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Four Spurious Effects

Ceiling Effect - Holte’s 1R example

Data
set

IR LA LY MU SE SO VO VI

C4 93.8 77.2 77.5 100 97.7 97.5 95.6 89.4

1R 95.9 87.4 77.3 98.4 95 87 95.2 87.9

Max 95.9 87.4 77.5 100 97.7 97.5 95.6 89.4
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Other 3 Effects
Regression Effects - if chance plays a role, 

then always run the same problems

Order Effects - counter balancing or at least a 
few orders

Sampling Bias - how data was collected is 
very important - the independent variable 
can change the location of the distribution 
but not its shape 3



Experiments with Standard 
Deviation
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Types of Error
Type I error, also known as an "error of the first kind", an α 

error, or a "false positive": the error of rejecting a null 
hypothesis when it is actually true.  
(we thought they were statistically significantly different and they 

were the same)

Type II error, also known as an "error of the second kind", a 
β error, or a "false negative": the error of failing to reject 
a null hypothesis when it is in fact not true. 
(we thought they were the same and they were statistically 

significantly different)
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Statistical Questions in Machine 
Learning
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What is the question?

•  Classifying Unseen Examples?
•  Learning New Classifiers in Future?
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Examples

•  Driving a Car?
•  Learning a New Car Driver in Future?
•  Teach someone to Drive a car?
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Question Assumptions

We assume that all datapoints (examples) are 
drawn independently from a fixed 
probability distribution defined by the 
particular problem.

Independently?

This is almost never the case!!!
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Comparison of Two Classifiers ���
(with lots of datasets)

•  Wilcoxon Signed-Ranks Test
– Non-parametric alternative to the paired t-test
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Notation
•  di - the difference between the performance scores of the 

two classifiers on i-th out of N data sets. 

•  The differences are ranked according to their absolute 
values; average ranks are assigned in case of ties. 

•  Let R+ be the sum of ranks for the data sets on which the 
second algorithm outperformed the first, and R− the sum 
of ranks for the opposite. 

•  Ranks of di = 0 are split evenly among the sums; if there is 
an odd number of them, one is ignored:
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Formulas

R+ = rank(di )+
1
2di>0

∑ rank(di )
di=0
∑

R− = rank(di )+
1
2di<0

∑ rank(di )
di=0
∑
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Formulas
•  Let T be the smaller of the sums, T = min(R+,R−). 
•  Most books on general statistics include a table of exact 

critical values for T for N up to 25 (or sometimes more). 
•  For a larger number of data sets, the statistics

•  is distributed approximately normally. 
•  With α = 0.05, the null-hypothesis can be rejected if z is 

smaller than −1.96.

z =
T − 1

4
N(N +1)

1
24

N(N +1)(2N +1)
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Why Wilcoxon is better than 
Paired T-test

•  It assumes commensurability of differences, but only 
qualitatively: greater differences still count more, which is 
probably desired, but the absolute magnitudes are ignored. 

•  From the statistical point of view, the test is safer since it 
does not assume normal distributions. 

•  Also, the outliers (exceptionally good/bad performances on 
a few data sets) have less effect on the Wilcoxon than on 
the t-test.
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Wilcoxon Usage Tips
•  The Wilcoxon test assumes continuous differences di, 

therefore they should not be rounded to, say, one or two 
decimals since this would decrease the power of the test 
due to a high number of ties.

•  When the assumptions of the paired t-test are met, the 
Wilcoxon signed-ranks test is less powerful than the paired 
t-test. 

•  On the other hand, when the assumptions are violated, the 
Wilcoxon test can be even more powerful than the t-test.
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Presentation of Results

•  A popular way to compare the overall 
performances of classifiers is to count the 
number of data sets on which an algorithm 
is the overall winner. 

•  When multiple algorithms are compared, 
pairwise comparisons are sometimes 
organized in a matrix.
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Experiments with Pairwise 
Combination Chart
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Comparing Wins and Losses
•  Since tied matches support the null-hypothesis we should not discount them 

but split them evenly between the two classifiers; if there is an odd number of 
them, we again ignore one.

•  Some authors prefer to count only the significant wins and losses, where the 
significance is determined using a statistical test on each data set, for instance 
Dietterich’s 5x2cv.  The reasoning behind this practice is that “some wins and 
losses are random and these should not count”. 

•  This would be a valid argument if statistical tests could distinguish between 
the random and non-random differences.  However, statistical tests only 
measure the improbability of the obtained experimental result if the null 
hypothesis was correct, which is not even the (im)probability of the null-
hypothesis.
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Comparing Multiple Classifiers ���
(with lots of datasets)

•  The Friedman test (Friedman, 1937, 1940) 
is a non-parametric equivalent of the 
repeated-measures ANOVA. 

•  It ranks the algorithms for each data set 
separately, the best performing algorithm 
getting the rank of 1, the second best rank 
2. . . . 

•  In case of ties, average ranks are assigned.
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Friedman test statistic

•  Let rj
i be the rank of the j-th of k algorithms 

on the i-th of N data sets. 

•  The Friedman test compares the average 
ranks of algorithms, Rj = (1/N) Σirj

i
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The statistic
•  Under the null-hypothesis, which states that all the 

algorithms are equivalent and so their ranks Rj should be 
equal, the Friedman statistic

•  is distributed according to χ2
F with k−1 degrees of 

freedom, when N and k are big enough (as a rule of a 
thumb, N > 10 and k > 5).

•  For a smaller number of algorithms and data sets, exact 
critical values have been computed (Zar, 1998; Sheskin, 
2000).

ΧF
2 =

12N
k(k +1)

Rj
2 −

k(k +1)2

4j
∑
$

%
&
&

'

(
)
)
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The Iman-Davenport T2 variant 
of the Friedman test statistic

•  Iman and Davenport (1980) showed that Friedman’s χ2
F is 

undesirably conservative and derived a better statistic

•  which is distributed according to the F-distribution with k
−1 and (k−1)(N−1) degrees of freedom.

•  The table of critical values can be found in any statistical 
book.

FF =
(N −1)ΧF

2

N(k −1)− XF
2
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Nemenyi test
•  If the null-hypothesis is rejected, we can proceed with a 

post-hoc test.  The Nemenyi test (Nemenyi,1963) is similar 
to the Tukey test for ANOVA and is used when all 
classifiers are compared to each other. 

•  The performance of two classifiers is significantly different 
if the corresponding average ranks differ by at least the 
critical difference

•  where critical values qa are based on the Studentized range 
statistic divided by √2 .

CD = qα
k(k +1)
6N
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Holm Test
•  We will denote the ordered p values by p1, p2, ..., so that p1 ≤ p2 ≤ . . .  

pk−1.  The simplest such methods are due to Holm (1979) and 
Hochberg (1988). 

•  They both compare each pi with α/(k−i), but differ in the order of the 
tests.

•  Holm’s step-down procedure starts with the most significant p value. 

•  If p1 is below α/(k−1), the corresponding hypothesis is rejected and we 
are allowed to compare p2 with α/(k−2).  If the second hypothesis is 
rejected, the test proceeds with the third, and so on. 

•  As soon as a certain null hypothesis cannot be rejected, all the 
remaining hypotheses are retained as well. 24



Critical Difference Graph
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Experiments with Learning 
Curves
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Experiments with Difference in 
Performance Graph
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Summary

What questions are we interested in asking?

Wilcoxon and Friedmans Test

Problems to watch out for in experimental design

Real cause of overfitting.
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Questions you should be able to 
answer?

•  What is the difference between type I and 
type II error?

•  Which of these do we worry about the most 
and why?

•  What is the main problem with a paired t-
test?
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