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Abstract 
In computer science, an expected outcome of a student's 
education is programming skill. This working group 
investigated the programming competency students have 
as they complete their first one or two courses in computer 
science. In order to explore options for assessing 
students, the working group developed a trial assessment 
of whether students can program. The underlying goal of 
this work was to initiate dialog in the Computer Science 
community on how to develop these types of assessments. 
Several universities participated in our trial assessment 
and the disappointing results suggest that many students 
do not know how to program at the conclusion of  their 
introductory courses. For a combined sample of 216 
students from four universities, the average score was 
22.89 out of 110 points on the general evaluation criteria 
developed for this study. From this trial assessment we 
developed a framework of expectations for first-year 
courses and suggestions for further work to develop more 
comprehensive assessments. 

Introduction 
Programming is one of many skills that computer science 
students are expected to master. In addition, most 
science, mathematics, engineering, and technology 
(SMET) programs expect that their students will acquire 
programming skills as a part of their education. The 
question is whether these requirements are being met. Are 
the appropriate assessment measures in place to determine 
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if the students have acquired the necessary programming 
skills? We think not, but wanted to gather evidence that 
would confirm or refute our observations. 
This working group arose from concerns expressed by 
many computer science educators about their students' 
lack of programming skills. Quite often these concerns 
were focused on basic mastery of fundamental skills of 
programming. A study by [8] identified similar 
deficiencies in programming skill, although their study 
focused on the teaching of programming. In several other 
studies that have considered issues of learning to program, 
assessment has been a part of their methodology. For 
example, [6] studied students learning Basic; [7] looked at 
conceptual "bugs" of novice programmers; and [9] studied 
novice programmers' misconceptions. While the results 
from these studies can help computer science educators 
improve the teaching of programming, they do not answer 
this question: Do students in introductory computing 
courses know how to program at the expected skill level? 
This working group collected data from several 
universities and found that the students' level of skill was 
not commensurate with their instructors' expectations. 
Two issues are central to our effort: 

Learning to program is a key objective in most 
introductory computing courses, yet many computing 
educators have voiced concern over whether their 
students are learning the necessary programming 
skills in those courses. 

The development of CC2001 [1] represents the next 
evolutionary cycle of the requirements for computing 



education. These requirements are slated to become 
the new standard for computer science education and 
will form the basis for accreditation of computer 
science programs in the USA. The requirements for 
introductory computing courses in the ironman 
version of the CC2001 prescribes the set of expected 
programming skills students should acquire but 
includes little information on assessment. The efforts 
of  this working group may contribute to developing 
assessments for use by CC2001 implernenters. 

The remainder of  this report is organized into eight major 
sections. We begin by describing a framework for 
learning objectives during the first year of computing 
courses. The next section explores a variety of assessment 
approaches and motivates the choice we made for this 
study. Next we describe the methodology for the trial 
assessment, including the work we did in the months 
before the ITiCSE conference. In the analysis section, we 
describe what we gleaned from the data during our 
working group's meetings at the conference. The 
remaining sections interpret the results, discuss 
implications and possibilities for further analysis, raise 
issues to be addressed in follow-on studies, and propose a 
model for driving this work further. 

A framework for first-year learning 
objectives 
When faced with understanding student performance, a 
natural question is "What should be assessed?" The 
working group discussed these issues and developed a 
framework of first-year learning objectives, both to clarify 
what we expected students to have learned during their 
first year and to allow us to evaluate how well the 
instruments for this study assessed the learning objectives. 
For first-year computing students, a fairly universal 
expectation is that they should learn the process of  solving 
problems in the domain of  computer science, in order to 
produce compilable, executable programs that are correct 
and in the appropriate form. As the framework for the 
learning objectives of the first year, we expect computing 
students to learn to successfully follow these steps: 

1. Abstract the problem from its description 
2. Generate sub-problems 
3. Transform sub-problems into sub-solutions 
4. Re-compose the sub-solutions into a working 

program 
5. Evaluate and iterate 

In general, all Computer Science programmes aim to 
produce students who can reliably follow these steps in 
solving discipline-specific problems, independent of the 
particular programming paradigm being used. This also 
remains as a (possibly implicit) goal as students progress 
through their programmes, although the domain of 
application, as well as the scale and complexity of 
problems addressed, changes. The following clarifies 
what is involved in each of these problem-solving steps. 
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1. Abstract  the problem from its descript ion - -  First- 
year assessment exercises are generally framed in terms of  
a concrete, usually informal, specification of a problem 
for which students are required to implement a solution. 
Starting from this specification, students must first 
identify the relevant aspects of the problem statement. 
Next, students must model those elements in an 
appropriate abstraction framework, which is probably 
predetermined based on the approach being used in the 
solution space (e.g., procedural, OO, functional, logic) 
and heavily influenced by the teaching approach. 

2. Generate sub-problems - -  The scope and importance 
of  this step in the problem-solving process may be 
dependent on the design approach adopted. A functional 
decomposition of a structured program often requires 
further decomposition. In an object-oriented solution, the 
previous step has probably designed the classes needed, 
although at this stage, there may be factorization of 
methods out of  others already in the design. 

3. Transform sub-problems into sub-solutions - -  Here, 
the student must decide on an implementation strategy for 
individual classes, procedures, functions, or modules, as 
well as on appropriate language constructs (solution 
representations). This includes deciding on data 
structures and programming techniques. A crucial aspect 
of this step is the implementation (and testing) of the sub- 
solutions. The solution should be correct and in the 
appropriate form, that is, it not only produces the right 
output but is also modularized, generalized, and conforms 
to standards. Some language constructs may be 
inappropriate in particular domains or particular 
pedagogies; for example, it is not possible to use recursion 
in all languages. This step is typically the first point in the 
process at which significant involvement with tools (e.g. a 
compiler) is possible. 

4. Re-compose - -  In this step, the student must take the 
sub-solutions and put them back together to generate the 
solution to the problem. This step probably involves 
creating an algorithm that controls the sequence of events. 

5. Evaluate and iterate - -  Finally, the student must 
determine whether the earlier steps in the process have 
resulted in a good solution to the problem and take 
appropriate action if not. The solution must be tested 
thoroughly, and some of the earlier steps may be revisited 
if the solution fails any tests. The solution must be 
debugged to correct runtime and logic errors. 

While the above framework of learning objectives 
represents an ideal and generalized situation, there are 
some problems with this abstraction. Particular pedagogic 
approaches and tool-chain support might change details of 
the sequence. For instance, an approach based on extreme 
programming (XP) [2] would make the testing activity 
much more central, so work on that aspect would begin 
much earlier in the process. The availability of tools such 



as BlueJ [3] would enable testing to be performed more 
easily at step 3, rather than waiting until step 5. Use of  
design tools and notations can encourage students to 
check submissions at an earlier stage in the process. 
Whatever the variations, however, all of  the steps in the 
process should still take place. 

Assessment instruments for first- 
year CS 
This section reviews general requirements for assessment 
and describes types of assessment frequently used in first- 
year computing courses. In reviewing these strategies, we 
discuss how well each meets the general requirements for 
assessment. We emphasize that assessment must be tied to 
the educational objectives discussed in the preceding 
section on the learning objectives framework. We 
conclude this section by evaluating how well the trial 
assessment met these assessment requirements. 
Two main categories of assessment are objective testing 
and performance-based assessment. Objective forms of 
assessment, such as multiple-choice questions, can 
provide a cost-effective means for determining student 
knowledge about areas such as language syntax or 
program behavior. Objective testing can provide instant 
feedback and can be used for both formative and 
summative assessment. On the other hand, multiple- 
choice questions cannot directly test students' ability to 
create working computer programs. 
In performance-based assessment, students are assessed 
for their ability to create programs. Criteria for 
performance-based assessments include: fairness, 
generalizability, cognitive complexity, content quality 
(depth) and coverage (breadth), meaningfulness, and cost 
[4,5]. Below, we present three common forms of 
performance-based assessment instruments and discuss 
how well they meet the learning objectives framework 
from the previous section, as well as the seven criteria 
given earlier in this paragraph. 

1. Take-home programming assignments 
Typically a number of  these assignments are given 
during a course. Such assignments tend to be fairly 
large scale with a fairly generous maximum 
timeframe set for completing them (up to several 
weeks). Such assignments tend to cover all five 
aspects of the learning objectives framework. They 
generally contain a large amount of cognitive 
complexity. They are fair, generalizable, and 
meaningful in the sense that students are operating in 
an environment that is close to reality; however, 
students are penalized if they are unable to spend 
enough time completing the assignment. This type of 
assessment is more vulnerable to plagiarism than are 
some of the other assessment approaches. 

. Examinations (short answer) 
These examinations (such as asking students to 
generate code fragments) can be used to assess all 
five learning objectives, although items on such 
examinations often tend to concentrate on steps 3 and 
4 of the learning objectives framework 
(decomposition into sub-problems and transformation 
into sub-solutions). It is difficult (but not impossible) 
to make short-answer examinations meaningful or 
generalizable because of  the limited time available for 
students to complete them, but they can provide 
cognitive complexity at low cost. 

3. Charettes (the method used in this study) 
Charettes are short assignments, typically carried out 
during a fixed-length laboratory session that occurs 
on a regular basis. The closed nature of these 
sessions reduces the opportunity for plagiarism. 
Charettes provide coverage of the learning objectives 
framework, although in a manner that is more 
superficial and less cognitively complex than is 
possible with larger take-home assignments. The 
experience of completing a charette may not be as 
meaningful or generalizable as larger assignments. 
Charettes may be unfair to students who have test 
anxiety or troubles with time pressure. 

Once an assessment instrument is chosen, the scoring 
criteria must be determined. One approach to scoring 
would be a raw assessment of whether the program works 
(although this is not particularly useful for formative 
assessment). It is common for first-year computing 
instructors to examine the source code and other written 
materials as part of  their assessment strategy. Another 
approach to assessment is to combine one of  the above 
with interviews in which the students describe their 
process and product and thus demonstrate that they 
understood what they have presented. 

In this study, the form of assessment used was the 
charette, a short, lab-based assignment. We selected this 
assessment type to foster a fairly uniform environment 
across universities at a relatively low cost. Our charette 
provided fairness in the sense that all students were 
operating in a similar environment, although this approach 
can be seen as discriminatory against students with test- 
taking anxiety. The exercises did offer cognitive 
complexity and covered all parts of the learning objectives 
framework reasonably well. In the Methodology and 
Analysis sections, we explain the criteria we used in 
assessing the students' programs. 

Methodology 
To help determine the programming ability of  first-year 
computing students, the working group developed a set of 
three related programming exercises that students at 
several universities would be asked to solve. The 
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exercises, which varied in difficulty, were designed so 
that, theoretically, students in any type of  Computer  
Science programme should be able to solve them. 
Students could use any programming language to 
implement their solutions; we assumed that they would 
use the language that they were required to use for the 
course they were taking at the time. Students would only 
have to complete one exercise of  their instructor's 
choosing. The opinion of  the working group's 
participating schools was that a student at the end of  the 
first year of  study should be able to solve the most 
difficult exercise of  the three in about an hour and a half. 
The exercises focused on arithmetic expression 
evaluation. The easiest of  the three exercises (P1) required 
a computer  program to evaluate a postfix expression. The 
second exercise (P2) required a computer  program to 
evaluate an infix expression with no operator precedence 
(the operations were to be performed strictly left to right, 
with no parentheses present). The  last exercise (P3) 
required a computer  program to evaluate an infix 
expression with parenthesis precedence (operations were 
to be performed left to right, with parentheses forcing sub- 
expressions to be evaluated first). Each exercise stated 
that input tokens (numbers and operation symbols) would 
be separated by white space to ease the process of  
entering data. Infix expressions would contain only binary 
operations (+, - ,  *, / ,  ^); postfix expressions could 
contain unary negation ( - )  as well. The  exercises are 
described in Appendix A. 

To enable the work of  students f rom different universities 
under different instructors to be compared meaningfully, 
the working group developed the General  Evaluation (GE) 
Criteria shown in Appendix B. The criteria considered 
whether a student 's program could run without error, 
process several arithmetic expressions, produce correct  
results, and determine when expressions contained errors. 
These criteria were strictly execution-based. To assess the 
style component  of  the GE Criteria, the source code was 
inspected. 

The Degree o f  Closeness (DoC) Criteria given in 
Appendix C provided a subjective evaluation of  how close 
a student 's source code was to a correct  solution. Students 
at some of  the universities were also asked to complete a 
questionnaire (see Appendix D) that gathered 
demographic information, programming background, and 
reactions to the task. 

Instructors at four universities administered the trial 
assessment as a laboratory-based exercise in their 
respective courses. Two used the first exercise (P1, 
postfix evaluation), one used the second exercise (P2, 
infix evaluation with no parentheses), and one used all 
three exercises, administering a different exercise in each 
of  three sections o f  the same course. Students had either 1 
hour (at one university) or 1.5 hours (at three universities) 
to write a computer  program to solve the exercise they 
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were given using the language they were taught in their 
classes (which happened to be either Java or C++). When 
finished, students submitted their executable  programs and 
printed copies of  their source code for assessment. At one 
university, the exercise was set up as an examination 
required of  all students, while at the other three 
universities, the participants were volunteers who received 
extra credit points. 

The  computer  programs were evaluated using the criteria 
in Appendices B and C. The GE Criteria assess how 
accurately the students implemented their solutions, and 
thus concentrate on the last two learning objectives (re- 
composit ion into a working program and evaluation).  The  
DoC Criteria assess the results o f  the abstraction process 
and thus enabled us to see how well the students met  the 
first three learning objectives (abstraction, decomposit ion,  
and transformation into sub-solutions). In addition, the 
instructor who gave the exercise as an examinat ion graded 
the programs in the traditional manner  in order  to be 
consistent with the grading criteria for the remainder  of  
the course. Outcomes of  the assessments were reported to 
the working group leader for tabulation and cross- 
institutional analysis. 

Analysis 
Each instructor who administered the exercise applied the 
General Evaluation (GE) Criteria (Appendix B). All 
instructors produced an aggregate score for the General  
Evaluation Criteria; most instructors also reported the four 
component  scores (execution, verification, validation, and 
style). In contrast, the DoC Criteria (Appendix  C) were 
applied to the source code f rom all four universities by 
evaluators at a single university. The evaluators also 
generated comments to explain their reasons for giving 
each DoC score. In an informal inter-rater reliability test 
on scoring against the DoC Criteria, we found a high 
degree of  correlation between evaluators. 

Two of  the four universities administered a local version 
o f  the Student Questionnaire (Appendix D). For  all four 
universities, the exercise number (P1, P2, or P3) was 
recorded for each student as well as the programming 
language used (Java or C++ in all cases). The  four 
participating universities were randomly assigned the 
codes School  S, School T, School U, and School  V. The  
instructor at School V reported a local grade on the 
exercise (which was given as an examination).  We  
assigned each student an encoded student ID number in 
order to ensure anonymity. 

Once the raw data f rom each university were entered and 
validated, the analysis fol lowed two independent  paths. 
One path was a quantitative analysis based on the GE  
score, the DoC score, and the other data available for  each 
student. The  second path was a subjective analysis that 
focused on several o f  the unsuccessful attempts to solve 



the assigned exercise, looking at comments embedded in 
the source code and information from the questionnaires. 
We present the outcomes of these analyses in the next 
three subsections. 

Bi-modal distributions ("two humps") appear throughout 
this data. Another example is the combined P2 dataset 
(combining Schools U and V), which has a similar bi- 
modal profile (Figure 2). 

Analysis of General Evaluation Score 
The average General Evaluation (GE) score (combining 
the execution, verification, validation, and style 
components) for all students, all exercises, at all schools 
(n = 217) was 22.9 out of 1 I0 (standard deviation 25.2). 
The scoring for each of  P1 (Schools S, T, and V), P2 
(SchoolsU and V), and P3 (School V only) appears in 
Table 1. Overall performance was generally fairly low. 

P1 (n = 117) 
P2 (n = 77) 
P3 (n = 23) 

Average (stdev) 
21.0 (24.2) 
24.1 (27.7) 
31.0 (20.9) 

Table 1: GE average score by exercise 

We assumed in this study that we would be able to safely 
combine data from multiple universities in our analyses. 
However, there are differences between the students at 
different universities (e.g., in raw talent, in previous 
experience, in courses completed), between how they are 
taught, in how the exercises were applied (e.g., 
examination grade vs. extra credit points, time allowed, 
hints given), and, especially, in how the GE Criteria were 
applied. We used a statistical test (Student's t-test) to 
compare the universities on each of  the exercises. Schools 
S and T did not differ significantly on P1, but every other 
combination (Schools V and T on P1, Schools V and S on 
P1, Schools U and V on P2) did differ significantly (p < 
0.00001). 

Table 2 summarizes the scores for each school across all 
the exercises. (Only School V used more than one 
exercise, P1, P2, and P3.) School V had considerably 
higher scores than the other universities. Note, however, 
that we cannot simply conclude that School V's  students 
performed better; the differences may be due to factors 
such as how the GE Criteria were applied, what types of 
students participated, or how motivated students were to 
do well. 

Schools S and T are not statistically different on P1, so we 
can combine those scores with more confidence that we 
can gain the benefits of an increased sample size and of 
describing students across multiple universities. On this 
combined P1 dataset (combining Schools S and T, n = 94) 
the average General Evaluation score is 14.0 (standard 
deviation 18.0). Figure 1 shows that the distribution of 
these scores is bi-modal. While the majority of the 
students did very poorly, there is a second "hump" in the 
distribution, indicating a set of  students with somewhat 
better performance. 

The majority of  students working on P2 scored below 10 
points and fewer than ten students earned between 10 and 
35 points, while over thirty students scored between 36 
and 54 points. 

With such low scores, we were curious to know where the 
students lost points. The GE Criteria had four 
components: execution (did the program run?), 
verification (did it handle input correctly?), validation (is 
it the right kind of  calculator?), and style (does it meet 
standards?). Though the scores are uniformly low, as a 
percentage of  possible scores, students did best on the 
execution component (implying that, overall, they wrote 
programs that compiled and ran) and the style component 
(implying that the source code looked good). The lowest 
component scores were on the verification and validation 
components (Table 3). 

Analysis of DOC Scores 
The Degree of Closeness (DoC) score, a five-point scale 
that rates how close a student's program is to being a 
working solution (see Appendix C), is particularly 
interesting to study because a single set of raters assigned 
the DoC scores for all four universities. Therefore, any 
differences in universities can be attributed to differences 
among the universities themselves, rather than to 
differences in applying the criteria. 
We discovered that the GE and DoC Criteria do measure 
similar phenomena. The correlation between the GE 
score and the DoC score was significant (Pearson's r = 
0.66). 

The overall average DoC score (combining universities 
and exercises, n = 217) was 2.3 out of  a possible 5 points 
(standard deviation 1.2). In general, student performance 
was low by measure of the DoC Criteria. The average 
DoC score for each exercise appears in Table 4. Students 
did best overall on the simple infix calculator exercise 
(P2), and next best on the RPN calculator (P1). This may 
be due to students' familiarity with infix calculators and 
notation and their lack of  familiarity with RPN 
calculators, or perhaps due to mismatches between the 
demands of  the exercise (e.g., stacks for RPN calculators) 
and the curriculum at a particular school. 

129 



G} 

"6 

E .= 

40 

35 

30 

25 

20 

15 

10 

5 

0 

8 16 24 32 40 48 56 64 72 80 

Scores 

88 96 

F i g u r e  I :  D i s t r i b u t i o n  o f  G E  sco re s  on the  c o m b i n e d  P I  da t a se t  ( h i s t o g r a m )  

40 

~- 35 

g 30 

~- 25 

- -  20 

=w 15 _= 
to  

I 5 

8 16 24 32 40 48 56 64 72 80 

Scores 

88 96 

• S c h o o l  S (n = 7 3 )  - -  P1 - 

- S c h o o l T  (n = 21)  - -  P1 - 

- S c h o o l  U ( n = 4 7 )  - -  P2  

School V (n = 23) P1 
School V (n = 30) P2 
School V (n = 23) P3 
T o t a l s  for  S c h o o l  V on P1,  P2 ,  P3 

Average (stdev) 
14.0 (18 .6 )  

12.0 (16 .3 )  

8.9 (11 .4 )  

48.7 (25.7) 
47.8 (29.1) 
30.9 (20,9) 
4 3 , 0  (26 .7 )  

T a b l e  2:  G E  a v e r a g e  s c o r e  b y  u n i v e r s i t y  

G E  Component  (and maximum 
score possible) 

E x e c u t i o n  (maximum: 30) 

Average score 
(stdev) 

7.2  (11 .8)  

V e r i f i c a t i o n  (maximum: 60) 1.6 (5.8)  2 . 8 %  

V a l i d a t i o n  (maximum: 10) 0,3 (1.8)  3 . 2 %  

S ty l e  (maximum: 10) 4.6  (3 .4)  4 6 . 2 %  

As percentage of  max  
score on component  

2 3 . 9 %  

T a b l e  3" A v e r a g e  G E  c o m p o n e n t  s co re s  and  p e r c e n t a g e  o f  e a c h  c o m p o n e n t  a c h i e v e d  
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Average (stdev) 
PI  ( n =  118) 2.2 (1.2) 
P2 (n = 77) 2.4 (1.2) 
P3 ( n -  23) 2.0 (0.9) 

Table 4: DoC score by exercise 

The distribution of  DoC scores for the universities is 
shown in the first five rows of Table 5, with the average 
score for each university in the final row. School V had 
the highest DoC score, with School S second. The 
difference between universities is statistically significant 
(on a Student's t-test, p < 0.01). 
At School T, we had the unusual circumstance of two 
different programming languages used in the exercises. 
About half Of School T ' s  students solved P1 using C++ (n 
= 10) and the rest solved the exercise using Java (n = 11). 
We calculated the average DoC score for each of these 
groups separately, then compared (using a Student's t-test) 
each group to a comparison group (School S 's  students) 
who solved P1 using Java. While School T ' s  C++ 
programmers did significantly better than School T ' s  Java 
programmers (p < 0.001), it is striking that the Java 
programmers at School T differ significantly from School 
S 's  Java programmers (p < 0.001), while School S 's  Java 
programmers and School T ' s  C++ programmers do not 
differ significantly. Table 6 gives the average and 
standard deviation for each of  these groups. 

School T ' s  C++ Students (n = 10) 
School T ' s  Java Students (n = 11) 
School S 's  Java Students (n = 73) 

Average (stdev) 
1.7 (0.8) 
1.o (o.o) 
2.2 (1.1) 

Table  6: Average score on P1 by School T ' s  Java and 
C++ programmers and School S 's  students 

Qualitative analysis of selected 
solutions 
In our qualitative analysis of  the data, our goal was to 
better understand some of the outcomes reported in the 
previous sections. We investigated the question "What 
went wrong?" (from both an instructor and a student point 
of view) for the students who produced an unsuccessful 
solution. The analysis was based on the students" source 
code as well as their responses to the Student 
Questionnaire (Appendix D). The analysis focused on 
students from Schools S and V whose DoC score was 1 or 
2 and compared their performance with that of students at 
the same schools whose DoC score was 4 or 5. 
First we investigated the data from the instructor's point 
of view to see how students were approaching the 
exercise. For the students whose DoC score was 4 or 5, 
we can say that little or nothing went wrong (i.e. they 
produced working solutions that really solved the 
exercise). These students can be characterized as 
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individuals who figured out a solution for the exercise and 
either completed the exercise or were in the final phases 
of  implementing a solution. In analyzing what went 
wrong for the students who earned a DoC score of  1, the 
results can be classified into three types: 
Type  1 (null result): the student handed in an empty file. 
Type  2 (unplanned result): the student's work showed no 

evidence of a plan to solve the problem. One 
explanation for this performance is that the student 
followed a heuristic in which they first did what they 
knew how to do, deferring the tasks about which they 
were uncertain, but were then unable to proceed 
beyond that point. 

Type  3 (unimplemented plan): there is evidence that the 
student had a plan but did not carry it out. These 
students apparently understood what they needed to 
do and appeared to have a general structure for a 
solution. We further subdivide this type into two 
subtypes. For type 3a (unimplemented plan with 
promising approach), there was evidence that the 
student had identified a reasonable structure for 
solving the exercise. For type 3b (unimplemented 
plan with poor approach), the student apparently had 
a plan, but it was a poor one for the solution. 

Next, we investigated the data from the student's point of  
view to better understand why the process of  completing 
the exercise went so well for some students and so poorly 
for others. We contrasted student attribution of 
difficulties for students at School S whose DoC score was 
1 with the attributions of students at the same school 
whose DoC score was 5. In the Student Questionnaire 
(Appendix D), students were asked to rank the difficulty 
of the exercise on the scale [easy, difficult, hard, 
impossible]. None of the School S students who earned a 
DoC score of  1 (n = 25) rated the exercise as easy. Six of  
these students did not respond to the questionnaire. Of  the 
remaining nineteen students, six ranked the exercise as 
difficult, nine ranked the exercise as hard, and four ranked 
the exercise as impossible (and these were not necessarily 
the Type 1 students). For the three School S students 
whose DoC score was 5, one thought the exercise was 
easy, one thought it was difficult, and one thought it was 
hard. 

To gain some insights into why, we read the reflections 
reported by Type 1 students (null result) and students who 
earned a DoC score of  5. We found that the Type 1 
students attributed blame for their difficulties to factors 
outside of  their control. They blamed the amount of  time 
available to solve the problem, their unfamiliarity with the 
computers in the lab, their lack of Java knowledge, and 
other external factors. None of  the Type 1 students 
mentioned factors related to the process of  solving the 
exercise. In contrast, students whose DoC score was 5 
competently described the difficulties they experienced in 
the process of  creating a solution. Many of these 
explanations illuminated particular aspects of  the design 
phase or particularly challenging sub-problems. Examples 



of comments  made by such students were "Simple errors 
got the best  of  me"  (problem difficulty rated as difficult), 
"Could not solve for error case" (problem difficulty rated 
as hard), and "Implementat ion is wrong but easy" 
(problem difficulty rated as easy). Most  of  the students 
with DoC scores of  5 included comments  in their source 
code that documented the cases for which the program did 
not work. 

Due to the limited t imeframe for the working group 
collaboration, this qualitative analysis is preliminary and 
incomplete. The Results section includes additional 
observations f rom the qualitative analysis and ideas for 
further qualitative analysis o f  this data, as suggested by 
the results to this point. 

Results 
The first and most  significant result was that the students 
did much more  poorly than we expected. There are many 
possible causes: Our expectations may  have been too 
high, the problems may  have been too hard or a poor  fit to 
the students '  background and interests, there may  not have 
been enough t ime given, and so on. 

W e  did answer the question we asked in the Introduction 
section: Do students in introductory computing courses 
know how to program at the expected skill level? The 
results f rom this trial assessment  provide the answer 
"No!"  and suggest that the prob lem is fairly universal. 
Many of  the solutions would not compile  due to syntax 
errors. This suggests that many students have not even 
acquired the technical skills needed for getting a p rogram 
ready to run. While  all the results were poor, School V ' s  
students did significantly better than the other universities. 
Two  important  factors that may have contributed to this 
difference are: (1) The School V instructor had given the 
students an example  to study, which was a complete  
answer to a similar problem, and (2) All students were 
required to take the exercise, which was given as an 
examination. Thus, sources of  difference among the 
universities in this study could include type of  
preparation, motivat ion on this exercise (e.g., examination 
vs. extra credit), student characteristics (e.g. volunteers or 
compulsory  participation), and issues such as curriculum 
and teaching style. 

The School V instructor, who gave the exercise as an 
examination,  applied local grading criteria in addition to 
the criteria defined for this trial assessment. W e  found 
that the correlation between the local grade and the 
General  Evaluation score was high, but not overwhelming.  
One interpretation of  this is that the two scores consider 
somewhat  different features. It  would be interesting to 
study these differences in order to gain a better 
understanding of  the way instructors normally grade 
programming  assignments and to contrast this with the 
criteria we used in this study. Local  grades may consider 

more  than performance on a single assignment.  For  
example,  a teacher may  wish to reward effort  or dramatic 
improvement,  and there are certainly good reasons for 
doing so. Assessment  in a study such as this one, 
however,  considers performance  at a particular instant. 
Give this difference in contexts, it is not surprising that the 
grade and the assessment score may differ. 
We  clearly misjudged the complexi ty  of  the exercises.  
The higher General  Evaluation score o f  the students who 
worked on exercise P2 (infix notation without precedence)  
implied that this exercise was in some sense easier than 
exercise P1 (RPN notation). (Before conducting the 
study, we had rated P2 as being of  "modera te"  difficulty 
and P1 as being "simplest").  This points out more  of  what 
we still do not know about student learning and 
performance.  P1 was undoubtedly difficult for students 
who had never  studied stacks or other basic data 
structures. 

The result about  bi-modali ty is troubling. There  are two 
distinct groups of  per formance  in our datasets. This  result  
suggests that our current teaching approach  is leading to 
one kind of  performance for one sizable group of  students 
and another kind of  per formance  for another  sizable 
group. We  need to keep in mind that different groups o f  
students have different needs and strengths; we must  
ensure that the results f rom one group do not obscure our 
view of  the other. 

While the basis for compar ison between p rogramming  
languages is small for this trial assessment,  we did unearth 
an interesting contrast. One school  of  thought  says: "Java 
is better  than C++ for education" or "Languages  matter  a 
lo t - - s tudents  learn better with X than Y." In this study, 
Java programmers  f rom School S resembled  C++ 
programmers  f rom School T more  than they resembled the 
Java  programmers  at School T. This  suggests that the 
difference was not s imply due to the p rogramming  
language. Issues of  how the course is taught and who the 
students are influence the outcome,  rather than being 
simply a matter  o f  p rogramming  language X vs. 
p rogramming language Y. Future investigations must  dig 
into how learning differs with different p rogramming  
languages. 

The  fact that students did well on the style componen t  of  
the General  Evaluation Criteria indicates that students are 
responding to their instructors'  admonishments  about  
comment ing and formatt ing of  code. The  other 
component  scores (execution, verification, and validation) 
indicate that the code that students write does not mee t  
specification; the only way to evaluate this is to run the 
students '  code. An implication of  this is the importance  o f  
actually executing student programs.  

The significant number  of  solutions with a D o C  score o f  1 
or 2 (i.e. students who were "clueless")  raises the 
suspicion that those students need additional work  during 
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the first-year courses with developing skills in the first 
learning objective in our framework (abstracting the 
problem from a given description). 

Many of the students who failed on this trial assessment 
had no idea how to solve the exercise. On the Student 
Questionnaire, the last question asked students: What was 
the most difficult part of this assigned task? Was it the 
timed aspect of the problem, was the problem too difficult, 
etc. ? The following quotes are responses from students 
whose DoC score was 1 or 2: 
• "I didn' t  have enough time" 
• " I ' m  not good with stacks/queues." 
• "Too cold environment, problem was too hard." [We 

believe the first phrase refers to the temperature in the 
physical setting.] 

The most frequent student complaint was a lack of 
sufficient time to complete the exercise. This implies that 
these students could not accurately identify the main 
source of their difficulties in solving the exercise and 
therefore tended to attribute blame for their lack of 
success on factors other than themselves, such as a lack of  
time or the "cold" environment. In a multi-factor analysis, 
[11] found that attributing blame to external factors (such 
as "luck") was not uncommon, but was particularly hard 
to overcome. Once students attributed their failure to 
unstable factors that were out of  their control, they rarely 
succeeded in future attempts. 

One implication of  this finding is that the implementation 
of first-year courses should make better use of  available 
assessment methods and tools. Students should receive 
accurate feedback that allows them to become aware of  
their own limitations and difficulties--although such 
feedback alone will not necessarily convince a student that 
the reason he or she failed is at least partially internal 
rather than purely external. 

• "I had a plan, I did not know how to carry it out in 
Java." 

• "The problem was too difficult, I lost a lot of  time 
trying to understand how the computer work." 

These quotes are from students who seemed to accurately 
identify their own difficulties and who took responsibility 
for their own performance. These students knew that they 
should go through a process of  understanding, planning, 
and implementing. The earlier students' reflections give 
us little information about whether they were following 
these steps of  problem-solving; in fact, the earlier students 
appear to have been lost and unable to point out what they 
do not know, blaming the environment or their poor 
understanding of a class of concepts. 

The students' reflections provided useful information 
about the influence of the setting on student performance. 
Five School V students who earned a DoC score of  1 or 2 
complained that they had a plan but could not handle the 
environment themselves and therefore could not translate 
their solution into a working computer program. When we 
interviewed the School V instructor, we learned that while 
the setting was indeed lab-based as specified in the 
instructions for how to administer the exercise, it was also 
the first time these students had taken a laboratory-based 
examination. This helps to explain why these students 
found it difficult to work on their own and performed 
rather poorly. Several students reported in the Student 
Questionnaire that stress played a major role in their 
unsuccessful performance, while others reported that they 
needed time just to figure out how a postfix calculator 
works. Being aware of  such factors can help us as 
instructors to refine our assessment tools and give better 
guidelines on how to administer the tools. These data also 
give us insights into the students' performance that can be 
used to refine our approach to evaluating their knowledge. 

Students often have the perception that the focus of their 
first-year courses is to learn the syntax of the target 
programming language. This perception can lead students 
to concentrate on implementation activities, rather than 
activities such as planning, design, or testing. Generally, 
this perception does not come directly from what their 
instructors are telling them and, in fact, this belief seems 
to be robust even in the face of  instructors' statements to 
the contrary. Students often skip the early stages in the 
problem-solving process, perhaps because they see these 
steps as either difficult or unimportant. It is also possible 
that instruction has focused on the later stages, with an 
implicit assumption that the earlier stages are well 
understood or easy to understand. 

The information from the students' reflections can provide 
useful information for improving the assessment process. 
The following two quotes are drawn from the responses to 
the same Student Questionnaire item as above by students 
whose DoC score was 2: 

Discussion 
In analyzing the data from universities in different 
countries, we have found that the problems we observed 
with programming skills seem to be independent of 
country and educational system, The most obvious 
similarity we observed was that the most difficult part for 
students seemed to be abstracting the problem to be 
solved from the exercise description. At all universities, 
the main student complaint was a lack of  time to complete 
the exercise. 

In this trial assessment, as in the "real world", it may be 
that black-box assessment of  students' submissions 
reinforces students' views of  implementation and syntax 
as the key focus of  computer programming. Here we 
explore some possible reasons for the observed situation. 
1. Students may have inappropriate (bad) programming 

habits. When beginning their university studies, 
many students have prior experience in computer 
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programming. Often students with such experience 
treat the source code as simple text rather than as an 
executable computer program that is supposed to 
accomplish a specific task. Their goal is simply to 
obtain a program that compiles cleanly; often they are 
then surprised by what the program really does when 
presented with data. 

2. Switching to modern (Java) object-oriented 
programming tools. Anecdotal evidence and some 
research results (e.g. [ 10]) suggest thalL teaching an 
object-oriented approach to computer programming 
(for example, using a Java environment) requires 
more time before students have sufficient knowledge 
about the programming environment to solve 
problems on their own (which suggests that less time 
is required to achieve the needed level of familiarity 
with the environment in a procedural or functional 
approach). Therefore it is very likely that first-year 
courses using an object-oriented approach do not 
have room in the syllabus for fundamental data 
structures such as stacks, queues, and trees. 

3. Closed lab time constraint. In terms of  the way this 
trial assessment was administered, time pressure may 
have contributed to the poor results. 

The qualitative analysis of selected solutions helped 
explain student performance and therefore highlights 
where future studies must improve over this trial 
assessment. One direction for further analysis would be to 
give a more in-depth characterization of the nature of 
student knowledge and difficulties within each DoC score 
(i.e. from 1 to 5). We could investigate this by 
considering the quality of the source code, the internal 
documentation, and the data from the Student 
Questionnaire. It would be useful to consider these issues 
from both from the instructor's point of view and the 
student's point of view. A student's reflections can 
provide important clues to whether the student 
understands his or her own limitations in knowledge. For 
example, the terminology that the student uses to describe 
his or her difficulties provides glimpses into the student's 
processes and problem-solving knowledge. These insights 
could help us better understand whether students are 
becoming competent in correctly identifying (and 
overcoming) their own difficulties. 

In general, data analysis using qualitative approaches can 
provide information to help improve educational 
processes and refine assessment tools. For example, being 
aware of the factors revealed by qualitative analysis can 
assist us in developing better instructions for 
administering this trial assessment. The information 
generated by the qualitative analysis can also help make 
us aware of aspects of our students' behavior that we 
otherwise would not notice. Finally, the information from 
qualitative analysis can provide better and more accurate 
insights into what students know and how they use that 
knowledge. 
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To efficiently teach computer programming skills is 
difficult. The kinds of  assessment that instructors use 
throughout their courses must provide appropriate 
information for understanding students' processes of 
developing programming skill. This l~rial assessment 
showed that most of the participating students failed to 
achieve one of the basic goals of  a first-year computer 
science course: to acquire at least a basic level of  skill 
with computer programming. This implies that it was the 
students' knowledge, rather than their skills, that enabled 
them to successfully complete their first-year courses. It is 
possible that either performance-based assessment tends 
to be improperly implemented or that it is often sacrificed 
in order to make assessment more objective. 

Issues to be addressed in fo l low-  
on studies 
Several aspects of  this study gave us cause for concern or 
raised points that must be addressed in future studies of 
this kind. These areas include the administration of the 
study, the exercises, and the challenges of multi- 
institutional collaboration. 

Issues related to administrat ion of  the 
exercise 
There are difficulties in comparing the performance of 
students with different programming backgrounds. In 
some universities, first-year students enter having already 
taken a general introduction to programming course, 
whereas in others most students are programming novices 
at the start of their first year of studies. Although some of 
the latter group may have prior programming experience 
from school, other universities, or self-learning, the 
preponderance of novices in the sample would affect the 
results from those universities. In future studies, we might 
specify the level of  prior programming experience or the 
specific programming knowledge that the students are 
assumed to have for each exercise. It would then be fairer 
to allow instructors to choose the appropriate exercise to 
give to their students. The background questionnaire 
should also be modified to solicit information on students' 
prior programming knowledge. 

Students were expected to solve the problem in whatever 
language they were learning in their course. As it 
happened, in our study all the students were learning 
either C++ or Java. The language of implementation 
affects the difficulty of the solution. For example, it is 
much easier to read data from a keyboard in C++ or even 
C than in Java. Many courses teach Java using classes 
supplied to simplify input from keyboard, but it was 
specifically stated in the instructions that students were 
not allowed to use such classes. The exercises should be 
chosen so that it is not necessary to use a technique that is 
clearly more difficult in one language than another. 



These exercises were designed to be done using 
computers in a laboratory environment. The laboratory 
session must be monitored to ensure that nobody uses 
external means such as email or the Internet to obtain help 
with the solution. It was unclear from the trial assessment 
instructions whether the exercise could be done on an 
open-book basis. It was also unclear whether instructors 
were allowed to prepare the students for doing the 
exercise. Such issues should be explicitly addressed in the 
instructions in future collaborative assessment studies. 
In some universities that participated in the study, the 
students were volunteers. In others, the exercise was 
compulsory. I f  students are asked to volunteer for a 
programming exercise, anyone who is weak in 
programming is likely to choose not to do it. This means 
that, in order to gain a true picture of the programming 
skills of  students, the exercise must be compulsory for 
students. The only way to ensure that all students will 
attempt an exercise is to make its results count towards 
their final mark in a course. It must therefore fit into the 
assessment strategy of the course in which they are 
enrolled, as an examination for which a number of  marks 
are allocated. In the future, it would help the analysis to 
record information about the conditions for each 
administration of the exercise, for example, examination 
vs. extra credit and volunteers vs. compulsory. 

I f  the exercise is compulsory, a one-and-a-half hour 
laboratory consisting of only one question may be unfair. 
This is particularly true if this style of assessment is so 
different from what students have already done in their 
courses that they cannot determine where to start. An 
assessment of  programming skill may need to take into 
account the fact that, in the "real world", a programmer 
usually does not have such a short time limit for 
understanding a problem and writing the required 
computer program. In addition, real-world programmers 
are generally free to refer to books and other resources if 
needed. Students whose primary language is not English 
may need a considerable amount of time to read the 
specification in order to understand what is required. In 
future studies, it may be necessary to allow students much 
more time than it is likely to take them to solve the 
problem. For example, if a teaching assistant can solve 
the problem in half an hour, it may be necessary to allow 
students up to three or four hours to solve it. Some 
students suffer from examination anxiety. To counter this, 
it would be possible to give students a week, say, to do the 
exercise, although this introduces more opportunities for 
plagiarism, and the assessment strategy would have to 
take this into account. Another approach would be to treat 
the topic area for the exercise as a case study that the 
instructor presents during one or more lectures. Basic 
materials for presenting the case study could be 
distributed to the participants. This would introduce some 
consistency in how the case study was introduced to 
students and could make it easier for students to quickly 

understand the requirements of  the exercise in the closed- 
lab setting. 

This study was not culturally neutral. For some 
universities, the exercises and instructions had to be 
translated into a language other than English. One way to 
minimize the effect of  this difference would be to ensure a 
centralized translation to each language, which would 
ensure that all universities using a particular natural 
language use the same specification. Ideally, there should 
also be a validation step to ensure that the translated 
version of the exercise gives exactly the same 
specification as the original English version. 

In future studies, instructors must receive sufficient notice 
of the study so that they have time to incorporate it into 
their assessment strategies for a particular semester. This 
point was a major factor in why additional universities did 
not participate in this trial assessment. 

Issues related to the exercises 
The exercises used in this study were probably 
discouraging for students with mathematical anxiety. 
Such students exist even in Computer Science 
programmes and are more likely to exist in other kinds of  
computing programmes that do not include compulsory 
mathematics courses or have strong mathematics 
prerequisites, such as a programme focused on 
commercial applications of  computing. In future studies, 
a set of exercises of  equivalent programming difficulty 
could be devised, and participating instructors could 
choose the most appropriate exercise for students in their 
programme. Alternatively, students could be allowed to 
choose the exercise that they felt most comfortable 
attempting. 

The exercises in this assessment should have solutions 
that are unlikely to appear in the textbooks typically used 
by students in the first year. In this way, students who had 
used such textbooks would not be at an advantage over 
those who had not. To address this in future studies, a 
review panel, consisting of a representative sample of  
instructors, could be asked to provide feedback on the 
appropriateness of  the task, the level students would need 
to be at to successfully solve the exercises, and whether 
they knew of any resources that would give some students 
an unfair advantage in solving any of the exercises. The 
review panel could include instructors from different 
countries, with different natural languages, teaching in 
different kinds of  degree programmes, and using different 
programming languages, 

In our study, the exercises were most easily solved using a 
procedural approach, and it was not easy for a student to 
decide which classes, attributes, and methods would be 
required if an object-oriented approach were taken. This 
may have confused many students. Given that most first- 
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year  p rogrammes  currently seem to be using an object- 
oriented language, the exercises should include options 
for which a natural solution can be designed using an 
object-oriented approach.  

The specifications of  the exercises in this study included 
details that were not relevant  to the solution, which made 
it difficult for many  students to achieve the first learning 
object ive in our f ramework  (abstracting the problem f rom 
the description). As stated earlier, many  students (those 
with DoC scores of  1 or 2) did not get seem to get past  
that point  in the problem-solving process.  In the future, 
extra effort  should be expended to make each 
specification as clear  and simple as possible.  One way to 
achieve this would be to ask the review panel mentioned 
earlier to suggest changes to the exercise descriptions, as 
well as to the instructions for administering the exercises. 

Issues related to mult i - insti tut ional 
col laborat ion 
This trial assessment  is an example  of  collaboration on a 
single project  across a variety of  universities. Multi- 
institutional col laborat ion offers advantages as well as 
challenges. Among  the advantages are an increased 
experience pool,  a larger cumulative pool  o f  students, and 
a wider variety of  student profiles (increasing the potential 
for generalizability of  results). At the same time, multi- 
institutional collaborat ion includes many challenges, some 
of  which are addressed earlier in this section. Being 
separated physically makes  it more  difficult to coordinate 
protocols for conducting the exercises. It is also more 
difficult to make  the data consistent (with respect  to 
formats,  field names, etc.) and complete  (one university 
may collect  data that is "lost" at another university, simply 
because the second instructor did not know to capture that 
information).  Another  important  challenge is making the 
exercises sufficiently general so that they are neutral with 
respect  to both culture and the university. Experience in 
this trial assessment  suggests that we did not fully succeed 
in this. Our conclusion is that we must be cautious in 
defining general exercises,  since we cannot assume that all 
first year  programs cover  the same material in content or 
emphasis,  even within the boundaries of  established 
curriculum standards and accreditation criteria. 

Based on the experiences with this trial assessment, we 
offer the following advice for doing multi-institutional 
collaborations: 
1. Appoint  one research coordinator,  who will be the 

main contact point for making decisions on the entire 
project. In our case, the W G  leader was the research 
coordinator,  who guided the entire process. 

2. Do a trial run of  the entire study, including analysis, 
in order to work  out details o f  data formats and 
instruments. 

3. Ensure that all source data can be traced to the 
interpreted data. For  example,  ensure that the 

printouts and files with the source code are marked  in 
a way that associates each with the coded ID of  the 
student who completed it. 

Continuing the quest 
Because our prel iminary work  suggests that the problems 
we have observed are universal,  the working group feels it 
is worthwhile to expand this trial assessment  to include a 
broader  base of  computer  science educators and 
universities. W e  envision establishing a central web site 
related to assessment  of  p rogramming skills. Such a site 
could provide a gathering spot for links and materials  
related to this type of  assessment,  while at the same t ime 
being easily usable f rom throughout the world. The  web 
site could include a registration process  in order to al low 
restricted access to various parts of  the assessment  site. 
The programming assessment  site must  support  three main 
types of  activities: 
• A s s e s s m e n t  d e v e l o p m e n t .  The  sys tem should enable 

instructors throughout the world to part icipate in this 
collaborative project.  For  example,  the web site 
should have features to support  individuals who wish 
to submit  new ideas or produce new assessments 
(perhaps following pre-defined templates  obtained 
f rom the web site). The  web site can also provide  a 
technical forum where individuals developing 
assessment tools can discuss personal  assessment  
experiences with others involved in the project .  

• S u p p o r t  for  carry ing  o u t  a s s e s s m e n t  a n d  self-  
as sessment .  This feature can serve two groups o f  
users: students and instructors. The  assessment  web 
site can provide both groups of  users with ready-to-  
use assessments and background information.  As the 
instruments are filled out, the web site can collect  the 
results and al low users to submit  comments  and 
feedback. Individual students would be  able to use 
these tools for self-assessment and tracking personal  
progress.  The  assessment  web site could also 
establish a worldwide database to accumulate  
information about students '  comput ing knowledge  
and programming skills as measured by these 
assessments. Such a database would provide  a basis 
for understanding student attributes within a single 
university, a single country, or even globally.  

• C o m m u n i c a t i o n  e n v i r o n m e n t .  While  much  of  the 
information in the assessment  web site will have 
strictly controlled access based on an individual 's  
registered profile, the sys tem could also allow the 
general public to access certain information about 
assessment. This would al low anyone interested in 
any aspect  of  assessing p rogramming  skills to 
exchange ideas and comments .  

In order to realize the vision of  an assessment  web site, 
several organizational aspects are needed, including: 
• a steering commit tee  to guide the various efforts; 
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• a series of meetings, perhaps on an annual basis, 
where policy and structure can be defined; 

• a committee devoted to maintaining the system; and 
• one or more moderators who track day-to-day 

submissions from the public. 
In order to foster interaction while establishing and 
building the assessment web site, a series of meetings 
could be held at regular intervals to gather individuals 
interested in contributing to this project. The meeting 
agenda would include developing the philosophy and 
strategy of assessment, accepting or rejecting proposed 
changes to the whole system, and managerial 
responsibilities such as designating the steering 
committee. It would make sense for the 
conference/workshop to take place in conjunction with a 
major conference such as the SIGCSE Technical 
Symposium or the ITiCSE Conference. The steering 
committee would be responsible for guiding the 
implementation strategy between the periodic meetings. 
The system maintenance group would be the professionals 
responsible for maintaining the system. Finally, the 
moderators would monitor the content of the system on a 
day-to-day basis. 
The site with information from this working group is 
located at the URL: 
http://www.cc.gatech.edu/projects/iticsewg/csas.html. 
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Appendices 
The information given in these appendices reflects 
updates made after completing the trial assessment. Some 
changes were introduced to clarify issues and to complete 
points that were missed during the initial development. 
The original and modified versions of the exercises and 
the instruments are available via the working group's web 
site at the URL 
http://www.cc.gatech.edu/proj ects/iticsewg/csas.html. 

Appendix A. Overview of the Exercises 
The content of three exercises developed for use in this 
study was distributed electronically to the participating 
instructors so they could easily cut and paste the text in 
creating their local versions of the assignment. As a 
baseline for difficulty levels, we hypothesized that second- 
semester computing students should be able to do the 
most difficult exercise of the three, Exercise #3, in 1.5 
hours. To improve consistency, participating instructors 
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received the following guidelines for how to administer 
the task. 

• The students should work individually in a 
closed lab setting (proctored, with all work 
completed in the allotted time). 

• The student 's goal is to produce a working 
and tested program in the time allotted. 

• This is a programming exercise, so students 
should produce a computer  program. Any design 
documentation,  though important to solving the 
problem, is not important to this assessment. 

The three exercises, referred to in the body of  the paper as 
P1, P2, and P3, were as follows: 
• Exercise #1 (P1): Programming an RPN calculator; 

difficulty level: 1 (simplest) 
• Exercise #2 (P2): Programming an "infix" calculator 

without precedence;  difficulty level: 2 (moderate 
difficulty) 

• E x e r c i s e  #3  (P3): Programming an "infix" calculator 
with simple precedence (i.e. precedence determined 
by parentheses only; no consideration given to 
operator precedence); ;  difficulty level: 3 (most  
challenging) 

The  exercise description included a common introduction 
for all three exercises. We  suggested that students would 
need ten minutes to read and understand this background 
information. The main ideas in the introduction were: 
• An explanation o f  the two main notations for hand- 

held calculators: Reverse Polish Notation (RPN) (also 
known as "postfix",  which is generally used by 
Hewlett  Packard calculators) and "infix" (which is 
generally used by Texas Instruments calculators). 

• A description o f  how "post-fix" and "in-fix" 
expressions should be processed. 

• A discussion of  why RPN is simpler to implement 
(i.e. no precedence issues) while at the same time it is 
less intuitive for most users. 

The individual descriptions of  the three exercises 
provided the following information: 
• User input is to come from the terminal 's  standard 

input; output should be directed to standard output for 
the terminal. 

• The  solution can utilize standard library routines 
provided by the language; no proprietary or other 
such libraries may be used. 

• The operations that the particular calculator can 
process include addition, subtraction, multiplication, 
division, the power  operator, and the inverse, or 
negation, operator.  The "infix" calculator with 
precedence (Exercise #3) also included parenthesis 
pairs, which are used to indicate simple precedence.  

• The  description of  each calculator shows the relative 
format  for a line o f  input. For  all o f  the calculators, 
some for~n o f  white space will delimit tokens 
(numbers and operators).  
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• User input will be entered non-interactively (so that 
the program is not allowed to query the user for 
additional information once the expression is 
entered), with the exception of  the prompt  to solicit 
the next line of  input. 

• The  program should terminate when the input 
contains only the letter ' q ' .  

• When  an error is detected in the input, the program 
should output an informative message and allow the 
user to begin entering a new expression. 

• At the end of  each calculation, the calculator should 
be cleared so the data structure containing the 
intermediate results is empty and ready for processing 
a new expression. 

• Floating point arithmetic should be assumed and the 
program should allow non-integer expressions as 
valid input. 

• Through several lines of  a sample session, the 
description demonstrates a number  of  expressions and 
the results f rom the associated calculations for the 
specific calculator. 

Appendix B. General Evaluation Criteria 
Because this was a programming exercise intended to 
evaluate the programming skills o f  the participants, the 
evaluation focused on skills. The  General  Evaluat ion 
Criteria were designed to give reasonably consistent 
evaluations while allowing the participating instructors to 
still follow their normal grading process.  
The total number o f  marks that a particular program could 
earn was 110. In the following, we have listed the 
allocation of  marks immediately after each item. The  
style section was optional, since some instructors do have 
not style requirements in their introductory classes. 
E x e c u t i o n  (30 marks)  - Does the program execute 
without error in its initial form? Does it compile  without 
error? Does the program run successfully (no core dump 
or equivalent failure) ? 

Verif icat ion (total o f  60 marks, as broken down in the 
i temized list) - Does the program correct ly produce  
answers to the benchmark data set? This includes the 
following issues: 
• (10 marks) The program should allow for multiple 

inputs of  different arithmetic expressions (i.e., it 
should clear out the data structure properly between 
different expressions). 

• (10 marks) The  program should terminate correct ly 
(i.e., entering the quit command  should terminate the 
program). 

• (30 marks)  The program should correct ly process 
data sets containing expressions typically evaluated 
with a calculator. (Some sample expressions were 
provided to the instructors. The  samples were not 
meant to be exhaustive, but  to provide a benchmark.)  

• (10 marks)  The  program should react  properly to 
erroneous inputs. 



Validation ( I 0  marks)  - Does the program represent the 
calculator type asked for in the exercise specification? 
Style (10 marks)  - Does the style of the program conform 
to local standards, including naming conventions and 
indentation? (The style measure was optional.) 

Appendix C. DoC Evaluation Criteria 
As a more subjective measure of the quality of a solution, 
the working group developed an indicator that we came to 
call the DoC score, for "Degree of Closeness" (or, with 

tongues firmly in cheeks, "Depth of Cluelessness"). The 
DoC score applies to programs that did not work and 
indicates how close the solution was to working. 
To assign the DoC score for a student's program, the 
evaluator inspected the source code. The scores ranged 
from 5 to 1, with 5 being the best. Generally, the 
evaluators added notes to explain the reasons for the 
assigned score. 

DoC 
Score Interpretation 

5 

4 

Touchdown. The program should have compiled and worked. I f  it did not work, it could be that 
the student simply ran out of time. 
Close but something missing. While the basic structure and functionality is apparent in the 
source code, the program is incomplete in some way. For example, it might have been missing a 
method or a part of  a method, but everything else seemed fine. 
Close but far away. In reading the source code, the outline of  a viable solution was apparent, 
including meaningful comments, stub code, or a good start on the code. 
Close but even farther away. The outline, comments, and stub code showed that the student bad 
some idea about what was needed, but completed ver), little of  the program. 
Not even close. The source code shows that the student had no idea about how to approach the 
problem. .... 
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Appendix D. Student Questionnaire 

This version of the questionnaire was used at an American university. 
participating university to solicit equivalent information. 

This questionnaire must be customized for each 

Part 1: Personal Information 
Name: 

(please circle the correct choices below) 

Sex: Male Female 

Class Rank: F re shman  Sophomore  Jun ior  Senior 

Overall GPA: <2.0 2.0-2.5 2.5-3.0 3.0-3.5 

What grade do you expect to make in the course? A 

Major: 

IDNUM: 

>3.5 

B C D F 

Part 2: Background 

Where did you first learn to program in Java / C++? (please circle one) 

BeforeHighSehool HighSehooi College Other: 

Do you have any experience programming outside a classroom environment? If so, please explain. 

Part 3: Study Reaction 

Did you feel that the assigned task was difficult please circle the level of difficulty) 

? 

What level of difficulty would you rank it? (Easy Difficult H a r d  Impossible 
Other: 

What was the most difficult part of this assigned task? Was it the timed aspect of the problem, was the problem too difficult, 
etc.? Please try to explain in a way that makes the difficulties clear for us. 

Copyright is held by authors. 

\ 

\ 
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