
A multi-national, multi-institutional study of assessment of programming
skills of first-year CS students

Michael McCracken (chair)
Georgia Institute of Technology, USA

mike @ cc. gatech, edu

Vicki Almstrum
University of Texas at Austin, USA

almstrum @ cs. utexas, edu

Danny Diaz
Georgia Institute of Technology, USA

ddiaz @ cc. ga tech. edu

Mark Guzdial
Georgia Institute of Technology, USA

guzdial @ cc.gatech.edu

Dianne Hagan
Monash University, Australia

Dianne.Hagan @ infotech, monash, edu.au

Yifat Ben-David Kolikant
Weizmann Institute of Science, Israel

ntifat@wisemail, weizmann.ac, il

Cary Laxer
Rose-Hulman Institute of Technology, USA

Cary.Laxer@ ros e-hulman, edu

Lynda Thomas
University of Wales, Aberystwyth, UK

ltt@aber.ac, uk

Ian Utting
University of Kent, UK
L A. U ttin g @ ukc.ac, uk

Tadeusz Wilusz
Cracow University of Economics, Poland

eiwilusz@ cyf-kr.edu.pl

Abstract
In computer science, an expected outcome of a student's
education is programming skill. This working group
investigated the programming competency students have
as they complete their first one or two courses in computer
science. In order to explore options for assessing
students, the working group developed a trial assessment
of whether students can program. The underlying goal of
this work was to initiate dialog in the Computer Science
community on how to develop these types of assessments.
Several universities participated in our trial assessment
and the disappointing results suggest that many students
do not know how to program at the conclusion of their
introductory courses. For a combined sample of 216
students from four universities, the average score was
22.89 out of 110 points on the general evaluation criteria
developed for this study. From this trial assessment we
developed a framework of expectations for first-year
courses and suggestions for further work to develop more
comprehensive assessments.

Introduction
Programming is one of many skills that computer science
students are expected to master. In addition, most
science, mathematics, engineering, and technology
(SMET) programs expect that their students will acquire
programming skills as a part of their education. The
question is whether these requirements are being met. Are
the appropriate assessment measures in place to determine

125

if the students have acquired the necessary programming
skills? We think not, but wanted to gather evidence that
would confirm or refute our observations.
This working group arose from concerns expressed by
many computer science educators about their students'
lack of programming skills. Quite often these concerns
were focused on basic mastery of fundamental skills of
programming. A study by [8] identified similar
deficiencies in programming skill, although their study
focused on the teaching of programming. In several other
studies that have considered issues of learning to program,
assessment has been a part of their methodology. For
example, [6] studied students learning Basic; [7] looked at
conceptual "bugs" of novice programmers; and [9] studied
novice programmers' misconceptions. While the results
from these studies can help computer science educators
improve the teaching of programming, they do not answer
this question: Do students in introductory computing
courses know how to program at the expected skill level?
This working group collected data from several
universities and found that the students' level of skill was
not commensurate with their instructors' expectations.
Two issues are central to our effort:

Learning to program is a key objective in most
introductory computing courses, yet many computing
educators have voiced concern over whether their
students are learning the necessary programming
skills in those courses.

The development of CC2001 [1] represents the next
evolutionary cycle of the requirements for computing

education. These requirements are slated to become
the new standard for computer science education and
will form the basis for accreditation of computer
science programs in the USA. The requirements for
introductory computing courses in the ironman
version of the CC2001 prescribes the set of expected
programming skills students should acquire but
includes little information on assessment. The efforts
of this working group may contribute to developing
assessments for use by CC2001 implernenters.

The remainder of this report is organized into eight major
sections. We begin by describing a framework for
learning objectives during the first year of computing
courses. The next section explores a variety of assessment
approaches and motivates the choice we made for this
study. Next we describe the methodology for the trial
assessment, including the work we did in the months
before the ITiCSE conference. In the analysis section, we
describe what we gleaned from the data during our
working group's meetings at the conference. The
remaining sections interpret the results, discuss
implications and possibilities for further analysis, raise
issues to be addressed in follow-on studies, and propose a
model for driving this work further.

A framework for first-year learning
objectives
When faced with understanding student performance, a
natural question is "What should be assessed?" The
working group discussed these issues and developed a
framework of first-year learning objectives, both to clarify
what we expected students to have learned during their
first year and to allow us to evaluate how well the
instruments for this study assessed the learning objectives.
For first-year computing students, a fairly universal
expectation is that they should learn the process of solving
problems in the domain of computer science, in order to
produce compilable, executable programs that are correct
and in the appropriate form. As the framework for the
learning objectives of the first year, we expect computing
students to learn to successfully follow these steps:

1. Abstract the problem from its description
2. Generate sub-problems
3. Transform sub-problems into sub-solutions
4. Re-compose the sub-solutions into a working

program
5. Evaluate and iterate

In general, all Computer Science programmes aim to
produce students who can reliably follow these steps in
solving discipline-specific problems, independent of the
particular programming paradigm being used. This also
remains as a (possibly implicit) goal as students progress
through their programmes, although the domain of
application, as well as the scale and complexity of
problems addressed, changes. The following clarifies
what is involved in each of these problem-solving steps.

126

1. Abstract the problem from its descript ion - - First-
year assessment exercises are generally framed in terms of
a concrete, usually informal, specification of a problem
for which students are required to implement a solution.
Starting from this specification, students must first
identify the relevant aspects of the problem statement.
Next, students must model those elements in an
appropriate abstraction framework, which is probably
predetermined based on the approach being used in the
solution space (e.g., procedural, OO, functional, logic)
and heavily influenced by the teaching approach.

2. Generate sub-problems - - The scope and importance
of this step in the problem-solving process may be
dependent on the design approach adopted. A functional
decomposition of a structured program often requires
further decomposition. In an object-oriented solution, the
previous step has probably designed the classes needed,
although at this stage, there may be factorization of
methods out of others already in the design.

3. Transform sub-problems into sub-solutions - - Here,
the student must decide on an implementation strategy for
individual classes, procedures, functions, or modules, as
well as on appropriate language constructs (solution
representations). This includes deciding on data
structures and programming techniques. A crucial aspect
of this step is the implementation (and testing) of the sub-
solutions. The solution should be correct and in the
appropriate form, that is, it not only produces the right
output but is also modularized, generalized, and conforms
to standards. Some language constructs may be
inappropriate in particular domains or particular
pedagogies; for example, it is not possible to use recursion
in all languages. This step is typically the first point in the
process at which significant involvement with tools (e.g. a
compiler) is possible.

4. Re-compose - - In this step, the student must take the
sub-solutions and put them back together to generate the
solution to the problem. This step probably involves
creating an algorithm that controls the sequence of events.

5. Evaluate and iterate - - Finally, the student must
determine whether the earlier steps in the process have
resulted in a good solution to the problem and take
appropriate action if not. The solution must be tested
thoroughly, and some of the earlier steps may be revisited
if the solution fails any tests. The solution must be
debugged to correct runtime and logic errors.

While the above framework of learning objectives
represents an ideal and generalized situation, there are
some problems with this abstraction. Particular pedagogic
approaches and tool-chain support might change details of
the sequence. For instance, an approach based on extreme
programming (XP) [2] would make the testing activity
much more central, so work on that aspect would begin
much earlier in the process. The availability of tools such

as BlueJ [3] would enable testing to be performed more
easily at step 3, rather than waiting until step 5. Use of
design tools and notations can encourage students to
check submissions at an earlier stage in the process.
Whatever the variations, however, all of the steps in the
process should still take place.

Assessment instruments for first-
year CS
This section reviews general requirements for assessment
and describes types of assessment frequently used in first-
year computing courses. In reviewing these strategies, we
discuss how well each meets the general requirements for
assessment. We emphasize that assessment must be tied to
the educational objectives discussed in the preceding
section on the learning objectives framework. We
conclude this section by evaluating how well the trial
assessment met these assessment requirements.
Two main categories of assessment are objective testing
and performance-based assessment. Objective forms of
assessment, such as multiple-choice questions, can
provide a cost-effective means for determining student
knowledge about areas such as language syntax or
program behavior. Objective testing can provide instant
feedback and can be used for both formative and
summative assessment. On the other hand, multiple-
choice questions cannot directly test students' ability to
create working computer programs.
In performance-based assessment, students are assessed
for their ability to create programs. Criteria for
performance-based assessments include: fairness,
generalizability, cognitive complexity, content quality
(depth) and coverage (breadth), meaningfulness, and cost
[4,5]. Below, we present three common forms of
performance-based assessment instruments and discuss
how well they meet the learning objectives framework
from the previous section, as well as the seven criteria
given earlier in this paragraph.

1. Take-home programming assignments
Typically a number of these assignments are given
during a course. Such assignments tend to be fairly
large scale with a fairly generous maximum
timeframe set for completing them (up to several
weeks). Such assignments tend to cover all five
aspects of the learning objectives framework. They
generally contain a large amount of cognitive
complexity. They are fair, generalizable, and
meaningful in the sense that students are operating in
an environment that is close to reality; however,
students are penalized if they are unable to spend
enough time completing the assignment. This type of
assessment is more vulnerable to plagiarism than are
some of the other assessment approaches.

. Examinations (short answer)
These examinations (such as asking students to
generate code fragments) can be used to assess all
five learning objectives, although items on such
examinations often tend to concentrate on steps 3 and
4 of the learning objectives framework
(decomposition into sub-problems and transformation
into sub-solutions). It is difficult (but not impossible)
to make short-answer examinations meaningful or
generalizable because of the limited time available for
students to complete them, but they can provide
cognitive complexity at low cost.

3. Charettes (the method used in this study)
Charettes are short assignments, typically carried out
during a fixed-length laboratory session that occurs
on a regular basis. The closed nature of these
sessions reduces the opportunity for plagiarism.
Charettes provide coverage of the learning objectives
framework, although in a manner that is more
superficial and less cognitively complex than is
possible with larger take-home assignments. The
experience of completing a charette may not be as
meaningful or generalizable as larger assignments.
Charettes may be unfair to students who have test
anxiety or troubles with time pressure.

Once an assessment instrument is chosen, the scoring
criteria must be determined. One approach to scoring
would be a raw assessment of whether the program works
(although this is not particularly useful for formative
assessment). It is common for first-year computing
instructors to examine the source code and other written
materials as part of their assessment strategy. Another
approach to assessment is to combine one of the above
with interviews in which the students describe their
process and product and thus demonstrate that they
understood what they have presented.

In this study, the form of assessment used was the
charette, a short, lab-based assignment. We selected this
assessment type to foster a fairly uniform environment
across universities at a relatively low cost. Our charette
provided fairness in the sense that all students were
operating in a similar environment, although this approach
can be seen as discriminatory against students with test-
taking anxiety. The exercises did offer cognitive
complexity and covered all parts of the learning objectives
framework reasonably well. In the Methodology and
Analysis sections, we explain the criteria we used in
assessing the students' programs.

Methodology
To help determine the programming ability of first-year
computing students, the working group developed a set of
three related programming exercises that students at
several universities would be asked to solve. The

127

exercises, which varied in difficulty, were designed so
that, theoretically, students in any type of Computer
Science programme should be able to solve them.
Students could use any programming language to
implement their solutions; we assumed that they would
use the language that they were required to use for the
course they were taking at the time. Students would only
have to complete one exercise of their instructor's
choosing. The opinion of the working group's
participating schools was that a student at the end of the
first year of study should be able to solve the most
difficult exercise of the three in about an hour and a half.
The exercises focused on arithmetic expression
evaluation. The easiest of the three exercises (P1) required
a computer program to evaluate a postfix expression. The
second exercise (P2) required a computer program to
evaluate an infix expression with no operator precedence
(the operations were to be performed strictly left to right,
with no parentheses present). The last exercise (P3)
required a computer program to evaluate an infix
expression with parenthesis precedence (operations were
to be performed left to right, with parentheses forcing sub-
expressions to be evaluated first). Each exercise stated
that input tokens (numbers and operation symbols) would
be separated by white space to ease the process of
entering data. Infix expressions would contain only binary
operations (+, - , *, / , ^); postfix expressions could
contain unary negation (-) as well. The exercises are
described in Appendix A.

To enable the work of students f rom different universities
under different instructors to be compared meaningfully,
the working group developed the General Evaluation (GE)
Criteria shown in Appendix B. The criteria considered
whether a student 's program could run without error,
process several arithmetic expressions, produce correct
results, and determine when expressions contained errors.
These criteria were strictly execution-based. To assess the
style component of the GE Criteria, the source code was
inspected.

The Degree o f Closeness (DoC) Criteria given in
Appendix C provided a subjective evaluation of how close
a student 's source code was to a correct solution. Students
at some of the universities were also asked to complete a
questionnaire (see Appendix D) that gathered
demographic information, programming background, and
reactions to the task.

Instructors at four universities administered the trial
assessment as a laboratory-based exercise in their
respective courses. Two used the first exercise (P1,
postfix evaluation), one used the second exercise (P2,
infix evaluation with no parentheses), and one used all
three exercises, administering a different exercise in each
of three sections o f the same course. Students had either 1
hour (at one university) or 1.5 hours (at three universities)
to write a computer program to solve the exercise they

128

were given using the language they were taught in their
classes (which happened to be either Java or C++). When
finished, students submitted their executable programs and
printed copies of their source code for assessment. At one
university, the exercise was set up as an examination
required of all students, while at the other three
universities, the participants were volunteers who received
extra credit points.

The computer programs were evaluated using the criteria
in Appendices B and C. The GE Criteria assess how
accurately the students implemented their solutions, and
thus concentrate on the last two learning objectives (re-
composit ion into a working program and evaluation). The
DoC Criteria assess the results o f the abstraction process
and thus enabled us to see how well the students met the
first three learning objectives (abstraction, decomposit ion,
and transformation into sub-solutions). In addition, the
instructor who gave the exercise as an examinat ion graded
the programs in the traditional manner in order to be
consistent with the grading criteria for the remainder of
the course. Outcomes of the assessments were reported to
the working group leader for tabulation and cross-
institutional analysis.

Analysis
Each instructor who administered the exercise applied the
General Evaluation (GE) Criteria (Appendix B). All
instructors produced an aggregate score for the General
Evaluation Criteria; most instructors also reported the four
component scores (execution, verification, validation, and
style). In contrast, the DoC Criteria (Appendix C) were
applied to the source code f rom all four universities by
evaluators at a single university. The evaluators also
generated comments to explain their reasons for giving
each DoC score. In an informal inter-rater reliability test
on scoring against the DoC Criteria, we found a high
degree of correlation between evaluators.

Two of the four universities administered a local version
o f the Student Questionnaire (Appendix D). For all four
universities, the exercise number (P1, P2, or P3) was
recorded for each student as well as the programming
language used (Java or C++ in all cases). The four
participating universities were randomly assigned the
codes School S, School T, School U, and School V. The
instructor at School V reported a local grade on the
exercise (which was given as an examination). We
assigned each student an encoded student ID number in
order to ensure anonymity.

Once the raw data f rom each university were entered and
validated, the analysis fol lowed two independent paths.
One path was a quantitative analysis based on the GE
score, the DoC score, and the other data available for each
student. The second path was a subjective analysis that
focused on several o f the unsuccessful attempts to solve

the assigned exercise, looking at comments embedded in
the source code and information from the questionnaires.
We present the outcomes of these analyses in the next
three subsections.

Bi-modal distributions ("two humps") appear throughout
this data. Another example is the combined P2 dataset
(combining Schools U and V), which has a similar bi-
modal profile (Figure 2).

Analysis of General Evaluation Score
The average General Evaluation (GE) score (combining
the execution, verification, validation, and style
components) for all students, all exercises, at all schools
(n = 217) was 22.9 out of 1 I0 (standard deviation 25.2).
The scoring for each of P1 (Schools S, T, and V), P2
(SchoolsU and V), and P3 (School V only) appears in
Table 1. Overall performance was generally fairly low.

P1 (n = 117)
P2 (n = 77)
P3 (n = 23)

Average (stdev)
21.0 (24.2)
24.1 (27.7)
31.0 (20.9)

Table 1: GE average score by exercise

We assumed in this study that we would be able to safely
combine data from multiple universities in our analyses.
However, there are differences between the students at
different universities (e.g., in raw talent, in previous
experience, in courses completed), between how they are
taught, in how the exercises were applied (e.g.,
examination grade vs. extra credit points, time allowed,
hints given), and, especially, in how the GE Criteria were
applied. We used a statistical test (Student's t-test) to
compare the universities on each of the exercises. Schools
S and T did not differ significantly on P1, but every other
combination (Schools V and T on P1, Schools V and S on
P1, Schools U and V on P2) did differ significantly (p <
0.00001).

Table 2 summarizes the scores for each school across all
the exercises. (Only School V used more than one
exercise, P1, P2, and P3.) School V had considerably
higher scores than the other universities. Note, however,
that we cannot simply conclude that School V's students
performed better; the differences may be due to factors
such as how the GE Criteria were applied, what types of
students participated, or how motivated students were to
do well.

Schools S and T are not statistically different on P1, so we
can combine those scores with more confidence that we
can gain the benefits of an increased sample size and of
describing students across multiple universities. On this
combined P1 dataset (combining Schools S and T, n = 94)
the average General Evaluation score is 14.0 (standard
deviation 18.0). Figure 1 shows that the distribution of
these scores is bi-modal. While the majority of the
students did very poorly, there is a second "hump" in the
distribution, indicating a set of students with somewhat
better performance.

The majority of students working on P2 scored below 10
points and fewer than ten students earned between 10 and
35 points, while over thirty students scored between 36
and 54 points.

With such low scores, we were curious to know where the
students lost points. The GE Criteria had four
components: execution (did the program run?),
verification (did it handle input correctly?), validation (is
it the right kind of calculator?), and style (does it meet
standards?). Though the scores are uniformly low, as a
percentage of possible scores, students did best on the
execution component (implying that, overall, they wrote
programs that compiled and ran) and the style component
(implying that the source code looked good). The lowest
component scores were on the verification and validation
components (Table 3).

Analysis of DOC Scores
The Degree of Closeness (DoC) score, a five-point scale
that rates how close a student's program is to being a
working solution (see Appendix C), is particularly
interesting to study because a single set of raters assigned
the DoC scores for all four universities. Therefore, any
differences in universities can be attributed to differences
among the universities themselves, rather than to
differences in applying the criteria.
We discovered that the GE and DoC Criteria do measure
similar phenomena. The correlation between the GE
score and the DoC score was significant (Pearson's r =
0.66).

The overall average DoC score (combining universities
and exercises, n = 217) was 2.3 out of a possible 5 points
(standard deviation 1.2). In general, student performance
was low by measure of the DoC Criteria. The average
DoC score for each exercise appears in Table 4. Students
did best overall on the simple infix calculator exercise
(P2), and next best on the RPN calculator (P1). This may
be due to students' familiarity with infix calculators and
notation and their lack of familiarity with RPN
calculators, or perhaps due to mismatches between the
demands of the exercise (e.g., stacks for RPN calculators)
and the curriculum at a particular school.

129

G}

"6

E .=

40

35

30

25

20

15

10

5

0

8 16 24 32 40 48 56 64 72 80

Scores

88 96

F i g u r e I : D i s t r i b u t i o n o f G E sco re s on the c o m b i n e d P I da t a se t (h i s t o g r a m)

40

~- 35

g 30

~- 25

- - 20

=w 15 _=
to

I 5

8 16 24 32 40 48 56 64 72 80

Scores

88 96

• S c h o o l S (n = 7 3) - - P1 -

- S c h o o l T (n = 21) - - P1 -

- S c h o o l U (n = 4 7) - - P2

School V (n = 23) P1
School V (n = 30) P2
School V (n = 23) P3
T o t a l s for S c h o o l V on P1, P2 , P3

Average (stdev)
14.0 (18 .6)

12.0 (16 .3)

8.9 (11 .4)

48.7 (25.7)
47.8 (29.1)
30.9 (20,9)
4 3 , 0 (26 .7)

T a b l e 2: G E a v e r a g e s c o r e b y u n i v e r s i t y

G E Component (and maximum
score possible)

E x e c u t i o n (maximum: 30)

Average score
(stdev)

7.2 (11 .8)

V e r i f i c a t i o n (maximum: 60) 1.6 (5.8) 2 . 8 %

V a l i d a t i o n (maximum: 10) 0,3 (1.8) 3 . 2 %

S ty l e (maximum: 10) 4.6 (3 .4) 4 6 . 2 %

As percentage of max
score on component

2 3 . 9 %

T a b l e 3" A v e r a g e G E c o m p o n e n t s co re s and p e r c e n t a g e o f e a c h c o m p o n e n t a c h i e v e d

130

Average (stdev)
PI (n = 118) 2.2 (1.2)
P2 (n = 77) 2.4 (1.2)
P3 (n - 23) 2.0 (0.9)

Table 4: DoC score by exercise

The distribution of DoC scores for the universities is
shown in the first five rows of Table 5, with the average
score for each university in the final row. School V had
the highest DoC score, with School S second. The
difference between universities is statistically significant
(on a Student's t-test, p < 0.01).
At School T, we had the unusual circumstance of two
different programming languages used in the exercises.
About half Of School T ' s students solved P1 using C++ (n
= 10) and the rest solved the exercise using Java (n = 11).
We calculated the average DoC score for each of these
groups separately, then compared (using a Student's t-test)
each group to a comparison group (School S 's students)
who solved P1 using Java. While School T ' s C++
programmers did significantly better than School T ' s Java
programmers (p < 0.001), it is striking that the Java
programmers at School T differ significantly from School
S 's Java programmers (p < 0.001), while School S 's Java
programmers and School T ' s C++ programmers do not
differ significantly. Table 6 gives the average and
standard deviation for each of these groups.

School T ' s C++ Students (n = 10)
School T ' s Java Students (n = 11)
School S 's Java Students (n = 73)

Average (stdev)
1.7 (0.8)
1.o (o.o)
2.2 (1.1)

Table 6: Average score on P1 by School T ' s Java and
C++ programmers and School S 's students

Qualitative analysis of selected
solutions
In our qualitative analysis of the data, our goal was to
better understand some of the outcomes reported in the
previous sections. We investigated the question "What
went wrong?" (from both an instructor and a student point
of view) for the students who produced an unsuccessful
solution. The analysis was based on the students" source
code as well as their responses to the Student
Questionnaire (Appendix D). The analysis focused on
students from Schools S and V whose DoC score was 1 or
2 and compared their performance with that of students at
the same schools whose DoC score was 4 or 5.
First we investigated the data from the instructor's point
of view to see how students were approaching the
exercise. For the students whose DoC score was 4 or 5,
we can say that little or nothing went wrong (i.e. they
produced working solutions that really solved the
exercise). These students can be characterized as

131

individuals who figured out a solution for the exercise and
either completed the exercise or were in the final phases
of implementing a solution. In analyzing what went
wrong for the students who earned a DoC score of 1, the
results can be classified into three types:
Type 1 (null result): the student handed in an empty file.
Type 2 (unplanned result): the student's work showed no

evidence of a plan to solve the problem. One
explanation for this performance is that the student
followed a heuristic in which they first did what they
knew how to do, deferring the tasks about which they
were uncertain, but were then unable to proceed
beyond that point.

Type 3 (unimplemented plan): there is evidence that the
student had a plan but did not carry it out. These
students apparently understood what they needed to
do and appeared to have a general structure for a
solution. We further subdivide this type into two
subtypes. For type 3a (unimplemented plan with
promising approach), there was evidence that the
student had identified a reasonable structure for
solving the exercise. For type 3b (unimplemented
plan with poor approach), the student apparently had
a plan, but it was a poor one for the solution.

Next, we investigated the data from the student's point of
view to better understand why the process of completing
the exercise went so well for some students and so poorly
for others. We contrasted student attribution of
difficulties for students at School S whose DoC score was
1 with the attributions of students at the same school
whose DoC score was 5. In the Student Questionnaire
(Appendix D), students were asked to rank the difficulty
of the exercise on the scale [easy, difficult, hard,
impossible]. None of the School S students who earned a
DoC score of 1 (n = 25) rated the exercise as easy. Six of
these students did not respond to the questionnaire. Of the
remaining nineteen students, six ranked the exercise as
difficult, nine ranked the exercise as hard, and four ranked
the exercise as impossible (and these were not necessarily
the Type 1 students). For the three School S students
whose DoC score was 5, one thought the exercise was
easy, one thought it was difficult, and one thought it was
hard.

To gain some insights into why, we read the reflections
reported by Type 1 students (null result) and students who
earned a DoC score of 5. We found that the Type 1
students attributed blame for their difficulties to factors
outside of their control. They blamed the amount of time
available to solve the problem, their unfamiliarity with the
computers in the lab, their lack of Java knowledge, and
other external factors. None of the Type 1 students
mentioned factors related to the process of solving the
exercise. In contrast, students whose DoC score was 5
competently described the difficulties they experienced in
the process of creating a solution. Many of these
explanations illuminated particular aspects of the design
phase or particularly challenging sub-problems. Examples

of comments made by such students were "Simple errors
got the best of me" (problem difficulty rated as difficult),
"Could not solve for error case" (problem difficulty rated
as hard), and "Implementat ion is wrong but easy"
(problem difficulty rated as easy). Most of the students
with DoC scores of 5 included comments in their source
code that documented the cases for which the program did
not work.

Due to the limited t imeframe for the working group
collaboration, this qualitative analysis is preliminary and
incomplete. The Results section includes additional
observations f rom the qualitative analysis and ideas for
further qualitative analysis o f this data, as suggested by
the results to this point.

Results
The first and most significant result was that the students
did much more poorly than we expected. There are many
possible causes: Our expectations may have been too
high, the problems may have been too hard or a poor fit to
the students ' background and interests, there may not have
been enough t ime given, and so on.

W e did answer the question we asked in the Introduction
section: Do students in introductory computing courses
know how to program at the expected skill level? The
results f rom this trial assessment provide the answer
"No!" and suggest that the prob lem is fairly universal.
Many of the solutions would not compile due to syntax
errors. This suggests that many students have not even
acquired the technical skills needed for getting a p rogram
ready to run. While all the results were poor, School V ' s
students did significantly better than the other universities.
Two important factors that may have contributed to this
difference are: (1) The School V instructor had given the
students an example to study, which was a complete
answer to a similar problem, and (2) All students were
required to take the exercise, which was given as an
examination. Thus, sources of difference among the
universities in this study could include type of
preparation, motivat ion on this exercise (e.g., examination
vs. extra credit), student characteristics (e.g. volunteers or
compulsory participation), and issues such as curriculum
and teaching style.

The School V instructor, who gave the exercise as an
examination, applied local grading criteria in addition to
the criteria defined for this trial assessment. W e found
that the correlation between the local grade and the
General Evaluation score was high, but not overwhelming.
One interpretation of this is that the two scores consider
somewhat different features. It would be interesting to
study these differences in order to gain a better
understanding of the way instructors normally grade
programming assignments and to contrast this with the
criteria we used in this study. Local grades may consider

more than performance on a single assignment. For
example, a teacher may wish to reward effort or dramatic
improvement, and there are certainly good reasons for
doing so. Assessment in a study such as this one,
however, considers performance at a particular instant.
Give this difference in contexts, it is not surprising that the
grade and the assessment score may differ.
We clearly misjudged the complexi ty of the exercises.
The higher General Evaluation score o f the students who
worked on exercise P2 (infix notation without precedence)
implied that this exercise was in some sense easier than
exercise P1 (RPN notation). (Before conducting the
study, we had rated P2 as being of "modera te" difficulty
and P1 as being "simplest"). This points out more of what
we still do not know about student learning and
performance. P1 was undoubtedly difficult for students
who had never studied stacks or other basic data
structures.

The result about bi-modali ty is troubling. There are two
distinct groups of per formance in our datasets. This result
suggests that our current teaching approach is leading to
one kind of performance for one sizable group of students
and another kind of per formance for another sizable
group. We need to keep in mind that different groups o f
students have different needs and strengths; we must
ensure that the results f rom one group do not obscure our
view of the other.

While the basis for compar ison between p rogramming
languages is small for this trial assessment, we did unearth
an interesting contrast. One school of thought says: "Java
is better than C++ for education" or "Languages matter a
lo t - - s tudents learn better with X than Y." In this study,
Java programmers f rom School S resembled C++
programmers f rom School T more than they resembled the
Java programmers at School T. This suggests that the
difference was not s imply due to the p rogramming
language. Issues of how the course is taught and who the
students are influence the outcome, rather than being
simply a matter o f p rogramming language X vs.
p rogramming language Y. Future investigations must dig
into how learning differs with different p rogramming
languages.

The fact that students did well on the style componen t of
the General Evaluation Criteria indicates that students are
responding to their instructors' admonishments about
comment ing and formatt ing of code. The other
component scores (execution, verification, and validation)
indicate that the code that students write does not mee t
specification; the only way to evaluate this is to run the
students ' code. An implication of this is the importance o f
actually executing student programs.

The significant number of solutions with a D o C score o f 1
or 2 (i.e. students who were "clueless") raises the
suspicion that those students need additional work during

132

the first-year courses with developing skills in the first
learning objective in our framework (abstracting the
problem from a given description).

Many of the students who failed on this trial assessment
had no idea how to solve the exercise. On the Student
Questionnaire, the last question asked students: What was
the most difficult part of this assigned task? Was it the
timed aspect of the problem, was the problem too difficult,
etc. ? The following quotes are responses from students
whose DoC score was 1 or 2:
• "I didn' t have enough time"
• " I ' m not good with stacks/queues."
• "Too cold environment, problem was too hard." [We

believe the first phrase refers to the temperature in the
physical setting.]

The most frequent student complaint was a lack of
sufficient time to complete the exercise. This implies that
these students could not accurately identify the main
source of their difficulties in solving the exercise and
therefore tended to attribute blame for their lack of
success on factors other than themselves, such as a lack of
time or the "cold" environment. In a multi-factor analysis,
[11] found that attributing blame to external factors (such
as "luck") was not uncommon, but was particularly hard
to overcome. Once students attributed their failure to
unstable factors that were out of their control, they rarely
succeeded in future attempts.

One implication of this finding is that the implementation
of first-year courses should make better use of available
assessment methods and tools. Students should receive
accurate feedback that allows them to become aware of
their own limitations and difficulties--although such
feedback alone will not necessarily convince a student that
the reason he or she failed is at least partially internal
rather than purely external.

• "I had a plan, I did not know how to carry it out in
Java."

• "The problem was too difficult, I lost a lot of time
trying to understand how the computer work."

These quotes are from students who seemed to accurately
identify their own difficulties and who took responsibility
for their own performance. These students knew that they
should go through a process of understanding, planning,
and implementing. The earlier students' reflections give
us little information about whether they were following
these steps of problem-solving; in fact, the earlier students
appear to have been lost and unable to point out what they
do not know, blaming the environment or their poor
understanding of a class of concepts.

The students' reflections provided useful information
about the influence of the setting on student performance.
Five School V students who earned a DoC score of 1 or 2
complained that they had a plan but could not handle the
environment themselves and therefore could not translate
their solution into a working computer program. When we
interviewed the School V instructor, we learned that while
the setting was indeed lab-based as specified in the
instructions for how to administer the exercise, it was also
the first time these students had taken a laboratory-based
examination. This helps to explain why these students
found it difficult to work on their own and performed
rather poorly. Several students reported in the Student
Questionnaire that stress played a major role in their
unsuccessful performance, while others reported that they
needed time just to figure out how a postfix calculator
works. Being aware of such factors can help us as
instructors to refine our assessment tools and give better
guidelines on how to administer the tools. These data also
give us insights into the students' performance that can be
used to refine our approach to evaluating their knowledge.

Students often have the perception that the focus of their
first-year courses is to learn the syntax of the target
programming language. This perception can lead students
to concentrate on implementation activities, rather than
activities such as planning, design, or testing. Generally,
this perception does not come directly from what their
instructors are telling them and, in fact, this belief seems
to be robust even in the face of instructors' statements to
the contrary. Students often skip the early stages in the
problem-solving process, perhaps because they see these
steps as either difficult or unimportant. It is also possible
that instruction has focused on the later stages, with an
implicit assumption that the earlier stages are well
understood or easy to understand.

The information from the students' reflections can provide
useful information for improving the assessment process.
The following two quotes are drawn from the responses to
the same Student Questionnaire item as above by students
whose DoC score was 2:

Discussion
In analyzing the data from universities in different
countries, we have found that the problems we observed
with programming skills seem to be independent of
country and educational system, The most obvious
similarity we observed was that the most difficult part for
students seemed to be abstracting the problem to be
solved from the exercise description. At all universities,
the main student complaint was a lack of time to complete
the exercise.

In this trial assessment, as in the "real world", it may be
that black-box assessment of students' submissions
reinforces students' views of implementation and syntax
as the key focus of computer programming. Here we
explore some possible reasons for the observed situation.
1. Students may have inappropriate (bad) programming

habits. When beginning their university studies,
many students have prior experience in computer

133

programming. Often students with such experience
treat the source code as simple text rather than as an
executable computer program that is supposed to
accomplish a specific task. Their goal is simply to
obtain a program that compiles cleanly; often they are
then surprised by what the program really does when
presented with data.

2. Switching to modern (Java) object-oriented
programming tools. Anecdotal evidence and some
research results (e.g. [10]) suggest thalL teaching an
object-oriented approach to computer programming
(for example, using a Java environment) requires
more time before students have sufficient knowledge
about the programming environment to solve
problems on their own (which suggests that less time
is required to achieve the needed level of familiarity
with the environment in a procedural or functional
approach). Therefore it is very likely that first-year
courses using an object-oriented approach do not
have room in the syllabus for fundamental data
structures such as stacks, queues, and trees.

3. Closed lab time constraint. In terms of the way this
trial assessment was administered, time pressure may
have contributed to the poor results.

The qualitative analysis of selected solutions helped
explain student performance and therefore highlights
where future studies must improve over this trial
assessment. One direction for further analysis would be to
give a more in-depth characterization of the nature of
student knowledge and difficulties within each DoC score
(i.e. from 1 to 5). We could investigate this by
considering the quality of the source code, the internal
documentation, and the data from the Student
Questionnaire. It would be useful to consider these issues
from both from the instructor's point of view and the
student's point of view. A student's reflections can
provide important clues to whether the student
understands his or her own limitations in knowledge. For
example, the terminology that the student uses to describe
his or her difficulties provides glimpses into the student's
processes and problem-solving knowledge. These insights
could help us better understand whether students are
becoming competent in correctly identifying (and
overcoming) their own difficulties.

In general, data analysis using qualitative approaches can
provide information to help improve educational
processes and refine assessment tools. For example, being
aware of the factors revealed by qualitative analysis can
assist us in developing better instructions for
administering this trial assessment. The information
generated by the qualitative analysis can also help make
us aware of aspects of our students' behavior that we
otherwise would not notice. Finally, the information from
qualitative analysis can provide better and more accurate
insights into what students know and how they use that
knowledge.

134

To efficiently teach computer programming skills is
difficult. The kinds of assessment that instructors use
throughout their courses must provide appropriate
information for understanding students' processes of
developing programming skill. This l~rial assessment
showed that most of the participating students failed to
achieve one of the basic goals of a first-year computer
science course: to acquire at least a basic level of skill
with computer programming. This implies that it was the
students' knowledge, rather than their skills, that enabled
them to successfully complete their first-year courses. It is
possible that either performance-based assessment tends
to be improperly implemented or that it is often sacrificed
in order to make assessment more objective.

Issues to be addressed in fo l low-
on studies
Several aspects of this study gave us cause for concern or
raised points that must be addressed in future studies of
this kind. These areas include the administration of the
study, the exercises, and the challenges of multi-
institutional collaboration.

Issues related to administrat ion of the
exercise
There are difficulties in comparing the performance of
students with different programming backgrounds. In
some universities, first-year students enter having already
taken a general introduction to programming course,
whereas in others most students are programming novices
at the start of their first year of studies. Although some of
the latter group may have prior programming experience
from school, other universities, or self-learning, the
preponderance of novices in the sample would affect the
results from those universities. In future studies, we might
specify the level of prior programming experience or the
specific programming knowledge that the students are
assumed to have for each exercise. It would then be fairer
to allow instructors to choose the appropriate exercise to
give to their students. The background questionnaire
should also be modified to solicit information on students'
prior programming knowledge.

Students were expected to solve the problem in whatever
language they were learning in their course. As it
happened, in our study all the students were learning
either C++ or Java. The language of implementation
affects the difficulty of the solution. For example, it is
much easier to read data from a keyboard in C++ or even
C than in Java. Many courses teach Java using classes
supplied to simplify input from keyboard, but it was
specifically stated in the instructions that students were
not allowed to use such classes. The exercises should be
chosen so that it is not necessary to use a technique that is
clearly more difficult in one language than another.

These exercises were designed to be done using
computers in a laboratory environment. The laboratory
session must be monitored to ensure that nobody uses
external means such as email or the Internet to obtain help
with the solution. It was unclear from the trial assessment
instructions whether the exercise could be done on an
open-book basis. It was also unclear whether instructors
were allowed to prepare the students for doing the
exercise. Such issues should be explicitly addressed in the
instructions in future collaborative assessment studies.
In some universities that participated in the study, the
students were volunteers. In others, the exercise was
compulsory. I f students are asked to volunteer for a
programming exercise, anyone who is weak in
programming is likely to choose not to do it. This means
that, in order to gain a true picture of the programming
skills of students, the exercise must be compulsory for
students. The only way to ensure that all students will
attempt an exercise is to make its results count towards
their final mark in a course. It must therefore fit into the
assessment strategy of the course in which they are
enrolled, as an examination for which a number of marks
are allocated. In the future, it would help the analysis to
record information about the conditions for each
administration of the exercise, for example, examination
vs. extra credit and volunteers vs. compulsory.

I f the exercise is compulsory, a one-and-a-half hour
laboratory consisting of only one question may be unfair.
This is particularly true if this style of assessment is so
different from what students have already done in their
courses that they cannot determine where to start. An
assessment of programming skill may need to take into
account the fact that, in the "real world", a programmer
usually does not have such a short time limit for
understanding a problem and writing the required
computer program. In addition, real-world programmers
are generally free to refer to books and other resources if
needed. Students whose primary language is not English
may need a considerable amount of time to read the
specification in order to understand what is required. In
future studies, it may be necessary to allow students much
more time than it is likely to take them to solve the
problem. For example, if a teaching assistant can solve
the problem in half an hour, it may be necessary to allow
students up to three or four hours to solve it. Some
students suffer from examination anxiety. To counter this,
it would be possible to give students a week, say, to do the
exercise, although this introduces more opportunities for
plagiarism, and the assessment strategy would have to
take this into account. Another approach would be to treat
the topic area for the exercise as a case study that the
instructor presents during one or more lectures. Basic
materials for presenting the case study could be
distributed to the participants. This would introduce some
consistency in how the case study was introduced to
students and could make it easier for students to quickly

understand the requirements of the exercise in the closed-
lab setting.

This study was not culturally neutral. For some
universities, the exercises and instructions had to be
translated into a language other than English. One way to
minimize the effect of this difference would be to ensure a
centralized translation to each language, which would
ensure that all universities using a particular natural
language use the same specification. Ideally, there should
also be a validation step to ensure that the translated
version of the exercise gives exactly the same
specification as the original English version.

In future studies, instructors must receive sufficient notice
of the study so that they have time to incorporate it into
their assessment strategies for a particular semester. This
point was a major factor in why additional universities did
not participate in this trial assessment.

Issues related to the exercises
The exercises used in this study were probably
discouraging for students with mathematical anxiety.
Such students exist even in Computer Science
programmes and are more likely to exist in other kinds of
computing programmes that do not include compulsory
mathematics courses or have strong mathematics
prerequisites, such as a programme focused on
commercial applications of computing. In future studies,
a set of exercises of equivalent programming difficulty
could be devised, and participating instructors could
choose the most appropriate exercise for students in their
programme. Alternatively, students could be allowed to
choose the exercise that they felt most comfortable
attempting.

The exercises in this assessment should have solutions
that are unlikely to appear in the textbooks typically used
by students in the first year. In this way, students who had
used such textbooks would not be at an advantage over
those who had not. To address this in future studies, a
review panel, consisting of a representative sample of
instructors, could be asked to provide feedback on the
appropriateness of the task, the level students would need
to be at to successfully solve the exercises, and whether
they knew of any resources that would give some students
an unfair advantage in solving any of the exercises. The
review panel could include instructors from different
countries, with different natural languages, teaching in
different kinds of degree programmes, and using different
programming languages,

In our study, the exercises were most easily solved using a
procedural approach, and it was not easy for a student to
decide which classes, attributes, and methods would be
required if an object-oriented approach were taken. This
may have confused many students. Given that most first-

135

year p rogrammes currently seem to be using an object-
oriented language, the exercises should include options
for which a natural solution can be designed using an
object-oriented approach.

The specifications of the exercises in this study included
details that were not relevant to the solution, which made
it difficult for many students to achieve the first learning
object ive in our f ramework (abstracting the problem f rom
the description). As stated earlier, many students (those
with DoC scores of 1 or 2) did not get seem to get past
that point in the problem-solving process. In the future,
extra effort should be expended to make each
specification as clear and simple as possible. One way to
achieve this would be to ask the review panel mentioned
earlier to suggest changes to the exercise descriptions, as
well as to the instructions for administering the exercises.

Issues related to mult i - insti tut ional
col laborat ion
This trial assessment is an example of collaboration on a
single project across a variety of universities. Multi-
institutional col laborat ion offers advantages as well as
challenges. Among the advantages are an increased
experience pool, a larger cumulative pool o f students, and
a wider variety of student profiles (increasing the potential
for generalizability of results). At the same time, multi-
institutional collaborat ion includes many challenges, some
of which are addressed earlier in this section. Being
separated physically makes it more difficult to coordinate
protocols for conducting the exercises. It is also more
difficult to make the data consistent (with respect to
formats, field names, etc.) and complete (one university
may collect data that is "lost" at another university, simply
because the second instructor did not know to capture that
information). Another important challenge is making the
exercises sufficiently general so that they are neutral with
respect to both culture and the university. Experience in
this trial assessment suggests that we did not fully succeed
in this. Our conclusion is that we must be cautious in
defining general exercises, since we cannot assume that all
first year programs cover the same material in content or
emphasis, even within the boundaries of established
curriculum standards and accreditation criteria.

Based on the experiences with this trial assessment, we
offer the following advice for doing multi-institutional
collaborations:
1. Appoint one research coordinator, who will be the

main contact point for making decisions on the entire
project. In our case, the W G leader was the research
coordinator, who guided the entire process.

2. Do a trial run of the entire study, including analysis,
in order to work out details o f data formats and
instruments.

3. Ensure that all source data can be traced to the
interpreted data. For example, ensure that the

printouts and files with the source code are marked in
a way that associates each with the coded ID of the
student who completed it.

Continuing the quest
Because our prel iminary work suggests that the problems
we have observed are universal, the working group feels it
is worthwhile to expand this trial assessment to include a
broader base of computer science educators and
universities. W e envision establishing a central web site
related to assessment of p rogramming skills. Such a site
could provide a gathering spot for links and materials
related to this type of assessment, while at the same t ime
being easily usable f rom throughout the world. The web
site could include a registration process in order to al low
restricted access to various parts of the assessment site.
The programming assessment site must support three main
types of activities:
• A s s e s s m e n t d e v e l o p m e n t . The sys tem should enable

instructors throughout the world to part icipate in this
collaborative project. For example, the web site
should have features to support individuals who wish
to submit new ideas or produce new assessments
(perhaps following pre-defined templates obtained
f rom the web site). The web site can also provide a
technical forum where individuals developing
assessment tools can discuss personal assessment
experiences with others involved in the project .

• S u p p o r t for carry ing o u t a s s e s s m e n t a n d self-
as sessment . This feature can serve two groups o f
users: students and instructors. The assessment web
site can provide both groups of users with ready-to-
use assessments and background information. As the
instruments are filled out, the web site can collect the
results and al low users to submit comments and
feedback. Individual students would be able to use
these tools for self-assessment and tracking personal
progress. The assessment web site could also
establish a worldwide database to accumulate
information about students ' comput ing knowledge
and programming skills as measured by these
assessments. Such a database would provide a basis
for understanding student attributes within a single
university, a single country, or even globally.

• C o m m u n i c a t i o n e n v i r o n m e n t . While much of the
information in the assessment web site will have
strictly controlled access based on an individual 's
registered profile, the sys tem could also allow the
general public to access certain information about
assessment. This would al low anyone interested in
any aspect of assessing p rogramming skills to
exchange ideas and comments .

In order to realize the vision of an assessment web site,
several organizational aspects are needed, including:
• a steering commit tee to guide the various efforts;

136

• a series of meetings, perhaps on an annual basis,
where policy and structure can be defined;

• a committee devoted to maintaining the system; and
• one or more moderators who track day-to-day

submissions from the public.
In order to foster interaction while establishing and
building the assessment web site, a series of meetings
could be held at regular intervals to gather individuals
interested in contributing to this project. The meeting
agenda would include developing the philosophy and
strategy of assessment, accepting or rejecting proposed
changes to the whole system, and managerial
responsibilities such as designating the steering
committee. It would make sense for the
conference/workshop to take place in conjunction with a
major conference such as the SIGCSE Technical
Symposium or the ITiCSE Conference. The steering
committee would be responsible for guiding the
implementation strategy between the periodic meetings.
The system maintenance group would be the professionals
responsible for maintaining the system. Finally, the
moderators would monitor the content of the system on a
day-to-day basis.
The site with information from this working group is
located at the URL:
http://www.cc.gatech.edu/projects/iticsewg/csas.html.

Acknowledgements
The chair of this working group thanks each member for
her or his individual contributions. The members were
what made this working group a success. This project
required a great deal of dedication and effort by the
members before, during and after the conference.
The group would also like to thank the organizers of the
conference, Sally Fincher and Bruce Klein, and the
working group leader, Roger Boyle, for giving us the
opportunity to do this project. Finally, the group would
like to thank Georgia Tech students Blake Markham and
Prashanth Kolli, who helped with a lot of the logistics of
the project.

References
1. ACM & IEEE-CS Joint Task Force on Computing

Curricula 2001 (2001). Computing Curricula 2001,
Ironman Draft. Association for Computing Machinery
and the Computer Society of the Institute of Electrical
and Electronics Engineers. Available:
http://www.acm.org/sigcse/cc2001 [2001, 5/16/01].

2. Beck, K. (2000). Xtreme Programming Explained:
Embrace the Change. The XP Series, Addison-
Wesley, 2000, Boston.

3. BlueJ (2001). Blue J, the Interactive Java
Environment. Available: http://www.bluej.org. [24
July 2001].

4. Hambleton, R.K. (1996). Advances in Assessment
Models, Methods, and Practices. In D.C. Berliner and
R.C. Calfee (Eds.) Handbook of Educational
Psychology. New York: Simon & Schuster
Macmillan.

5. Linn, R. L., Baker. E. L., and Dunbar, S. B. (1991).
Complex, performance-based assessment:
Expectations and validation criteria. Educational
Researcher, 20(8), pp. 15-21.

6. Mayer, R. E. (1981). A psychology of how novices
learn computer programming. Computing Surveys, 1,
pp. 121-141.

7. Pea, R. (1986). Language independent conceptual bugs
in novice programming. Educational Computing
Research, 2(1), pp. 25-36.

8. Soloway, E., Ehrlich, K., Bonar, J., & Greenspan, J.
(1982). What do novices know about programming?
In A. Badre and B. Shneiderman (Eds) Directions in
Human-Computer Interactions, Norwood, NJ: Ablex,
pp. 27-54.

9. Spohrer, J., & Soloway, E. (1986). Novice mistakes:
Are the folk wisdoms correct? Communications of the
ACM, 29(7), pp. 624-632.

10.Wiedenbeck, S., Ramalingam, V., Sarasamma, S. and
Corritore, C.L. (1999). A comparison of the
comprehension of object-oriented and procedural
programs by novice programmers. Interacting With
Computers. 11(3), March, pp. 255-282.

ll.Wilson, B. C., & Shrock, S. (2001). Contributing to
success in an introductory computer science course: A
study of twelve factors. In I. Russell (Ed.), The
Proceedings of the Thirty-second SIGCSE Technical
Symposium on Computer Science Education. In
SIGCSE Bulletin inroads. 33(1). pp. 184-188

Appendices
The information given in these appendices reflects
updates made after completing the trial assessment. Some
changes were introduced to clarify issues and to complete
points that were missed during the initial development.
The original and modified versions of the exercises and
the instruments are available via the working group's web
site at the URL
http://www.cc.gatech.edu/proj ects/iticsewg/csas.html.

Appendix A. Overview of the Exercises
The content of three exercises developed for use in this
study was distributed electronically to the participating
instructors so they could easily cut and paste the text in
creating their local versions of the assignment. As a
baseline for difficulty levels, we hypothesized that second-
semester computing students should be able to do the
most difficult exercise of the three, Exercise #3, in 1.5
hours. To improve consistency, participating instructors

137

received the following guidelines for how to administer
the task.

• The students should work individually in a
closed lab setting (proctored, with all work
completed in the allotted time).

• The student 's goal is to produce a working
and tested program in the time allotted.

• This is a programming exercise, so students
should produce a computer program. Any design
documentation, though important to solving the
problem, is not important to this assessment.

The three exercises, referred to in the body of the paper as
P1, P2, and P3, were as follows:
• Exercise #1 (P1): Programming an RPN calculator;

difficulty level: 1 (simplest)
• Exercise #2 (P2): Programming an "infix" calculator

without precedence; difficulty level: 2 (moderate
difficulty)

• E x e r c i s e #3 (P3): Programming an "infix" calculator
with simple precedence (i.e. precedence determined
by parentheses only; no consideration given to
operator precedence); ; difficulty level: 3 (most
challenging)

The exercise description included a common introduction
for all three exercises. We suggested that students would
need ten minutes to read and understand this background
information. The main ideas in the introduction were:
• An explanation o f the two main notations for hand-

held calculators: Reverse Polish Notation (RPN) (also
known as "postfix", which is generally used by
Hewlett Packard calculators) and "infix" (which is
generally used by Texas Instruments calculators).

• A description o f how "post-fix" and "in-fix"
expressions should be processed.

• A discussion of why RPN is simpler to implement
(i.e. no precedence issues) while at the same time it is
less intuitive for most users.

The individual descriptions of the three exercises
provided the following information:
• User input is to come from the terminal 's standard

input; output should be directed to standard output for
the terminal.

• The solution can utilize standard library routines
provided by the language; no proprietary or other
such libraries may be used.

• The operations that the particular calculator can
process include addition, subtraction, multiplication,
division, the power operator, and the inverse, or
negation, operator. The "infix" calculator with
precedence (Exercise #3) also included parenthesis
pairs, which are used to indicate simple precedence.

• The description of each calculator shows the relative
format for a line o f input. For all o f the calculators,
some for~n o f white space will delimit tokens
(numbers and operators).

138

• User input will be entered non-interactively (so that
the program is not allowed to query the user for
additional information once the expression is
entered), with the exception of the prompt to solicit
the next line of input.

• The program should terminate when the input
contains only the letter ' q ' .

• When an error is detected in the input, the program
should output an informative message and allow the
user to begin entering a new expression.

• At the end of each calculation, the calculator should
be cleared so the data structure containing the
intermediate results is empty and ready for processing
a new expression.

• Floating point arithmetic should be assumed and the
program should allow non-integer expressions as
valid input.

• Through several lines of a sample session, the
description demonstrates a number of expressions and
the results f rom the associated calculations for the
specific calculator.

Appendix B. General Evaluation Criteria
Because this was a programming exercise intended to
evaluate the programming skills o f the participants, the
evaluation focused on skills. The General Evaluat ion
Criteria were designed to give reasonably consistent
evaluations while allowing the participating instructors to
still follow their normal grading process.
The total number o f marks that a particular program could
earn was 110. In the following, we have listed the
allocation of marks immediately after each item. The
style section was optional, since some instructors do have
not style requirements in their introductory classes.
E x e c u t i o n (30 marks) - Does the program execute
without error in its initial form? Does it compile without
error? Does the program run successfully (no core dump
or equivalent failure) ?

Verif icat ion (total o f 60 marks, as broken down in the
i temized list) - Does the program correct ly produce
answers to the benchmark data set? This includes the
following issues:
• (10 marks) The program should allow for multiple

inputs of different arithmetic expressions (i.e., it
should clear out the data structure properly between
different expressions).

• (10 marks) The program should terminate correct ly
(i.e., entering the quit command should terminate the
program).

• (30 marks) The program should correct ly process
data sets containing expressions typically evaluated
with a calculator. (Some sample expressions were
provided to the instructors. The samples were not
meant to be exhaustive, but to provide a benchmark.)

• (10 marks) The program should react properly to
erroneous inputs.

Validation (I 0 marks) - Does the program represent the
calculator type asked for in the exercise specification?
Style (10 marks) - Does the style of the program conform
to local standards, including naming conventions and
indentation? (The style measure was optional.)

Appendix C. DoC Evaluation Criteria
As a more subjective measure of the quality of a solution,
the working group developed an indicator that we came to
call the DoC score, for "Degree of Closeness" (or, with

tongues firmly in cheeks, "Depth of Cluelessness"). The
DoC score applies to programs that did not work and
indicates how close the solution was to working.
To assign the DoC score for a student's program, the
evaluator inspected the source code. The scores ranged
from 5 to 1, with 5 being the best. Generally, the
evaluators added notes to explain the reasons for the
assigned score.

DoC
Score Interpretation

5

4

Touchdown. The program should have compiled and worked. I f it did not work, it could be that
the student simply ran out of time.
Close but something missing. While the basic structure and functionality is apparent in the
source code, the program is incomplete in some way. For example, it might have been missing a
method or a part of a method, but everything else seemed fine.
Close but far away. In reading the source code, the outline of a viable solution was apparent,
including meaningful comments, stub code, or a good start on the code.
Close but even farther away. The outline, comments, and stub code showed that the student bad
some idea about what was needed, but completed ver), little of the program.
Not even close. The source code shows that the student had no idea about how to approach the
problem.

139

Appendix D. Student Questionnaire

This version of the questionnaire was used at an American university.
participating university to solicit equivalent information.

This questionnaire must be customized for each

Part 1: Personal Information
Name:

(please circle the correct choices below)

Sex: Male Female

Class Rank: F re shman Sophomore Jun ior Senior

Overall GPA: <2.0 2.0-2.5 2.5-3.0 3.0-3.5

What grade do you expect to make in the course? A

Major:

IDNUM:

>3.5

B C D F

Part 2: Background

Where did you first learn to program in Java / C++? (please circle one)

BeforeHighSehool HighSehooi College Other:

Do you have any experience programming outside a classroom environment? If so, please explain.

Part 3: Study Reaction

Did you feel that the assigned task was difficult please circle the level of difficulty)

?

What level of difficulty would you rank it? (Easy Difficult H a r d Impossible
Other:

What was the most difficult part of this assigned task? Was it the timed aspect of the problem, was the problem too difficult,
etc.? Please try to explain in a way that makes the difficulties clear for us.

Copyright is held by authors.

\

\

140

