have applied LAGRAMGE to
ecosystem dynamics, hydrodynamics, and other areas.



Temporal Laws of Ecological Behavior
(Todorovski & Dzeroski, 1997)

Input: time          phyt          zoo           phosp         temp

time 2       phyt 2       zoo 2        phosp 2       temp 2
time 1       phyt 1       zoo 1        phosp 1       temp 1

time m      phyt m       zoo m       phosp m      temp m
.           .           .            .             ..           .           .            .             .

    phosp 
c2 + phospOutput:       phyt  = c1 • phyt •                        –  c3 • phyt

•

Input:          a context-free grammar of domain constraints



Additional Work on Numeric Discovery

Other systems for discovering numeric laws include:

• ABACUS (Falkenhainer, 1985) and ARC (Moulet, 1992)
• Fahrenheit (Zytkow, Zhu, & Hussam, 1990)
• COPER (Kokar, 1986) and E* (Schaffer, 1990)
• IDS (Nordhausen & Langley, 1990)
• Hume (Gordon & Sleeman, 1992)
• DST (Murata, Mizutani, & Shimura, 1994)
• SSF (Washio & Motoda, 1997)
• Genetic programming (Koza, 2001)

These rely on different methods but share a concern with finding
explicit mathematical laws from data.



Summary Remarks

There has been a long history of work on computational scientific
discovery of descriptive laws, including:

• Qualitative relations stated as rules or logical statements

• Quantitative laws stated as numeric equations

Such systems produce an important type of knowledge, but they:

• can lead to shallow interpretations of data;

• typically avoid statements of causality or process;

• make little contact with a discipline’s theoretical content

In future lectures, we will discuss systems that move beyond
description to provide explanations.


