
Genetic Algorithms

Patricia J Riddle
Computer Science 760

8/22/17 1GA

Motivation
Analogy to biological evolution

GAs generate successor hypotheses by repeatedly mutating
and recombining parts of the best currently known
hypotheses

The collection of hypotheses, population, is updated by
replacing some fraction of the population by offspring of
the fittest current hypotheses

Generate-and-test beam-search of hypotheses in which
variants of the fittest current hypotheses are most likely to
be considered next

8/22/17 2GA

Beam-Search Example
Straight−line distance to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199

8/22/17 3GA

8/22/17 CS 367 - Blind Search 4

Breadth-first search
Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

8/22/17 CS 367 - Blind Search 5

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

8/22/17 CS 367 - Blind Search 6

Breadth-first search
Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

8/22/17 CS 367 - Blind Search 7

Breadth-first search
Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

8/22/17 CS 367 - Blind Search 8

Depth-first search
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

8/22/17 CS 367 - Blind Search 9

Depth-first search
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

8/22/17 CS 367 - Blind Search 10

Depth-first search
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

8/22/17 CS 367 - Blind Search 11

Depth-first search
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

8/22/17 CS 367 - Blind Search 12

Depth-first search
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

8/22/17 CS 367 - Blind Search 13

Depth-first search
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

8/22/17 CS 367 - Blind Search 14

Depth-first search
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

8/22/17 CS 367 - Blind Search 15

Depth-first search
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

8/22/17 CS 367 - Blind Search 16

Depth-first search
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

8/22/17 CS 367 - Blind Search 17

Depth-first search
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

8/22/17 CS 367 - Blind Search 18

Depth-first search
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

8/22/17 CS 367 - Blind Search 19

Depth-first search
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Greedy best-first search example

Greedy best-first search example

Greedy best-first search example

Greedy best-first search example

Beam Search

Beam Search (n=2)

Arad
Sibiu, Timisoara, Zernid
Arad, Fagaras, Orades, Rimnicu Vilcea
Bucharest

Only stores beam width at each level
When beam width is infinite = breadth first search
8/22/17 GA 24

Beam-Search Example
Straight−line distance to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199

8/22/17 25GA

Back to GAs

•  Generate-and-test beam-search of
hypotheses in which variants of the fittest
current hypotheses are most likely to be
considered next

8/22/17 GA 26

Popularity
Evolution is known to be a successful, robust method of

adaptation within biological systems

GAs can search spaces of hypotheses containing complex
interacting parts, where the impact of each part on overall
hypothesis fitness may be difficult to model!!!!!!!

Genetic algorithms are easily parallelized and can take
advantage of the decreasing costs of powerful computer
hardware.

8/22/17 27GA

Fitness & Population
The best hypothesis is defined as the one that optimizes a

predefined numerical measure called the fitness
function.

Fitness could be
–  accuracy of the hypothesis over the training data or
–  number of games won by the individual when playing

against other individuals in the current population

The algorithms iteratively update the pool of hypotheses
(i.e., population)

8/22/17 28GA

General Method
On each iteration:

1.  All members of the population are evaluated according to the
fitness function.

2.  A new population is generated by probabilistically selecting
the most fit individuals from the current population.

3.  Some of these individuals are carried forward into the next
generation population intact.

4.  Others are used to create new offspring individuals by applying
genetic operations such as crossover and mutation.

8/22/17 29GA

Genetic Algorithm

8/22/17 30GA

Algorithm Properties

Inputs:
–  The fitness function,

–  The size of the population,

–  Threshold defining an acceptable level of fitness for terminating
the algorithm

–  Parameters that determine how successor populations are
generated

•  the fraction of the population to be replaced each generation, and
•  the mutation rate

8/22/17 31GA

Population Models

•  Generational Model –GGA
– Each individual survives 1 generation

•  Steady State Model - SSGA
– One offspring generated per generation – one

member replaced
•  Generation Gap

– A proportion of the population replaced
–  1.0 for GGA and 1/pop_size for SSGA

8/22/17 GA 32

Probability of Inclusion
Probability of inclusion of hypothesis, hi , in the next

generation,

The probability that a hypothesis will be selected is
proportional to its own fitness and inversely
proportional to the fitness of the other competing
hypotheses in the current population

Hypothesis is chosen with replacement!!!!!!

€

€

Pr(hi) =
Fitness(hi)

Fitness(hj)
j=1

p

∑

8/22/17 33GA

Crossover
Additional members are generated using crossover

Crossover takes two parent hypothesis from the current
population and creates two offspring hypothesis by
recombining portions of both parents.

The parents are chosen probabilistically using the same
formula mentioned above.

Now the new generation contains the desired number of

members.
8/22/17 34GA

Mutation

Now a certain fraction m of these members
are chosen at random and random mutations
are performed.

8/22/17 35GA

Binary Operators
•  Binary Mutation

– Flip Bit
– Uniform
– Non-Uniform

•  Binary Crossover
– One Point
– Two Point
– Uniform

8/22/17 GA 36

Genetic Operators

8/22/17 37GA

Crossover & Mutation
Single-point crossover: n chosen randomly each time the crossover

operator is applied

Two-point crossover: n0 & n1 chosen randomly each time applied

Uniform crossover: each bit chosen at random and independent of the
others

Mutation: Flip one random bit (sometimes two mutation parameters)
 Or chose a value randomly (e.g., chose 0 or 1)
 Also can have bitwise mutation parameter and genewise mutation

parameter

Some systems add new operators that do specialization or generalization
8/22/17 38GA

Two Mutation Parameters

•  Genewise - Probability of choosing Gene

•  Bitwise - Probability of Mutating a Bit

•  Causes fewer individuals to be mutated a
lot!! – like a macro

8/22/17 GA 39

Other Representations

•  Integer/Categorical
–  same as binary

8/22/17 GA 40

Real Values

•  Mutations
– Uniform Mutation (Lbi, Ubi)
– Non-uniform – Gaussian Mutation

•  Crossovers
– Discrete
– Arithmetic

8/22/17 GA 41

ci =αxi + (1−α)yi where 0 ≤α ≤1

Permutations

•  Like Traveling Salesman
– Need to make children admissible
– Must change at least two values

8/22/17 GA 42

Permutation Mutations

•  Mutation {2,4}
–  Insert 12345 => 12435
– Swap 12345 => 14325
–  Inversion 12345 => 14325
– Scramble 12345 => 13425

8/22/17 GA 43

Permutation Crossovers

•  Order 1 crossover
•  PMX crossover
•  Cycle crossover
•  Edge Recombination
•  Multi-parent Recombination

–  (non Biological)

8/22/17 GA 44

Order 1 crossover

•  Preserve relative order
•  Choose random segment from P1
•  Copy the rest from P2

–  In order starting after the chosen part and
wrapping around

–  123456789 => 382456719
–  937826514

8/22/17 GA 45

PMX (partially Mapped)

•  Choose random segment from P1
•  Look for elements that have not been copied
•  Fill the rest from P2

•  123456789 => 932456718
•  937826514

8/22/17 GA 46

Cycle Crossover

•  Identify Cycles
•  Copy Alternate Cycles into Offspring

•  123456789 => 137426589
•  937826514 923856714

8/22/17 GA 47

What is the hypothesis space?

Randomized, parallel, generate-and-test,
beam search for an hypothesis that
performs well according to the fitness
function.

8/22/17 48GA

Hypothesis Space Search
Randomized beam search method to seek maximally fit hypothesis

GAs vs, Backpropagation (GD)
GD moves smoothly from one hypothesis to a new one which is very similar
GAs move much more abruptly - replacing a parent with an offspring that

maybe radically different

GA is therefore less likely to fall into the same kind of local minima that
plague GD

GAs have their own problems – early convergence

8/22/17 49GA

Early Convergence

Some individual is more fit and so copies of
this individual and very similar individuals
quickly take over

This lowers the diversity of the population
and slows further progress by the GA - in
worse case down to mutation

8/22/17 50GA

Fitness Function Selection
Fitness proportionate selection: ratio of fitness to the fitness

of other members of the current population (Roulette
wheel), μ – population size

Baker’s stochastic universal sampling (SUS)
N evenly spaced arms on wheel
guarantees

8/22/17 51GA

E(ni) = µ • Fitness(hi)

Fitness(hj)
j=1

p

∑

floor(E(ni)) ≤ ni ≤ ceil(E(ni))

Baker’s stochastic universal
sampling

8/22/17 GA 52

Rank based Fitness
•  Sorted by fitness.
•  The probability that a hypothesis will be

selected is then proportional to its rank.
•  Fittest = population size = μ and least-fit = 1
•  Relative fitness, not absolute

8/22/17 GA 53

Fitness Rank P-Fp
A 1 1 0.1
B 5 3 0.5
C 4 2 0.4

Linear Ranking

Parameterized by factor s where 1.0 < s ≤ 2.0

8/22/17 GA 54

P(i) = (2− s)
µ

+
2i(s−1)
µ(µ −1)

Fitness Rank P-FP P-L(s=2) P-
L(s=1.5)

A 1 1 0.1 0 0.167
B 5 3 0.5 0.67 0.5
C 4 2 0.4 0.33 0.33

Exponential Ranking

•  Linear Ranking has limited selection
pressure

•  Exponential can allocate more than 2 copies
of the fittest individual

8/22/17 GA 55

P(i) = 1− e
−i

c

Tournament Selection
•  Pick k members at random then select best of

these

•  Can also use ρ to determine whether the fittest
gene wins
–  some predefined probability, p, the more fit is selected

and with probability (1-p) the less fit is selected

•  No longer uses global population statistics (better
for parallelization)

8/22/17 GA 56

Tournament Probabilities
•  Probability of selecting i will depend on

–  Rank of i
–  Size of sample k

•  Higher k increases selection pressure

–  Whether contestants are picked with replacement
•  Without replacement increases selection pressure – Why??

•  For k = 2, time for fittest individual to take over
population is the same as linear ranking with

s = 2 • p

8/22/17 GA 57

Survivor Selection

•  Survivor selection can be divided into
two approaches:
– Age-Based Selection

•  e.g. SGA
•  In SSGA can implement as “delete-

random” (not recommended) or as first-in-first-
out (a.k.a. delete-oldest)

– Fitness-Based Selection
•  Using one of the methods above

8/22/17 GA 58

Two Special Cases

•  Elitism
–  Always keep at least one copy of the fittest solution so

far
–  Widely used in both population models (GGA, SSGA)

•  GENITOR: a.k.a. “delete-worst”
–  From Whitley’s original Steady-State algorithm (he

also used linear ranking for parent selection)
–  Rapid takeover : use with large populations or “no

duplicates” policy

8/22/17 GA 59

Elitism
The best chromosome (or a few best chromosomes) is copied

to the population in the next generation. The rest are
chosen in the classical way.

Elitism can very rapidly increase performance of GA, because
it prevents losing the best found solution to date.

A variation is to eliminate an equal number of the worst

solutions, i.e. for each "best chromosome" carried over a
"worst chromosome" is deleted.

8/22/17 60GA

Niching Solutions ���
(to avoid early convergence)

Use tournament or rank selection

No incest – (not used much)

Restrict the kinds of individuals allowed to
recombine - multiple clans with festivals

–  related approach is to spatially distribute individuals
and allow only nearby individuals to recombine

8/22/17 61GA

Crowding
Crowding is a steady-state technique where the current

population is sampled to find an individual that is “close”
to the new offspring.

This closest individual is then replaced.

De Jong reported a noticeable reduction in allele loss even
when the number of individuals sampled was 2, the
minimum sample size that distinguishes crowding from
random replacement.

8/22/17 62GA

Clearing Procedure

•  Minimal distance between all members of
the population

•  If a new child is added within the radius, the
dominating child is kept.

8/22/17 GA 63

Sharing
Sharing is similar to crowding in that individuals that are “close”

compete with each other, but it is used for generational GAs.

Fitness sharing causes individuals that are similar to many others to
have their fitness reduced, making them less likely to be
selected.

This preserves diversity by favouring unusual individuals, however
Ursam has shown that the effectiveness of sharing is “sensitive
to the range of fitness values” and can lead to adverse results
simply by adding a constant to the fitness function.

8/22/17 64GA

Bloat - The Other Problem

Problem with variable length representations

Longer individuals usually have a better
chance of a higher fitness

What happens when there is no selection
pressure? – absorbing boundaries

8/22/17 65GA

Crossover or Mutation?

•  Which one is better or necessary?
–  it depends on the problem, but
–  in general, it is good to have both
–  both have another role
– mutation-only-EA is possible, xover-only-EA

would not work

•  Why?
8/22/17 GA 66

Old Thoughts

Exploration: Discovering promising areas in the
search space, i.e. gaining information on the problem

Exploitation: Optimising within a promising area,
i.e. using information

8/22/17 GA 67

Old Thoughts Continued
There is co-operation AND competition between them

•  Crossover is explorative, it makes a big jump to an area
somewhere “in between” two (parent) areas

•  Mutation is exploitative, it creates random small
diversions, thereby staying near (in the area of) the
parent
8/22/17 GA 68

More Thoughts

•  Only crossover can combine information from two
parents

•  Only mutation can introduce new information
(alleles)

 (ONLY AT BIT LEVEL)

8/22/17 GA 69

More Thoughts Continued

•  Crossover does not change the allele frequencies of the
population (thought experiment: 50% 0’s on first bit in the
population, ?% after performing n crossovers)
–  YES or NO?

•  To hit the optimum you often need a ‘lucky’ mutation

8/22/17 GA 70

Cameron Skinner’s thesis

•  Clearly the accepted wisdom that
recombination is the dominant component
of the genetic algorithm is incorrect

8/22/17 GA 71

Cameron Skinner’s Thesis
Discovery & Retention

Crossover & Mutation???

The more disruptive an operator, the better it is at discovery

All operators have higher destruction probabilities than
discovery probabilities

Random search outperforms all genetic operators, once they
are biased towards a correct solution.

8/22/17 72GA

Cameron Skinner’s Thesis II
Better Theoretical Analysis Than Schema Theorem

Seed Pool instead of Mutation!!!
(best idea since sliced bread)

8/22/17 73GA

Seed Pool Idea

8/22/17 GA 74

Creature Demo

8/22/17 75GA

Population Evolution
Can we mathematically characterise the evolution over time

of the population within a GA

Schema theorem of Holland

Schema is a string composed of 1s 0s and *s
* is “don’t care”

Schema 0*10 represents the set of bit strings 0010, 0110

The bit string 0010 represents 24 different schemas
8/22/17 76GA

Schemas

Population of bit strings can be viewed by the
set of schemas it represents and the number
of individuals associated with each schema

m(s,t) is the number of instances of schema s
at a time t

8/22/17 77GA

Schema Theorem
•  Determine the expected value of schema

•  Average fitness of individuals of schema s
€

E[m(s,t +1)]≥
ˆ u (s,t)

f
_
(t)

m(s,t)(1− pc
d(s)
l −1

)(1− pm)o(s)

€

ˆ u (s,t) =
f (h)

h∈s∩ pt
∑

m(s,t)
8/22/17 78GA

Terms
 Average fitness of all individuals in the

population at time t

h ∈ s ∩ pt indicates an individual h is both a
representative of schema s and in the population at
time t

Pc, probability that the single-point crossover will be
applied

€

f (t)

8/22/17 79GA

Terms 2
Pm, probability that the mutation operator will be

applied

o(s) is the number of defined bits

d(s) is the distance between the leftmost and
rightmost defined bits

l is the length of the bitstrings
8/22/17 80GA

Schema Theorem Intuition
Whether an individual representing schema s at time t will be

selected for time t+1, or still represent s after crossover, or
still represent s after mutation

Effects of mutation increase with the number of defined bits

Effects of crossover increase with the distance between
defined bits

More fit schemas will grow in influence, especially schemas
with a small number of defined bits and especially when
these defined bits are near each other in the bit string

8/22/17 81GA

Problems with Schema Theorem

Incomplete because it fails to take into
account the positive effects of crossover
and mutation (i.e., only gives lower bound)
- numerous more recent theoretical analyses

That is why Cam’s analysis is better.

8/22/17 82GA

Representing Hypotheses

Hypothesis in GAs are often represented by
bit strings, which are easily manipulated by
crossover and mutation.

These can be quite complex
 a set of if-then rules

8/22/17 83GA

Representation Example
Attribute: Outlook

–  Values: Sunny, Rainy, Overcast

Use a bit string of length 3, where each position
corresponds to one of the values. Placing a 1 in
some position indicates that the attribute is
allowed to take on the corresponding value.
–  010 represents Outlook = Overcast
–  011 represents Outlook = Overcast or Rainy

8/22/17 84GA

More Representations
Conjunctions of constraints can be represented by concatenation.

So 011 10 represents Outlook = Overcast or Rainy and Wind = Strong

Postconditions can be represented in the same way.
111 10 10 represents If Wind = Strong then PlayTennis = Yes.
Notice that 111 represents the “don’t care” condition on Outlook

Fixed length bit strings of rules

Sets of rules can be represented by concatenating single rules, but then are
not fixed length!

8/22/17 85GA

Representations III
It is best if every syntactically legal bit string represents a well-defined

hypothesis

So 111 10 11 represents a rule whose postcondition does not constrain the
target PlayTennis. To avoid this
–  allocated just one bit to PlayTennis to indicate Yes or No, or
–  alter the genetic operators so they explicitly avoid constructing such bit

strings, or
–  assign them a very low fitness (only works if there are only a few).

Some GAs represent hypothesis as symbolic descriptions rather than bit
strings (more later).

8/22/17 86GA

GABIL System
GABIL uses a GA to learn boolean concepts represented by a

disjunctive set of propositional rules.

Comparable in generalization accuracy to C4.5 (C4.5 is state
of the art decision tree algorithm)

r, fraction replaced by crossover, was 0.6
m, mutation rate, was 0.001
p, population size varied from 100 to 1000, depending on the

task

8/22/17 87GA

GABIL Representation
Each hypothesis is a disjunctive set of propositional rules

Conjunction of constraints on fixed set of attributes - bit string
representations of individual rules

So the hypothesis consisting of the two rules follows:
–  IF a1= T ∧ a2 = F then c = T ∨ IF a2=T then c=F
–  10 01 1 11 10 0

The length of the bit string grows with the number of rules. This causes a
modification to the crossover operator.

8/22/17 88GA

GABIL Genetic Operators
Same mutation operator

Crossover occurs only between like sections of the bit strings

Standard extension to two-point crossover
Two crossover points are chosen at random in the first parent string

Calculate d1 (d2), the distance from the leftmost (rightmost) of the
crossover points to the rule boundary immediately to its left

Crossover points are randomly chosen in the second parent with the
constraint that they must have the same d1 and d2 values

8/22/17 89GA

Genetic Operators Example
H1: 10 01 1 11 10 0
H2: 01 11 0 10 01 0

If the crossover points for the 1st parent are <1,8> then the allowable
crossover points for the second parent are <1,3>, <1,8> and <6,8>

If happen to choose <1,3> then the two offspring would be:
H3: 11 10 0 and
H4: 00 01 1 11 11 0 10 01 0

All bit strings generated in this fashion represent well-defined rule sets

8/22/17 90GA

GABIL Fitness Function

Fitness(h) = (correct(h))2,

Where correct(h) is the percent of all training
examples correctly classified by hypothesis
h (i.e., accuracy)

8/22/17 91GA

GABIL Extensions

Two new genetic operators

AddAlternative - generalises constraints by changing
a 0 to a 1

In an attribute substring 10010 becomes 10110

This operator was applied with probability .01
8/22/17 92GA

DropCondition

DropCondition - performs more drastic generalisation step by
replacing all bits for a particular attribute by a 1

In an attribute substring 10010 becomes 11111

This operator was applied with probability .60 (this is very
high!)

The addition of these operators increased accuracy from
92.1% to 95.2% on a range of datasets

8/22/17 93GA

Evolving Search Methods
Even tried new attributes AA and DC specifying

whether these operators can apply to these
hypothesis

Worked better on some datasets and worse on others

In this way GAs can be used to evolve their own
hypothesis search methods – meta-learning

8/22/17 94GA

Genetic Programming
Form of evolutionary computation where the individuals are computer

programs instead of bit strings

Typically represented by trees corresponding to parse trees of the
program

User must define primitive functions

Fitness is determined by executing the program on the training data

Crossover replaces a randomly chosen subtree from one parent with one
from the other

8/22/17 95GA

Program Tree

8/22/17 96GA

Crossover of Program Trees

8/22/17 97GA

Genetic Programming Example
Develop an algorithm for stacking blocks in a single stack

that spells the word “universal” independent of the initial
configuration of the blocks

In GP applications, problem representation has a significant
impact on the ease of solving the problem, 3 terminal
arguments:
CS returns the name of the top block on the stack or F if there is no

current stack
TB returns the top block on the stack that is in the correct order
NN returns the name of the next block needed or F if no blocks are

needed

Imagine the difficulty if the terminal arguments returned x,y
coordinates of the blocks!!!!

8/22/17 98GA

Primitive Functions!!!
(MS x) moves x to the top of the stack and returns T

otherwise does nothing and returns F,

(MT x) if block x is in the stack it moves the top block off the
stack and puts it on the table and returns T otherwise it
does nothing and returns F

(EQ x y) returns T if x=y and returns F otherwise

(Not x) returns T if x=F and F if x=T

(Du x y) executes the expression x repeatedly until y returns
the value T

8/22/17 99GA

Experiment Results

106 training examples representing a broad
variety of initial block configurations and
degrees of difficulty - must contain all
boundary conditions!

Fitness of a program was the number of these
examples solved, population was initialized
to 300 random programs

8/22/17 100GA

Experiment Results II
After 10 generations -

(EQ (DU (MT CS)(Not CS))(DU (MS NN)(Not NN)))
solves all 166 problems
unstack loop followed by a stack loop
EQ used for sequencing only

was 10 runs an average or just a lucky try?

what was the variance?

8/22/17 101GA

Experiment Results III

GAs have been used to design electronic filter
circuits and classify segments of protein
molecules
But circuit example used a population of

640,000!!!

8/22/17 102GA

Models of Evolution
Lamarkian Evolution - evolution over many generations

was directly influenced by the experiences of individual
organisms - if an individual learned during its lifetime to
avoid some toxic food it could pass the trait on genetically
to its offspring.

Repudiated in biological systems but this can still be used to
improve the effectiveness of GAs

Like GA on ANN with ANN learning between each
generation

8/22/17 103GA

Baldwin Effect

Evolutionary pressure to favor individuals who can
learn

An individual can perform a small local search
during its lifetime to maximize its fitness

It can support a more diverse gene pool and therefore
more rapid evolutionary adaptation

8/22/17 104GA

Baldwin Effect Example

Evolving population of neural networks
genes determined which weights could change
weights changed during lifetime
over generations more weights became fixed as the

population optimized
what would happen if the fitness function kept moving??

If the new weights are used by the GA it is
Lamarkian, if they are not it is Baldwin

8/22/17 105GA

How one might parallelize a GA?
•  The GA calculations are minimal. An

optimization might require 1000 generations, and
each generation is dominated by the cost to
evaluate the fitness
–  If your fitness is related to an engineering design, this

might run a simulation for each individual.

•  Standard serial GA programs can handle the GA
routines with ~1 ms of cpu time, while your fitness
routine can parallelize the fitness evaluations.

8/22/17 GA 106

Parallel GAs

•  MPI is always a good choice if you’re
already familiar the language. This option
would also enable GA algorithms with
“islands” on heterogeneous clusters.

•  Fork/wait would be very easy
– Can be done in several languages

8/22/17 GA 107

Parallelizing Genetic Algorithms
Coarse grain - subdivide population into demes, each deme

is assigned a computational node, GA search performed at
each node, communication and cross-fertilization across
demes occurs less frequently by migration, also reduces
early convergence problem

Fine grain - assign one processor per individual -
recombination occurs among neighbors - neighborhood
could be planar or torus

8/22/17 108GA

Summary
GAs randomized parallel generate-and-test beam

search for hypothesis that optimize a predefined
fitness function

Based on analogy to biological evolution

Diverse population of competing hypotheses, at
each iteration most fit members of the population
are selected, combined by crossover and
subjected to random mutation

8/22/17 109GA

Summary II

GAs show how learning can be seen as a
special case of optimization
learning task is finding optimal hypothesis

this suggests other optimization techniques -
like simulated annealing - can be applied
to machine learning

8/22/17 110GA

Summary III
GAs most commonly been applied to optimization

problems outside machine learning
especially suited to learning tasks where hypotheses are

complex and the objective to be optimized may be an
indirect function of the hypothesis (e.g., the acquired
rules to successfully control a robot).

Genetic Programming is a variant of GAs where
the hypotheses are programs. Demonstrated to
learn programs to simulate robot control and
recognize objects in visual scenes.

8/22/17 111GA

References

•  Introduction to Evolutionary Computing
– A E Eiben and J E Smith

•  http://www.cs.vu.nl/~gusz/ecbook/
ecbook.html

•  Genetics Algorithm Chapter in Tom
Mitchell Book

8/22/17 GA 112

Questions you should be able to
answer

•  What is the general way GAs search the space?
•  What is the GA hypothesis space?
•  What is the difference between crossover and

mutation?
•  What is early convergence and how do you stop

it?
•  What is the difference between Lamarkian

evolution and the Baldwin effect?

8/22/17 GA 113

