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Motivation
Analogy to biological evolution

GAs generate successor hypotheses by repeatedly mutating 
and recombining parts of the best currently known 
hypotheses

The collection of hypotheses, population, is updated by 
replacing some fraction of the population by offspring of 
the fittest current hypotheses

Generate-and-test beam-search of hypotheses in which 
variants of the fittest current hypotheses are most likely to 
be considered next
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Beam-Search Example
Straight−line distance to Bucharest 
Arad 366 
Bucharest 0 
Craiova 160 
Dobreta 242 
Eforie 161 
Fagaras 178 
Giurgiu 77 
Hirsova 151 
Iasi 226 
Lugoj 244 
Mehadia 241 
Neamt 234 
Oradea 380 
Pitesti 98 
Rimnicu Vilcea 193 
Sibiu 253 
Timisoara 329 
Urziceni 80 
Vaslui 199 
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Breadth-first search
Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end
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Depth-first search
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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Beam Search

Beam Search (n=2)

Arad
Sibiu, Timisoara, Zernid
Arad, Fagaras, Orades, Rimnicu Vilcea
Bucharest

Only stores beam width at each level
When beam width is infinite = breadth first search
8/22/17 GA 24



Beam-Search Example
Straight−line distance to Bucharest 
Arad 366 
Bucharest 0 
Craiova 160 
Dobreta 242 
Eforie 161 
Fagaras 178 
Giurgiu 77 
Hirsova 151 
Iasi 226 
Lugoj 244 
Mehadia 241 
Neamt 234 
Oradea 380 
Pitesti 98 
Rimnicu Vilcea 193 
Sibiu 253 
Timisoara 329 
Urziceni 80 
Vaslui 199 
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Back to GAs

•  Generate-and-test beam-search of 
hypotheses in which variants of the fittest 
current hypotheses are most likely to be 
considered next
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Popularity
Evolution is known to be a successful, robust method of 

adaptation within biological systems

GAs can search spaces of hypotheses containing complex 
interacting parts, where the impact of each part on overall 
hypothesis fitness may be difficult to model!!!!!!!

Genetic algorithms are easily parallelized and can take 
advantage of the decreasing costs of powerful computer 
hardware.
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Fitness & Population
The best hypothesis is defined as the one that optimizes a 

predefined numerical measure called the fitness 
function.

Fitness could be 
–  accuracy of the hypothesis over the training data or 
–  number of games won by the individual when playing 

against other individuals in the current population

The algorithms iteratively update the pool of hypotheses 
(i.e., population)
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General Method
On each iteration:

1.  All members of the population are evaluated according to the 
fitness function.

2.  A new population is generated by probabilistically selecting 
the most fit individuals from the current population.

3.  Some of these individuals are carried forward into the next 
generation population intact.

4.  Others are used to create new offspring individuals by applying 
genetic operations such as crossover and mutation.
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Genetic Algorithm
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Algorithm Properties

Inputs: 
–  The fitness function,

–  The size of the population,

–  Threshold defining an acceptable level of fitness for terminating 
the algorithm

–  Parameters that determine how successor populations are 
generated 

•  the fraction of the population to be replaced each generation, and 
•  the mutation rate
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Population Models

•  Generational Model –GGA
– Each individual survives 1 generation

•  Steady State Model - SSGA
– One offspring generated per generation – one 

member replaced
•  Generation Gap

– A proportion of the population replaced
–  1.0 for GGA and 1/pop_size for SSGA
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Probability of Inclusion
Probability of inclusion of hypothesis, hi , in the next 

generation, 

The probability that a hypothesis will be selected is 
proportional to its own fitness and inversely 
proportional to the fitness of the other competing 
hypotheses in the current population

Hypothesis is chosen with replacement!!!!!!

€ 

€ 

Pr(hi) =
Fitness(hi)

Fitness(hj)
j=1

p

∑
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Crossover
Additional members are generated using crossover

Crossover takes two parent hypothesis from the current 
population and creates two offspring hypothesis by 
recombining portions of both parents.

The parents are chosen probabilistically using the same 
formula mentioned above. 

 
Now the new generation contains the desired number of 

members.
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Mutation

Now a certain fraction m of these members 
are chosen at random and random mutations 
are performed.
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Binary Operators
•  Binary Mutation

– Flip Bit
– Uniform
– Non-Uniform

•  Binary Crossover
– One Point
– Two Point
– Uniform
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Genetic Operators
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Crossover & Mutation
Single-point crossover: n chosen randomly each time the crossover 

operator is applied

Two-point crossover: n0 & n1 chosen randomly each time applied

Uniform crossover: each bit chosen at random and independent of the 
others

Mutation: Flip one random bit (sometimes two mutation parameters)
                 Or chose a value randomly (e.g., chose 0 or 1)
      Also can have bitwise mutation parameter and genewise mutation 

parameter

Some systems add new operators that do specialization or generalization
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Two Mutation Parameters

•  Genewise - Probability of choosing Gene

•  Bitwise - Probability of Mutating a Bit

•  Causes fewer individuals to be mutated a 
lot!! – like a macro
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Other Representations

•  Integer/Categorical
–   same as binary
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Real Values

•  Mutations
– Uniform Mutation (Lbi, Ubi)
– Non-uniform – Gaussian Mutation

•  Crossovers
– Discrete
– Arithmetic 
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Permutations

•  Like Traveling Salesman
– Need to make children admissible
– Must change at least two values
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Permutation Mutations

•  Mutation {2,4}
–  Insert 12345 => 12435
– Swap 12345 => 14325
–  Inversion 12345 => 14325
– Scramble 12345 => 13425

8/22/17 GA 43



Permutation Crossovers

•  Order 1 crossover
•  PMX crossover
•  Cycle crossover
•  Edge Recombination 
•  Multi-parent Recombination 

–  (non Biological)
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Order 1 crossover

•  Preserve relative order
•  Choose random segment from P1
•  Copy the rest from P2

–  In order starting after the chosen part and 
wrapping around

–  123456789 => 382456719
–  937826514

8/22/17 GA 45



PMX (partially Mapped)

•  Choose random segment from P1
•  Look for elements that have not been copied
•  Fill the rest from P2

•  123456789 => 932456718
•  937826514
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Cycle Crossover

•  Identify Cycles
•  Copy Alternate Cycles into Offspring

•  123456789 => 137426589
•  937826514 923856714
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What is the hypothesis space?

Randomized, parallel, generate-and-test, 
beam search for an hypothesis that 
performs well according to the fitness 
function.
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Hypothesis Space Search
Randomized beam search method to seek maximally fit hypothesis

GAs vs, Backpropagation (GD)
GD moves smoothly from one hypothesis to a new one which is very similar
GAs move much more abruptly - replacing a parent with an offspring that 

maybe radically different

GA is therefore less likely to fall into the same kind of local minima that 
plague GD

GAs have their own problems – early convergence
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Early Convergence

Some individual is more fit and so copies of 
this individual and very similar individuals 
quickly take over

This lowers the diversity of the population 
and slows further progress by the GA - in 
worse case down to mutation
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Fitness Function Selection
Fitness proportionate selection: ratio of fitness to the fitness 

of other members of the current population (Roulette 
wheel), μ – population size

Baker’s stochastic universal sampling (SUS)
N evenly spaced arms on wheel 
guarantees
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E(ni) = µ • Fitness(hi)

Fitness(hj)
j=1

p

∑

floor(E(ni )) ≤ ni ≤ ceil(E(ni ))



Baker’s stochastic universal 
sampling 
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Rank based Fitness
•  Sorted by fitness.  
•  The probability that a hypothesis will be 

selected is then proportional to its rank.
•  Fittest = population size = μ and least-fit = 1
•  Relative fitness, not absolute
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Fitness Rank P-Fp
A 1 1 0.1
B 5 3 0.5
C 4 2 0.4



Linear Ranking

Parameterized by factor s where 1.0 < s ≤ 2.0
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P(i) = (2− s)
µ

+
2i(s−1)
µ(µ −1)

Fitness Rank P-FP P-L(s=2) P-
L(s=1.5)

A 1 1 0.1 0 0.167
B 5 3 0.5 0.67 0.5
C 4 2 0.4 0.33 0.33



Exponential Ranking

•  Linear Ranking has limited selection 
pressure

•  Exponential can allocate more than 2 copies 
of the fittest individual
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Tournament Selection
•  Pick k members at random then select best of 

these

•  Can also use ρ to determine whether the fittest 
gene wins
–  some predefined probability, p, the more fit is selected 

and with probability (1-p) the less fit is selected

•  No longer uses global population statistics (better 
for parallelization)
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Tournament Probabilities
•  Probability of selecting i will depend on

–  Rank of i
–  Size of sample k

•  Higher k increases selection pressure

–  Whether contestants are picked with replacement
•  Without replacement increases selection pressure – Why??

•  For k = 2, time for fittest individual to take over 
population is the same as linear ranking with 

s = 2 • p
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Survivor Selection

•  Survivor selection can be divided into 
two approaches: 
– Age-Based Selection 

•  e.g. SGA 
•  In SSGA can implement as “delete-

random” (not recommended) or as first-in-first-
out (a.k.a. delete-oldest)  

– Fitness-Based Selection 
•  Using one of the methods above 
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Two Special Cases

•  Elitism
–  Always keep at least one copy of the fittest solution so 

far
–  Widely used in both population models (GGA, SSGA)

•  GENITOR: a.k.a. “delete-worst”
–  From Whitley’s original Steady-State algorithm (he 

also used linear ranking for parent selection)
–  Rapid takeover : use with large populations or “no 

duplicates” policy
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Elitism
The best chromosome (or a few best chromosomes) is copied 

to the population in the next generation. The rest are 
chosen in the classical way. 

Elitism can very rapidly increase performance of GA, because 
it prevents losing the best found solution to date. 

 
A variation is to eliminate an equal number of the worst 

solutions, i.e. for each "best chromosome" carried over a 
"worst chromosome" is deleted.
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Niching Solutions ���
(to avoid early convergence)

Use tournament or rank selection

No incest – (not used much)

Restrict the kinds of individuals allowed to 
recombine - multiple clans with festivals

–  related approach is to spatially distribute individuals 
and allow only nearby individuals to recombine
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Crowding
Crowding is a steady-state technique where the current 

population is sampled to find an individual that is “close” 
to the new offspring. 

This closest individual is then replaced. 

De Jong reported a noticeable reduction in allele loss even 
when the number of individuals sampled was 2, the 
minimum sample size that distinguishes crowding from 
random replacement.
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Clearing Procedure

•  Minimal distance between all members of 
the population

•  If a new child is added within the radius, the 
dominating child is kept.
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Sharing
Sharing is similar to crowding in that individuals that are “close” 

compete with each other, but it is used for generational GAs. 

Fitness sharing causes individuals that are similar to many others to 
have their fitness reduced, making them less likely to be 
selected. 

This preserves diversity by favouring unusual individuals, however 
Ursam has shown that the effectiveness of sharing is “sensitive 
to the range of fitness values” and can lead to adverse results 
simply by adding a constant to the fitness function. 
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Bloat - The Other Problem

Problem with variable length representations

Longer individuals usually have a better 
chance of a higher fitness

What happens when there is no selection 
pressure? – absorbing boundaries
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Crossover or Mutation?

•  Which one is better or necessary?
–  it depends on the problem, but
–  in general, it is good to have both
–  both have another role
– mutation-only-EA is possible, xover-only-EA 

would not work

•  Why?
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Old Thoughts

Exploration: Discovering promising areas in the 
search space, i.e. gaining information on the problem

Exploitation: Optimising within a promising area, 
i.e. using information
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Old Thoughts Continued
There is co-operation AND competition between them

•  Crossover is explorative, it makes a big jump to an area 
somewhere “in between” two (parent) areas

•  Mutation is exploitative, it creates random small 
diversions, thereby staying near (in the area of ) the 
parent
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More Thoughts

•  Only crossover can combine information from two 
parents

•  Only mutation can introduce new information 
(alleles) 

    (ONLY AT BIT LEVEL)
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More Thoughts Continued

•  Crossover does not change the allele frequencies of the 
population (thought experiment: 50% 0’s on first bit in the 
population, ?% after performing n crossovers)
–  YES or NO?

•  To hit the optimum you often need a ‘lucky’ mutation
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Cameron Skinner’s thesis

•  Clearly the accepted wisdom that 
recombination is the dominant component 
of the genetic algorithm is incorrect
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Cameron Skinner’s Thesis
Discovery & Retention

Crossover & Mutation???

The more disruptive an operator, the better it is at discovery

All operators have higher destruction probabilities than 
discovery probabilities

Random search outperforms all genetic operators, once they 
are biased towards a correct solution.
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Cameron Skinner’s Thesis II
Better Theoretical Analysis Than Schema Theorem

Seed Pool instead of Mutation!!!
(best idea since sliced bread)
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Seed Pool Idea
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Creature Demo
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Population Evolution
Can we mathematically characterise the evolution over time 

of the population within a GA

Schema theorem of Holland

Schema is a string composed of 1s 0s and *s
* is “don’t care”

Schema 0*10 represents the set of bit strings 0010, 0110

The bit string 0010 represents 24 different schemas
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Schemas

Population of bit strings can be viewed by the 
set of schemas it represents and the number 
of individuals associated with each schema

m(s,t) is the number of instances of schema s 
at a time t
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Schema Theorem
•  Determine the expected value of schema

•  Average fitness of individuals of schema s
€ 

E[m(s,t +1)]≥
ˆ u (s,t)

f
_
(t)

m(s,t)(1− pc
d(s)
l −1

)(1− pm )o(s)

€ 

ˆ u (s,t) =
f (h)

h∈s∩ pt
∑

m(s,t)
8/22/17 78GA



Terms
             Average fitness of all individuals in the 

population at time t

h ∈ s ∩ pt indicates an individual h is both a 
representative of schema s and in the population at 
time t

Pc, probability that the single-point crossover will be 
applied

€ 

f (t)

8/22/17 79GA



Terms 2
Pm, probability that the mutation operator will be 

applied

o(s) is the number of defined bits

d(s) is the distance between the leftmost and 
rightmost defined bits

l is the length of the bitstrings
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Schema Theorem Intuition
Whether an individual representing schema s at time t will be 

selected for time t+1, or still represent s after crossover, or 
still represent s after mutation

Effects of mutation increase with the number of defined bits

Effects of crossover increase with the distance between 
defined bits

More fit schemas will grow in influence, especially schemas 
with a small number of defined bits and especially when 
these defined bits are near each other in the bit string
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Problems with Schema Theorem

Incomplete because it fails to take into 
account the positive effects of crossover 
and mutation (i.e., only gives lower bound) 
- numerous more recent theoretical analyses

That is why Cam’s analysis is better.
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Representing Hypotheses

Hypothesis in GAs are often represented by 
bit strings, which are easily manipulated by 
crossover and mutation.

These can be quite complex
 a set of if-then rules
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Representation Example
Attribute: Outlook

–  Values: Sunny, Rainy, Overcast

Use a bit string of length 3, where each position 
corresponds to one of the values.  Placing a 1 in 
some position indicates that the attribute is 
allowed to take on the corresponding value.
–  010 represents Outlook = Overcast
–  011 represents Outlook = Overcast or Rainy
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More Representations
Conjunctions of constraints can be represented by concatenation. 

So 011 10 represents Outlook = Overcast or Rainy and Wind = Strong

Postconditions can be represented in the same way. 
111 10 10 represents If Wind = Strong then PlayTennis = Yes.  
Notice that 111 represents the “don’t care” condition on Outlook

Fixed length bit strings of rules

Sets of rules can be represented by concatenating single rules, but then are 
not fixed length!
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Representations III
It is best if every syntactically legal bit string represents a well-defined 

hypothesis

So 111 10 11 represents a rule whose postcondition does not constrain the 
target PlayTennis.  To avoid this 
–  allocated just one bit to PlayTennis to indicate Yes or No, or 
–  alter the genetic operators so they explicitly avoid constructing such bit 

strings, or 
–  assign them a very low fitness (only works if there are only a few).

Some GAs represent hypothesis as symbolic descriptions rather than bit 
strings (more later).
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GABIL System
GABIL uses a GA to learn boolean concepts represented by a 

disjunctive set of propositional rules.

Comparable in generalization accuracy to C4.5 (C4.5 is state 
of the art decision tree algorithm)

r, fraction replaced by crossover, was 0.6
m, mutation rate, was 0.001
p, population size varied from 100 to 1000, depending on the 

task
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GABIL Representation
Each hypothesis is a disjunctive set of propositional rules

Conjunction of constraints on fixed set of attributes - bit string 
representations of individual rules

So the hypothesis consisting of the two rules follows:
–  IF a1= T ∧ a2 = F then c = T ∨ IF a2=T then c=F
–  10 01 1 11 10 0

The length of the bit string grows with the number of rules.  This causes a 
modification to the crossover operator.
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GABIL Genetic Operators
Same mutation operator

Crossover occurs only between like sections of the bit strings

Standard extension to two-point crossover
Two crossover points are chosen at random in the first parent string

Calculate d1 (d2), the distance from the leftmost (rightmost) of the 
crossover points to the rule boundary immediately to its left

Crossover points are randomly chosen in the second parent with the 
constraint that they must have the same d1 and d2 values
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Genetic Operators Example
H1: 10 01 1 11 10 0
H2: 01 11 0 10 01 0

If the crossover points for the 1st parent are <1,8> then the allowable 
crossover points for the second parent are <1,3>, <1,8> and <6,8>

If happen to choose <1,3> then the two offspring would be:
H3: 11 10 0 and
H4: 00 01 1 11 11 0 10 01 0

All bit strings generated in this fashion represent well-defined rule sets
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GABIL Fitness Function

Fitness(h) = (correct(h))2,

Where correct(h) is the percent of all training 
examples correctly classified by hypothesis 
h (i.e., accuracy)
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GABIL Extensions

Two new genetic operators

AddAlternative - generalises constraints by changing 
a 0 to a 1

In an attribute substring 10010 becomes 10110

This operator was applied with probability   .01
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DropCondition

DropCondition - performs more drastic generalisation step by 
replacing all bits for a particular attribute by a 1

In an attribute substring 10010 becomes 11111

This operator was applied with probability .60 (this is very 
high!)

The addition of these operators increased accuracy from 
92.1% to 95.2% on a range of datasets

8/22/17 93GA



Evolving Search Methods
Even tried new attributes AA and DC specifying 

whether these operators can apply to these 
hypothesis

Worked better on some datasets and worse on others

In this way GAs can be used to evolve their own 
hypothesis search methods – meta-learning
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Genetic Programming
Form of evolutionary computation where the individuals are computer 

programs instead of bit strings

Typically represented by trees corresponding to parse trees of the 
program

User must define primitive functions

Fitness is determined by executing the program on the training data

Crossover replaces a randomly chosen subtree from one parent with one 
from the other
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Program Tree

8/22/17 96GA



Crossover of Program Trees
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Genetic Programming Example
Develop an algorithm for stacking blocks in a single stack 

that spells the word “universal” independent of the initial 
configuration of the blocks

In GP applications, problem representation has a significant 
impact on the ease of solving the problem, 3 terminal 
arguments:
CS returns the name of the top block on the stack or F if there is no 

current stack
TB returns the top block on the stack that is in the correct order
NN returns the name of the next block needed or F if no blocks are 

needed

Imagine the difficulty if the terminal arguments returned x,y 
coordinates of the blocks!!!!
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Primitive Functions!!!
(MS x) moves x to the top of the stack and returns T 

otherwise does nothing and returns F,

(MT x) if block x is in the stack it moves the top block off the 
stack and puts it on the table and returns T otherwise it 
does nothing and returns F

(EQ x y) returns T if x=y and returns F otherwise

(Not x) returns T if x=F and F if x=T

(Du x y) executes the expression x repeatedly until y returns 
the value T
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Experiment Results

106 training examples representing a broad 
variety of initial block configurations and 
degrees of difficulty - must contain all 
boundary conditions!

Fitness of a program was the number of these 
examples solved, population was initialized 
to 300 random programs
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Experiment Results II
After 10 generations - 

(EQ (DU (MT CS)(Not CS))(DU (MS NN)(Not NN))) 
solves all 166 problems 
unstack loop followed by a stack loop
EQ used for sequencing only 

was 10 runs an average or just a lucky try?

what was the variance?
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Experiment Results III

GAs have been used to design electronic filter 
circuits and classify segments of protein 
molecules
But circuit example used a population of 

640,000!!!
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Models of Evolution
Lamarkian Evolution - evolution over many generations 

was directly influenced by the experiences of individual 
organisms - if an individual learned during its lifetime to 
avoid some toxic food it could pass the trait on genetically 
to its offspring.

Repudiated in biological systems but this can still be used to 
improve the effectiveness of GAs

Like GA on ANN with ANN learning between each 
generation
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Baldwin Effect

Evolutionary pressure to favor individuals who can 
learn

An individual can perform a small local search 
during its lifetime to maximize its fitness

It can support a more diverse gene pool and therefore 
more rapid evolutionary adaptation
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Baldwin Effect Example

Evolving population of neural networks 
genes determined which weights could change 
weights changed during lifetime 
over generations more weights became fixed as the 

population optimized
what would happen if the fitness function kept moving??

If the new weights are used by the GA it is 
Lamarkian, if they are not it is Baldwin
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How one might parallelize a GA?
•  The GA calculations are minimal.  An 

optimization might require 1000 generations, and 
each generation is dominated by the cost to 
evaluate the fitness
–  If your fitness is related to an engineering design, this 

might run a simulation for each individual.

•  Standard serial GA programs can handle the GA 
routines with ~1 ms of cpu time, while your fitness 
routine can parallelize the fitness evaluations.
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Parallel GAs

•  MPI is always a good choice if you’re 
already familiar the language.  This option 
would also enable GA algorithms with 
“islands” on heterogeneous clusters.

•  Fork/wait would be very easy
– Can be done in several languages
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Parallelizing Genetic Algorithms
Coarse grain - subdivide population into demes, each deme 

is assigned a computational node, GA search performed at 
each node, communication and cross-fertilization across 
demes occurs less frequently by migration, also reduces 
early convergence problem

Fine grain - assign one processor per individual - 
recombination occurs among neighbors - neighborhood 
could be planar or torus
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Summary
GAs randomized parallel generate-and-test beam 

search for hypothesis that optimize a predefined 
fitness function

Based on analogy to biological evolution

Diverse population of competing hypotheses, at 
each iteration most fit members of the population 
are selected, combined by crossover and 
subjected to random mutation
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Summary II

GAs show how learning can be seen as a 
special case of optimization 
learning task is finding optimal hypothesis 

this suggests other optimization techniques - 
like simulated annealing - can be applied 
to machine learning
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Summary III
GAs most commonly been applied to optimization 

problems outside machine learning 
especially suited to learning tasks where hypotheses are 

complex and the objective to be optimized may be an 
indirect function of the hypothesis (e.g., the acquired 
rules to successfully control a robot).

Genetic Programming is a variant of GAs where 
the hypotheses are programs.  Demonstrated to 
learn programs to simulate robot control and 
recognize objects in visual scenes.
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Questions you should be able to 
answer

•  What is the general way GAs search the space?
•  What is the GA hypothesis space?
•  What is the difference between crossover and 

mutation?
•  What is early convergence and how do you stop 

it?
•  What is the difference between Lamarkian 

evolution and the Baldwin effect?
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