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Natural Inspiration 
The name Ant Colony Optimization was chosen to reflect its 

original inspiration: the foraging behavior of some ant species. !
!
It was inspired by the double-bridge experiment performed by 

Jean-Louis Deneubourg et al.!
!
Ants are able to find the shortest path to a food source by 

collectively exploiting pheromones they deposit on the ground 
while moving. !

!
ACO now includes many components that are no longer related to 

real ants!
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The Double-Bridge Experiment 

a nest of a colony of Argentine ants is 
connected to a food source by two bridges. !

!
The ants can reach the food source and get 

back to the nest using any of the two bridges.!
!
The goal of the experiment is to observe the 

resulting behavior of the colony. !
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Double Bridges 
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Bridges with the Same Length 
if the two bridges have the same length, the ants tend to 

converge towards the use of one of the two bridges. !
!
If the experiment is repeated, each of the two bridges is 

used in about 50% of the cases. !
!

while moving, ants deposit pheromone on the ground;  !
!
whenever they must choose which path to follow, their choice 

is biased by pheromone: !
!
the higher the pheromone concentration found on a particular 

path, the higher is the probability to follow that path.!
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Ant Behaviour         aaaaaaa 
How the ants converge towards the use of a single bridge?!

At the start the ants explore the surroundings of the nest. !
!
When they arrive at the decision point, they choose probabilistically biased on 

the pheromone they sense on the two bridges. !
!
Initially, ants choose one of the two bridges with 50% probability - no 

pheromone yet. !
!
after some time, because of random fluctuations, one bridge has a higher 

concentration of pheromone and attracts more ants. !
!
This in turn increases the pheromone level on that bridge, making it more 

attractive. !
!
It is this autocatalytic mechanism that makes the whole colony converge 

towards the use of the same bridge.!
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The Short Bridge   aaaaa 
Experiment          a 

If one of the bridges is significantly shorter, a second mechanism 
plays an important role: !

!
ants that randomly choose the shorter bridge are the first to reach the 

food source. !
!
When these ants, while moving back to the nest, encounter the 

decision point 2, !
they sense a higher pheromone on the shorter bridge, !
they chose that bridge with higher probability and once again it receives 

additional pheromone. !

!
This fact increases the probability that further ants select it rather 

than the long one.!
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Model for Short Bridge 
Goss et al. (1989) developed a model of the observed behavior:!

assuming that at a given moment in time m1 ants have used the first 
bridge and m2 the second one,!

!
the probability for an ant to choose the first bridge is:!
!
!
!
where parameters k and h are to be fitted to the  experimental data---

obviously, p2 = 1 - p1. !
!
Monte Carlo simulations showed a very good fit for k≈20 and h≈2  

(Goss et al. 1989).!
!
It is this equation that inspired the equation used in ant system, the 

first ACO algorithm. 

€ 

p1 =
(m1 + k)h

(m1 + k)h + (m2 + k)h
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Monte Carlo 
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Monte Carlo Pattern 
No single Monte Carlo method;  
 
large and widely-used class of approaches.  
 
approaches tend to follow a particular pattern: 

Define a domain of possible inputs. 
 
Generate inputs randomly from the domain. 
 
Perform a deterministic computation using the inputs. 
 
Aggregate the results of the individual computations into the final 

result. 
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Monte Carlo Example 
Approximate the value of π using a Monte Carlo method:  
 

Draw a square, inscribe a circle within it.  
The ratio of the area of an inscribed circle to that of the surrounding 

square is π/4.  
 

Uniformly scatter some objects of uniform size throughout the square.  
 
The objects should fall in the areas in approximately the same ratio.  
 
Counting the number of objects in the circle and dividing by the total 

number of objects in the square will yield an approximation for π/4.  
 
Multiplying the result by 4 will then yield an approximation for π itself. 
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Ant Colony Overview 
Ant colony optimization is a population-based metaheuristic that can be 

used to find approximate solutions to difficult combinatorical 
optimization problems. !

!
In ant colony optimization (ACO), a set of software agents called "artificial 

ants" search for good solutions to a given optimization problem 
transformed into the problem of finding the minimum cost path on a 
weighted graph. !

!
The artificial ants incrementally build solutions by moving on the graph. !
!
The solution construction process is stochastic and is biased by a 

pheromone model - a set of parameters associated with graph 
components (either nodes or edges) the values of which are modified 
at runtime by the ants. 
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Metaheuristic 
In computer science, metaheuristic designates a computational 

method that optimizes a problem by iteratively trying to 
improve a candidate solution with regard to a given measure 
of quality. 

 
Metaheuristics make few or no assumptions about the problem 

being optimized and can search very large spaces of candidate  
solutions. 

 
However, metaheuristics do not guarantee an optimal solution is 

ever found. 
 
Many metaheuristics implement some form of stochastic 

optimization.   
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Combinatorical Optimization 
The goal of combinatorial optimization is to find a 

discrete mathematical object (such as a  bit string 
or permutation) that maximizes (or minimizes) an 
arbitrary function specified by the user of the 
metaheuristic.  

These objects are generically called states, and the set 
of all candidate states is the search space.  

 
The nature of the states and the search space are 

usually problem-specific. 
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Metaheurstic vs 
Combinatorical Optimization 

 
A metaheuristic uses combinatorical 

optimization (or straight optimization if it 
is not discrete – Particle Swarm 
Optimization) to alter/learn the heuristic 
while the search is conducted (hence 
the “meta”). 
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Metaheuristic vs Heuristic 

Metaheuristics change over time as the 
algorithm runs its iterations. (phermone) 

 
Heuristics are static through out a search 

(inverse distance between towns in 
TSP) 
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What is Optimisation 
optimization, or mathematical programming, refers to the study 

of problems in which one seeks to minimize or maximize a real 
function by systematically choosing the values of real or integer 
variables from within an allowed set.!

!
An optimization problem can be represented in the following way!

Given: a function f: A → ℜ from some set A to the real numbers!
Sought: an element x0 in A !

    such that f(x0) ≤ f(x) for all x in A ("minimization") or !
!        such that f(x0) ≥ f(x) for all x in A ("maximization").!
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ACO Successes 
applied successfully to many classical combinatorial optimization 

problems. !
!

routing in communication networks !
!
stochastic version of well-known combinatorial optimization problem, such as 

the probabilistic traveling salesman problem. !
!
ACO has been extended so that it can be used to solve continuous and 

mixed-variable optimization problems (Socha and Dorigo 2004). !
!
Ant colony optimization is probably the most successful example of 

artificial/engineering swarm intelligence system!
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Evaporation 
In the real world, ants (initially) wander randomly, and upon finding 

food return to their colony while laying down pheromone trails. !
!
If other ants find such a path, they are likely not to keep traveling at 

random, but to instead follow the trail, returning and reinforcing it 
if they eventually find food.!

!
Over time, however, the pheromone trail starts to evaporate, thus 

reducing its attractive strength. !
!
The more time it takes for an ant to travel down the path and 

back again, the more time the pheromones have to 
evaporate.!

10/2/15 19 760 ACO 



Evaporation Avoids Local 
Optima 

A short path, gets marched over faster, thus the pheromone 
density remains high - it is laid on the path as fast as it can 
evaporate. !

!
Pheromone evaporation has also the advantage of avoiding the 

convergence to a locally optimal solution. !
!
If there were no evaporation, the paths chosen by the first ants 

would tend to be excessively attractive to the following ones. !
!
The exploration of the solution space would be constrained.!
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Positive Feedback 

When one ant finds a good (i.e. short) path from 
the colony to a food source, other ants are 
more likely to follow that path !

!
positive feedback eventually leads all the 

ants following a single path. !
!
ant colony algorithm mimics this behavior with 

"simulated ants" walking around the graph 
representing the problem to solve.!
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ACO Dynamic Advantage 
Ant colony optimization algorithms can produce near-

optimal solutions to the traveling salesman problem. !
!
They have an advantage over simulated annealing 

and genetic algorithm approaches when the graph 
may change dynamically; !
the ant colony algorithm can be run continuously and adapt 

to changes in real time. !
!

This is of interest in network routing and urban 
transportation systems.!
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TSP example 
In the traveling salesman problem (TSP) a set of locations (cities) 

and the distances between them are given. !
!
The problem consists of finding a closed tour of minimal length 

that visits each city once and only once.!
!
To apply ACO to the TSP, we consider the graph defined by 

associating the set of cities with the set of vertices of the graph. !
!
This graph is called construction graph. !
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Larger TSP example 
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Construction Graph 
the construction graph is fully connected and the number of 

vertices is equal to the number of cities. !
!
the lengths of the edges between the vertices are proportional to 

the distances between the cities represented by these vertices !
!
we associate pheromone values and heuristic values with the 

edges of the graph. !
!
Pheromone values are modified at runtime and represent the 

cumulated experience of the ant colony, !
!
heuristic values are problem dependent values that, in the case of 

the TSP, are the inverse of lengths of the edges. !
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The Solution 
The ants construct the solutions as follows. !

Each ant starts from a randomly selected city (vertex of the 
construction graph). !

!
Then, at each construction step it moves along the edges of 

the graph. !
!
Each ant keeps a memory of its path, and in subsequent steps 

it chooses among the edges that do not lead to vertices that 
it has already visited. !

!
An ant has constructed a solution once it has visited all the 

vertices of the graph. !
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Probabilistic Rule 

At each construction step, !
an ant probabilistically chooses the edge to follow 

among those that lead to yet unvisited vertices. !
!
The probabilistic rule is biased by pheromone 

values and heuristic information: !
the higher the pheromone and the heuristic value 

associated to an edge, the higher the probability 
an ant will choose that particular edge. !
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Pheromone Update 
Once all the ants have completed their tour, the 

pheromone on the edges is updated. !
!
Each of the pheromone values is initially decreased by 

a certain percentage. - Evaporation!
!
Each edge then receives an amount of additional 

pheromone proportional to the quality of the 
solutions to which it belongs (there is one solution 
per ant).!

!
This procedure is repeatedly applied until a termination 

criterion is satisfied.!
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Formal Definition of a Combinatorial 
Optimization Problem!

The first step for the application of ACO to a 
combinatorial optimization problem (COP) consists in 
defining a model of the COP as a triplet (S,Ω,f), 
where:!
S is a search space defined over a finite set of discrete 

decision variables;!
!
Ω is a set of constraints among the variables; and!
!

                             is an objective function to be minimized !
as maximizing over f is the same as minimizing over -f, every 

COP can be described as a minimization problem.!
€ 

f : S→ℜ0
+
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Search Space Definition!
The search space S is defined as follows. !
!

A set of discrete variables Xi, i = 1…n, with values, ! !!
!
  is given. !
!

Elements of S are full assignments, that is, assignments in 
which each variable Xi has a value vi

j assigned from its 
domain . !

!
The set of feasible solutions SΩ is given by the elements of S 

that satisfy all the constraints in the set Ω.!

  

€ 

vi
j ∈ Di = {vi

1,…,vi
|Di |}
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Global optima 

A solution  ! !  is called a global optimum if 
and only if: !

!
 The set of all globally optimal solutions is 

denoted by            . !
!
Solving a COP requires finding at least one!

€ 

s*∈ SΩ

€ 

f (s*) ≤ f (s)∀s∈ SΩ

€ 

SΩ
* ⊆ SΩ

€ 

s*∈ SΩ
*
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Ant colony metaheuristic 
ants build a solution to a combinatorial optimization 

problem by traversing a fully connected construction 
graph!

!
each instantiated decision variable Xi=vi

j is called a solution 
component and denoted by cij. !

!
The set of all possible solution components is C. !
!
Then the construction graph GC(V,E) is defined by associating 

the components C either with the set of vertices V or with the 
set of edges E.!
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Pheromone Trails 
A pheromone value τij is associated with each 

component cij. !
!
(Note pheromone values are generally a function of the 

algorithm's iteration t: τij=τij(t).) !
!
Pheromone values allow the probability distribution of 

different components of the solution to be modeled. !
!
Pheromone values are used and updated by the ACO 

algorithm during search.!
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The Ant Moves 
The ants move from vertex to vertex along the edges of the 

construction graph exploiting information provided by the 
pheromone values and incrementally building a solution. !

!
Additionally, the ants deposit a certain amount of pheromone on 

the components, that is, either on the vertices or on the edges 
that they traverse. !

!
The amount ∆τ of pheromone deposited may depend on the 

quality of the solution found. !
!
Subsequent ants utilize the pheromone information as a guide 

towards more promising regions of the search space.!
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ACO Metaheuristic 
Set parameters, initialize phermone trails!
SCHEDULE_ACTIVITES!
!ConstructAntSolutions!
!DaemonActions ! !(optional)!
!UpdatePheromones!

END_SCHEDULE_ACTIVITIES!
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The Metaheuristic 
The metaheuristic consists of an initialization step and 

of three algorithmic components whose activation is 
regulated by the Schedule_Activities construct. !

!
This construct is repeated until a termination criterion 

is met. !
!
Typical criteria are a maximum number of iterations 

or a maximum CPU time.!
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Schedule Activities 
The Schedule_Activities construct does not specify how 

the three algorithmic components are scheduled 
and synchronized. !

!
In most applications of ACO to NP-hard problems 

however, the three algorithmic components undergo 
a loop that consists in !

1.  the construction of solutions by all ants, !
2.  the (optional) improvement of these solution via the use of 

a local search algorithm, and !
3.  the update of the pheromones. !
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Construct Ant Solutions 
A set of m artificial ants construct solutions from elements of a finite set of 

available solution components C={cij}, i=1,…,n, j=1,…,|Di|. !
!
A solution construction starts with an empty partial solution sp=Ø. !
!
At each construction step, the current partial solution sp is extended by 

adding a feasible solution component from the set of feasible neighbors 
N(sp)⊆ C. !

!
The process of constructing solutions can be regarded as a path on the 

construction graph GC(V,E). !
!
The allowed paths in GC are implicitly defined by the solution construction 

mechanism that defines the set N(sp) with respect to a partial solution 
sp.!
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Choosing Solution Components 
The choice of a solution component from N(sp) is done 

probabilistically at each construction step. !
!
The exact rules for the probabilistic choice of solution components 

vary across different ACO variants. !
!
The best known rule is the one of ant system (AS) (Dorigo et al. 

1991, 1996):!
!
!

!
where τij and ηij are the pheromone value and the heuristic value 

associated with the component . !
α and β are positive real parameters whose values determine the 

relative importance of pheromone versus heuristic information.!
€ 

p(cij | s
p ) =

τ ij
α ⋅ηij

β

τ il
α ⋅ηil

β

cil ∈N (s
p )∑

,∀cij ∈ N(sp )
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Daemon Actions 
Once solutions have been constructed, and before updating the 

pheromone values, problem specific actions may be required. !
!
Often called daemon actions, they can be used to implement 

problem specific and/or centralized actions, which cannot be 
performed by single ants. !

!
The most used daemon action is the application of local search to 

the constructed solutions: the locally optimized solutions are 
then used to decide which pheromone values to update.!
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Pheromone Update 
The aim of the pheromone update is to !

increase the pheromone values associated with good solutions, and!
decrease those associated with bad ones. !

Usually, this is achieved !
1.  by decreasing all the pheromone values through pheromone 

evaporation, and !
2.  by increasing the pheromone levels associated with a chosen set of 

good solutions Supd:!

!
!
where Supd is the set of solutions that are used for the update,  ρ∈(0,1] is a 

parameter called evaporation rate, and                     is a function such that!
!
!
F(·) is commonly called the fitness function.  !€ 

τ ij ← (1− ρ) ⋅ τ ij + ρ ⋅ F(s)
s∈Supd |cij ∈s
∑

€ 

F : S→ R0
+

€ 

f (s) < f ( " s )⇒ F(s) ≥ F( " s ),∀s ≠ " s ∈ S
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Pheromone Evaporation 
Pheromone evaporation implements a useful form of forgetting, favoring 

the exploration of new areas in the search space. !
!
Different ACO algorithms, ant colony system (ACS) or MAX-MIN ant 

system (MMAS), differ in the way they update the pheromone.!
!
Instantiations of the update rule given above are obtained by different 

specifications of Supd, which in many cases is a subset of Siter∪{Sbs}, 
where !
# #Siter is the set of solutions that were constructed in the current 
iteration, and !

!
# #Sbs is the best-so-far solution, that is, the best solution found 
since the first algorithm iteration.!

!
A well-known example is the AS-update rule, that is, the update rule of 

ant system (Dorigo et al. 1991, 1996): Supd ← Siter#
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Iteration Best Updates 
An example of a pheromone update rule that is more often used in 

practice is the IB-update rule (where IB stands for iteration-
best):!

!
!
The IB-update rule introduces a much stronger bias towards the 

good solutions found than the AS-update rule. !
!
Although this increases the speed with which good solutions 

are found, it also increases the probability of premature 
convergence. !

!

€ 

Supd ← argmaxs∈Siter F(s)
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Best So Far Updates 
An even stronger bias is introduced by the BS-update 

rule, where BS refers to the use of the best-so-far 
solution sbs. !

!
In this case, supd is set to {sbs} . !
!
In practice, ACO algorithms that use variations of the 

IB-update or the BS-update rules and that 
additionally include mechanisms to avoid 
premature convergence, achieve better results 
than those that use the AS-update rule.!
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Main Types of ACO 
Several special cases of the ACO metaheuristic have 

been proposed in the literature. !
!
overview, in the historical order in which they were 

introduced, the three most successful ones: !
ant system (AS) (Dorigo 1992, Dorigo et al. 1991, 1996), !
ant colony system (ACS) (Dorigo & Gambardella 1997), and !
MAX-MIN ant system (MMAS) (Stützle & Hoos 2000). !

!
In order to illustrate the differences between them 

clearly, we use the the traveling salesman problem.!
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Ant System 
Ant system (AS) was the first ACO algorithm to be proposed in the 

literature (Dorigo et al. 1991, Dorigo 1992, Dorigo et al. 1996). !
Its main characteristic is that the pheromone values are updated by all 

the ants that have completed the tour. !
Solution components cij are the edges of the graph, and the pheromone 

update for τij, that is, for the pheromone associated to the edge joining 
cities i and j, is performed as follows:!

!!
!
where !ρ ∈ (0,1] is the evaporation rate, !
# #m is the number of ants, and !
# #Δτij

k is the quantity of pheromone laid on edge (i,j) by the k-th ant!
!
!
!
!
where dij is the length of edge from i to j.!
!
!
!
!
!

τ ij ← (1− ρ) ⋅τ ij + ρ ⋅ Δτ ij
k

k=1

m

∑

10/2/15 46 760 ACO 

Δτ ij
k =

1
dij
if ant k used edge (i, j) in its tour,

0 otherwise,



Ant System Continued 
When constructing the solutions, the ants in AS traverse the construction 

graph and make a probabilistic decision at each vertex. !

The transition probability p(cij|sk
p) of the k-th ant moving from city i to city j 

is given by:!

where !
#N(sk

p) is the set of components that do not belong yet to the partial 
!solution sk

p of ant k, and !
#α and β are parameters that control the relative importance of the 

!pheromone versus the heuristic information!
!
!

€ 

P(cij | sk
p ) =

τ ij
α ⋅ηij

β

τ il
αηil

β

cil ∈N (sk
p )∑

if j ∈ N(sk
p )

0 otherwise
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Ant Colony System 
The first major improvement over the original ant system to be 

proposed was ant colony system (ACS), introduced by Dorigo 
and Gambardella (1997). !

!
The first important difference between ACS and AS is the form of 

the decision rule used by the ants during the construction 
process. !

!

Ants in ACS use the so-called pseudorandom proportional rule: !
the probability for an ant to move from city i to city j depends on a 

random variable q uniformly distributed over [0,1], and a parameter 
q0; !

if q ≤ q0, then, among the feasible components, the component that 
maximizes the product τilηil

β is chosen, otherwise the same 
equation as AS is used.!
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Diversity Component 
This rather greedy rule, which favors exploitation of the 

pheromone information, is counterbalanced by the introduction 
of a diversifying component: the local pheromone update. !

!
The local pheromone update is performed by all ants after each 

construction step. !
!
Each ant applies it only to the last edge traversed:!
!
!
!
where ρ∈(0,1] is the pheromone decay coefficient, and τ0 is the 

initial value of the pheromone.!

€ 

τ ij = (1− ρ) ⋅ τ ij + ρ ⋅ τ 0
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Local Update 
The main goal of the local update is to diversify the search 

performed by subsequent ants during one iteration. !
!
In fact, decreasing the pheromone concentration on the edges as 

they are traversed during one iteration encourages 
subsequent ants to choose other edges and hence to 
produce different solutions. !

!
This makes it less likely that several ants produce identical 

solutions during one iteration. !
!
Additionally, because of the local pheromone update in ACS, the 

minimum values of the pheromone are limited.!

10/2/15 50 760 ACO 



Offline Pheromone Update 
As in AS, also in ACS at the end of the construction process a 

pheromone update, called offline pheromone update, is 
performed.!

ACS offline pheromone update is performed only by the best ant, 
that is, only edges that were visited by the best ant are updated, 
according to the equation:!

!
where !Δτij

best=1/Lbest if the best ant used edge(i,j) in its tour,  
!Δτij

best=0 otherwise !
# #Lbest can be set to !
   iteration-best, Lib - the length of the best tour found in 
! ! !the current iteration or !

   best-so-far, Lbs – the best solution found since the start 
! ! !of the algorithm.!

Most of the innovations introduced by ACS were introduced first in 
Ant-Q, a preliminary version of ACS by the same authors.!

€ 

τ ij ← (1− ρ) ⋅ τ ij + ρ ⋅ Δτ ij
best
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Max-Min Ant System 
MAX-MIN ant system (MMAS) is another 

improvement, proposed by Stützle and Hoos 
(2000), over the original ant system idea. !

!
MMAS differs from AS in that !

1.  only the best ant adds pheromone trails, and !
2.  the minimum and maximum values of the 

pheromone are explicitly limited !
in AS and ACS these values are limited implicitly, that is, 

the value of the limits is a result of the algorithm 
working rather than a value set explicitly by the 
algorithm designer.!
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Phermone Update 
The pheromone update equation takes the following form:!
!
!
where !Δτij

best=1/Lbest if the best ant used edge(i,j) in its tour,  !
# #Δτij

best=0 otherwise!
# #Lbest is the length of the tour of the best ant. !

!
As in ACS, Lbest may be set (subject to the algorithm designer decision) either to Lib 

or to Lbs, or to a combination of both.!
!
The pheromone values are constrained between τmin and τmax by verifying, after they 

have been updated by the ants, that all pheromone values are within the 
imposed limits: !
#τij is set to !τmax if τij > τmax and to !
# # #τmin if τij < τmin. !

!
The pheromone update equation of MMAS is applied, as it is in the case for AS, to 

all the edges while in ACS it is applied only to the edges visited by the best 
ants.!

τ ij ← (1− ρ) ⋅τ ij + ρ ⋅ Δτ ij
best
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MIN and MAX values 
The minimum value τmin is most often experimentally chosen (however, 

some theory about how to define its value analytically has been 
developed in (Stützle & Hoos 2000)). !

!
The maximum value τmax may be calculated analytically provided that the 

optimum ant tour length is known. !
!
In the case of the TSP, τmax=1/(ρ⋅L*), where L* is the length of the optimal 

tour. !
!
If L* is not known, it can be approximated by Lbs. !
!
It is also important to note that the initial value of the trails is set to τmax, 

and that the algorithm is restarted when no improvement can be 
observed for a given number of iterations.!
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Traveling tournament Problem 
Double round robin (A at B and B at A): n teams need 2*n-2 slots. 
 
No more than three consecutive home or three consecutive road 

games for any team 
 
No repeaters (A at B, followed immediately by B at A) 
 
 
Defined in 2001 
 
Only solved for 8 teams or less 
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David Uthus’ Work 
Ant Colony algorithm based on Max-Min does almost as 

well as simulated annealing – the current best 
approach 

 
IDA* technique 

found (in significantly less time) previously known optimal 
solutions 

 
found optimal solutions where optimal solutions were unknown 

(for 10 teams!!!) 
 
found better (lower bound) solutions where only lower bounds 

are known. 
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How is ACO like 
Reinforcement learning? 

•  Exploration vs exploitation 

•  Try many “random” solutions 

•  Update numbers and iterate to a 
solution 
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When should you do ACO 

•  When a solution is easy to find, but 

•  A good solution is hard to find, and 

•  There is a gradient on better and better 
solutions 
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Can you train an AC with 
Stochastic Gradient Descent? 

•  SGD in the space of pheromones 

•  Acceleration techniques for ACO based 
on gradient based reinforcement 
learning 
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Applications of ACO 
The initial applications of ACO were in the domain of NP-hard 

combinatorial optimization problems. !
!
The largest body of ACO research is still, not surprisingly, to be 

found in this area. !
!
Complete overview of these applications in (Dorigo & Stützle 

2004).!
!
Another application that was considered early in the history of ACO 

is routing in telecommunication networks. !
!
A particularly successful example of ACO algorithm in this domain 

is AntNet (Di Caro & Dorigo 1998).!
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Current ACO Trends 
Current research in ACO algorithms is devoted both to the development of 

theoretical foundations and to the application of the metaheuristic to new 
challenging problems.!

!
The development of a theoretical foundation was started by Gutjahr, who was the 

first to prove convergence in probability of an ACO algorithm (Gutjahr 2000). !
!
An overview of theoretical results available for ACO can be found in (Dorigo & Blum 

2005).!

Concerning applications, the use of ACO for the solution of dynamic, 
multiobjective, stochastic, continuous and mixed-variable optimization 
problems is a current hot topic, as well as the creation of parallel 
implementations capable of taking advantage of the new available parallel 
hardware.!

!
Many papers reporting on current research can be found in the proceedings of the 

ANTS conference or in the Swarm Intelligence journal.!
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