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Agents
Building a learning robot (or agent)

Sensors observe the state of the world - camera and sonar

A set of actions can be performed to alter the state - move 
forward, turn left

Its task is to learn a control policy for choosing actions 
that achieve goals – 
docking onto a battery charger whenever its battery is 
low
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Agent Goals

We assume the goals of the agent can be defined by a 
reward function that assigns a numerical value - 
an immediate payoff - to each distinct action 
from each distinct state

100 for state-action transitions that immediately 
result in a connection to the charger and 

0 for all other state-action transitions
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An Agent

Agent

Environment

ActionState Reward
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Control Policy
The reward function can be built into the robot or 

known only to an external teacher

The task of the robot is to perform sequences of 
actions, observe their consequences, and learn a 
control policy

The desired control policy is one that from any initial 
state chooses actions that maximise the reward 
accumulated over time by the agent
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General Problem
Learning to control sequential processes

manufacturing optimization problems where reward is goods-produced 
minus costs involved

Sequential scheduling 
choosing which taxis to send for passengers in a big city where reward 
is a function of the wait time of passengers and the total fuel costs of 
the taxi fleet

Specific settings: 
actions are deterministic or nondeterministic, 
agent does or does not have prior knowledge of the effects of its 

actions on the environment
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Dynamic Programming

Field of mathematics

Traditionally used to solve problems of 
optimization and control

Limited in the size and complexity of problems
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Supervised Learning

Training a parameterized function approximator 
(neural network) to represent functions

Sample input/output pairs

Set of questions with the right answers
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Flight control system

Set of all sensor readings at a given time

How the flight control surfaces should move during 
the next millisecond

If we don’t know how to build a controller in the 
first place, simple supervised learning won’t help
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Combination

Reinforcement learning combines dynamic 
programing and supervised learning

The computer is simply given a goal to achieve

Learns how to achieve the goal by trial-and-error 
interactions with its environment
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Reinforcement Learning Model

Agent interacts with its environment

Agent sensing the environment, based on this 
sensory input choosing an action to perform in the 
environment

The action changes the environment in some 
manner and this change is communicated to the 
agent through a scalar reinforcement signal.
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Three Parts

Three fundamental parts of a reinforcement 
learning problem:

The environment

The reinforcement function and

The value function
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Environment
RL system learns mapping from situations to actions 
by trial-and-error interactions with a dynamic 
environment

Partially observable

Observations – sensor readings, symbolic 
descriptions, mental situations

Actions – low level, high level, or mental 
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Reinforcement Function

Exact function of future reinforcement the agent seeks 
to maximise

Mapping from state/action pairs to reinforcements

After performing an action, the RL agent will receive 
some reinforcement (scalar value)
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The Function

RL agent learns to perform actions that will 
maximise the sum of reinforcements 
received when starting from some initial state 
and proceeding to a terminal state
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System Designer

RL system designer to define a reinforcement 
function that properly defines the goals of 
the RL agent

3 noteworthy classes
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Pure Delayed Reward

The reinforcements are all zero except at the terminal 
state

Sign of the scalar reinforcement indicates whether the 
terminal state is a goal state (a reward) or a state that 
should be avoided (a penalty)

Playing backgammon
Cart-pole (inverted pendulum)
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Minimum Time to Goal

The reinforcement function is -1 for ALL state 
transitions except the transition to the goal state, in 
which case a zero reinforcement is returned.

Because the agent wishes to maximize 
reinforcement, it learns to choose actions that 
minimize the time it takes to reach the goal state, 
and in so doing learns the optimal strategy
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Maximize or Minimize

The learning agent could just as easily learn to 
minimize the reinforcement function. 

This might be the case when the reinforcement is a 
function of limited resources and the agent must 
learn to conserve these resources while achieving a 
goal (e.g., an airplane executing a maneuver while 
conserving as much fuel as possible).
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Games

An alternative reinforcement function would be used 
in the context of a game environment, when there are 
two or more players with opposing goals. 

In a game scenario, the RL system can learn to 
generate optimal behavior for the players involved 
by finding the maximun, minimax, or saddlepoint of 
the reinforcement function. 
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The Value Function

However, the issue of how the agent learns 
to choose “good” actions, or even how we 
might measure the utility of an action is not 
explained. 

First, two terms are defined: policy and value
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The Policy

A policy determines which action should be 
performed in each state; 

a policy is a mapping from states to actions. 
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The Value

The value of a state is defined as the sum of 
the reinforcements received when starting 
in that state and following some fixed policy 
to a terminal state. 
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Optimal Policy
The optimal policy would therefore be the mapping from 
states to actions that maximizes the sum of the 
reinforcements when starting in an arbitrary state and 
performing actions until a terminal state is reached. 

Under this definition the value of a state is dependent upon 
the policy. 
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Value Function

The value function is a mapping from states to 
state values and can be approximated using any 
type of function approximator (e.g., multi- layered 
perceptron, memory based system, radial basis 
functions, look-up table, etc.).
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Value Function Example

An example of a value function can be seen 
using a simple Markov decision process with 
16 states. 
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Markov Decision Process 
•  a Markov Decision Process is a discrete time 

stochastic control process. 

•  At each time step, the process is in some state s, and 
the decision maker may choose any action a that is 
available in state s. 

•  The process responds at the next time step by 
randomly moving into a new state s', and giving the 
decision maker a corresponding reward Ra(s,s')
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Markov Decision Process

An MDP consists of a set of states X; 
a set of start states S that is a subset of X; 
a set of actions A; 
a reinforcement function R where R(x,a) is the 
expected immediate reinforcement for taking action 
a in state x; 
and an action model P where P(x'|x,a) gives the 
probability that executing action a in state x will lead 
to state x'. 
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Important

It is a requirement that the choice of action be 
dependent solely on the current state 
observation x. 

If knowledge of prior actions or states affects 
the current choice of action then the decision 
process is not Markov.
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MDP vs MC

•  Markov decision processes are an extension of 
Markov chains; the difference is the addition of 
actions (allowing choice) and rewards (giving 
motivation).

•  Conversely, if only one action exists for each state 
and all rewards are zero, a Markov decision 
process reduces to a Markov chain. 
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Markov Decision Processes ���
http://en.wikipedia.org/wiki/Markov_decision_process
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Value Function
The state space can be visualized using a 4x4 grid. 

Each square represents a state. 

The reinforcement function is -1 everywhere (i.e., the agent 
receives a reinforcement of -1 on each transition). 

There are 4 actions possible in each state: north, south, east, 
west. 

The goal states are the upper left corner and the lower right 
corner. 
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Grid-world

One optimal policy

Q(s,a) values

r(s,a) values
(immediate rewards)

V*(s) values
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Random Value Function
The value function for the random policy

For each state the random policy randomly chooses one of 
the four possible actions. 

The numbers in the states represent the expected values of 
the states. 

For example, when starting in the lower left corner and 
following a random policy, on average there will be 22 
transitions to other states before the terminal state is reached.
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Random Policy Value Function
0 -14 -20 -22
-14 -18 -22 -20
-20 -22 -18 -14
-22 -20 -14 0
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Optimal Value Function

The optimal value function is shown

Again, starting in the lower left corner, calculating 
the sum of the reinforcements when performing the 
optimal policy (the policy that will maximize the 
sum of the reinforcements), the value of that state is 
-3 because it takes only 3 transitions to reach a 
terminal state. 
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Optimal Policy Value Function
0 -1 -2 -3
-1 -2 -3 -2
-2 -3 -2 -1
-3 -2 -1 0
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Optimal Value Function
Given the optimal value function, then it becomes a 
trivial task to extract the optimal policy. 

For example, one can start in any state and simply 
choose the action that maximizes the immediate 
reinforcement received. 

In other words, one can perform a one level deep 
breadth-first search over actions to find the action 
that will maximize the immediate reward
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Optimal Policy
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Fundamental Question

This leads us to the fundamental question of 
almost all of reinforcement learning research:

 How do we devise an algorithm that will 
efficiently find the optimal value function?
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Approximating the Value 
Function

•  Reinforcement learning is a difficult 
problem because the learning system may 
perform an action and not be told whether 
that action was good or bad. 

•  Think of a game of chess
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Temporal Credit Assignment Problem
•  Caused by delayed reward 

•  Assigning blame to individual actions is the problem 
that makes reinforcement learning difficult. 

•  Surprisingly, there is a solution to this problem. 

•  It is based on a field of mathematics called dynamic 
programming, and it involves just two basic 
principles
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Principle 1
If an action causes something bad to happen 
immediately, such as crashing the plane, then the system 
learns not to do that action in that situation again. 

So whatever action the system performed one 
millisecond before the crash, it will avoid doing in the 
future. 

But that principle doesn’t help for all the earlier 
actions which didn’t lead to immediate disaster.
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Principle 2

•  If all the actions in a certain situation leads to bad 
results, then that situation should be avoided. 

•  So if the system has experienced a certain 
combination of altitude and airspeed many different 
times, whereby trying a different action each time, and 
all actions led to something bad, then it will learn that 
the situation itself is bad.
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Power

This is a powerful principle, because the learning 
system can now learn without crashing. 

In the future, any time it chooses an action that leads to 
this particular situation, it will immediately learn that 
particular action is bad, without having to wait for the 
crash.
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Two principles
•  By using these two principles, a learning system 

can learn to fly a plane, control a robot, or do any 
number of tasks. 

•  It can first learn on a simulator, then fine tune on 
the actual system. 

•  This technique is generally referred to as dynamic 
programming, 
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Essence of Dynamic Programing
•  Initially, the approximation of the optimal value function 

is poor. 

•  The mapping from states to state values is not valid. 

•  The primary objective of learning is to find the correct 
mapping. 

•  Once this is completed, the optimal policy can easily be 
extracted. 
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Notation

V*(xt) is the optimal value function where xt is the 
state vector; 

V(xt) is the approximation of the value function; 

γ is a discount factor in the range [0,1] that causes 
immediate reinforcement to have more importance 
(weighted more heavily) than future reinforcement. 
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Approximation of the value function
V(xt) will be initialized to random values and will contain no 
information about the optimal value function V*(xt). 

The approximation of the optimal value function in a given 
state is equal to the true value of that state V*(xt) plus some 
error in the approximation, 

V(xt) = e(xt)+V *(xt)

where e(xt) is the error in the approximation of the value of 
the state occupied at time t. 
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Next Step
The approximation of the value of the state reached after 
performing some action at time t is the true value of the 
state occupied at time t+1 plus some error in the 
approximation

V(xt+1) = e(xt+1) +V *(xt+1)

The value of state xt for the optimal policy is the sum of 
the reinforcements when starting from state xt and 
performing optimal actions until a terminal state is 
reached. 
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Simple Relationship

A simple relationship exists between the values of 
successive states, xt and xt+1. 

This relationship is defined by the Bellman equation 
and is expressed in equation. 

The discount factor γ is used to exponentially 
decrease the weight of reinforcements received in the 
future
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Bellman Equation

V *(xt) = r(xt) +γV *(xt+1)

The approximation V(xt) also has the same 
relationship

 V(xt) = r(xt) + γV (xt +1)
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Error Relationship
The relationship in the errors of successive states. 

e(xt)=γe(xt+1)

the process of learning is the process of finding a 
solution for the value function for all states xt 

Several learning algorithms have been developed for 
precisely this task.
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Value Iteration Algorithm
Assume the function approximator used to represent V* is a lookup table 
(each state has a corresponding element in the table whose entry is the 
approximated state value)

One can find the optimal value function by performing sweeps through 
state space, updating the value of each state according to the equation 
until a sweep through state space is performed in which there are no 
changes to state values (the state values have converged).

∆wt =max(r(xt,u)+γV(xt+1))−V(xt)

u is the action performed in state xt and causes a transition to state xt+1, 
and r(xt,u) is the reinforcement received when performing action u in state 
xt. 
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Update Illustration
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Single Update
•  There are two actions possible in state xt, and each of 

these actions leads to a different successor state xt+1. 

•  In a value iteration update, one must first find the action 
that returns the maximum value. 

•  The only way to accomplish this is to actually perform 
an action and calculate the sum of the reinforcement 
received and the (possibly discounted) approximated 
value of the successor state V(xt+1). 
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Model Based
This must be done for all actions u in a given state xt, and is not possible 
without a model of the dynamics of the system. 

In the case of a robot deciding to choose between paths to follow, it is not 
possible to choose one path, observe the successor state, and then 
return to the starting state to explore the results of the next available 
action. 

Instead, the robot must in simulation perform these actions and 
observe the results. 

Then, based on the simulation results, the robot may choose the action 
that results in the maximum value.
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Bellman Equation
max(r(xt,u)+γV(xt+1))−V(xt)

Is simply the difference in the two sides of the Bellman 
equation, with the exception that we have generalized the 
equation to allow for

Markov decision processes (multiple actions possible in 
a given state) rather than 

Markov chains (single action possible in every state). 
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Bellman Residual
This expression is the Bellman residual, and is formally defined 
as               

e(xt) = max(r(xt,u)+γV(xt+1))−V(xt)
is the error function defined by the Bellman residual over all of 
state space. 

Each update reduces the value of E(xt), and in the limit as the 
number of updates goes to infinity E(xt)=0. 

When E(xt)=0  is satisfied and V(xt)=V*(xt). 

Learning is accomplished.
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Residual Gradient Algorithms
Thus far it has been assumed our function approximator is a 
lookup table. 

However, this assumption severely limits the size and 
complexity of the problems solvable. 

Many real-world problems have extremely large or even 
continuous state spaces.

Hence, an extension to classical value iteration is to use a 
function approximator that can generalize and interpolate 
values of states never before seen. 
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Grid-world

One optimal policy

Q(s,a) values

r(s,a) values
(immediate rewards)

V*(s) values
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Neural Network
For example, one might use a neural network for the 
approximation V(xt,wt) of V*(x), where wt is the parameter 
vector. 

The resulting network parameter update is
∆wt=−α[maxu(r(xt,u)+γV(xt+1,wt))−V(xt,wt)](∂V(xt,wt)/∂wt)
where α is the learning rate, 
           maxu(r(xt,u)+γV(xt+1,wt))is the desired output of the network, 
          V(xt,wt) is the actual output of the network, and 
          (∂V(xt,wt)/∂wt)is the gradient of the output of the network with 
respect to the parameter vector. 
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Generalizing from Examples

Previous algorithms make no attempt to estimate 
the V value for unseen state-action pairs, 
unrealistic in large or infinite spaces or when the 
cost of executing actions is high

Substituted ANN for the table lookup and use each V 
update as a training example – state as input and 
QV as output
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Multiple ANN
A more successful alternative is to train a separate 

ANN for each action using state as input and V as 
output

Another common alternative is to train one network 
with state as input and with one V output for each 
action

The convergence theorems no longer hold!!
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Minimize the Bellman Residual

It “appears” that we are performing updates that will 
minimize the Bellman residual, but this is not necessarily 
the case. 

The “target” value max(r(xt,u)+γV(xt+1,wt)) is a function 
of the parameter vector w at time t. 

Once the update to w is performed, the target has 
changed because it is now a function of a different 
parameter vector (the vector at time t+1). 
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Actually Increases

It is possible that the Bellman residual has actually been 
increased rather than decreased. 

The error function on which gradient descent is being 
performed changes with every update to the parameter 
vector. 

This can result in the values of the network parameter 
vector oscillating or even growing to infinity.
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Mean Squared

One solution to this problem is to perform gradient 
descent on the mean squared Bellman residual. 

Because this defines an unchanging error function, 
convergence to a local minimum is guaranteed. 

This means that we can get the benefit of the generality 
of neural networks while still guaranteeing convergence. 
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Residual Gradient Algorithm
∆wt=α[r(xt)+γV(xt+1,wt) −V(xt,wt)][(γ∂V(xt+1,wt)/∂wt)−(γ∂V(xt,wt)/∂wt)]

• The resulting method is referred to as a residual gradient algorithm 
because gradient descent is performed on the mean squared Bellman 
residual. 

• It is important to note that if the MDP is non-deterministic then it 
becomes necessary to generate independent successor states to guarantee 
convergence to the correct answer. 

8/29/17 767 reinforcement 68



Nondeterministic Markov decision processes

A deterministic Markov decision process is one in which the 
state transitions are deterministic (an action performed in 
state xt always transitions to the same successor state xt+1). 

A non-deterministic Markov decision process, a probability 
distribution function defines a set of potential successor states 
for a given action in a given state. 
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Expected Value
If the MDP is non-deterministic, then value iteration requires 
that we find the action that returns the maximum expected 
value (the sum of the reinforcement and the integral over all 
possible successor states for the given action). 

For example, to find the expected value of the successor state 
associated with a given action, one must perform that action 
an infinite number of times, taking the integral over the 
values of all possible successor states for that action. 
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Two possible actions
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Which action?
There are two possible actions in state x. 

Each action returns a reinforcement of 0. 

Action u1 causes a transition to one of two possible successor 
states with equal probability. 

The same is true for action u2. 

The values of the successor states are 0 and 1 for both actions. 
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Calculating Expected Value
Value iteration requires that the value of state x be equal to the maximum 
over actions of the sum of reinforcement and the expected value of the 
successor state. 

By taking an infinite number of samples of successor states for action u1, 
one would be able to calculate that the actual expected value is 0.5. 

The same is true for action u2. Therefore, the value of state x is 0.5 

If perform value iteration on this MDP by taking a single sample of the 
successor state associated with each action instead of the integral, then x 
would converge to a value of 0.75. 

Clearly the wrong answer.
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Q-learning
Theoretically, value iteration is possible in the context of non-
deterministic MDPs.

In practice it is computationally impossible to calculate the necessary 
integrals without added knowledge or some degree of modification. 

Q-learning solves the problem of having to take the max over a set of 
integrals.

Rather than finding a mapping from states to state values (as in value 
iteration), Q-learning finds a mapping from state/action pairs to values 
(called Q-values). 
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Q function
Instead of having an associated value function, Q- learning makes use of 

the Q-function. 

In each state, there is a Q-value associated with each action. 

The definition of a Q-value is the sum of the (possibly discounted) 
reinforcements received when performing the associated action and 
then following the given policy thereafter. 

Likewise, the definition of an optimal Q-value is the sum of the 
reinforcements received when performing the associated action and 
then following the optimal policy thereafter.
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Q Function - Cheat
Optimal action is the one that maximizes the sum r(s,a) and 

V* to the immediate successor state discounted by γ

π*(s)=argmaxa[r(s,a)+γV*(δ(s,a))]

But must have perfect knowledge of reward function r and the 
state transition function δ!!!

So create the Q function  Q(s,a)≡r(s,a)+γV*(δ(s,a))
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Q Learning
Now π*(s)=argmaxaQ(s,a)

Now we can select optimal actions even when 
we have no knowledge of r or δ

Q value for each state-action transition equals 
the r value for this transition plus the V* 
value for the resulting state discounted by γ
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Q Learning Properties
Still need V* - iterative approximation or recursive 

definition

V*(s)=maxa´Q(s,a´), so

Q(s,a)=r(s,a)+γmaxa´Q(δ(s,a),a´)

Qˆ(s,a), the learner’s estimate of Q, is stored in a big 
table which is initially filled with random values 
or zero
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Table Update

The agent starts in some state, s, and chooses some 
action, a, and observes the result reward, r(s,a), 
and the new state, δ(s,a)

It then updates the table, Qˆ(s,a)←r+γmaxa´Qˆ(s´,a´)

Doesn’t need to know functions δ or r just executes 
the action and observes s´ and r so just sampling 
these functions at the current values of s and a
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Bellman Equation for Q-learning
In the context of Q-learning, the value of a state is defined to 
be the maximum Q-value in the given state. 

Given this definition it is easy to derive the equivalent of the 
Bellman equation for Q-learning.

Q(xt,ut) = r(xt,ut)+γ maxu(t+1)Q(xt+1,ut+1)
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Monte Carlo

Q-learning differs from value iteration in that it 
doesn’t require that in a given state each action be 
performed and the expected values of the successor 
states be calculated.

 While value iteration performs an update that is 
analogous to a one level breadth-first search, Q-
learning takes a single-step sample of a Monte-
Carlo roll-out. 
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Single Step Sample
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Update Equation
The update equation is valid when using a lookup table for the Q-function.

The Q-value is a prediction of the sum of the reinforcements received 
when performing the associated action and then following the policy. 

To update that prediction Q(xt,ut) one must perform the associated action 
ut, causing a transition to the next state xt+1 and returning a scalar 
reinforcement r(xt,ut). 

Then find the maximum Q-value in the new state to have all the necessary 
information for revising the prediction (Q-value) associated with the 
action just performed..
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Unbiased Estimate
Q-learning does not require one to calculate the integral over all 
possible successor states in the case that the state transitions are non- 
deterministic. 

The reason is that a single sample of a successor state for a given action is 
an unbiased estimate of the expected value of the successor state. 

After many updates the Q-value associated with a particular action will 
converge to the expected sum of all reinforcements received when 
performing that action and following the optimal policy thereafter.
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Grid-world

One optimal policy

Q(s,a) values

r(s,a) values
(immediate rewards)

V*(s) values
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Model-free
Q learning needs NO knowledge of the reward function or the actions 
transition probabilities

Hence it is called model-free

However, they must be run in simulators of systems, which can be easily 
constructed from the distributions of the governing random variables.

It is well-known that simulating a complex system is considerably easier 
than generating a model of the system with all the transition probabilities

This is also why RL is said to avoid the curse of modeling.
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Residual Gradient and Direct Q-learning

As it is possible to represent the value function with a neural 
network in the context of value iteration, so it is possible to 
represent the Q-function with a neural network in the context 
of Q-learning. 

The information presented in the discussion of value iteration 
concerning convergence to a stable value function is also 
applicable to guaranteeing convergence to a stable Q-
function. 
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Q function with neural network

Direct Q-learning
∆wt =-α[(r(xt,ut)+γ maxu(t+1)Q(xt+1,ut+1,wt))-

Q(xt,ut,wt)] ∂Q(xt,ut,wt) /∂wt

Residual Graidient Q-learning
∆wt =-α[(r(xt,ut)+γ maxu(t+1)Q(xt+1,ut+1,wt))-

Q(xt,ut,wt)] [(∂γQ(xt+1,ut+1) /∂wt)-
(∂Q(xt,ut,wt) /∂wt)]

8/29/17 767 reinforcement 88



Updating Sequence

Q learning need not train on optimal action 
sequences to converge to the optimal policy

After the first full episode only one entry in the table 
will be updated.  

If the agent follows the same sequence of actions the 
second table entry will be updated.  
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Updating Improvements

So perform updates in reverse chronological order! 

Will converge in fewer iterations, although the agent has 
to use more memory to store the entire episode.
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Retraining
Another strategy - store past state-action transitions and 

immediate rewards and retrain on them periodically  

This can be a real win depending on relative costs (robot is 
very slow in comparison to replaying)

Many more efficient techniques when the system knows the δ 
and r functions – dynamic programming
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Convergence
Qˆ values never decrease during training 

(∀s,a,n)Qˆn+1(s,a) ≥Qˆn(s,a)  (only if r is deterministic)

Qˆ will remain in the interval between 0 and Q
(∀s,a,n)0≤Qˆn(s,a)≤Q(s,a)

Will converge if
1.  Deterministic MDP,
2.  Immediate rewards are bounded - |r(s,a)|<c
3.  The agent selects actions such that it visits every state-action 

pair infinitely often - must execute a from s with nonzero 
frequency as the length of its action sequence approaches 
infinity
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Nondeterministic Rewards and 
Actions

The functions δ(s,a) and r(s,a) can be viewed as first 
producing a probability distribution over outcomes 
based on s and a and then drawing an outcome at 
random according to this distribution - 
nondeterministic markov decision process

Q(s,a) = E[r(s,a)]+γΣs´P(s´|s,a)maxa´Q(s´,a´), but is 
not guaranteed to converge
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Decaying Weighted Average

Decaying weighted average of the current Qˆ and the 
revised estimate (important when r is not 
deterministic)

Qˆn(s,a)←(1-αn)Qˆn-1(s,a)+αn[r+maxa´Qˆn-1(s´,a´)], 
where

Convergence long = 1.5 million games in Tesauro’s 
backgammon program

€ 

αn =
1

1+ visitsn (s,a)
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Stop here
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Advantage Learning
Although Q-learning is a significant improvement over value iteration, it 
is still limited in scope in at least one important way.

The number of training iterations necessary to sufficiently represent the 
optimal Q- function when using function approximators that generalize 
scales poorly with the size of the time interval between states. 

The greater the number of actions per unit time (the smaller the increment 
in time between actions) the greater the number of training iterations 
required to adequately represent the optimal Q- function. 

The explanation for this is demonstrated with a simple example. 
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Markov Decision Process ���
with 1000 states
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Example
State 0 is the initial state and has a single action available, transition to 
state 1. 

State 999 is an absorbing state.

In states 1..998 there are two actions available, transition to either the state 
immediately to the right or immediately to the left. 

For example, in state 1, the action of going left will transition to state 0, 
and the action of going right will transition to state 2. 

Each transition incurs a cost (reinforcement) of 1. 
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More Example
The objective is to minimize the total cost accumulated in transitioning 
from state to state until the absorbing states is reached. 

The optimal Q-value for each action is represented by the numbers next to 
each state. 

For example, in state 2 the optimal Q-value for the action of going left is 
1000, and the optimal Q-value for the action of going right is 998. 

The optimal policy can easily be found in each state by choosing to 
perform the action with the minimum Q-value.
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Practical Limitations
When using a function approximator that generalizes over 
state/action pairs (any function approximator other than a 
lookup table or equivalent), it is possible to encounter 
practical limitations in the number of training iterations 
required to accurately approximate the optimal Q-function. 

As the time interval between states decreases in size, the 
required precision in the approximation of the optimal Q-
function increases exponentially. 
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Back to Example
The optimal Q-function associated with the MDP is linear and 
can be represented by a simple linear function 
approximator. 

However, it requires an unreasonably large number of 
training iterations to achieve the level of precision necessary 
to generate the optimal policy. 

The reason for the large number of training iterations is 
simple
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Precision
The difference in the Q-values in a given state is small relative to the 
difference in the Q-values across states (a ratio of approximately 1:1000). 

For example, the difference in the Q-values in state 1 is 2 (1001-999=2). 
The difference in the minimum Q-values in states 1 and 998 is 998 
(999-1=998). 

The approximation of the optimal Q-function must achieve a degree of 
precision such that the tiny differences in Q-values in a single state are 
represented. 

Because the differences in Q-values across states have a greater impact 
on the mean squared error, during training the network learns to 
represent these differences first. 
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Infinite Precision

The differences in the Q-values in a given state have only a tiny effect on 
the mean squared error and therefore get lost in the noise. 

To represent the differences in Q-values in a given state requires much 
greater precision than to represent the Q-values across states. 

As the ratio of the time interval to the number of states decreases it 
becomes necessary to approximate the optimal Q-function with increasing 
precision. 

In the limit, infinite precision is necessary.
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Advantage Learning
Advantage learning does not share the scaling problem of Q-learning.
 
Similar to Q-learning, advantage learning learns a function of state/
action pairs. 

However, in advantage learning the value associated with each action is 
called an advantage. 

Therefore, advantage learning finds an advantage function rather than a 
Q-function or value function. 

The value of a state is defined to be the value of the maximum 
advantage in that state. 
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Degree of Suboptimality
For the state/action pair (x,u) an advantage is defined as the 
sum of the value of the state and the utility (advantage) of 
performing action u rather than the action currently 
considered best. 

For optimal actions this utility is zero, meaning the value of 
the action is also the value of the state; for sub-optimal 
actions the utility is negative, representing the degree of 
sub-optimality relative to the optimal action. 
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Bellman Equation for Advantage Learning

The equivalent of the Bellman equation for advantage 
learning 

A(xt,ut) =maxu(t)A(xt,ut) +([<r(xt,ut)+γmaxu(t+1)A(xt+1,ut+1)> 
−maxu(t)A(xt,ut)]/∆tK)

where γ is the discount factor per time step, 
K is a time unit scaling factor, and 
<> represents the expected value over all possible 

results of performing action u in state xt to receive immediate 
reinforcement r and to transition to a new state xt+1.
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Markov Chain
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Example
The initial state is 0 and the terminal state is 999. 

Each state transition returns a cost (reinforcement) of 1 and the value of 
state 999 is defined to be 0. 

Because this is a Markov chain it is not sensible to suggest that the RL 
system learn to minimize or maximize reinforcement. 

Instead, we are concerned exclusively with predicting the total 
reinforcement received when starting from state n where n is a state in the 
range [1..998]. 
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TD(λ)
Value iteration, Q-learning, and advantage learning can all 
solve this problem. 

However, TD(λ) can solve it faster. 

In the context of Markov chains, TD(λ) is identical to value 
iteration with the exception that TD(λ) updates the value of 
the current state based on a weighted combination of the 
values of future states, as opposed to using only the value of 
the immediate successor state. 
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Zero information
Recall that in value iteration the “target” value of the current 
state is the sum of the reinforcement and the value of the 
successor state, in other words, the right side of the Bellman 
equation.

V(xt,wt) = r(xt) +γV(xt+1,wt)

Notice that the “target” is also based on an estimate V(xt+1,wt), 
and this estimate can be based on zero information. 

Indeed, this is the case much of the time and can be 
demonstrated. 
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Arbitrary Updates
Assume that the value function for this Markov chain is represented using 
a lookup table. 

In this case, our lookup table has 1000 elements, each corresponding to a 
state, and the entry in each element is the value of the corresponding state. 

Before learning begins entries are initialized to random values. 

The process of learning starts by updating the value of state 0 to be the 
sum of the reinforcement received on transition from state 0 to state 1 and 
the value of state 1. 

Remember, at this point the value of state 1 is arbitrary. 
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Inefficient
This is true for all states except the terminal state (999) which, by 
definition, has a value of 0. 

Because the initial values of states are arbitrary (with the exception of 
the terminal state), the entire first sweep through the Markov chain 
(epoch) of training results in the improvement of the approximation of 
the value function only in state 998. 

In the first epoch, only in state 998 is the update to the approximation 
based on something other than an arbitrary value. 

This is terribly inefficient.
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One Step
In fact, not until 999 epochs of training have been performed will the 
approximation of the value of state 0 contain any degree of 
“truth” (the approximation is based on something other than an arbitrary 
value). 

In epoch 2 of training, the approximation of the value of state 997 is 
updated based on an approximation of the value of state 998 that has as its 
basis the true value of state 999, rather than an arbitrary value. 

In epoch 3, the approximation of the value of state 996 will be updated 
based on “truth” rather than an arbitrary value. 

Each epoch moves “truth” back one step in the chain.
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Weight Average of future
The approximation of the value of state xt is updated based on 
the approximation of the value of the state one step into the 
future, xt+1. 

If the value of a state were based on a weighted average of 
the values of future states, then “truth” would be propagated 
“back in time” much more efficiently. 
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SpeedUp
Instead of updating the value of a state based exclusively on the value of 
the immediate successor state one used the next 2 successor states as the 
basis of the update, then the number of epochs performed before the value 
of state 0 is no longer based on an arbitrary value is reduced from 1000 to 
500. 

If the value approximation of state 0 is based on a weighted combination 
of values of the succeeding 500 states, then only 2 epochs are required 
before the value approximation of state 0 is based on something other than 
an arbitrary value.
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TD(λ)
This is precisely the function of TD(λ) (Sutton, 1988) for 0<λ<1. 

Instead of updating a value approximation based solely on the 
approximated value of the immediate successor state, TD(λ) basis the 
update on an exponential weighting of values of future states. 

λ is the weighting factor. 

TD(0), the case of λ=0, is identical to value iteration for the example 
problem stated above.

TD(1) updates the value approximation of state n based solely on the 
value of the terminal state.
8/29/17 767 reinforcement 116



Equations
The parameter update for TD(λ) is:

∆wt=α(r(xt)+V(xt+1 ,wt)−V(xt,wt)) ∑k=1to t
 λt−k∇w V(xk,wt)

An incremental form of this equation can be derived as follows. 

Given that gt is the value of the sum above for t, we can compute gt+1, 
using only current information, as

gt+1 =∇wV(xk+1,wt)+λgt.
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Extending to MDP
Notice that the equations do not have a max or min term (over operators).

This suggests that TD(λ) is used exclusively in the context of prediction 
(Markov chains). 

One way to extend the use of TD(λ) to the domain of Markov decision 
processes is to perform updates according to the regular equation while 
calculating the sum according to iterative equation when following the 
current policy. 
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Exploration
When a step of exploration is performed (choosing an action that is not 
currently considered “best”), the sum of past gradients g in the iterative 
equation should be set to 0. 

The intuition behind this method follows. 

The value of a state xt is defined as the sum of the reinforcements received 
when starting in xt and following the current policy until a terminal state is 
reached.
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Intuition
During training, the current policy is the best approximation to the 
optimal policy generated thus far. 

On occasion one must perform actions that don’t agree with the current 
policy so that better approximations to the optimal policy can be realized.

However, one might not want the value of the resulting state propagated 
through the chain of past states. 

This would corrupt the value approximations for these states by 
introducing information that is not consistent with the definition of a state 
value.
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No Convergence
TD(λ) for λ=0 is equivalent to value iteration. 

Likewise, the discussion of residual gradient algorithms is applicable to 
TD(λ) when λ=0. 

However, this is not the case for 0<λ<1. 

No algorithms exist that guarantee convergence for TD(λ) for 0<λ<1 
when using a general function approximator.
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Defined over the space
The fundamental question in reinforcement learning research is: How do 
we devise an algorithm that will efficiently find the optimal value 
function? 

It was shown that the optimal value function is a solution to the set of 
equations defined by the Bellman equation. 

The process of learning was subsequently described as the process of 
improving an approximation of the optimal value function by 
incrementally finding a solution to this set of equations. 

One should notice that the Bellman equation is defined over all of state 
space. 
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Exploration
The optimal value function satisfies this equation for ALL xt in state 
space. 

This requirement introduces the need for exploration. 

Exploration is defined as intentionally choosing to perform an action 
that is not considered “best” for the express purpose of acquiring 
knowledge of unseen (or little seen) states. 

In order to identify a (sub-)optimal approximation, state space must be 
sufficiently explored.
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When to Explore?
For example, a robot facing an unknown environment has to spend some 
time acquiring knowledge of its environment. 

Alternatively, experience acquired during exploration must also be 
considered during action selection to minimize the costs (negative 
reinforcements) associated with learning. 

Although the robot must explore its environment, it should avoid 
collisions with obstacles. 

However, the robot does not know which actions will result in collision 
until all of state space has been explored.
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Trade-off
On the other hand, it is possible that a policy that is “sufficiently” good 
will be recognized without having to explore all of state space. 

There is a fundamental trade-off between exploration and exploitation 
(using previously acquired knowledge to direct the choice of action).

Therefore, it is important to use exploration techniques that will 
maximize the knowledge gained during learning while minimizing the 
costs of exploration and learning time.

For a good introduction to the issues of efficient exploration see Thrun 
(1992).
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Exploratory Policy
In the simulator, one may choose each action with the same 
probability.

This usually ensures that all samples are gathered properly 
and that all state-action pairs are updated infinitely often; the 
latter is a requirement for convergence to the correct values of 
the Q-values. 

In practice, a so-called exploratory policy, with a bias towards 
the greedy action, is often used. 
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Experimentation Strategies

Common to use probabilistic approach to selecting 
actions

Actions with higher Qˆ are assigned higher 
probabilities, but every action has a non-zero 
probability
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Probability of Selecting Action

P(ai|s) is the probability of selecting action ai, given 

the agent is in state s, 

where k>0 is the constant that determines how strongly the 
selection favors actions with high Qˆ values

€ 

P(ai | s) =
k ˆ Q (s,ai )

k
ˆ Q (s,a j )

j∑
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Shifting from Exploration to 
Exploitation

Sometimes k is varied with the number of 
iterations  

the agent favors exploration during the early 
stages of learning, 

then gradually shifts toward a strategy of 
exploitation
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Limiting Greedy Exploration
With an exploratory strategy, in the kth iteration, one selects the greedy 
action argmaxuεA(i) Q(i,u) with a probability pk and any one of the 
remaining actions with probability (1-pk)/(|A(i)|-1)

A possible rule for the probability pk is: pk = 1-(B/k); where B for instance 
could equal 0.5. 

With such a rule, the probability of selecting non-greedy actions is 
automatically decayed to 0 with increasing k. 

This is also called limiting-greedy exploration.
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Types of Exploration
Random, undirected exploration, discussed above, can cause the algorithm 
to take time exponential in the number of states to converge 
(Whitehead, 1991). 

Directed exploration strategies: counter-based (Sato et al.,1990), error-
and-counter based (Thrun and Moller, 1992), and recency-based (Sutton, 
1990) can overcome this drawback. 

A number of exploration strategies have been discussed and experimented 
with in the literature: the Boltzmann strategy (Luce, 1959), the E3 strategy 
(Kearns and Singh, 2002), and the external-source strategy (Smart and 
Kaelbling, 2000).
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SARSA
SARSA: SARSA (Rummery and Niranjan, 1994; Sutton, 1996; Sutton and Barto, 
1998) is a well-known algorithm based on an “on-policy" control. 

In on-policy control, a unique policy is evaluated for some time during the 
learning. 

This is unlike Q-Learning, which does “off-policy" control, in which the
policy being evaluated can change in every iteration. 

SARSA uses the concept of learning in episodes, in which there is a “terminal" 
state and the episode terminates when the terminal state is reached. 
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SARSA(λ)
SARSA is a TD(0) algorithm. 

TD(λ) can also be used in SARSA (see SARSA(λ) of Sutton (1996)) 
especially when the learning is episodic. 

An important notion of eligibility traces, discussed in Singh and Sutton 
(1996), can be used to increase the power of TD(¸) methods by attaching 
variable weights to the reinforcements in the updating strategy. 

When function approximation can be performed more easily with on-
policy updates, an on-policy algorithm like SARSA becomes more 
effective than Q-Learning.
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Discounted vs non-discounted
The discount factor γ is a number in the range of [0..1] and is used to 
weight near term reinforcement more heavily than distant future 
reinforcement. 

The closer γ is to 1 the greater the weight of future reinforcements. 

The weighting of future reinforcements has a half-life of σ = log0.5 / log 
γ. 

For γ=0, the value of a state is based exclusively on the immediate 
reinforcement received for performing the associated action. 
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Finite Horizon MDP
For finite horizon Markov decision processes (an MDP that 
terminates) it is not strictly necessary to use a discount factor. 

In this case (γ=1), the value of state xt is based on the total 
reinforcement received when starting in state xt and following 
the given policy.

∆wt =maxu(r(xt,u)+γV(xt+1,wt))−V(xt,wt)
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Infinite Horizon MDP
In the case of infinite horizon Markov decision processes (an 
MDP that never terminates), a discount factor is required. 

Without the use of a discount factor, the sum of the 
reinforcements received would be infinite for every state. 

The use of a discount factor limits the maximum value of a 
state to be on the order of  R/1−γ.
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Reward Functions
Discounted cumulative reward

Where rt+i is generated by beginning at state st and repeatedly 
using policy π to select actions

0 ≤ γ < 1 is a constant that determines the relative value of 
delayed versus immediate rewards - if γ=0 only 
immediate reward is considered, as γ moves closer to 1 
future rewards are given more emphasis

€ 

V π (st ) ≡ rt + γrt+1 + γ 2rt+2 + ...≡ γ irt+ ii= 0

∞

∑
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Other Reward Functions

Finite horizon reward

Average reward

We will only focus on discounted cumulative 
reward!

€ 

rt+ ii= 0

h
∑

€ 

limh→∞

1
h

rt+1i= 0

h
∑
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Start again
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Reinforcement Learning 
Problems

Delayed Reward

Exploration versus Exploitation

Partially Observable States

Life-long Learning
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Delayed Reward

π:S→A that outputs an appropriate action, a, from 
the set A, given the current state s from the set S.

Delayed Reward: no training example in <s,π(s)> 
form, the trainer provides only a sequence of 
immediate reward values as the agent executes 
its sequence of actions.  The agent faces the 
problem of temporal credit assignment
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Exploration versus Exploitation

The agent influences the distribution of training 
examples by the action sequence it chooses.  
Which experimentation strategy produces most 
effective learning?  

The learner faces tradeoffs in choosing exploration 
of unknown states or exploitation of known states 
that it has already learned will yield high rewards
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Partially Observable States
In many practical situations sensors only provide 

partial information. 

 An agent may have to consider its previous 
observations together with its current sensor data.  

The best policy may be one which chooses 
specifically to improve the observability of the 
environment.
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Life-long Learning
Agents often require that the robot learn several related 

tasks within the same environment. 

A robot might need to learn how to dock on its battery 
charger, how to navigate through narrow corridors, and 
how to pickup output from laser printers.  

This raises the possibility of using previously obtained 
experience or knowledge to reduce sample complexity 
when learning new tasks.
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Relationship to Dynamic 
Programming

Agent possesses perfect knowledge of the functions δ(s,a) and 
r(s,a)

Focused on how to compute the optimal policy with the least 
computational effort, assuming the environment can be 
simulated

Q learning has NO knowledge of the functions δ(s,a) and 
r(s,a)
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Focus of Reinforcement Learning

Focused on the number of real-world actions the 
agent must perform to converge to an acceptable 
policy

In many practical domains, such as manufacturing 
problems, the costs in dollars and time of 
performing actions in the external world dominate 
computational costs
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Summary
Reinforcement learning - learning control strategies for 

autonomous agents.  Training information is real-valued 
reward for each state-action transition.  Learn action policy 
that maximizes total reward from any starting state.

Reinforcement learning algorithms fit Markov decision 
processes where the outcome of applying an action to a 
state depends only on this action and state (not preceding 
actions or states). MDPs cover a wide range of problems - 
robot control, factory automation, and scheduling 
problems.
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Summary II
Q learning is one form of reinforcement learning where 

the function Q(s,a) is defined as the maximum 
expected, discounted, cumulative reward the agent 
can achieve by applying action a to state s. In Q 
learning no knowledge of how the actions effect the 
environment is required.

Q learning is proven to converge under certain 
assumptions when the hypothesis Qˆ(s,a) is 
represented by a lookup table.  Will converge 
deterministic and nondeterministic MDPs, but requires 
thousands of training iterations to converge in even 
modest problems.
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Summary III
Q learning is a member of the class of temporal 

difference algorithms.  These algorithms learn by 
iteratively reducing discrepancies between 
estimates produced by the agent at different times.

Reinforcement learning is closely related to 
dynamic programming.  The key difference is 
that dynamic programming assumes the agent 
possesses knowledge of the functions δ(s,a) and 
r(s,a) while Q learning assumes the learner lacks 
this knowledge.
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Questions you should be able to 
answer

•  How is reinforcement learning different 
than dynamic programing?

•  What are the 3 main components of a 
reinforcement learning function?

•  What are the major differences between Q 
learning and value iteration?
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