
All Syntax Errors Are Not Equal

Paul Denny, Andrew Luxton-Reilly, Ewan Tempero
Department of Computer Science

The University of Auckland
Auckland, New Zealand

{paul,andrew,ewan}@cs.auckland.ac.nz

ABSTRACT
Identifying and correcting syntax errors is a challenge all
novice programmers confront. As educators, the more we
understand about the nature of these errors and how stu-
dents respond to them, the more effective our teaching can
be. It is well known that just a few types of errors are far
more frequently encountered by students learning to pro-
gram than most. In this paper, we examine how long stu-
dents spend resolving the most common syntax errors, and
discover that certain types of errors are not solved any more
quickly by the higher ability students. Moreover, we note
that these errors consume a large amount of student time,
suggesting that targeted teaching interventions may yield a
significant payoff in terms of increasing student productivity.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—computer science education

General Terms
Design, Human Factors

Keywords
Syntax errors, Java, CodeWrite, drill and practice, assess-
ment

1. INTRODUCTION
Syntax errors are frequently encountered by the novice

programmer. As educators, the more we understand about
the nature of these errors and how students respond to them,
the more effective our teaching can be [12]. In particular, if
there are certain errors that students spend much of their
time struggling with, targeted support may be effective.

Previous research examining students working on typical
Java programming assignments, involving multiple class and
method definitions, has shown that a few types of syntax

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE’12, July 3–5, 2012, Haifa, Israel.
Copyright 2012 ACM 978-1-4503-1246-2/12/07 ...$10.00.

errors occur much more frequently than most [4, 6]. While
the time elapsed between successive compilations is gener-
ally short [5], it is not known if students spend more time
solving certain kinds of syntax errors than others.

In this paper, we examine the syntax errors encountered
by students writing short fragments of Java code when im-
plementing single methods. Despite differing from previous
work in the length of the code being written, we confirm
earlier results that a small number of errors are highly rep-
resented. We also show that students spend a large propor-
tion of their time fixing problems associated with these most
common errors, and that the highest performing students
take as long to correct certain errors as any other students.

2. RELATED WORK
Understanding syntax has long been a source of difficulty

for programming students [11]. Many novices find it frus-
trating to struggle with syntax errors [7], and given that
programming is a subject in which the cumulative effects of
previous learning are critical to progression [10], this has the
potential to hinder long-term success.

A varied body of research concerning how novices en-
counter and respond to syntax errors exists. A number of
tools have been developed and evaluated to help students
fix syntax errors in their programs. SyntaxTrain [9] parses
a student’s source code and, if it detects a syntax error,
displays a syntax diagram illustrating the required syntax.
Another example in this category is the Expresso tool [3],
which operates as a pre-compiler, producing detailed mes-
sages from a set of pre-defined common syntax errors.

Other research has explored, in controlled conditions, how
students approach syntax error correction. Kummerfeld et
al. [7] deliberately inserted errors into a set of 10 programs
and then observed how a small number of students, of vary-
ing programming experience, went about correcting them.
Participants were provided with a web-based guide cata-
loguing a number of common errors that they could use as
a reference. Among their conclusions they report that more
experienced programmers adopt clear strategies for detect-
ing and fixing errors, and that for all students syntax error
correction can be very time consuming.

More closely aligned with the work we present here, sev-
eral studies examine and categorize the error messages actu-
ally generated by students when programming. Reports of
this nature tend to use technology to automatically capture
students’ compilations. Jackson et al. [4] utilize their web-
enabled Gauntlet IDE, which logs all student errors while
a session is active, sending the full collection of errors to a

75

remote server once the student exits the IDE. They tabulate
the most common errors, and report that based on teaching
experience, faculty successfully predicted 5 of the 10 most
common errors.

Jadud [5] used a modified version of the popular BlueJ
IDE that collected relevant information every time a student
compiled their program on campus. The collected data in-
cluded a snapshot of the complete program and the result of
each compilation. The most common errors were reported,
as well as the average time taken between successive com-
pilation events. The two most common errors, “Missing ;”
and “Cannot resolve identifier/symbol”, match the result of
Jackson et al. although their order is reversed. There is also
some agreement amongst the less frequent errors, however a
comparison is complicated by the fact that the two studies
define different error categories.

Previous work has not attempted to measure the time that
students spend solving particular kinds of syntax errors. Our
expectations were that more capable students would iden-
tify and solve syntax errors more quickly than their weaker
counterparts. In addition to our intuitive feelings about this,
it is supported by previous research in which the differences
between the kinds of tasks achievable by students in different
performance quartiles has been examined. In the domain of
code comprehension, Lister et al. [8] applied the SOLO tax-
onomy to describe how novice programmers manifest their
understanding of code. Their data show that the more ca-
pable students are far more likely to successfully integrate
parts of a problem into a coherent structure. They propose
that this difference may account for the particular difficulty
students in the lower quartiles of a class experience when
writing code.

3. METHODOLOGY
In this paper, we analyse the syntax error messages en-

countered by students when writing short fragments of Java
code. The data were collected using CodeWrite [1], a web-
based drill and practice tool with which students tackle ex-
ercises requiring the completion of a single method body. As
a consequence, submissions are typically short, and students
focus on just the syntax and logic for the one method being
implemented without concern for larger program design is-
sues. Figure 1 illustrates the length of all submissions in our
data set containing at least one syntax error. The average
over all such submissions is 6.5 lines of code.

When a student chooses an exercise to answer, they are
shown the method signature (the return type, method name,
and names and types of the parameters), a textual descrip-
tion of the purpose of the method, and the expected output
for one example input. Students type and edit their code
directly in the browser, and submit when they are ready
to receive feedback. Their submitted code is compiled on
the server, and if syntactically correct, is executed against
a set of test cases. If the code contains syntax errors, the
corresponding error messages are displayed.

We report here on data collected from the Semester 1
(March-June) offering of the COMPSCI 101 (CS1 in Java)
course taught at the University of Auckland in 2011. Of
the 478 students enrolled, 430 sat the final exam (a 10%
withdrawal rate is typical). Each student was given ap-
proximately three weeks to correctly answer 30 exercises on
CodeWrite for which they could earn a total of 2% credit
towards their final grade in the course. This period of par-

Figure 1: Length of all submissions containing at
least one syntax error

ticipation spanned parts of Weeks 6 and 7 (of the 12 week
teaching semester) and included a two-week mid-semester
break. At the point of the course that the CodeWrite ac-
tivity was introduced, students had already completed their
first programming assignment and attended 10 hours of su-
pervised lab sessions. Importantly, while the second half of
the course covers object-oriented design, for the period in
which the data was collected for this study Java was only
used for teaching basic programming concepts such as prim-
itive and array variables, control structures, basic functions
from the Java API, and methods and parameter passing.

In the following sections, we use the term submission to
represent a single fragment of code submitted to one exercise
by one student, and the term exercise attempt to represent
the full set of submissions made by a single student to a
particular exercise. Each submission can be classified into
one of the three types listed in Table 1.

Table 1: Submission types

Type Explanation

“P” the submission compiles and passes all of the ex-
ercise test cases

“F” the submission compiles but does not pass all of
the exercise test cases

“X” the submission does not compile

Following each submission, a student receives immediate
feedback, which in the case of an “X” submission would in-
clude the error messages from the compiler. Note, there may
be several error messages generated for each submission of
type “X”. The failing test cases are displayed for a submis-
sion of type“F”. A timestamp records when each submission
is received by the CodeWrite server.

As an example, Figure 2 shows an exercise attempt con-
sisting of four submissions made by one student when solv-
ing an exercise to calculate the volume of a cube given the
side length. Upon making their first submission, the stu-
dent receives a “Cannot resolve identifier” type error for not
declaring the variable volumeOfACube. For their next sub-
mission, they replace the expression calculating the volume
with a call to Math.pow(). In this case, they receive the same
error message as before, as the compiler still cannot resolve
the identifier volumeOfACube. They then declare volumeO-

fACube to be of type int, which exposes the“type mismatch”
error introduced by the use of Math.pow(). The student suc-

76

Submission type: X (9 Mar 2011, 11:36:59 PM)
Error: volumeOfACube cannot be resolved

public int volumeOfACube(int side) {
volumeOfACube=side∗side∗side;
return volumeOfACube;

}
−−−−−−−−−−−−−−−−−−−
Submission type: X (9 Mar 2011, 11:37:36 PM)
Error: volumeOfACube cannot be resolved

public int volumeOfACube(int side) {
volumeOfACube=Math.pow(side,3);
return volumeOfACube;

}
−−−−−−−−−−−−−−−−−−−
Submission type: X (9 Mar 2011, 11:39:59 PM)
Error: Type mismatch: cannot convert from double to int

public int volumeOfACube(int side) {
int volumeOfACube;
volumeOfACube=Math.pow(side,3);
return volumeOfACube;

}
−−−−−−−−−−−−−−−−−−−
Submission type: P (9 Mar 2011, 11:40:29 PM)

public int volumeOfACube(int side) {
int volumeOfACube;
volumeOfACube=side ∗ side ∗ side;
return volumeOfACube;

}

Figure 2: Example of an exercise attempt for one
student

cessfully corrects this mistake by reverting to the expression
they used previously.

A student who completed the requirements for the activity
as described previously would therefore have made at least
30 exercise attempts, where each one includes at least one
submission of type“P”. Figure 3 illustrates the data we have
collected from this course for a single student that is relevant
to the analysis presented in this paper.

3.1 Research questions
We know that students of all levels of ability frequently

write code that does not compile, and that weaker students
are often unable to solve their syntax problems [2]. Our
interest in this paper is to investigate the kinds of syntax
errors that students are most commonly making, and mea-
sure the time they spend solving these errors. This also
provides us with an opportunity to replicate the results of
earlier studies in this area, but in a context where students
are writing short fragments of code. We outline our three
research questions in this section.

RQ1: Which syntax errors do students most com-
monly encounter, and how does this compare
with previous work?

Our examination of the common types of syntax errors is
based upon the error messages generated by the compiler
rather than on inspection of the code. To tabulate the er-
ror frequencies we analysed all submissions of type “X” and,
for each, processed every error message generated by the
compiler. Error messages were aggregated and duplicates

Figure 3: Data collected for each student

removed, so that for any given submission, a particular type
of syntax error was either present or not. For example, if
two variable identifiers, i and j, were used in one submission
without first being declared, then error messages “i cannot
be resolved” and “j cannot be resolved” would both be gen-
erated by the compiler. Likewise, if the variable identifier i
appeared in multiple places in a submission without first be-
ing declared, the compiler would generate the error message
“i cannot be resolved” for each occurrence. In either case,
we classified the multiple error messages under the single,
more general, type “Cannot resolve identifier”.

When defining syntax error categories, we attempted to
align them with previously published results where possi-
ble, however there has not been agreement on this in the
past. For example, in [5] the category “bracket expected” is
reported, whereas four separate categories “{ expected”, “(
expected”, “} expected”and“) expected”are reported in [4].

RQ2: How long do the different kinds of syntax
errors take students to solve, and does this vary
by level of ability?

It is difficult to measure precisely, through a purely auto-
mated analysis, how long it takes a given student to success-
fully fix a given error that occurs during an exercise attempt.
Our analysis relies on the assumption that if a submission
contains a particular type of error, then the compiler will
generate a corresponding error message. This is often, but
not always, the case. For example, certain types of errors
in a submission may prevent the compiler from discovering
and listing all errors.

Given this assumption, the first “X” submission of an ex-
ercise attempt that generates a particular type of error rep-
resents the point at which the error was introduced into the
code. Of all subsequent submissions, the first one that does
not generate the same type of error represents the point at
which the error was corrected. A timestamp records when
every submission is made. Therefore, the time difference
between the submission that first generates the error, and

77

Figure 4: An example exercise attempt consisting of
five submissions

the next submission in which the error is not generated is an
approximate measure of how long the student spent solving
that error. Of course, for any given submission there may
be multiple errors generated (about 30% of “X” submissions
generated more than a single error message), and a student
may focus on fixing just one of these errors for every submis-
sion they make. Nevertheless, the period of time described
above is a measure of the length of time that a particular
error existed in the student’s code prior to being corrected.

For example, the diagram in Figure 4 illustrates the time-
line of an exercise attempt consisting of five submissions (X,
X, X, X, F). The first submission of type“X”generates a sin-
gle kind of error, whereas the next three submissions each
generate two kinds of errors. The arrows, ti, shown in the
diagram represent the time differences between consecutive
pairs of submissions. In this particular example, the time
taken to correct “error 1” is t1 + t2 + t3, and the time taken
to correct “error 3” is t3 + t4. There are two separate occur-
rences of “error 2”, the first of which took t2 and the second
of which took t4 to correct. In this case, the average time
taken to correct “error 2” is therefore (t2 + t4)/2.

To investigate this research question, for every kind of
syntax error, we calculate the average time taken by each
student across all of their submissions to correct that error.
We only consider students who encountered the error at least
once when calculating this average.

As student participation is unsupervised, we must be aware
of the fact that an individual time measurement may be in-
flated if a student is interrupted or leaves a task and then
returns to it at a later time. A simple heuristic for handling
such cases is to ignore time periods greater than a particu-
lar threshold. A suitable threshold value would be one that
captures a high percentage of the data yet represents a rea-
sonable maximum period of time for a student to be working
on preparing a submission.

To determine possible threshold values, we examined the
elapsed times between all consecutive pairs of submissions
for all exercises. A histogram of this data is shown in Figure
5. The majority of elapsed times are short, nearly half (45%)
being less than 30 seconds, and the frequency of the periods
reduces rapidly with their length. Roughly 8% of the periods
are longer than 380 seconds.

We repeated our analysis 8 times using threshold values
between 120 and 540 seconds inclusive (at 60 second inter-
vals). For simplicity in presenting the data in this paper,
unless otherwise specified, a threshold value of 300 seconds
has been used.

We were interested in how the time spent solving errors
varied by student ability. Students were split into quar-
tiles based on their performance in the course overall. The
final course mark was based on assignment, laboratory, mid-
term test and final exam marks. Our analysis only consid-
ers students who participated with CodeWrite, and because
students in the lower quartiles were less likely to partici-

Figure 5: Elapsed times between consecutive sub-
mission pairs

pate, there are fewer students in these quartiles. Table 2
summarizes the number of students who sat the exam, the
number who participated with the CodeWrite activity, the
total number of exercises attempted, the total number of
submissions, and the number of submissions of type “X” for
students in each quartile (Q1 is the top quartile).

Table 2: Student participation data by quartile
All Q1 Q2 Q3 Q4

Sat exam 430 108 107 107 108
Participated 385 106 105 97 77
Exercises 15481 4923 4281 3814 2463
Submissions 53888 18022 15917 12282 7667
... of type “X” 26387 7853 8138 6305 4091

RQ3: How much student time, in total, was spent
on the most common syntax errors?

Focusing our teaching efforts on the types of syntax prob-
lems for which students are spending a disproportionate
amount of time may help to assist learning and increase
student productivity. To explore this idea, we determined
the total amount of time that all students spent on each er-
ror, and the average amount of time spent per student on
each error.

4. RESULTS

4.1 RQ1: Most common errors
Of the 53888 submissions made by all students, 26387 con-

tained at least one syntax error (i.e. were “X” submissions).
The most common type of error, “Cannot resolve identifier”,
appeared in 6344 of these submissions. Table 3 lists the ten
most common error messages, the total number of submis-
sions in which they each occurred, and the percentage of all
“X” submissions that this represents.

These results agree moderately with previous work. Our
three most common error messages appear 2nd, 7th and 1st

in Jadud’s table [5] and 1st, 7th and 2nd in Jackson’s ta-
ble [4], respectively. We note that “Type mismatch” errors
occured much more frequently in our study than in previ-
ous work. One possible explanation for this is the nature of
the exercises students work on. As every exercise involves
implementing a method body, students must always ensure

78

Table 3: Most common syntax errors (all students)
Error type Total %
Cannot resolve identifier 6344 24.0%
Type mismatch 4847 18.4%
Missing ; 3436 13.0%
Token should be deleted 2712 10.3%
Method not returning correct type 1743 6.6%
Missing } 1450 5.5%
Missing) 1213 4.6%
Missing { 512 1.9%
Using .length as a field 433 1.6%
Insert “AssignmentOperator” 339 1.3%

that the type of the return expression matches the return
type of the method. We noticed many errors as a result of
this kind of mismatch.

We also note that the Sun/Oracle JDK compiler was used
in both of the previous studies. CodeWrite uses the batch
compiler that is part of the Java Development Tools (JDT)
Core component of the Eclipse development environment.
The error messages produced by this compiler, which evolved
from IBM’s VisualAge environment, differ from those pro-
duced by the Sun/Oracle JDK. For example, consider the
following expression with unmatched parentheses:

double result = Math.round(value * 100)) / 100.0;

The Sun/Oracle JDK produces the following error message:

‘;’ expected

whereas the JDT batch compiler (used by CodeWrite) would
generate:

Syntax error on token “)”, delete this token

A full comparison of error messages is beyond the scope
of this paper, however, as in this example, we often found
the messages produced by the JDT batch compiler more
informative than those produced by the Sun/Oracle JDK.

Despite these differences, although in our study students
were practicing with short fragments of code, they still fre-
quently encountered the same kinds of errors as in previous
research where students were developing complete programs.

4.2 RQ2: Time to solve errors by quartile
We measured the time a student took to solve a particu-

lar type of syntax error as the time that elapsed while the
corresponding error message was generated for consecutive
submissions of type “X”. Figure 6 shows the time students
in different quartiles spent, on average, solving errors of the
three most common varieties.

Both “Cannot resolve identifier” and “Type mismatch” er-
rors took longer for students to solve than“Missing ;” errors.
As expected, more capable students tended to spend less
time solving “Missing ;” errors than weaker students (stu-
dents in the top quartile, Q1, solved these errors more than
twice as quickly as students in the bottom quartile). Inter-
estingly, this did not appear to be the case for the other two
errors. To investigate the significance of any differences be-
tween quartiles we ran a Kruskal-Wallis test for independent
samples (this non-parametric method was selected because
the samples did not have similar variances and ANOVA is

Figure 6: Average time spent correcting submissions
(with a single error message) by quartile

not robust to violations of this assumption when the sample
sizes are unequal).

The differences between quartiles for the “Missing ;” error
were highly significant (p � 0.001), whereas the time spent
solving “Cannot resolve identifier” errors did not vary by
quartile (p = 0.534). These were very robust results, and
held across all threshold values we investigated.

For “Type mismatch” errors, students in the top quartile
solved them marginally more quickly than other students
however these differences were not significant (p = 0.073).
This held when the analysis was performed using threshold
values less than 300 seconds, however for threshold values
greater than 300 seconds the differences were significant at
the 0.05 level (0.027 < p < 0.050).

In summary, although more capable students spend far
less time solving certain kinds of errors than other students,
somewhat surprisingly this is not the case for all kinds of
errors.

4.3 RQ3: Cumulative time solving errors
Throughout the practice activity for which we have col-

lected data, not all students encountered every kind of syn-
tax error. The total amount of time a student spent tackling
a particular type of error was dependent both on how fre-
quently the error occurred and how long it took to solve.

Table 4 summarises, for each of the most common kinds of
errors, the number of students that encountered the error at
least once, the cumulative total time all students spent solv-
ing errors of that kind (in hours) and the average amount
of time per student spent solving errors of that kind (in
minutes). Of the 385 students who participated, 356 en-
counterd at least one “Cannot resolve identifier” error. This
error stands out, along with the next most common type of
error, “Type mismatch”, as consuming a particularly large
amount of student time – twice that of any other error.

5. DISCUSSION
Our interest was in understanding where beginners spend

most of their time due to failed compilation when imple-
menting short methods. From earlier work in this area, we
expected to see a few kinds of errors making up the majority,
and we confirmed previous results in this respect. We spec-
ulated that as these errors were so common, the amount of
time spent on them may have been proportionally less, how-

79

Table 4: Number of students, total time by all and
average time per student spent on each error
Error type n Total Avg.

(hrs) (mins)
Cannot resolve identifier 356 70.7 11.9
Type mismatch 341 57.1 10.0
Missing ; 347 26.8 4.6
Token should be deleted 316 26.7 5.1
Method not returning correct type 268 22.6 5.1
Missing } 234 14.3 3.7
Missing) 251 11.5 2.8
Missing { 110 4.7 2.6
Using .length as a field 118 4.9 2.5
Insert “AssignmentOperator” 90 3.6 2.4

ever the two most common errors also dominated students’
time. Finally, we predicted more capable students would
solve all types of errors in less time than the weaker students
in class. Although this was sometimes the case, quite unex-
pectedly we found that all students spent a similar amount
of time solving the most common errors no matter what
quartile they were in.

That all students struggle equally with these errors, and
spend so much time with them, suggests there is some fun-
damental issue that needs to be addressed. It also suggests
that providing specific support for these errors may be par-
ticularly useful.

Given the surprising nature of our result, we must con-
sider other possible explanations (or, threats to validity) for
it. One possible factor is that when a student makes a sub-
mission of type “X” that contains multiple errors, we do
not know their strategy for correcting those errors. Some
students may attempt to fix all errors before making their
next submission, while others may attempt to fix what they
perceive is the simplest error first. To investigate this, we
repeated our analysis considering only submissions of type
“X” for which a single error message was generated. In other
words, we ignored the 30% of “X” submissions containing
more than one kind of error that may contribute to this
threat. This analysis did not affect our conclusions.

It should also be noted that students are free to choose
which exercises they answer. It is possible that students with
lower capability tend to choose easier exercises than those
with higher capability. Although this may be true, there is
no obvious reason why the “Cannot resolve identifier” and
“Type mismatch” errors are any harder (or easier) to solve
due to the difficulty of the exercise. However this might
be true of other errors – for example it may be harder to
determine where the missing “}” should go in more complex
code than in simple code.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we investigated the types of errors most

frequently encountered by students practicing writing short
fragments of Java code using the CodeWrite practice tool.
We discovered, confirming previous work in different con-
texts, that students encounter a small number of errors much
more frequently than others.

Our expectations were that the most capable students in
class would be able to resolve errors more quickly than less
able students, and this result was confirmed for one of the

top three most frequent errors, the classically well-known
“Missing ;”. However, quite unexpectedly, we found that for
the two most common errors, the time taken to correct the
corresponding mistakes did not vary by quartile. This result
indicates that specific teaching support around the causes of
these errors may be particularly effective.

In future work, we will develop interventions to provide
teaching support for these common mistakes, and measure
their success against the baseline data collected in this study.

The data reported here was collected over a fairly short
period of time that included a mid-semester break and co-
incided with just one week of class time. Additional future
directions will examine the way in which student responses
to particular types of errors change over time as their learn-
ing progresses and their experience grows.

7. REFERENCES
[1] P. Denny, A. Luxton-Reilly, E. Tempero, and

J. Hendrickx. CodeWrite: Supporting student-driven
practice of Java. In Proceedings of SIGCSE ’11, pages
471–476, 2011.

[2] P. Denny, A. Luxton-Reilly, E. Tempero, and
J. Hendrickx. Understanding the syntax barrier for
novices. In Proceedings of ITiCSE ’11, pages 208–212,
2011.

[3] M. Hristova, A. Misra, M. Rutter, and R. Mercuri.
Identifying and correcting Java programming errors
for introductory computer science students. SIGCSE
Bull., 35:153–156, January 2003.

[4] J. Jackson, M. Cobb, and C. Carver. Identifying top
Java errors for novice programmers. In Proceedings of
ASEE/IEEE Frontiers in Education Conference, FIE
’05, pages T4C24–T4C27, 2005.

[5] M. C. Jadud. A first look at novice compilation
behaviour using BlueJ. Computer Science Education,
15:1–25, 2005.

[6] M. C. Jadud. Methods and tools for exploring novice
compilation behaviour. In Proceedings of ICER ’06,
pages 73–84, 2006.

[7] S. K. Kummerfeld and J. Kay. The neglected battle
fields of syntax errors. In Proceedings of ACE ’03,
pages 105–111, 2003.

[8] R. Lister, B. Simon, E. Thompson, J. L. Whalley, and
C. Prasad. Not seeing the forest for the trees: novice
programmers and the solo taxonomy. SIGCSE Bull.,
38:118–122, June 2006.

[9] A. L. A. Moth, J. Villadsen, and M. Ben-Ari.
SyntaxTrain: relieving the pain of learning syntax. In
Proceedings of ITiCSE ’11, pages 387–387, 2011.

[10] A. Robins. Learning edge momentum: A new account
of outcomes in CS1. Computer Science Education,
20:37–71, 2010.

[11] D. Sleeman, R. T. Putnam, J. A. Baxter, and
L. Kuspa. An introductory Pascal class: A case study
of students’ errors, pages 207–235. Lawrence Erlbaum
Associates, Hillsdale, NJ, USA, 1988.

[12] J. C. Spohrer and E. Soloway. Novice mistakes: are
the folk wisdoms correct? Commun. ACM,
29:624–632, July 1986.

80

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

