
Reinforcement Learning

Patricia J Riddle
Computer Science 767

8/29/17 1767 reinforcement

Agents
Building a learning robot (or agent)

Sensors observe the state of the world - camera and sonar

A set of actions can be performed to alter the state - move
forward, turn left

Its task is to learn a control policy for choosing actions
that achieve goals –
docking onto a battery charger whenever its battery is
low

8/29/17 2767 reinforcement

Agent Goals

We assume the goals of the agent can be defined by a
reward function that assigns a numerical value -
an immediate payoff - to each distinct action
from each distinct state

100 for state-action transitions that immediately
result in a connection to the charger and

0 for all other state-action transitions
8/29/17 3767 reinforcement

An Agent

Agent

Environment

ActionState Reward

8/29/17 4767 reinforcement

Control Policy
The reward function can be built into the robot or

known only to an external teacher

The task of the robot is to perform sequences of
actions, observe their consequences, and learn a
control policy

The desired control policy is one that from any initial
state chooses actions that maximise the reward
accumulated over time by the agent

8/29/17 5767 reinforcement

General Problem
Learning to control sequential processes

manufacturing optimization problems where reward is goods-produced
minus costs involved

Sequential scheduling
choosing which taxis to send for passengers in a big city where reward
is a function of the wait time of passengers and the total fuel costs of
the taxi fleet

Specific settings:
actions are deterministic or nondeterministic,
agent does or does not have prior knowledge of the effects of its

actions on the environment

8/29/17 6767 reinforcement

Dynamic Programming

Field of mathematics

Traditionally used to solve problems of
optimization and control

Limited in the size and complexity of problems

8/29/17 767 reinforcement 7

Supervised Learning

Training a parameterized function approximator
(neural network) to represent functions

Sample input/output pairs

Set of questions with the right answers

8/29/17 767 reinforcement 8

Flight control system

Set of all sensor readings at a given time

How the flight control surfaces should move during
the next millisecond

If we don’t know how to build a controller in the
first place, simple supervised learning won’t help

8/29/17 767 reinforcement 9

Combination

Reinforcement learning combines dynamic
programing and supervised learning

The computer is simply given a goal to achieve

Learns how to achieve the goal by trial-and-error
interactions with its environment

8/29/17 767 reinforcement 10

Reinforcement Learning Model

Agent interacts with its environment

Agent sensing the environment, based on this
sensory input choosing an action to perform in the
environment

The action changes the environment in some
manner and this change is communicated to the
agent through a scalar reinforcement signal.
8/29/17 767 reinforcement 11

Three Parts

Three fundamental parts of a reinforcement
learning problem:

The environment

The reinforcement function and

The value function
8/29/17 767 reinforcement 12

Environment
RL system learns mapping from situations to actions
by trial-and-error interactions with a dynamic
environment

Partially observable

Observations – sensor readings, symbolic
descriptions, mental situations

Actions – low level, high level, or mental
8/29/17 767 reinforcement 13

Reinforcement Function

Exact function of future reinforcement the agent seeks
to maximise

Mapping from state/action pairs to reinforcements

After performing an action, the RL agent will receive
some reinforcement (scalar value)

8/29/17 767 reinforcement 14

The Function

RL agent learns to perform actions that will
maximise the sum of reinforcements
received when starting from some initial state
and proceeding to a terminal state

8/29/17 767 reinforcement 15

System Designer

RL system designer to define a reinforcement
function that properly defines the goals of
the RL agent

3 noteworthy classes

8/29/17 767 reinforcement 16

Pure Delayed Reward

The reinforcements are all zero except at the terminal
state

Sign of the scalar reinforcement indicates whether the
terminal state is a goal state (a reward) or a state that
should be avoided (a penalty)

Playing backgammon
Cart-pole (inverted pendulum)
8/29/17 767 reinforcement 17

Minimum Time to Goal

The reinforcement function is -1 for ALL state
transitions except the transition to the goal state, in
which case a zero reinforcement is returned.

Because the agent wishes to maximize
reinforcement, it learns to choose actions that
minimize the time it takes to reach the goal state,
and in so doing learns the optimal strategy

8/29/17 767 reinforcement 18

Maximize or Minimize

The learning agent could just as easily learn to
minimize the reinforcement function.

This might be the case when the reinforcement is a
function of limited resources and the agent must
learn to conserve these resources while achieving a
goal (e.g., an airplane executing a maneuver while
conserving as much fuel as possible).

8/29/17 767 reinforcement 19

Games

An alternative reinforcement function would be used
in the context of a game environment, when there are
two or more players with opposing goals.

In a game scenario, the RL system can learn to
generate optimal behavior for the players involved
by finding the maximun, minimax, or saddlepoint of
the reinforcement function.

8/29/17 767 reinforcement 20

The Value Function

However, the issue of how the agent learns
to choose “good” actions, or even how we
might measure the utility of an action is not
explained.

First, two terms are defined: policy and value

8/29/17 767 reinforcement 21

The Policy

A policy determines which action should be
performed in each state;

a policy is a mapping from states to actions.

8/29/17 767 reinforcement 22

The Value

The value of a state is defined as the sum of
the reinforcements received when starting
in that state and following some fixed policy
to a terminal state.

8/29/17 767 reinforcement 23

Optimal Policy
The optimal policy would therefore be the mapping from
states to actions that maximizes the sum of the
reinforcements when starting in an arbitrary state and
performing actions until a terminal state is reached.

Under this definition the value of a state is dependent upon
the policy.

8/29/17 767 reinforcement 24

Value Function

The value function is a mapping from states to
state values and can be approximated using any
type of function approximator (e.g., multi- layered
perceptron, memory based system, radial basis
functions, look-up table, etc.).

8/29/17 767 reinforcement 25

Value Function Example

An example of a value function can be seen
using a simple Markov decision process with
16 states.

8/29/17 767 reinforcement 26

Markov Decision Process
•  a Markov Decision Process is a discrete time

stochastic control process.

•  At each time step, the process is in some state s, and
the decision maker may choose any action a that is
available in state s.

•  The process responds at the next time step by
randomly moving into a new state s', and giving the
decision maker a corresponding reward Ra(s,s')

8/29/17 767 reinforcement 27

Markov Decision Process

An MDP consists of a set of states X;
a set of start states S that is a subset of X;
a set of actions A;
a reinforcement function R where R(x,a) is the
expected immediate reinforcement for taking action
a in state x;
and an action model P where P(x'|x,a) gives the
probability that executing action a in state x will lead
to state x'.
8/29/17 767 reinforcement 28

Important

It is a requirement that the choice of action be
dependent solely on the current state
observation x.

If knowledge of prior actions or states affects
the current choice of action then the decision
process is not Markov.

8/29/17 767 reinforcement 29

MDP vs MC

•  Markov decision processes are an extension of
Markov chains; the difference is the addition of
actions (allowing choice) and rewards (giving
motivation).

•  Conversely, if only one action exists for each state
and all rewards are zero, a Markov decision
process reduces to a Markov chain.

8/29/17 767 reinforcement 30

Markov Decision Processes ���
http://en.wikipedia.org/wiki/Markov_decision_process

8/29/17 760 bayes & hmm 31

"Markov Decision Process example" by MistWiz –
Own work. Licensed under Public domain via Wikimedia Commons –
http://commons.wikimedia.org/wiki/File:Markov_Decision_Process_example.png#mediaviewer/File:Markov_Decision_Process_example.png

Value Function
The state space can be visualized using a 4x4 grid.

Each square represents a state.

The reinforcement function is -1 everywhere (i.e., the agent
receives a reinforcement of -1 on each transition).

There are 4 actions possible in each state: north, south, east,
west.

The goal states are the upper left corner and the lower right
corner.
8/29/17 767 reinforcement 32

Grid-world

One optimal policy

Q(s,a) values

r(s,a) values
(immediate rewards)

V*(s) values

8/29/17 33767 reinforcement

Random Value Function
The value function for the random policy

For each state the random policy randomly chooses one of
the four possible actions.

The numbers in the states represent the expected values of
the states.

For example, when starting in the lower left corner and
following a random policy, on average there will be 22
transitions to other states before the terminal state is reached.
8/29/17 767 reinforcement 34

Random Policy Value Function
0 -14 -20 -22
-14 -18 -22 -20
-20 -22 -18 -14
-22 -20 -14 0

8/29/17 767 reinforcement 35

Optimal Value Function

The optimal value function is shown

Again, starting in the lower left corner, calculating
the sum of the reinforcements when performing the
optimal policy (the policy that will maximize the
sum of the reinforcements), the value of that state is
-3 because it takes only 3 transitions to reach a
terminal state.

8/29/17 767 reinforcement 36

Optimal Policy Value Function
0 -1 -2 -3
-1 -2 -3 -2
-2 -3 -2 -1
-3 -2 -1 0

8/29/17 767 reinforcement 37

Optimal Value Function
Given the optimal value function, then it becomes a
trivial task to extract the optimal policy.

For example, one can start in any state and simply
choose the action that maximizes the immediate
reinforcement received.

In other words, one can perform a one level deep
breadth-first search over actions to find the action
that will maximize the immediate reward
8/29/17 767 reinforcement 38

Optimal Policy
ç ç çê

é çé çéèê ê

é çéèê êè ê

éè è è

8/29/17 767 reinforcement 39

Fundamental Question

This leads us to the fundamental question of
almost all of reinforcement learning research:

 How do we devise an algorithm that will
efficiently find the optimal value function?

8/29/17 767 reinforcement 40

Approximating the Value
Function

•  Reinforcement learning is a difficult
problem because the learning system may
perform an action and not be told whether
that action was good or bad.

•  Think of a game of chess

8/29/17 767 reinforcement 41

Temporal Credit Assignment Problem
•  Caused by delayed reward

•  Assigning blame to individual actions is the problem
that makes reinforcement learning difficult.

•  Surprisingly, there is a solution to this problem.

•  It is based on a field of mathematics called dynamic
programming, and it involves just two basic
principles

8/29/17 767 reinforcement 42

Principle 1
If an action causes something bad to happen
immediately, such as crashing the plane, then the system
learns not to do that action in that situation again.

So whatever action the system performed one
millisecond before the crash, it will avoid doing in the
future.

But that principle doesn’t help for all the earlier
actions which didn’t lead to immediate disaster.
8/29/17 767 reinforcement 43

Principle 2

•  If all the actions in a certain situation leads to bad
results, then that situation should be avoided.

•  So if the system has experienced a certain
combination of altitude and airspeed many different
times, whereby trying a different action each time, and
all actions led to something bad, then it will learn that
the situation itself is bad.

8/29/17 767 reinforcement 44

Power

This is a powerful principle, because the learning
system can now learn without crashing.

In the future, any time it chooses an action that leads to
this particular situation, it will immediately learn that
particular action is bad, without having to wait for the
crash.

8/29/17 767 reinforcement 45

Two principles
•  By using these two principles, a learning system

can learn to fly a plane, control a robot, or do any
number of tasks.

•  It can first learn on a simulator, then fine tune on
the actual system.

•  This technique is generally referred to as dynamic
programming,

8/29/17 767 reinforcement 46

Essence of Dynamic Programing
•  Initially, the approximation of the optimal value function

is poor.

•  The mapping from states to state values is not valid.

•  The primary objective of learning is to find the correct
mapping.

•  Once this is completed, the optimal policy can easily be
extracted.

8/29/17 767 reinforcement 47

Notation

V*(xt) is the optimal value function where xt is the
state vector;

V(xt) is the approximation of the value function;

γ is a discount factor in the range [0,1] that causes
immediate reinforcement to have more importance
(weighted more heavily) than future reinforcement.

8/29/17 767 reinforcement 48

Approximation of the value function
V(xt) will be initialized to random values and will contain no
information about the optimal value function V*(xt).

The approximation of the optimal value function in a given
state is equal to the true value of that state V*(xt) plus some
error in the approximation,

V(xt) = e(xt)+V *(xt)

where e(xt) is the error in the approximation of the value of
the state occupied at time t.
8/29/17 767 reinforcement 49

Next Step
The approximation of the value of the state reached after
performing some action at time t is the true value of the
state occupied at time t+1 plus some error in the
approximation

V(xt+1) = e(xt+1) +V *(xt+1)

The value of state xt for the optimal policy is the sum of
the reinforcements when starting from state xt and
performing optimal actions until a terminal state is
reached.
8/29/17 767 reinforcement 50

Simple Relationship

A simple relationship exists between the values of
successive states, xt and xt+1.

This relationship is defined by the Bellman equation
and is expressed in equation.

The discount factor γ is used to exponentially
decrease the weight of reinforcements received in the
future
8/29/17 767 reinforcement 51

Bellman Equation

V *(xt) = r(xt) +γV *(xt+1)

The approximation V(xt) also has the same
relationship

 V(xt) = r(xt) + γV (xt +1)

8/29/17 767 reinforcement 52

Error Relationship
The relationship in the errors of successive states.

e(xt)=γe(xt+1)

the process of learning is the process of finding a
solution for the value function for all states xt

Several learning algorithms have been developed for
precisely this task.
8/29/17 767 reinforcement 53

Value Iteration Algorithm
Assume the function approximator used to represent V* is a lookup table
(each state has a corresponding element in the table whose entry is the
approximated state value)

One can find the optimal value function by performing sweeps through
state space, updating the value of each state according to the equation
until a sweep through state space is performed in which there are no
changes to state values (the state values have converged).

∆wt =max(r(xt,u)+γV(xt+1))−V(xt)

u is the action performed in state xt and causes a transition to state xt+1,
and r(xt,u) is the reinforcement received when performing action u in state
xt.
8/29/17 767 reinforcement 54

Update Illustration

8/29/17 767 reinforcement 55

Single Update
•  There are two actions possible in state xt, and each of

these actions leads to a different successor state xt+1.

•  In a value iteration update, one must first find the action
that returns the maximum value.

•  The only way to accomplish this is to actually perform
an action and calculate the sum of the reinforcement
received and the (possibly discounted) approximated
value of the successor state V(xt+1).

8/29/17 767 reinforcement 56

Model Based
This must be done for all actions u in a given state xt, and is not possible
without a model of the dynamics of the system.

In the case of a robot deciding to choose between paths to follow, it is not
possible to choose one path, observe the successor state, and then
return to the starting state to explore the results of the next available
action.

Instead, the robot must in simulation perform these actions and
observe the results.

Then, based on the simulation results, the robot may choose the action
that results in the maximum value.

8/29/17 767 reinforcement 57

Bellman Equation
max(r(xt,u)+γV(xt+1))−V(xt)

Is simply the difference in the two sides of the Bellman
equation, with the exception that we have generalized the
equation to allow for

Markov decision processes (multiple actions possible in
a given state) rather than

Markov chains (single action possible in every state).
8/29/17 767 reinforcement 58

Bellman Residual
This expression is the Bellman residual, and is formally defined
as

e(xt) = max(r(xt,u)+γV(xt+1))−V(xt)
is the error function defined by the Bellman residual over all of
state space.

Each update reduces the value of E(xt), and in the limit as the
number of updates goes to infinity E(xt)=0.

When E(xt)=0 is satisfied and V(xt)=V*(xt).

Learning is accomplished.
8/29/17 767 reinforcement 59

Residual Gradient Algorithms
Thus far it has been assumed our function approximator is a
lookup table.

However, this assumption severely limits the size and
complexity of the problems solvable.

Many real-world problems have extremely large or even
continuous state spaces.

Hence, an extension to classical value iteration is to use a
function approximator that can generalize and interpolate
values of states never before seen.
8/29/17 767 reinforcement 60

Grid-world

One optimal policy

Q(s,a) values

r(s,a) values
(immediate rewards)

V*(s) values

8/29/17 61767 reinforcement

Neural Network
For example, one might use a neural network for the
approximation V(xt,wt) of V*(x), where wt is the parameter
vector.

The resulting network parameter update is
∆wt=−α[maxu(r(xt,u)+γV(xt+1,wt))−V(xt,wt)](∂V(xt,wt)/∂wt)
where α is the learning rate,
 maxu(r(xt,u)+γV(xt+1,wt))is the desired output of the network,
 V(xt,wt) is the actual output of the network, and
 (∂V(xt,wt)/∂wt)is the gradient of the output of the network with
respect to the parameter vector.

8/29/17 767 reinforcement 62

Generalizing from Examples

Previous algorithms make no attempt to estimate
the V value for unseen state-action pairs,
unrealistic in large or infinite spaces or when the
cost of executing actions is high

Substituted ANN for the table lookup and use each V
update as a training example – state as input and
QV as output

8/29/17 63767 reinforcement

Multiple ANN
A more successful alternative is to train a separate

ANN for each action using state as input and V as
output

Another common alternative is to train one network
with state as input and with one V output for each
action

The convergence theorems no longer hold!!
8/29/17 64767 reinforcement

Minimize the Bellman Residual

It “appears” that we are performing updates that will
minimize the Bellman residual, but this is not necessarily
the case.

The “target” value max(r(xt,u)+γV(xt+1,wt)) is a function
of the parameter vector w at time t.

Once the update to w is performed, the target has
changed because it is now a function of a different
parameter vector (the vector at time t+1).
8/29/17 767 reinforcement 65

Actually Increases

It is possible that the Bellman residual has actually been
increased rather than decreased.

The error function on which gradient descent is being
performed changes with every update to the parameter
vector.

This can result in the values of the network parameter
vector oscillating or even growing to infinity.

8/29/17 767 reinforcement 66

Mean Squared

One solution to this problem is to perform gradient
descent on the mean squared Bellman residual.

Because this defines an unchanging error function,
convergence to a local minimum is guaranteed.

This means that we can get the benefit of the generality
of neural networks while still guaranteeing convergence.

8/29/17 767 reinforcement 67

Residual Gradient Algorithm
∆wt=α[r(xt)+γV(xt+1,wt) −V(xt,wt)][(γ∂V(xt+1,wt)/∂wt)−(γ∂V(xt,wt)/∂wt)]

• The resulting method is referred to as a residual gradient algorithm
because gradient descent is performed on the mean squared Bellman
residual.

• It is important to note that if the MDP is non-deterministic then it
becomes necessary to generate independent successor states to guarantee
convergence to the correct answer.

8/29/17 767 reinforcement 68

Nondeterministic Markov decision processes

A deterministic Markov decision process is one in which the
state transitions are deterministic (an action performed in
state xt always transitions to the same successor state xt+1).

A non-deterministic Markov decision process, a probability
distribution function defines a set of potential successor states
for a given action in a given state.

8/29/17 767 reinforcement 69

Expected Value
If the MDP is non-deterministic, then value iteration requires
that we find the action that returns the maximum expected
value (the sum of the reinforcement and the integral over all
possible successor states for the given action).

For example, to find the expected value of the successor state
associated with a given action, one must perform that action
an infinite number of times, taking the integral over the
values of all possible successor states for that action.

8/29/17 767 reinforcement 70

Two possible actions

8/29/17 767 reinforcement 71

Which action?
There are two possible actions in state x.

Each action returns a reinforcement of 0.

Action u1 causes a transition to one of two possible successor
states with equal probability.

The same is true for action u2.

The values of the successor states are 0 and 1 for both actions.

8/29/17 767 reinforcement 72

Calculating Expected Value
Value iteration requires that the value of state x be equal to the maximum
over actions of the sum of reinforcement and the expected value of the
successor state.

By taking an infinite number of samples of successor states for action u1,
one would be able to calculate that the actual expected value is 0.5.

The same is true for action u2. Therefore, the value of state x is 0.5

If perform value iteration on this MDP by taking a single sample of the
successor state associated with each action instead of the integral, then x
would converge to a value of 0.75.

Clearly the wrong answer.
8/29/17 767 reinforcement 73

Q-learning
Theoretically, value iteration is possible in the context of non-
deterministic MDPs.

In practice it is computationally impossible to calculate the necessary
integrals without added knowledge or some degree of modification.

Q-learning solves the problem of having to take the max over a set of
integrals.

Rather than finding a mapping from states to state values (as in value
iteration), Q-learning finds a mapping from state/action pairs to values
(called Q-values).

8/29/17 767 reinforcement 74

Q function
Instead of having an associated value function, Q- learning makes use of

the Q-function.

In each state, there is a Q-value associated with each action.

The definition of a Q-value is the sum of the (possibly discounted)
reinforcements received when performing the associated action and
then following the given policy thereafter.

Likewise, the definition of an optimal Q-value is the sum of the
reinforcements received when performing the associated action and
then following the optimal policy thereafter.

8/29/17 767 reinforcement 75

Q Function - Cheat
Optimal action is the one that maximizes the sum r(s,a) and

V* to the immediate successor state discounted by γ

π*(s)=argmaxa[r(s,a)+γV*(δ(s,a))]

But must have perfect knowledge of reward function r and the
state transition function δ!!!

So create the Q function Q(s,a)≡r(s,a)+γV*(δ(s,a))

8/29/17 76767 reinforcement

Q Learning
Now π*(s)=argmaxaQ(s,a)

Now we can select optimal actions even when
we have no knowledge of r or δ

Q value for each state-action transition equals
the r value for this transition plus the V*
value for the resulting state discounted by γ

8/29/17 77767 reinforcement

Q Learning Properties
Still need V* - iterative approximation or recursive

definition

V*(s)=maxa´Q(s,a´), so

Q(s,a)=r(s,a)+γmaxa´Q(δ(s,a),a´)

Qˆ(s,a), the learner’s estimate of Q, is stored in a big
table which is initially filled with random values
or zero

8/29/17 78767 reinforcement

Table Update

The agent starts in some state, s, and chooses some
action, a, and observes the result reward, r(s,a),
and the new state, δ(s,a)

It then updates the table, Qˆ(s,a)←r+γmaxa´Qˆ(s´,a´)

Doesn’t need to know functions δ or r just executes
the action and observes s´ and r so just sampling
these functions at the current values of s and a

8/29/17 79767 reinforcement

Bellman Equation for Q-learning
In the context of Q-learning, the value of a state is defined to
be the maximum Q-value in the given state.

Given this definition it is easy to derive the equivalent of the
Bellman equation for Q-learning.

Q(xt,ut) = r(xt,ut)+γ maxu(t+1)Q(xt+1,ut+1)

8/29/17 767 reinforcement 80

Monte Carlo

Q-learning differs from value iteration in that it
doesn’t require that in a given state each action be
performed and the expected values of the successor
states be calculated.

 While value iteration performs an update that is
analogous to a one level breadth-first search, Q-
learning takes a single-step sample of a Monte-
Carlo roll-out.
8/29/17 767 reinforcement 81

Single Step Sample

8/29/17 767 reinforcement 82

Update Equation
The update equation is valid when using a lookup table for the Q-function.

The Q-value is a prediction of the sum of the reinforcements received
when performing the associated action and then following the policy.

To update that prediction Q(xt,ut) one must perform the associated action
ut, causing a transition to the next state xt+1 and returning a scalar
reinforcement r(xt,ut).

Then find the maximum Q-value in the new state to have all the necessary
information for revising the prediction (Q-value) associated with the
action just performed..

8/29/17 767 reinforcement 83

Unbiased Estimate
Q-learning does not require one to calculate the integral over all
possible successor states in the case that the state transitions are non-
deterministic.

The reason is that a single sample of a successor state for a given action is
an unbiased estimate of the expected value of the successor state.

After many updates the Q-value associated with a particular action will
converge to the expected sum of all reinforcements received when
performing that action and following the optimal policy thereafter.

8/29/17 767 reinforcement 84

Grid-world

One optimal policy

Q(s,a) values

r(s,a) values
(immediate rewards)

V*(s) values

8/29/17 85767 reinforcement

Model-free
Q learning needs NO knowledge of the reward function or the actions
transition probabilities

Hence it is called model-free

However, they must be run in simulators of systems, which can be easily
constructed from the distributions of the governing random variables.

It is well-known that simulating a complex system is considerably easier
than generating a model of the system with all the transition probabilities

This is also why RL is said to avoid the curse of modeling.
8/29/17 767 reinforcement 86

Residual Gradient and Direct Q-learning

As it is possible to represent the value function with a neural
network in the context of value iteration, so it is possible to
represent the Q-function with a neural network in the context
of Q-learning.

The information presented in the discussion of value iteration
concerning convergence to a stable value function is also
applicable to guaranteeing convergence to a stable Q-
function.

8/29/17 767 reinforcement 87

Q function with neural network

Direct Q-learning
∆wt =-α[(r(xt,ut)+γ maxu(t+1)Q(xt+1,ut+1,wt))-

Q(xt,ut,wt)] ∂Q(xt,ut,wt) /∂wt

Residual Graidient Q-learning
∆wt =-α[(r(xt,ut)+γ maxu(t+1)Q(xt+1,ut+1,wt))-

Q(xt,ut,wt)] [(∂γQ(xt+1,ut+1) /∂wt)-
(∂Q(xt,ut,wt) /∂wt)]

8/29/17 767 reinforcement 88

Updating Sequence

Q learning need not train on optimal action
sequences to converge to the optimal policy

After the first full episode only one entry in the table
will be updated.

If the agent follows the same sequence of actions the
second table entry will be updated.

8/29/17 89767 reinforcement

Updating Improvements

So perform updates in reverse chronological order!

Will converge in fewer iterations, although the agent has
to use more memory to store the entire episode.

8/29/17 90767 reinforcement

Retraining
Another strategy - store past state-action transitions and

immediate rewards and retrain on them periodically

This can be a real win depending on relative costs (robot is
very slow in comparison to replaying)

Many more efficient techniques when the system knows the δ
and r functions – dynamic programming

8/29/17 91767 reinforcement

Convergence
Qˆ values never decrease during training

(∀s,a,n)Qˆn+1(s,a) ≥Qˆn(s,a) (only if r is deterministic)

Qˆ will remain in the interval between 0 and Q
(∀s,a,n)0≤Qˆn(s,a)≤Q(s,a)

Will converge if
1.  Deterministic MDP,
2.  Immediate rewards are bounded - |r(s,a)|<c
3.  The agent selects actions such that it visits every state-action

pair infinitely often - must execute a from s with nonzero
frequency as the length of its action sequence approaches
infinity

8/29/17 92767 reinforcement

Nondeterministic Rewards and
Actions

The functions δ(s,a) and r(s,a) can be viewed as first
producing a probability distribution over outcomes
based on s and a and then drawing an outcome at
random according to this distribution -
nondeterministic markov decision process

Q(s,a) = E[r(s,a)]+γΣs´P(s´|s,a)maxa´Q(s´,a´), but is
not guaranteed to converge

8/29/17 93767 reinforcement

Decaying Weighted Average

Decaying weighted average of the current Qˆ and the
revised estimate (important when r is not
deterministic)

Qˆn(s,a)←(1-αn)Qˆn-1(s,a)+αn[r+maxa´Qˆn-1(s´,a´)],
where

Convergence long = 1.5 million games in Tesauro’s
backgammon program

€

αn =
1

1+ visitsn (s,a)

8/29/17 94767 reinforcement

Stop here

8/29/17 767 reinforcement 95

Advantage Learning
Although Q-learning is a significant improvement over value iteration, it
is still limited in scope in at least one important way.

The number of training iterations necessary to sufficiently represent the
optimal Q- function when using function approximators that generalize
scales poorly with the size of the time interval between states.

The greater the number of actions per unit time (the smaller the increment
in time between actions) the greater the number of training iterations
required to adequately represent the optimal Q- function.

The explanation for this is demonstrated with a simple example.

8/29/17 767 reinforcement 96

Markov Decision Process ���
with 1000 states

8/29/17 767 reinforcement 97

Example
State 0 is the initial state and has a single action available, transition to
state 1.

State 999 is an absorbing state.

In states 1..998 there are two actions available, transition to either the state
immediately to the right or immediately to the left.

For example, in state 1, the action of going left will transition to state 0,
and the action of going right will transition to state 2.

Each transition incurs a cost (reinforcement) of 1.

8/29/17 767 reinforcement 98

More Example
The objective is to minimize the total cost accumulated in transitioning
from state to state until the absorbing states is reached.

The optimal Q-value for each action is represented by the numbers next to
each state.

For example, in state 2 the optimal Q-value for the action of going left is
1000, and the optimal Q-value for the action of going right is 998.

The optimal policy can easily be found in each state by choosing to
perform the action with the minimum Q-value.

8/29/17 767 reinforcement 99

Practical Limitations
When using a function approximator that generalizes over
state/action pairs (any function approximator other than a
lookup table or equivalent), it is possible to encounter
practical limitations in the number of training iterations
required to accurately approximate the optimal Q-function.

As the time interval between states decreases in size, the
required precision in the approximation of the optimal Q-
function increases exponentially.

8/29/17 767 reinforcement 100

Back to Example
The optimal Q-function associated with the MDP is linear and
can be represented by a simple linear function
approximator.

However, it requires an unreasonably large number of
training iterations to achieve the level of precision necessary
to generate the optimal policy.

The reason for the large number of training iterations is
simple

8/29/17 767 reinforcement 101

Precision
The difference in the Q-values in a given state is small relative to the
difference in the Q-values across states (a ratio of approximately 1:1000).

For example, the difference in the Q-values in state 1 is 2 (1001-999=2).
The difference in the minimum Q-values in states 1 and 998 is 998
(999-1=998).

The approximation of the optimal Q-function must achieve a degree of
precision such that the tiny differences in Q-values in a single state are
represented.

Because the differences in Q-values across states have a greater impact
on the mean squared error, during training the network learns to
represent these differences first.
8/29/17 767 reinforcement 102

Infinite Precision

The differences in the Q-values in a given state have only a tiny effect on
the mean squared error and therefore get lost in the noise.

To represent the differences in Q-values in a given state requires much
greater precision than to represent the Q-values across states.

As the ratio of the time interval to the number of states decreases it
becomes necessary to approximate the optimal Q-function with increasing
precision.

In the limit, infinite precision is necessary.
8/29/17 767 reinforcement 103

Advantage Learning
Advantage learning does not share the scaling problem of Q-learning.

Similar to Q-learning, advantage learning learns a function of state/
action pairs.

However, in advantage learning the value associated with each action is
called an advantage.

Therefore, advantage learning finds an advantage function rather than a
Q-function or value function.

The value of a state is defined to be the value of the maximum
advantage in that state.
8/29/17 767 reinforcement 104

Degree of Suboptimality
For the state/action pair (x,u) an advantage is defined as the
sum of the value of the state and the utility (advantage) of
performing action u rather than the action currently
considered best.

For optimal actions this utility is zero, meaning the value of
the action is also the value of the state; for sub-optimal
actions the utility is negative, representing the degree of
sub-optimality relative to the optimal action.

8/29/17 767 reinforcement 105

Bellman Equation for Advantage Learning

The equivalent of the Bellman equation for advantage
learning

A(xt,ut) =maxu(t)A(xt,ut) +([<r(xt,ut)+γmaxu(t+1)A(xt+1,ut+1)>
−maxu(t)A(xt,ut)]/∆tK)

where γ is the discount factor per time step,
K is a time unit scaling factor, and
<> represents the expected value over all possible

results of performing action u in state xt to receive immediate
reinforcement r and to transition to a new state xt+1.
8/29/17 767 reinforcement 106

Markov Chain

8/29/17 767 reinforcement 107

Example
The initial state is 0 and the terminal state is 999.

Each state transition returns a cost (reinforcement) of 1 and the value of
state 999 is defined to be 0.

Because this is a Markov chain it is not sensible to suggest that the RL
system learn to minimize or maximize reinforcement.

Instead, we are concerned exclusively with predicting the total
reinforcement received when starting from state n where n is a state in the
range [1..998].

8/29/17 767 reinforcement 108

TD(λ)
Value iteration, Q-learning, and advantage learning can all
solve this problem.

However, TD(λ) can solve it faster.

In the context of Markov chains, TD(λ) is identical to value
iteration with the exception that TD(λ) updates the value of
the current state based on a weighted combination of the
values of future states, as opposed to using only the value of
the immediate successor state.

8/29/17 767 reinforcement 109

Zero information
Recall that in value iteration the “target” value of the current
state is the sum of the reinforcement and the value of the
successor state, in other words, the right side of the Bellman
equation.

V(xt,wt) = r(xt) +γV(xt+1,wt)

Notice that the “target” is also based on an estimate V(xt+1,wt),
and this estimate can be based on zero information.

Indeed, this is the case much of the time and can be
demonstrated.
8/29/17 767 reinforcement 110

Arbitrary Updates
Assume that the value function for this Markov chain is represented using
a lookup table.

In this case, our lookup table has 1000 elements, each corresponding to a
state, and the entry in each element is the value of the corresponding state.

Before learning begins entries are initialized to random values.

The process of learning starts by updating the value of state 0 to be the
sum of the reinforcement received on transition from state 0 to state 1 and
the value of state 1.

Remember, at this point the value of state 1 is arbitrary.

8/29/17 767 reinforcement 111

Inefficient
This is true for all states except the terminal state (999) which, by
definition, has a value of 0.

Because the initial values of states are arbitrary (with the exception of
the terminal state), the entire first sweep through the Markov chain
(epoch) of training results in the improvement of the approximation of
the value function only in state 998.

In the first epoch, only in state 998 is the update to the approximation
based on something other than an arbitrary value.

This is terribly inefficient.

8/29/17 767 reinforcement 112

One Step
In fact, not until 999 epochs of training have been performed will the
approximation of the value of state 0 contain any degree of
“truth” (the approximation is based on something other than an arbitrary
value).

In epoch 2 of training, the approximation of the value of state 997 is
updated based on an approximation of the value of state 998 that has as its
basis the true value of state 999, rather than an arbitrary value.

In epoch 3, the approximation of the value of state 996 will be updated
based on “truth” rather than an arbitrary value.

Each epoch moves “truth” back one step in the chain.
8/29/17 767 reinforcement 113

Weight Average of future
The approximation of the value of state xt is updated based on
the approximation of the value of the state one step into the
future, xt+1.

If the value of a state were based on a weighted average of
the values of future states, then “truth” would be propagated
“back in time” much more efficiently.

8/29/17 767 reinforcement 114

SpeedUp
Instead of updating the value of a state based exclusively on the value of
the immediate successor state one used the next 2 successor states as the
basis of the update, then the number of epochs performed before the value
of state 0 is no longer based on an arbitrary value is reduced from 1000 to
500.

If the value approximation of state 0 is based on a weighted combination
of values of the succeeding 500 states, then only 2 epochs are required
before the value approximation of state 0 is based on something other than
an arbitrary value.

8/29/17 767 reinforcement 115

TD(λ)
This is precisely the function of TD(λ) (Sutton, 1988) for 0<λ<1.

Instead of updating a value approximation based solely on the
approximated value of the immediate successor state, TD(λ) basis the
update on an exponential weighting of values of future states.

λ is the weighting factor.

TD(0), the case of λ=0, is identical to value iteration for the example
problem stated above.

TD(1) updates the value approximation of state n based solely on the
value of the terminal state.
8/29/17 767 reinforcement 116

Equations
The parameter update for TD(λ) is:

∆wt=α(r(xt)+V(xt+1 ,wt)−V(xt,wt)) ∑k=1to t
 λt−k∇w V(xk,wt)

An incremental form of this equation can be derived as follows.

Given that gt is the value of the sum above for t, we can compute gt+1,
using only current information, as

gt+1 =∇wV(xk+1,wt)+λgt.

8/29/17 767 reinforcement 117

Extending to MDP
Notice that the equations do not have a max or min term (over operators).

This suggests that TD(λ) is used exclusively in the context of prediction
(Markov chains).

One way to extend the use of TD(λ) to the domain of Markov decision
processes is to perform updates according to the regular equation while
calculating the sum according to iterative equation when following the
current policy.

8/29/17 767 reinforcement 118

Exploration
When a step of exploration is performed (choosing an action that is not
currently considered “best”), the sum of past gradients g in the iterative
equation should be set to 0.

The intuition behind this method follows.

The value of a state xt is defined as the sum of the reinforcements received
when starting in xt and following the current policy until a terminal state is
reached.

8/29/17 767 reinforcement 119

Intuition
During training, the current policy is the best approximation to the
optimal policy generated thus far.

On occasion one must perform actions that don’t agree with the current
policy so that better approximations to the optimal policy can be realized.

However, one might not want the value of the resulting state propagated
through the chain of past states.

This would corrupt the value approximations for these states by
introducing information that is not consistent with the definition of a state
value.

8/29/17 767 reinforcement 120

No Convergence
TD(λ) for λ=0 is equivalent to value iteration.

Likewise, the discussion of residual gradient algorithms is applicable to
TD(λ) when λ=0.

However, this is not the case for 0<λ<1.

No algorithms exist that guarantee convergence for TD(λ) for 0<λ<1
when using a general function approximator.

8/29/17 767 reinforcement 121

Defined over the space
The fundamental question in reinforcement learning research is: How do
we devise an algorithm that will efficiently find the optimal value
function?

It was shown that the optimal value function is a solution to the set of
equations defined by the Bellman equation.

The process of learning was subsequently described as the process of
improving an approximation of the optimal value function by
incrementally finding a solution to this set of equations.

One should notice that the Bellman equation is defined over all of state
space.
8/29/17 767 reinforcement 122

Exploration
The optimal value function satisfies this equation for ALL xt in state
space.

This requirement introduces the need for exploration.

Exploration is defined as intentionally choosing to perform an action
that is not considered “best” for the express purpose of acquiring
knowledge of unseen (or little seen) states.

In order to identify a (sub-)optimal approximation, state space must be
sufficiently explored.

8/29/17 767 reinforcement 123

When to Explore?
For example, a robot facing an unknown environment has to spend some
time acquiring knowledge of its environment.

Alternatively, experience acquired during exploration must also be
considered during action selection to minimize the costs (negative
reinforcements) associated with learning.

Although the robot must explore its environment, it should avoid
collisions with obstacles.

However, the robot does not know which actions will result in collision
until all of state space has been explored.

8/29/17 767 reinforcement 124

Trade-off
On the other hand, it is possible that a policy that is “sufficiently” good
will be recognized without having to explore all of state space.

There is a fundamental trade-off between exploration and exploitation
(using previously acquired knowledge to direct the choice of action).

Therefore, it is important to use exploration techniques that will
maximize the knowledge gained during learning while minimizing the
costs of exploration and learning time.

For a good introduction to the issues of efficient exploration see Thrun
(1992).

8/29/17 767 reinforcement 125

Exploratory Policy
In the simulator, one may choose each action with the same
probability.

This usually ensures that all samples are gathered properly
and that all state-action pairs are updated infinitely often; the
latter is a requirement for convergence to the correct values of
the Q-values.

In practice, a so-called exploratory policy, with a bias towards
the greedy action, is often used.

8/29/17 767 reinforcement 126

Experimentation Strategies

Common to use probabilistic approach to selecting
actions

Actions with higher Qˆ are assigned higher
probabilities, but every action has a non-zero
probability

8/29/17 127767 reinforcement

Probability of Selecting Action

P(ai|s) is the probability of selecting action ai, given

the agent is in state s,

where k>0 is the constant that determines how strongly the
selection favors actions with high Qˆ values

€

P(ai | s) =
k ˆ Q (s,ai)

k
ˆ Q (s,a j)

j∑

8/29/17 128767 reinforcement

Shifting from Exploration to
Exploitation

Sometimes k is varied with the number of
iterations

the agent favors exploration during the early
stages of learning,

then gradually shifts toward a strategy of
exploitation

8/29/17 129767 reinforcement

Limiting Greedy Exploration
With an exploratory strategy, in the kth iteration, one selects the greedy
action argmaxuεA(i) Q(i,u) with a probability pk and any one of the
remaining actions with probability (1-pk)/(|A(i)|-1)

A possible rule for the probability pk is: pk = 1-(B/k); where B for instance
could equal 0.5.

With such a rule, the probability of selecting non-greedy actions is
automatically decayed to 0 with increasing k.

This is also called limiting-greedy exploration.

8/29/17 767 reinforcement 130

Types of Exploration
Random, undirected exploration, discussed above, can cause the algorithm
to take time exponential in the number of states to converge
(Whitehead, 1991).

Directed exploration strategies: counter-based (Sato et al.,1990), error-
and-counter based (Thrun and Moller, 1992), and recency-based (Sutton,
1990) can overcome this drawback.

A number of exploration strategies have been discussed and experimented
with in the literature: the Boltzmann strategy (Luce, 1959), the E3 strategy
(Kearns and Singh, 2002), and the external-source strategy (Smart and
Kaelbling, 2000).

8/29/17 767 reinforcement 131

SARSA
SARSA: SARSA (Rummery and Niranjan, 1994; Sutton, 1996; Sutton and Barto,
1998) is a well-known algorithm based on an “on-policy" control.

In on-policy control, a unique policy is evaluated for some time during the
learning.

This is unlike Q-Learning, which does “off-policy" control, in which the
policy being evaluated can change in every iteration.

SARSA uses the concept of learning in episodes, in which there is a “terminal"
state and the episode terminates when the terminal state is reached.

8/29/17 767 reinforcement 132

SARSA(λ)
SARSA is a TD(0) algorithm.

TD(λ) can also be used in SARSA (see SARSA(λ) of Sutton (1996))
especially when the learning is episodic.

An important notion of eligibility traces, discussed in Singh and Sutton
(1996), can be used to increase the power of TD(¸) methods by attaching
variable weights to the reinforcements in the updating strategy.

When function approximation can be performed more easily with on-
policy updates, an on-policy algorithm like SARSA becomes more
effective than Q-Learning.

8/29/17 767 reinforcement 133

Discounted vs non-discounted
The discount factor γ is a number in the range of [0..1] and is used to
weight near term reinforcement more heavily than distant future
reinforcement.

The closer γ is to 1 the greater the weight of future reinforcements.

The weighting of future reinforcements has a half-life of σ = log0.5 / log
γ.

For γ=0, the value of a state is based exclusively on the immediate
reinforcement received for performing the associated action.

8/29/17 767 reinforcement 134

Finite Horizon MDP
For finite horizon Markov decision processes (an MDP that
terminates) it is not strictly necessary to use a discount factor.

In this case (γ=1), the value of state xt is based on the total
reinforcement received when starting in state xt and following
the given policy.

∆wt =maxu(r(xt,u)+γV(xt+1,wt))−V(xt,wt)

8/29/17 767 reinforcement 135

Infinite Horizon MDP
In the case of infinite horizon Markov decision processes (an
MDP that never terminates), a discount factor is required.

Without the use of a discount factor, the sum of the
reinforcements received would be infinite for every state.

The use of a discount factor limits the maximum value of a
state to be on the order of R/1−γ.

8/29/17 767 reinforcement 136

Reward Functions
Discounted cumulative reward

Where rt+i is generated by beginning at state st and repeatedly
using policy π to select actions

0 ≤ γ < 1 is a constant that determines the relative value of
delayed versus immediate rewards - if γ=0 only
immediate reward is considered, as γ moves closer to 1
future rewards are given more emphasis

€

V π (st) ≡ rt + γrt+1 + γ 2rt+2 + ...≡ γ irt+ ii= 0

∞

∑

8/29/17 137767 reinforcement

Other Reward Functions

Finite horizon reward

Average reward

We will only focus on discounted cumulative
reward!

€

rt+ ii= 0

h
∑

€

limh→∞

1
h

rt+1i= 0

h
∑

8/29/17 138767 reinforcement

Start again

8/29/17 767 reinforcement 139

Reinforcement Learning
Problems

Delayed Reward

Exploration versus Exploitation

Partially Observable States

Life-long Learning
8/29/17 140767 reinforcement

Delayed Reward

π:S→A that outputs an appropriate action, a, from
the set A, given the current state s from the set S.

Delayed Reward: no training example in <s,π(s)>
form, the trainer provides only a sequence of
immediate reward values as the agent executes
its sequence of actions. The agent faces the
problem of temporal credit assignment

8/29/17 141767 reinforcement

Exploration versus Exploitation

The agent influences the distribution of training
examples by the action sequence it chooses.
Which experimentation strategy produces most
effective learning?

The learner faces tradeoffs in choosing exploration
of unknown states or exploitation of known states
that it has already learned will yield high rewards

8/29/17 142767 reinforcement

Partially Observable States
In many practical situations sensors only provide

partial information.

 An agent may have to consider its previous
observations together with its current sensor data.

The best policy may be one which chooses
specifically to improve the observability of the
environment.

8/29/17 143767 reinforcement

Life-long Learning
Agents often require that the robot learn several related

tasks within the same environment.

A robot might need to learn how to dock on its battery
charger, how to navigate through narrow corridors, and
how to pickup output from laser printers.

This raises the possibility of using previously obtained
experience or knowledge to reduce sample complexity
when learning new tasks.

8/29/17 144767 reinforcement

Relationship to Dynamic
Programming

Agent possesses perfect knowledge of the functions δ(s,a) and
r(s,a)

Focused on how to compute the optimal policy with the least
computational effort, assuming the environment can be
simulated

Q learning has NO knowledge of the functions δ(s,a) and
r(s,a)

8/29/17 145767 reinforcement

Focus of Reinforcement Learning

Focused on the number of real-world actions the
agent must perform to converge to an acceptable
policy

In many practical domains, such as manufacturing
problems, the costs in dollars and time of
performing actions in the external world dominate
computational costs

8/29/17 146767 reinforcement

Summary
Reinforcement learning - learning control strategies for

autonomous agents. Training information is real-valued
reward for each state-action transition. Learn action policy
that maximizes total reward from any starting state.

Reinforcement learning algorithms fit Markov decision
processes where the outcome of applying an action to a
state depends only on this action and state (not preceding
actions or states). MDPs cover a wide range of problems -
robot control, factory automation, and scheduling
problems.

8/29/17 147767 reinforcement

Summary II
Q learning is one form of reinforcement learning where

the function Q(s,a) is defined as the maximum
expected, discounted, cumulative reward the agent
can achieve by applying action a to state s. In Q
learning no knowledge of how the actions effect the
environment is required.

Q learning is proven to converge under certain
assumptions when the hypothesis Qˆ(s,a) is
represented by a lookup table. Will converge
deterministic and nondeterministic MDPs, but requires
thousands of training iterations to converge in even
modest problems.

8/29/17 148767 reinforcement

Summary III
Q learning is a member of the class of temporal

difference algorithms. These algorithms learn by
iteratively reducing discrepancies between
estimates produced by the agent at different times.

Reinforcement learning is closely related to
dynamic programming. The key difference is
that dynamic programming assumes the agent
possesses knowledge of the functions δ(s,a) and
r(s,a) while Q learning assumes the learner lacks
this knowledge.

8/29/17 149767 reinforcement

References
•  Reinforcement Learning: A Tutorial,

http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.33.2480

•  Reinforcement Learning: A Tutorial Survey and Recent
Advances, http://web.mst.edu/~gosavia/joc.pdf

•  Machine Learning, Tom Mitchell, (chapter on
reinforcement learning)

8/29/17 767 reinforcement 150

Alpha-Go

8/29/17 767 reinforcement 151

D Silver et al. Nature 529, 484–489 (2016) doi:10.1038/nature16961

Neural network training pipeline and architecture

D Silver et al. Nature 529, 484–489 (2016) doi:10.1038/nature16961

Strength and accuracy of policy and value networks

D Silver et al. Nature 529, 484–489 (2016) doi:10.1038/nature16961

Monte Carlo tree search in AlphaGo

D Silver et al. Nature 529, 484–489 (2016) doi:10.1038/nature16961

Tournament evaluation of AlphaGo

D Silver et al. Nature 529, 484–489 (2016) doi:10.1038/nature16961

How AlphaGo (black, to play) selected its move in an informal game against Fan
Hui

Questions you should be able to
answer

•  How is reinforcement learning different
than dynamic programing?

•  What are the 3 main components of a
reinforcement learning function?

•  What are the major differences between Q
learning and value iteration?

8/29/17 767 reinforcement 157

