Deep Learning

Patricia J Riddle
Computer Science 760

Based on UFLDL Tutorial
by Andrew Ng et. Al.
http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial

What is a deep neural network?

an ANN with multiple hidden layers
— which allows it to compute much more complex features of the input.

Each hidden layer computes a non-linear transformation of the
previous layer

— a deep network can have significantly greater representational power

(i.e., can learn significantly more complex functions) than a shallow
one.

Note that when training a deep network, it is important to use a
non-linear activation function in each hidden layer.

— Multiple layers of linear functions would itself compute only a linear
function of the input (i.e., composing multiple linear functions
together results in just another linear function), and thus be no more
expressive than using just a single layer of hidden units.

Deep Learning

Common Backpropagation Features

* Weight decay — as before

* Symmetry breaking — initialization to small
random numbers

How to get More Data

Given a sufficiently powerful learning algorithm, one of the most
reliable ways to get better performance is to give the algorithm more
data.

— This has led to the that aphorism that in machine learning, "sometimes

it's not who has the best algorithm that wins; it's who has the most
data."

One can always try to get more labeled data, but this can be
expensive. Researchers have gone to extraordinary lengths using
tools such as AMT (Amazon Mechanical Turk) to get large training
sets.

Having large numbers of people hand-label lots of data is a step
forward compared to having large numbers of researchers hand-
engineer features, but it would be nice to do better.

Promise of self-taught learning

If we get our algorithms to learn from unlabeled data, then we can
casily obtain and learn from massive amounts of it.

A single unlabeled example is less informative than a single labeled
example

But if we can get tons of the former

— downloading random unlabeled images/audio clips/text documents off
the internet

And if our algorithms can exploit this unlabeled data effectively,

Then we might be able to achieve better performance than the
massive hand-engineering and massive hand-labeling approaches.

Self Taught Unsupervised Feature Learning

We give our algorithms a large amount of unlabeled data with which
to learn a good feature representation of the input.

If we are trying to solve a specific classification task, we can take
this learned feature representation and whatever (perhaps small
amount of) labeled data we have for that classification task, and
apply supervised learning on that labeled data to solve the
classification task.

These 1deas are the most powerful when we have a lot of unlabeled
data, and a smaller amount of labeled data.

They give good results even if we have only labeled data (in which
case we usually perform the feature learning step using the labeled
data, but ignoring the labels).

Autoencoder

unsupervised learning
compressed representation

X, —>

X, —>

X3 —>
hmuﬂx)

A
Xg —m>

A
X —>

Xe —>

Layer L, Layer L;

Sparsity parameter

* Sparsity Parameter, .05
* Average activation of each hidden neuron

e Most of the hidden units activations must be
near

Visualization of Hidden Units

"FI A YFEl.I
.-I"IFII.-IHIE bl

What the Visualization shows

Each square shows the input image x that
maximally actives one of 100 hidden units.

Different hidden units have learned to detect
edges at different positions and orientations in

the image.

Sparse Autocoder

Input Features Output

12

New Features

13

Self Taught vs Semi-supervised

e Two common unsupervised feature learning settings,
depending on what type of unlabeled data you have.

— The more general and powerful setting is the self-taught
learning setting, which does not assume that your
unlabeled data has to be drawn from the same
distribution as your labeled data.

— The more restrictive setting where the unlabeled data
comes from exactly the same distribution as the labeled
data is sometimes called the semi-supervised learning
setting

Self Taught

Your goal is a computer vision task where you'd like to distinguish
between images of cars and images of motorcycles;

— each labeled example in your training set is either an image of a car or an
image of a motorcycle.

Where can we get lots of unlabeled data?

— Obtain some random collection of images, perhaps downloaded off the
internet.

Train the autoencoder on this large collection of images, and obtain useful
features from them.

Because the unlabeled data is drawn from a different distribution than the
labeled data (i.e., perhaps some of our unlabeled images may contain
cars/motorcycles, but not every image downloaded is either a car or a
motorcycle), we call this self-taught learning.

Semi-supervised

If we happen to have lots of unlabeled images lying around that are
all images of either a car or a motorcycle, but where the data is just
missing its label (so you don't know which ones are cars, and which
ones are motorcycles), then we could use this form of unlabeled
data to learn the features.

This setting---where each unlabeled example is drawn from the
same distribution as your labeled examples---is sometimes called
the semi-supervised setting.

In practice, we often do not have this sort of unlabeled data (where
would you get a database of images where every image is either a
car or a motorcycle, but just missing its label?), and so in the
context of learning features from unlabeled data, the self-taught
learning setting is more broadly applicable.

Self taught vs semi-supervised

e But self-taught is also more dangerous!!
— More apt NOT to work at all
— Must be careful!!!

Deep Networks

* |n self-taught learning, we first trained a
sparse autoencoder on the unlabeled data.

* Then, given a new example, we used the
hidden layer to extract features.

Learn Features

19

Train logistic classifier

> P(y=0|x)

+1

Input Logistic
(features) classifier

Combine Both

21

Fine Tuning

train the first layer using an autoencoder
train the second layer via logistic/softmax regression)
further modify all the parameters in our model to try to further reduce the training error.

perform gradient descent (or use L-BFGS) from the current setting of the parameters to try to
reduce the training error on our labeled training set.

When fine-tuning is used, the original unsupervised feature learning steps are called pre-
training.

labeled data is used to modify the earlier layers weights, so that adjustments can be made to
the features extracted by the layer of hidden units.

When should we use fine-tuning?

— if you have a large labeled training set,fine-tuning can significantly improve the performance of your
classifier.

— if you have a large unlabeled dataset and only a relatively small labeled training set, then fine-tuning
is significantly less likely to help.

Deep Learning Advantages

It can compactly represent a significantly larger set of functions than shallow
networks.

— Formally, there are functions which a k-layer network can represent compactly (with a
number of hidden units that is polynomial in the number of inputs), that a (k — 1)-layer
network cannot represent unless it has an exponentially large number of hidden units.

In the case of images, one can also start to learn part-whole decompositions.

— the first layer learns to group together pixels in an image in order to detect edges (as seen in
the earlier exercises).

— the second layer groups together edges to detect longer contours, or perhaps detect simple
"parts of objects.”
— An even deeper layer groups together these contours or detect even more complex features.

Finally, cortical computations (in the brain) also have multiple layers of processing.
For example, visual images are processed in multiple stages by the brain, by
cortical area "V1", followed by cortical area "V2" (a different part of the brain), and
So on.

Deep Learning Difficulties

 Randomly initializing the weights of a deep
network, and then training it using a labeled
training set using a supervised learning objective,

for example by applying gradient descent to try
to drive down the training error.

— However, this usually did not work well.

— There were several reasons for this.

Availability of Data

With the method described above, one relies only on
labeled data for training.

However, labeled data is often scarce, and thus for many
problems it is difficult to get enough examples to fit the
parameters of a complex model.

For example, given the high degree of expressive power of
deep networks, training on insufficient data would also

So with “enough data” — does it work just fine???

Local Optima

Training a shallow network (with 1 hidden layer) using supervised
learning usually resulted in the parameters converging to
reasonable values; but when we are training a deep network, this
works much less well.

In particular, training a neural network using supervised learning
involves solving a highly non-convex optimization problem.

In a deep network, this problem turns out to be rife with bad local
optima, and training with gradient descent (or methods like
conjugate gradient and L-BFGS) no longer work well.

Not sure | buy this - ??? — see next slide

Diffusion of gradients

the gradients become very small, that explains why gradient descent (and
related algorithms like L-BFGS) do not work well on a deep networks with
randomly initialized weights.

when using backpropagation to compute the derivatives, the gradients
that are propagated backwards (from the output layer to the earlier layers
of the network) rapidly diminish in magnitude as the depth of the network

increases.

the derivative of the overall cost with respect to the weights in the earlier
layers is very small.

when using gradient descent, the weights of the earlier layers change
slowly, and the earlier layers fail to learn much.

This problem is often called the "diffusion of gradients.”

- see next slide!!!

Diffusion of gradients

If the last few layers in a neural network have a large enough
number of neurons, it may be possible for them to model the
labeled data alone without the help of the earlier layers.

training the entire network at once with all the layers randomly
initialized ends up giving similar performance to training a shallow
network (the last few layers) on corrupted input (the result of the
processing done by the earlier layers).

Is this just telling you that you have too many layers for the
problem at hand??? —rip one out and try again???

Or remove some of the nodes on the later layers (make it
narrower)

How can we train a deep network?

* One method that has seen some success is the
greedy layer-wise training method.

Greedy layer-wise training

The main idea is to train the layers of the network one at a time, so that
we first train a network with 1 hidden layer, and only after that is done,
train a network with 2 hidden layers, and so on.

At each step, we take the old network with k — 1 hidden layers, and add an
additional k-th hidden layer (that takes as input the previous hidden layer
k — 1 that we had just trained).

Training can either be supervised (say, with classification error as the
objective function on each step), but more frequently it is unsupervised
(as in an autoencoder; details to provided later).

The weights from training the layers individually are then used to initialize
the weights in the final/overall deep network, and only then is the entire
architecture "fine-tuned" (i.e., trained together to optimize the labeled
training set error).

Success of greedy layer-wise training

Availability of data

 While labeled data can be expensive to obtain,
unlabeled data is cheap and plentiful.

 The promise of self-taught learning is that by exploiting
the massive amount of unlabeled data, we can learn
much better models.
— By using unlabeled data to learn a good initial value for the
weights in all the layers (except for the final classification
layer that maps to the outputs/predictions), our algorithm

is able to learn and discover patterns from massively more
amounts of data than purely supervised approaches.

e This often results in much better classifiers being
learned.

Better local optima

* After having trained the network on the unlabeled
data, the weights are now starting at a better location
in parameter space than if they had been randomly
initialized.

* We can then further fine-tune the weights starting
from this location.

* Empirically, it turns out that gradient descent from this
location is much more likely to lead to a good local
minimum, because the unlabeled data has already
provided a significant amount of "prior" information
about what patterns there are in the input data.

Stacked Autocoders

The greedy layerwise approach for pretraining a deep network
works by training each layer in turn.

This method trains the parameters of each layer individually while
freezing parameters for the remainder of the model. To produce
better results, after this phase of training is complete, fine-tuning
using backpropagation can be used to improve the results by tuning
the parameters of all layers are changed at the same time.

If one is only interested in finetuning for the purposes of
classification, the common practice is to then discard the
"decoding" layers of the stacked autoencoder and link the last
hidden layer a(n) to the softmax classifier. The gradients from the
(softmax) classification error will then be backpropagated into the
encoding layers.

First Layer

35

Output Layer

Input Features Il Output
(Features 1)

Softmax Layer

—2 P(y =0 | x)
—> P(y=1]x)

— Py =2 | X)

OlOIOIS

Input Softmax
(Features Il) classifier

37

Complete Deep NN

—> P(y=0| Xx)

—_—> P(y=1]x)

— Py =2 | X)

Softmax
classifier

38

Stacked Autoencoder Benefits

e A stacked autoencoder enjoys all the benefits

of any deep network of greater expressive
power.

* Further, it often captures a useful

"hierarchical grouping" or "part-whole
decomposition” of the input.

Good Representation of its input

recall that an autoencoder tends to learn features that
form a good representation of its input.

The first layer of a stacked autoencoder tends to learn
first-order features in the raw input (such as edges in
an image).

The second layer of a stacked autoencoder tends to
learn second-order features corresponding to patterns
in the appearance of first-order features (e.g., in terms
of what edges tend to occur together--for example, to
form contour or corner detectors).

Higher layers of the stacked autoencoder tend to learn
even higher-order features.

Fine Tuning Again

* |n order to compute the gradients for all the
layers of the stacked autoencoder in each

iteration, we use the Backpropagation
Algorithm.

* As the backpropagation algorithm can be
extended to apply for an arbitrary number of
layers, we can actually use this algorithm on a
stacked autoencoder of arbitrary depth.

Preprocessing

PCA

Principal Components Analysis (PCA) is a dimensionality reduction algorithm
that can be used to significantly speed up your unsupervised feature learning
algorithm.

Used commonly for images.

The input is redundant, because the values of adjacent pixels in an image are
highly correlated.

16x16 grayscale images are 256 dimensional vectors, with one feature
corresponding to the intensity of each pixel.

Because of the correlation between adjacent pixels, PCA will approximate the
input with a much lower dimensional one, while incurring very little error.

0.6

0.4

0.2

-0.2

-0.4

-0.6

Original Data

44

04

0.2

0.2

-04

-0.6[

First two eigenvalues

Rotated into the u,u, basis

PCA Advantages

The running time of your algorithm will depend on the
dimension of the input.

Training on a lower-dimensional input, your algorithm
might run significantly faster.

For many datasets, the lower dimensional representation
can be an extremely good approximation to the original,
and using PCA this way can significantly speed up your
algorithm while introducing very little approximation
error.

Whitening

The goal of whitening is to make the input less
redundant;

the features are less correlated with each other, and

the features all have the same variance.

If the variables are uncorrelated, the covariance
matrix is diagonal. If they are all further
standardized to unit variance, the covariance
matrix equals the identity matrix

xF’CAwhite,Z

Now with Whitening

04

0.3

0.1

-0.21

| | | | | | | | |

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
Xpc Awhite,1

Softmax regression model

e generalizes logistic regression to classification
problems where the class label y can take on
more than two possible values.

* Softmax regression is a supervised learning
algorithm

Softmax Regression vs. k Binary Classifiers

Suppose you have a music classification application, and there are k types
of music that you are trying to recognize. Should you use a softmax
classifier, or should you build k separate binary classifiers using logistic
regression?

Are the four classes are mutually exclusive? If your four classes are
classical, country, rock, and jazz, then assuming each of your training
examples is labeled with exactly one of these four class labels, you should
build a softmax classifier with k = 4.

(Do | agree with this???7?)

If however your categories are has_vocals, dance, soundtrack, pop, then
the classes are not mutually exclusive; for example, there can be a piece
of pop music that comes from a soundtrack and in addition has vocals. In
this case, it would be more appropriate to build 4 binary logistic
regression classifiers. This way, your algorithm can separately decide
whether it falls into each of the four categories.

4: Deep learning 2.0 (~2010)

* Problem with sigmoid is that the gradients get
very small at either end, so gradient descent
becomes slow — vanishing gradients problem

* Enter rectified linear:

Rectified linear activation function

* No vanishing gradients on right hand side

* Allows deep networks to be trained with
gradient descent without using pre-training

Dropout

* Randomly remove units when training

e Acts as a regulariser — gives better
performance on validation and test

* Why does it work? Maybe something to do
with units not relying on other units, so
learning more robust features

Regularization example

X

By Nicoguaro - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=46259145
55

Practical aspects of training a deep
neural network

Processor

Within each layer, lots of calculations can be

done independently (one for each unit in the
next layer)

Lends itself to parallelisation...
Use GPUs!

Coming soon, NPUs! Watch this space.

Validation set to avoid overfitting

Split data into training, validation and test
Train network on training set

Monitor error on validation set. If it starts
increasing, then stop training, because we are
overfitting to the training set

However, need to let it run for a bit because
validation error can go upwards in the short-
term but trend downwards in the long-term

Choosing hyperparameters

 Hyperparameters include initial learning rate,
momentum, weight decay...

e Can also use validation set to choose these
hyperparameters

* Try different values and look at which gives
best performance on validation set after
training, while also using the validation set for

early stopping

Multiple runs

Parameters are randomly initialised

This means that the parameters can end up in
a different location in parameter space

If you are doing comparison between
networks, it is good practice to do multiple

runs to capture the variance in the final test
error

(However in practice, large networks take so
long to train that they only get trained once)

Data augmentation

 More training data = more accurate classifier

* We know we can do certain transformations
to examples and retain the same class e.g. a
handwritten digit can be skewed slightly and
still be the same digit

* So can artificially generate more training
examples. This is called data augmentation.

The unreasonable effectiveness of
deep learning

The power of deep learning

Broke records by a long way on many image
and speech datasets (still hold records)

Hand-engineered features which took decades
to develop have been made redundant

All this from simply increasing the depth of
the network

Has led to some people labelling deep
learning “unreasonably” effective

Re-using representation

 Why so effective? Because complex features
tend to share component features

* So multiple features can use the same feature
from the previous layer

 Some theoretical results indicate that some
functions that require an exponential number
of units in a single-hidden-layer network only
require a polynomial number of units in a two-
hidden-layer network

Over-hype

Mainstream interest

* Deep learning has received high-profile
mainstream press coverage

e Often hailed as a promising step towards
strong Al

* Lots of attention from big tech companies -
Google, Facebook and Baidu have all hired top
experts from academia

Hype cycle

Gartner puts deep
VISIBILITY learning here

’

A

Peak of Inflated Expectations

Plateau of Productivity

Slope of Enlightenment

Trough of Disillusionment

Technology Trigger TIME

Reality

Over-hype is dangerous — has killed Al
research in the past many times

Is deep learning a silver bullet? No. Not for Al,
not even for classification.

We have a long, long way to go before we can
achieve strong Al

But deep learning has proved itself to be a
highly effective method, so it is probably a
step in the right direction

Questions you should be able to
answer

What makes deep learning different from old
style neural networks?

What is the difference between self taught versus
semi-supervised neural networks?

What is an autoencoder?
Why did deep ANNs have trouble learning?
How was pretraining used in deep learning?

Why does a rectified linear activation function
work better?

References

Autoencoder -
http://ufldl.stanford.edu/wiki/index.php/UFLDIL. Tutorial

Rectified Linear Units —
http://proceedings.mlr.press/v15/glorotl1a/elorotl1a.pdf

Dropout -
http://www.cs.toronto.edu/~rsalakhu/papers/
srivastaval4a.pdf

DropConnect -
http://proceedings.mlr.press/v28/wanl3.html

70

